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Abstract

Many solutions of pen-and-paper puzzles have a connectivity constraint. In
this thesis, we will show a new way to solve this kind of puzzles using SMT.
The connectivity constraint is implemented using a graph property. We
elaborate on six examples of puzzles: Slitherlink, Masyu, Shingoki, Nurik-
abe, Hitori and Hashi. For the Shingoki puzzle, we also prove that this
puzzle is NP-complete.
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Chapter 1

Introduction

A lot of people like to do a pen-and-paper puzzle once in a while. Some of
these puzzles are more difficult than others. One element that can make a
puzzle more difficult, is a connectivity constraint. This constraint says: puz-
zle elements in the solution should be connected to each other. For example,
all line parts in the solution of a Slitherlink puzzle should be connected to
each other, and have to form a loop.
In other related work, some solving methods for separate puzzles were pre-
sented. Our solution presents one, efficient way that can be used for all
kinds of puzzles with a connectivity constraint. We use SAT/SMT solving
to solve and generate the puzzles. We show how the connectivity constraint
can be encoded in SMT. Furthermore, we will give 6 examples of puzzles
with a connectivity constraint: Slitherlink, Masyu, Shingoki, Nurikabe, Hi-
tori and Hashi. We will see how we can solve them with the new encoding of
the connectivity constraint. Furthermore, we will show how we can generate
Slitherlink and Masyu puzzles.

For Shingoki, we didn´t find a proof of NP-completeness. Since this puzzle
is very similar to Shingoki and Slitherlink, we created the NP-completeness
proof based on the proof of Masyu. The last chapter of this paper consists
of this proof.

First, we describe the related work in chapter 2. After that, we describe a
general approach to solve puzzles using SMT in chapter 3. In chapter 4, we
see how the connectivity constraint can be implemented. After these general
approaches, we will show for each separate puzzle how this puzzle can be
solved and for some of them how they can be generated (chapter 5). The
last chapter, chapter 6 gives the NP-completeness proof of Shingoki.
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Chapter 2

Related Work

Satisfiability Modulo Theories
We use Satisfiability Modulo Theories to solve our puzzles. We won’t go
into the details of the SMT language, and we will use only the basics of the
SMT-LIB standard. There has been a lot of research on this. A standard
work on this topic is a chapter in the book ’Handbook of Model Checking’.
The chapter is called ’Satisfiability Modulo Theories’, written by Barret and
Tinelli [3].

Graph properties
Zantema and Joosten wrote an article about Graph properties[22], in which
we can also find the idea for our property. For this paper, theorem 2 is the
most interesting. This is the proof why our connectivity approach works.

Solving Slitherlink using SMT
Westreicher wrote a bachelor thesis about solving Slitherlink using SMT[20].
He used another way to solve the 1-loop problem. However, his approach
works only for Slitherlink and is not applicable to puzzles like Hitori. He
uses a technique that puts cells in the loop, and outside of the loop. Then,
he checks if there is a path to a cell outside or a cell inside the loop. This
way works, but is less efficient and compact as the way described in section
4.

On the NP-completeness of puzzles
When doing the research on implementing the connectivity of puzzles, we
came across a paper, written by Yato in 2000 [21]. This paper gives a proof
of the NP-completeness of the Slitherlink puzzle. It proves that determining
if a given Slitherlink puzzle has a solution, is NP-complete. In their ap-
proach to prove this, they take the Hamiltonian circuit problem and reduce
that in polynomial time to a Slitherlink puzzle. The Hamiltionian circuit
problem is proven to be NP-complete, for example in Garey and Johnson in
1979[14, p. 56-60]. When researching Masyu, we also found a proof for that
to be NP-complete by Friedman[12]. This proof is also based on a Hamil-
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tonian circuit. This proof turned out to be very useful for our own proof of
Shingoki. We will use this proof to prove that Shingoki is also NP-complete.
Friedmann also wrote some other NP-completeness proofs for puzzles, for
example Corral Puzzles[11], Cubic[10] and Spiral Galaxies[13].
There is also an other paper on NP-completenss of other variants of Slither-
link, written by Kölker[18]. It uses also an approach containing Hamiltonian
Circuits.
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Chapter 3

Solving puzzles using SMT

We first give a short introduction on SMT, and on the strategy we used to
solve the different puzzles. In this chapter, we will not go into detail on the
rules of the puzzles, but we will give an abstract overview of our approach.

3.1 Satisfiability Modulo Theories

The problem of Satisfiability Modulo Theories (SMT) is checking whether
a given first-order logic formula is satisfiable, in the context of some back-
ground theory [2]. The question that has to be solved is: is there a model
that assigns the variables in a way such that the formula is true. An SMT
problem consists of variables, ranges of the variables, and constraints. Sat-
isfiability Modulo Theories Problem is a form of the Constraint Satisfaction
Problem. SMT is an extension of Boolean Satisfiability (SAT). With SAT,
the instances can only consist of boolean variables. With SMT, also linear
(in)equalities are also possible. Variables can thus also have other ranges
then boolean values. We can for example use integers now.

SMT procedures to solve the problem are often (informally) called SMT-
solvers [3, p. 738]. A lot of these solvers are available online. The most
famous ones are Microsoft Z3, Yices and OptiMath. We want to use SMT-
LIB[2], so we need a solver that supports that. We choose to use Z3, because
Z3 is very often used, user-friendly and it supports all the functionality that
we need. It also has an online portal1, which makes it easy to run small
tests very fast.

3.2 Standard SMT-LIB syntax

We now know which solver we are going to use. We have to give Z3 correct
input files, so that the solver can read in the file and can give a correct

1https://rise4fun.com/Z3

6



output. A standard syntax for these files is SMT-LIB. In this section we
will describe which basic parts of the SMT-LIB syntax we need, and what
they mean. We use the documentation of version 2.6 for this[2].
All functions in SMT-LIB syntax have to be written in prefix notation. The

first thing we have to use is the declaration of functions. In SMT syntax,
this is written as follows:

( dec la re −fun f (σ1 · · · σn ) σ )

In this formula f , σ1 · · ·σn are the types of the n variables of the function,
and σ is the type of the result of the function. In fact a constant is just a
function with no variables. We could write this using the declare-fun syntax,
but in SMT-LIB we also have some syntactic sugar for this:

( dec la re −const f σ )

To specify our constraints, we use the assert keyword:

( a s s e r t t )

Formula t has to be satisfied. Multiple asserts are possible in one file. We
use the basic combinators and, or, xor and implies to combine (parts of)
formula’s. At the bottom of the bottom of the SMT-file, we put two com-
mands:

( check−sa t )

and

( get−model )

The keyword check − sat tells Z3 that is has to start looking if the formula
is satisfiable. If the formula is not satisfiable, we get unsat as output. If
the formula is satisfiable, we use get −model. We get sat as output, and
after that we get the model that satisfies the formula: a assigning of a value
of each variable in the formula. These are the basic parts that we need to
solve our puzzles using SMT.

3.3 General approach on solving a puzzle

Now that we have the basic parts, we can describe our general approach
on solving a puzzle. Every puzzle has different rules, but the puzzles we
considered have a lot in common. All puzzles we considered are created on
a rectangular grid. Some have numbers in a part of the fields (Slitherlink,
Hashi, Shingoki, Nurikabe), one puzzle has only black and white dots in a
part of the field (Masyu), and one puzzle is completely filled with numbers
(Hitori). For each puzzle, we have to describe the puzzle rules and put them
in the SMT solver.
We use a standard coordinate system to describe the point in the grid. The

left bottom of the grid is point (1,1). We choose this rather than (0,0)
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because it describes the first cell, and it is more intuitive to start at 1 when
counting the cells. For width w of the puzzle, the x-axis ranges from 1 to
w. For height h, the y-axis ranges from 1 to h. The bounds are inclusive
here. We have two different kinds of grid puzzles. Puzzles for which the
information is in the intersections of the grid (Masyu, Shingoki and Hashi)
and puzzles for which the information is in the center of the cells (Slitherlink
and Hitori). We first describe a grid for a puzzle with information in the
intersection of the line. The intersections are just the coordinates. So the
leftmost corner of the grid has coordinate (1,1). The information is also in
coordinate (1,1). The line between (1,1) and (1,2) is (1,1,1,2). All lines are
described from bottom to top if vertical, and from left to right if horizontal.
If we put it in a picture, we get the following grid:

Figure 3.1: Grid of size wxh with information in the intersections

For puzzles with information in the cells, we have a slightly different grid.
The coordinates are the same, but now the cells are more important than
the intersections. The cells have the same index as their bottom-left corner.
We get the following grid:
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Figure 3.2: Grid of size wxh with information in the cells

We use these grid also with Hitori, although we don’t need the lines in that
puzzle. For each puzzle, we introduce certain functions. If the intersection

points or cells have numeric values, we use a function with the coordinates
as input variables and an integer result. In the Masyu puzzles, they result
is a string, namely ’Black’ or ’White’. In some cases, we also add a boolean
function for the lines. For example, in Slitherlink only some of the lines have
to be drawn. We will elaborate more on the details in chapter 5, where we
will see more details on each puzzle.
Now since we have functions, we can add the puzzle specifications. For
example, if we want to represent the value v in cell (x, y) of the puzzle, we
describe this as follows in mathematical notation:

Cell (x,y) == v

In SMT, we write this as:

(= ( Ce l l x y ) v )

Or if we want to indicate if a line has to be drawn, we write:

Line (x1,y1,x2,y2) == true

and in SMT:

(= ( Line x1 y1 x2 y2 ) )

In this way, we can describe the properties of the puzzles. After the puzzle
specifications, we add the constraints of the puzzle. We will see more about
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the constraints in chapter 5, for each separate puzzle. A special constraint
is the connectivity-constraint, which will be explained in the next chapter.
At the end of the file, we put the (check-sat) and the (get-model) lines (as

described in section 3.2), to let Z3 give the correct solution. The model that
Z3 gives us back, tells us which inputs of the different functions should give
which outputs. Since the inputs are often in a random order, and we don’t
see directly if the solution for the puzzle is correct, we need to parse the
output of the Z3 output file to get a nice solution for our puzzle.

3.4 Uniqueness of the solution

We now have our solution, but how do we know that this solution is unique?
We can easily check this with Z3. We use the same SMT file we generated,
and add the negation of the conjunction of the variables that are true in the
solution. In this way, Z3 will have to look for another, different solution. If
Z3 founds another satisfying assignment of variables, multiple solutions are
possible, and our original solution was not unique. If Z3 gives unsat, the
first solution was the only possible solution, and our puzzle has an unique
solution.
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Chapter 4

Implementing connectivity
using SMT

One of our main point of this paper is describing a special constraint. This
constraint, the connectivity constraint, is used in all the puzzles that we
considered. We want to create one, generic, way to implement this, and
apply this on all the puzzles. The constraint is not equally strong for every
puzzle. For example, in Hitori, each white cell has to be connected with
each other white cell. But in Slitherlink, the constraint is that every line
must be in one big loop, and the loop may not touch itself. But the common
property is, that some parts of the puzzle have to be connected with each
other.
One way to solve this is presented by Westreicher. He calls this the ’1 Loop

Problem’[20, p.10]. In his paper, he only focusses on Slitherlink. Therefore,
his way to solve the ’1 Loop Problem’ is not applicable for puzzles like Hitori
and Hashi. The way we present is more general, and can be applied on more
puzzles. Our approach uses natural numbers. Each part of the puzzle that
has to be connected to the other parts, gets a number. The solution to make
sure that each part is connected with all other parts, is quite simple: each
part (except for a starting point) should be connected with another part
that has a natural number less than its number. So for example, if part A
has the number 4, there must be some part B, for which it holds that A is
connected to B, and B has a lower number than A.
We use Theorem 2 of Zantema and Joosten[22, p.7] to proof that this is

correct. The theorem is the following:

Theorem 1. Graph (V,E) is connected if and only if f : V → Int exists
such that for all i ∈ V \1 a node j ∈ V exists such that (i, j) ∈ E and
f(j) < f(i).

We assume here that there is one node that has the value 1. They prove
in their paper that this is correct. The proof uses the fact that an infinite
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decreasing sequence of natural numbers is not possible. Now, if we can
convert an arbitrary solution of a puzzle to a graph, we know that the
solution is connected if and only if the constraints with the numbers are
satisfied.
For Slitherlink, Masyu and Shingoki we need an extra constraint, to assert

that the solution is not only connected, but also forms exactly one loop. We
do this by adding the constraint that every node in the puzzle must have
degree zero or two. If a node has degree zero, there are no lines to that
node, and the node is not in the solution. If a node has degree 2, it is in the
solution. Since every node in the solution has degree two, there cannot be
open ends, and all nodes in the solution must be in a loop. Due to the every
connectivity constraint, that asserts that every node is connected, it cannot
be that that there are multiple loops. So these two constraints assert that
the solution is exactly one closed loop.

4.1 Implementing in SMT

We now have to implement these constraints in SMT. We use a Number
function, which has as input the coordinates of the points. The function
assigns a number to each part that has to be connected:

( dec la re −fun Number ( Int Int ) Int )

Then, we two for variables for the coordinates of the starting point. That
point must get the number zero. In SMT, we write

( dec la re −const StartPointX Int )
( dec la re −const StartPointY Int )
(= 0 (Number StartPointX StartPointY )

Now, for each point we state that if no parts adjacent from or to that
point are true, the node is not in the solution and gets the value -1 assigned
by the number function. Otherwise, the Number function assigns a positive
number with the given constraints.
In practice, we use a script to generate the SMT code corresponding to this.
We will give an example of what the constraint looks like for just one point.
We take a point (x,y) which is not in the corner or on the edge, because
such a point has the most adjacent parts and it thus most suitable for an
example. In case a point is close to the edge of the puzzle, the connections
that are not in the puzzle, are just omitted.

( i m p l i e s
( and

( not ( Connection x y−1 x y ) )
( not ( Connection x−1 y x y ) )
( not ( Connection x y x y+1) )
( not ( Connection x y x+1 y ) )

)
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(= (Number x y ) −1 )
)
( i m p l i e s

( and ( Connection x y x y+1) ( Connection x y x+1 y ) )
( and

(> (Number x y ) 0 )
( or

(> (Number x y ) (Number x y+1) )
(> (Number x y ) (Number x+1 y ) )

)
)

)
· · ·
( i m p l i e s

( and (= true ( Connection x y−1 x y ) )(= true ( Connection x−1
y x y ) ) )

( and
(> (Number x y ) 0 )
( or

(> (Number x y ) (Number x y−1) )
(> (Number x y ) (Number x−1 y ) )

)
)

)

This constraint has thus to be added for each point in the puzzle, except for
the starting point.
For the puzzles that need the 0-or-2-degree constraint, we also encode that
in SMT. Again, we just give an example of created code using point (x,y).
We assume point (x,y) is not on the edge. If a point is on the edge, just the
lines that are outside the field of the puzzle are omitted. This results in the
following SMT code:

( or
( and ( not ( Line x y−1 x y ) ) ( not ( Line x−1 y x y ) ) ( not (

Line x y x y+1) ) ( not ( Line x y x+1 y ) ) )
( and ( Line x y−1 x y ) ( Line x y x+1 y ) ( not ( Line x−1 y x y )

) ( not ( Line x y x y+1) ) )
( and ( Line x y−1 x y ) ( Line x y x y+1) ( not ( Line x−1 y x y )

) ( not ( Line x y x+1 y ) ) )
( and ( Line x y−1 x y ) ( Line x−1 y x y ) ( not ( Line x y x+1 y )

) ( not ( Line x y x y+1) ) )
( and ( Line x−1 y x y ) ( Line x y x+1 y ) ( not ( Line x y−1 x y )

) ( not ( Line x y x y+1) ) )
( and ( Line x−1 y x y ) ( Line x y x y+1) ( not ( Line x y x+1 y )

) ( not ( Line x y−1 x y ) ) )
( and ( Line x y x y+1) ( Line x y x+1 y ) ( not ( Line x−1 y x y )

) ( not ( Line x y−1 x y ) ) )
)

This is also done for each other point in the puzzle. In the next chapter, we
will dive deeper into the different example puzzles and use this connectivity
constraint to solve them.
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Chapter 5

Implementing the
connectivity on different
puzzles

In this chapter, we will describe the different puzzles that we have chosen
in more detail. We have chosen five different puzzles, with one thing in
common. That common property is that they all have a form of connectivity
in their solutions. For Slitherlink, Masyu and Shingoki, this means that the
solution must be exactly one loop of lines. For Hitori, this means that all
white fields in the solution must be connected. For Nurikabe, it means that
all black cells must be connected. For Hashi it means, that all islands have
to be connected in the end.
For each puzzle, we will give a small introduction, the rules of the puzzle
and some examples. Furthermore, we will describe how the unique solution
of a puzzle can found using a SMT-solver. For Slitherlink and Masyu, we
also managed to generate some puzzles ourselves.

5.1 Slitherlink

The first puzzle we look at, is Slitherlink. The puzzle is also known as Fences,
Takegaki, Loop the Loop, Loopy, Ouroboros, Suriza and Dotty Dilemma,
and also known in Dutch as ’Kamertje verhuren’. Slitherlink is created by
the Japanese puzzle publisher Nikoli around 1989[8]. Slitherlink is proven
to be NP-complete by Yato in 2000 [21][17, p.24].
The goal of the puzzle is to connect dots horizontally and vertically, so that
one single loop with no loose ends is created. The loop may not touch itself.
The numbers (0,1,2 or 3) in the cells indicate how many of the four sides of
that cell have to be drawn.
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5.1.1 Examples

In the figures 5.1, 5.2 and 5.3 we see examples of Slitherlink puzzles.1 Figure
5.1 is just a normal puzzle instance, figure 5.2 shows that a puzzle with only
zeroes and ones is also possible, and figure 5.3 shows the smallest possible
puzzle with at least one number that has a solution.

Figure 5.1 Figure 5.2 Figure 5.3

In the next figures, we see the solutions of the examples:

Figure 5.4 Figure 5.5 Figure 5.6

5.1.2 Find a solution using SMT

To find a solution, we will use the grid as described in figure 3.2, because the
data in the Slitherlink puzzle are in the cells. The first and most important
constraints we have, are the numbers in the cells. We will use the Cell

1Puzzle 5.1 is taken from https://www.puzzle-loop.com/ on 12-11-2020. All the puzzles
on this site have a unique solution. Puzzles 5.2 and 5.3 are self-created, and those are
edge cases
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function to describe what is in a cell. The input variables are the coordinates
of the cell, and the output is a number. We use the function Line to express
whether a side is drawn or not. The input variables are the two coordinates
of the line. It can either be a horizontal line, which is represented as (x, y,
x+ 1, y + 1) or a vertical line, which is represented as (x, y, x, y + 1).

( dec la re −fun Ce l l ( Int Int ) Int )
( dec la re −fun Line ( Int Int Int Int ) Bool )

For the cells that are given in the puzzle, we write the value in the SMT file.
For the cells with no number, we don’t add a number and we let Z3 free to
fill in a number fitting to the solution. We write in SMT for example:

(= ( Ce l l x y ) 2)
(= ( Ce l l x y + 1) 0)
· · ·

The next thing we add, is the constraint for each cell. If a cell has value 0,
than all sides must be false. We write:

( i m p l i e s
(= 0 ( Ce l l x y ) )
( and

( not ( Line x y x y + 1) )
( not ( Line x y + 1 x+ 1 y + 1) )
( not ( Line x+ 1 y x+ 1 y + 1) )
( not ( Line x y x+ 1 y ) )

)
)

For value 1, we have to assert that exactly one of the lines is true. We use
the or operator for that:

( i m p l i e s
(= 1 ( Ce l l x y ) )
( or

( and ( Line x y x y + 1) ( not ( Line x y + 1 x+ 1 y + 1) ) ( not
( Line x+ 1 y x+ 1 y + 1) ) ( not ( Line x y x+ 1 y ) ) )

( and ( not ( Line x y x y + 1) ) ( Line x y + 1 x+ 1 y + 1) ( not
( Line x+ 1 y x+ 1 y + 1) ) ( not ( Line x y x+ 1 y ) ) )

( and ( not ( Line x y x y + 1) ) ( not ( Line x y + 1 x+ 1 y + 1) )
( Line x+ 1 y x+ 1 y + 1) ( not ( Line x y x+ 1 y ) ) )

( and ( not ( Line x y x y + 1) ) ( not ( Line x y + 1 x+ 1 y + 1) )
( not ( Line x+ 1 y x+ 1 y + 1) ) ( Line x y x+ 1 y ) )

)
)

For 2, we assert that one of the combinations of two lines must be true. We
again use the or for that:

( i m p l i e s
(= 2 ( Ce l l x y ) )
( or

( and ( Line x y x y + 1) ( Line x y + 1 x+ 1 y + 1) ( not ( Line
x+ 1 y x+ 1 y + 1) ) ( not ( Line x y x+ 1 y ) ) )

16



( and ( Line x y x y + 1) ( not ( Line x y + 1 x+ 1 y + 1) ) ( Line
x+ 1 y x+ 1 y + 1) ( not ( Line x y x+ 1 y ) ) )

( and ( Line x y x y + 1) ( not ( Line x y + 1 x+ 1 y + 1) ) ( not
( Line x+ 1 y x+ 1 y + 1) ) ( Line x y x+ 1 y ) )

( and ( not ( Line x y x y + 1) ) ( Line x y + 1 x+ 1 y + 1) ( Line
x+ 1 y x+ 1 y + 1) ( not ( Line x y x+ 1 y ) ) )

( and ( not ( Line x y x y + 1) ) ( Line x y + 1 x+ 1 y + 1) ( not
( Line x+ 1 y x+ 1 y + 1) ) ( Line x y x+ 1 y ) )

( and ( not ( Line x y x y + 1) ) ( not ( Line x y + 1 x+ 1 y + 1) )
( Line x+ 1 y x+ 1 y + 1) ( Line x y x+ 1 y ) )

)
)

For the number 3, we use the same approach as with the value 1, but now
exactly one line must be false:

( i m p l i e s
(= 3 ( Ce l l x y ) )
( or

( and ( Line x y x y + 1) ( Line x y + 1 x+ 1 y + 1) ( Line x+ 1
y x+ 1 y + 1) ( not ( Line x y x+ 1 y ) ) )

( and ( Line x y x y + 1) ( Line x y + 1 x+ 1 y + 1) ( not ( Line
x+ 1 y x+ 1 y + 1) ) ( Line x y x+ 1 y ) )

( and ( Line x y x y + 1) ( not ( Line x y + 1 x+ 1 y + 1) ) ( Line
x+ 1 y x+ 1 y + 1) ( Line x y x+ 1 y ) )

( and ( not ( Line x y x y + 1) ) ( Line x y + 1 x+ 1 y + 1) ( Line
x+ 1 y x+ 1 y + 1) ( Line x y x+ 1 y ) )

)
)

We add these constraints for each cell (x,y). If we would now run Z3 on
these constraints, the solver would keep the numbers in consideration, but
not that the solution must be exactly one loop. We first add the constraint
that each point must have degree 0 or 2, as described in section 4.1. If we
would only add this constraint, the solution could possibly consist of multiple
loops apart from each other. To prevent this, we also add the connectivity
constraint as presented in section 4.1. Now we are sure that we get a correct
solution of the puzzle. If no solution exists, the solver gives unsat as output.
If a solution exists, it gives exactly the lines that have to be drawn, or which
line don’t have to be drawn. That depends on whether the number of true
lines is bigger than the number of false lines. For example:

( de f ine −fun Line ( ( x ! 0 Int ) ( x ! 1 Int ) ( x ! 2 Int ) ( x ! 3 Int ) ) Bool
( i t e ( and (= x ! 0 x) (= x ! 1 y ) (= x ! 2 x) (= x ! 3 y + 1) ) t rue
( i t e ( and (= x ! 0 x) (= x ! 1 y + 1) (= x ! 2 x+ 1) (= x ! 3 y + 1) )

t rue
· · ·

If we parse these Z3 output, and draw the lines in the puzzle, we have our
solution. Z3 is a powerful tool, and it can solve quite large puzzles. The
largest puzzle that we tested was size 25x30. The largest puzzles on puzzle
websites are about that size. Z3 found the solution in a less than a few
seconds.
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5.1.3 Generating puzzles

The next thing we want to try is generating puzzles ourselves. To do this,
we first specify a height and width, generated a line in the grid of that size.
That line would in the end become the solution of our puzzle. We tested
two options to do so.

Creating a random line

The first option we considered was creating random parts of a line, and let
Z3 generate a line that connects those parts. By a trial-and-error approach
we see that we have to generate about 15 percent of the line to get a solution
by Z3. The advantage is that we create a very different line each time. The
disadvantage is that it is not guaranteed that we find the solution of the line.
It also doesn’t guarantee that the line fills the whole puzzle grid. Therefor,
we consider a second approach which guarantees us that we will get a line.

Creating an expanding line

The second option starts with a small square loop (see figure 5.7). The
strategy is to extend the sides of the loop. In each step, we do a possible
extension. We remove one line, and add one cell to the cells inside the loop.
See figure 5.8 for the possible extensions. If an extension conflicts with the
line, or the extension is outside the grid, we do not consider this extension
as possible. In that way, the loop will never touch itself and will never go
outside the grid. We choose randomly where the line is extended. Since
the loop is closed at the start, and the loop is not broken with each step,
we will always have one closed loop. We repeat the extension step until
no extensions are possible anymore. In figure 5.9, we see an example of a
generated line.

Figure 5.7 Figure 5.8 Figure 5.9

Putting and removing numbers
The next thing we do, is putting all numbers in the grid (figure 5.10). We
now have a puzzle, but we want to make the puzzle more difficult. We want
to remove numbers, in such a way that we keep a puzzle with a unique
solution. So for each number, we hide it, and run Z3 on the puzzle. If the
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puzzle still has a unique solution, we remove the number from the puzzle. If
removing this number causes that there are multiple solutions of the puzzle,
we keep the number. After looping randomly over each number, we have
removed some of the numbers and kept some numbers. We now have our
own puzzle, with a unique solution, namely the line we created. Figure 5.11
is the generated puzzle, figure 5.12 shows the solution.

Figure 5.10 Figure 5.11 Figure 5.12

Since removing each number and running Z3 on the puzzle again and again
on the puzzle is quite a heavy job, the time it takes to generate a puzzle
grows exponentially with the size of the puzzle. We tested the generation
for different sizes. For 5x5 puzzles, it takes less than a minute to generate
the puzzle, for 10x10 puzzles it takes about 5 minutes and for 15x15 it takes
already about 25 minutes.
Another remark on this way of generating Slitherlink puzzles is that we do

not know on forehand if the puzzles that are generated are also solvable for
human. For small puzzles it is often possible, but for bigger puzzles, more
and more backtracking is needed, and it becomes very difficult for a human
to solve it. In Appendix 6.1, the reader can find some generated puzzles.
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5.2 Masyu

The second puzzle that we will consider, is Masyu. This puzzle is also
designed by Nikoli, and is a variant of Slitherlink[6]. An other name for this
puzzle is Pearl. The Masyu (= Pearl) puzzle is proven to be NP-complete
by Friedman in an unpublished manuscript in 2002[12]. This paper is will
later be used as one of the bases for our Shingoki proof.
The goal of the puzzle is the same as Slitherlink: draw one, continous loop
through the grid such that all rules are respected. The big difference between
Slitherlink and Masyu is that Masyu uses white and black circles (pearls),
instead of numbers. An other difference is that the lines in Masyu are
crossing through the cells, instead of over the edges of the grid.
The white and black pearls have their own rules. The white must be crossed
straight through, but the line must turn in the previous or the next cell of
the path. The black pearls must be turned upon, but then the line must go
straight through the previous and the next cell of the path.

5.2.1 Examples

Below we find some examples of Masyu puzzles2. Figure 5.13 and 5.14 are
just normal puzzles. The puzzle in figure 5.15 has the smallest possible size,
if the puzzle has at least one white and one black cell.

Figure 5.13 Figure 5.14 Figure 5.15

And here we see the solutions of our examples:

2The puzzles 5.13 and 5.14 are taken from https://www.puzzle-masyu.com/
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Figure 5.16 Figure 5.17 Figure 5.18

5.2.2 Solve the puzzle using SMT

The grid of this puzzle is different from the Slitherlink grid, because the lines
are drawn through the cells. We use the grid from figure 3.1, because in fact,
the information of the puzzles is in the corners. The grid used to draw the
puzzle is not used for the solution, but is just to give more structure to the
puzzle.
The only constraints we get from the puzzle are the white and the black
pearls. We use the Pearl function to describe a white or a black pearl. The
inputs are the coordinates, the output is a string: ”black” or ”white”. Just
as in Slitherlink, we use the same function Line again to indicate whether a
line is drawn or not.

( dec la re −fun Ce l l ( Int Int ) S t r ing )
( dec la re −fun Line ( Int Int Int Int ) Bool )

We write the given pearls in the SMT file, for example:

(= ( Pear l x y ) ” Black ”)
(= ( Pear l x y + 1) ” Black ”)
· · ·

The next things we add, are the constraints for the white and black pearls.
For the black pearls, we have to assert that for exactly two sides ∈ {up, down,
left, right}, a line of length two goes that side. We list all combinations,
and then use the or operator to assert that exactly two are true. For and
example pearl with coordinates (x,y), we write in SMT:

( i m p l i e s
(= ” Black ” ( Pear l x y ) )
( or

( and
( Line x y x y + 1) ( Line x y + 1 x y + 2)
( Line x y x+ 1 y ) ( Line x+ 1 y x+ 2 y )
( not ( Line x y − 2 x y − 1) ) ( not ( Line x y − 1 x y ) )
( not ( Line x− 2 y x− 1 y ) ) ( not ( Line x− 1 y x y ) )

)
( and
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( Line x y x y + 1) ( Line x y + 1 x y + 2)
( Line x− 2 y x− 1 y ) ( Line x− 1 y x y )
( not ( Line x y − 2 x y − 1) ) ( not ( Line x y − 1 x y ) )
( not ( Line x y x+ 1 y ) ) ( not ( Line x+ 1 y x+ 2 y ) )

)
( and

( Line x y − 2 x y − 1) ( Line x y − 1 x y )
( Line x y x+ 1 y ) ( Line x+ 1 y x+ 2 y )
( not ( Line x y x y + 1) ) ( not ( Line x y + 1 x y + 2) )
( not ( Line x y x− 2 y ) ) ( not ( Line x y − 1 x y ) )

)
( and

( Line x y − 2 x y − 1) ( Line x y − 1 x y )
( Line x− 2 y x− 1 y ) ( Line x− 1 y x y )
( not ( Line x y x y + 1) ) ( not ( Line x y + 1 x y + 2) )
( not ( Line x y x+ 1 y ) ) ( not ( Line x+ 1 y x+ 2 y ) )

)
)

)

For the white pearls, we only have two options, because the line crosses it
either horizontally, or vertically. However, for the white pearl, we have to
constraint that the loop turns either in the next cell, or in the previous cell.
For both horizontal and vertical, we list the turns, and state that at least
one turn must be true using the or operator.

( i m p l i e s
(= ”White” ( Pear l x y ) )
( or

( and
(= true ( Line x− 1 y x y ) )
(= true ( Line x y x+ 1 y ) )
( or

(= true ( Line x− 1 y − 1 x− 1 y ) )
(= true ( Line x− 1 y x− 1 y + 1) )
(= true ( Line x+ 1 y − 1 x+ 1 y ) )
(= true ( Line x+ 1 y x+ 1 y + 1) )

)
)
( and

(= true ( Line x y − 1 x y ) )
(= true ( Line x y x y + 1) )
( or

(= true ( Line x− 1 y − 1 x y − 1) )
(= true ( Line x y − 1 x+ 1 y − 1) )
(= true ( Line x− 1 y + 1 x y + 1) )
(= true ( Line x y + 1 x+ 1 y + 1) )

)
)

)
)

To assert that the solution is exactly one loop, we have to add the constraints
as described in section 4.1. Again both constraints are needed, because the
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loop may not split at a certain point, and there must be exactly one loop. If
we now run Z3 on the generated SMT file, we get a line that gives a correct
solution of the puzzle.

5.2.3 Generating Masyu puzzles

Since Masyu is quite similar to Slitherlink, it is interesting to look if we can
generate Masyu puzzles in about the same way. For Masyu, we also need a
line for a solution, so we will use the same way to generate a random line as
with Slitherlink. Whenever we have a line, we can draw all possible pearls
in the line (figure 5.19). If we would leave out the line and keep the pearls,
we have a puzzle with a solution. However, we don’t know if this solution
is unique, and we want a puzzle with a unique solution. So first we check if
there is only one solution, by running Z3 on the puzzle file with the negation
of the line in it. If the puzzle has a unique solution, we can go a step further
and try to minimize the number of pearls in the puzzle. This makes the
puzzle more difficult. We remove the pearls in the same way as we removed
the numbers in Slitherlink. We remove a pearl, and then we check if the
puzzle still has a unique solution. If so, we can leave the pearl out. If not,
we have to keep the pearl in the puzzle. In the end, we have a puzzle with
some of the pearls left. Figure 5.20 shows the generated puzzle, figure 5.21
shows the solution.

Figure 5.19 Figure 5.20 Figure 5.21

Remarks
There are some remarks that we have to add to the generation of Masyu
puzzles. In the first place, we noticed that it is very often the case that a
puzzle must have a certain number of black pearls in it. If not, the puzzle
often has multiple solutions.
Furthermore, we noticed that it is very difficult to create large Masyu puz-
zles. For example, a 10x10 puzzle took already very long. It is difficult
because in almost all cases the puzzle has multiple solutions. A solution to
this could be to add certain pearls to the puzzle that don’t match with the
line. In that case, we would have to change the line. That would be a way
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to create bigger puzzles.
In Appendix A, we have added some puzzle that the reader can solve. All
puzzles are human solvable and have a unique solution.
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5.3 Shingoki

Shingoki is the third puzzle we consider. The origin of this puzzle is not
really clear. The puzzle is also sometimes called Semaphores. The puzzle is
a variant of Masyu, and therefore also a variant of Slitherlink. There is no
proof of NP-completeness of Shingoki yet, but we will prove that this puzzle
is NP-complete in chapter 6. Just like Masyu, the puzzle also contains black
and white pearls. The goal is again to create exactly one loop. The white
pearls must be crossed straight, and the black pearls must be turned on.
Unlike Masyu, we do not have rules about turns in the next or previous
cells here. Instead, we have a new rule. Each pearl has a number in it. This
number describes the sum of the lengths of the two straight, outgoing lines.
It does not matter if there is another Pearl on that straight line. Because of
the single loop we have to create, this puzzle is also suitable to implement
the connectivity constraints.

5.3.1 Examples

We will now see three examples of the puzzles3. There are not many puzzles
available, because the puzzle is very new. Figure 5.22 and 5.23 are just
normal puzzles, figure 5.24 is an edge case with only one black and one
white pearl.

Figure 5.22 Figure 5.23 Figure 5.24

And here we see the solutions of our examples:

3Figure 5.22 and figure 5.23 are taken from https://www.puzzle-shingoki.com/
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Figure 5.25 Figure 5.26 Figure 5.27

5.3.2 Solve the puzzle using SMT

Just as we did with the previous puzzles, we will explain in this section how
we can solve this puzzle using SMT. In the first place, we consider the grid.
The grid is just the same as used with Masyu. The information is in the
corners of the line, and the grid of the puzzle has no function in the solution.
We have different kinds of information in the puzzle. In the first place, we
have the numbers in the pearls. We use the Pearl function for this. It has
the coordinates as input variables, and an integer as output. We also need a
PearlColor function, to describe if the pear is black or white. That function
has a string ”Black” or ”White” as output. To describe the line, we just use
the same Line function as we used with the previous puzzles. We write in
SMT:

( dec la re −fun Pear l ( Int Int ) Int )
( dec la re −fun Pear lColor ( Int Int ) S t r ing )
( dec la re −fun Line ( Int Int Int Int ) Bool )

We write the given pearls in the SMT file, for example:

(= ( Pear l x y ) 5)
(= ( Pear lColor x y ) ” Black ”)
· · ·

Now, we have two different kinds of constraints in this puzzle. The numer-
ical constraints, and the color constraints. We can combine them, in the
following way. First we consider the white pearls. We know from the puzzle
which pearls are white. So for that pearls, we write that there must be a
horizonal or vertical line through this pearl. One every side must be at least
a straight line of length one. Let n be the number in the pearl. We already
have two parts of the line, and we have to divide the other n − 2 parts to
extend the two straight lines to meet the two constraints. In figure 5.28, we
see an example of the possibilities of a white pearl with number 3 in it.
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Figure 5.28

We list all the possible combinations, and write that exactly one of them
must be true using the or. For a white pearl on coordinates (x, y) with
number 3 in it, we write:

( or
( and

( not ( Line x y − 2 x y − 1) )
( Line x y − 1 x y )
( Line x y x y + 1)
( Line x y + 1 x y + 2)
( not ( Line x y + 2 x y + 3) )

)
( and

( not ( Line x y − 3 x y − 2) )
( Line x y − 2 x y − 1)
( Line x y − 1 x y )
( Line x y x y + 1)
( not ( Line x y + 1 x y + 2) )

)
( and

( not ( Line x− 3 y x− 2 y ) )
( Line x− 2 y x− 1 y )
( Line x− 1 y x y )
( Line x y x+ 1 y )
( not ( Line x+ 1 y x+ 2 y ) )

)
( and

( not ( Line x− 2 y x− 1 y ) )
( Line x− 1 y x y )
( Line x y x+ 1 y )
( Line x+ 1 y x+ 2 y )
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( not ( Line x+ 2 y x+ 3 y ) )
)

)

For the black pearl, we use the same approach, but now we have more
possibilities because the line must turn. We see the possibilities for the
same pearl in a black color in the next figure:

Figure 5.29

We list the possibilities also in SMT:

( or
( and

( not ( Line x− 2 y x− 1 y ) )
( Line x− 1 y x y )
( Line x y x y + 1)
( Line x y + 1 x y + 2)
( not ( Line x y + 2 x y + 3) )

)
( and

( not ( Line x− 3 y x− 2 y ) )
( Line x− 2 y x− 1 y )
( Line x− 1 y x y )
( Line x y x y + 1)
( not ( Line x y + 1 x y + 2) )

)
· · ·
)

The same approach can be used for numbers higher then three, because
we just list all the possibilities and then put an or operator around them.
The last constraint is the connectivity constraint. We can use the both
constraints as described in section 4.1. We need the first constraint to make
sure that all parts are connected with each other. The second constraint
(degree 0 or 2) is needed to make sure that there are no loose ends in the
loop. These constraints work perfectly for this puzzle. If we run Z3 on
the SMT file with the constraints, we get all parts of the line, which is our
solution.
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5.3.3 Generating Shingoki

Just as with Masyu, we didn’t generating Shingoki in this research. The
same approach as with Slitherlink could be possible, by creating all possible
diamonds on a given line, with the numbers in it. After that one could
remove the diamonds to get a new puzzle. This could be done in later
research.
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5.4 Hitori

The fourth puzzle we consider is Hitori. This puzzle is also designed by
Nikoli[5]. The puzzle is proven to be NP-complete by Demaine and Hearn[16].
Hitori is quite different from the puzzles that we have seen already. The puz-
zle does not involve any lines, but it contains numbers in white cells and
black cells.
The puzzle is quite simple. The puzzle starts with a grid, filled completely
with numbers. The goal of the puzzle is to get a grid where no number
appears twice in a row or column. This is done by making some cells black.
There are two more rules. No black cells may be adjacent to each other,
and the remaining white cells must be connected to each other. For the last
rule, we can use our designed connectivity constraint.

5.4.1 Examples

We will first look at some examples of Hitori puzzles4. Figure 5.30 and figure
5.31 are just normal puzzles, figure 5.32 is a very small puzzle with at least
one duplicate number and an unique solution.

Figure 5.30 Figure 5.31 Figure 5.32

And here we see the solutions:

4The puzzles 5.30 and 5.31 are taken from https://www.puzzle-hitori.com/
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Figure 5.33 Figure 5.34 Figure 5.35

5.4.2 Solve Hitori using SMT

Since the information is in the cells, and we don’t do anything with lines,
we use the grid of figure 3.2. The constraints we have are based on the
numbers in the puzzle, and on the color of the cell: black or white. We
need one function to describe the number in the cell. The inputs are the
coordinates of the cell. The result is a number. We also need a function for
the color of the cell. The inputs are again the coordinates, the result is a
string ”Black” or ”White. In SMT:

( dec la re −fun Ce l l ( Int Int ) Int )
( dec la re −fun Ce l lCo lo r ( Int Int ) S t r ing )

We write the given numbers in the SMT file, for example:

(= ( Ce l l x y ) 3)
(= ( Ce l l x y + 1) 2)
(= ( Ce l l x y + 1) 3)
· · ·

We can now start with the constraints. We must make sure that there are
no two white cells in a row or column. This is easy to constrain in SMT. We
state that it may not happen that two cells have the same x coordinate or
y coordinate, have the same result for the Cell function and are both white.
So for a certain row r and two different cells (x, r) and (y, r) in SMT, we
get:

( not
( and

(= ( Ce l l x r ) ( Ce l l y r )
(= ( Ce l lCo lo r x r ) ”White ”)
(= ( Ce l lCo lo r y r ) ”White ”)

)
)

For columns, we do the same. For a certain column c and two different cells
(c, x) and (c, y) we write:
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( not
( and

(= ( Ce l l c x) ( Ce l l c y )
(= ( Ce l lCo lo r c x) ”White ”)
(= ( Ce l lCo lo r c y ) ”White ”)

)
)

We do this for all combinations of two cells in every row, and for every
combination in every column. The next constraint we have, is that no two
black cells may be adjacent to each other. For each cell (x, y) we write that
if that cell is black, the four adjacent cells may not be black. In SMT syntax:

( i m p l i e s
(= ( Ce l lCo lo r x y ) ” Black ”)
( and

( not (= ( Ce l lCo lo r x− 1 y ) ” Black ”) )
( not (= ( Ce l lCo lo r x+ 1 y ) ” Black ”) )
( not (= ( Ce l lCo lo r x y − 1) ” Black ”) )
( not (= ( Ce l lCo lo r x y + 1) ” Black ”) )

)
)

The last constraint we have to add is the connectivity constraint. Since
we do not have to deal with one single loop, using the first constraint of
section 4.1. We need an extra constraint here, because we don’t want that
the starting point of the connected part is black, because all white cells have
to be connected. We write in SMT:

( not (= ( Ce l lCo lo r StartPointX StartPointY ) ” Black ”) )

If a cell is black, it gets the number −1, because it is not part of the
connected cells. If a cell is white, there is a connection with another cell if
that cell is adjacent and also white. For one of the connected cells, it must
hold that it has a lower number. This is an implementation of the general
approach as described in section 4.1.
If we now run Z3 on the file, we get a solution which exactly describes which

cells should be black, and which cells should be white. This is the solution
of our puzzle.

5.4.3 Generating Hitori puzzles

Generating Hitori puzzles is very different from generating Slitherlink puz-
zles. You cannot create a puzzle easily by leaving out information, because
all information is already there. One way to do this could be to assign ran-
dom numbers to a grid, and try whether that puzzle has a solution or not.
However, after a small manual test, we observed that we almost never got
a nice puzzle by random assigning numbers. It was not in the scope of this
research to find out another way to generate those puzzles. This could be
done in future research.
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5.5 Nurikabe

The fifth puzzle we consider is Nurikabe. This puzzle is also designed by
Nikoli[7]. The puzzle is proven to be NP-complete by McPhail and Fix[19].
Just like Hitori, Nurikabe contins white and black cells with numbers. How-
ever, only some of the white cells contain a number.
The puzzle is less simple than Hitori. The puzzle starts with a grid, filled
with some numbers. The goal of the puzzle is to get color some of the grid
cells black and some white. A number n in a cell denotes that that cell is
part of an island with n cells. Each white island must consist exactly one
numbered cell. The rest of the cells, the black cells must form exactly one
see. That means that all black cells must be connected with each other.
Therefore, we can use our connectivity property. One more restriction is
that 2x2 black cells are not allowed.

5.5.1 Examples

We will now look at some examples of Nurikabe puzzles5. Figure 5.36 and
figure 5.37 are just normal puzzles, figure 5.38 is a very small puzzle with
at least one number and one black cell.

Figure 5.36 Figure 5.37 Figure 5.38

And here we see the solutions:

5The puzzles 5.36 and 5.37 are taken from https://www.puzzle-nurikabe.com/
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Figure 5.39 Figure 5.40 Figure 5.41

5.5.2 Solve Nurikabe using SMT

Just like with Hitori, we use the grid of figure 3.2. The constraints we have
are based on the numbers in the puzzle, and on the color of the cell: black
or white. We need one function to describe the number in the cell. The
inputs are the coordinates of the cell. The result is a number. We also need
a function for the color of the cell. The inputs are again the coordinates,
the result is a string ”Black” or ”White. We need one more function. This
function describes to which numbered cell a white cell is connected. We use
a function with the coordinates of the numbered cell and the other cell as
input, and the result is a boolean. This function denotes thus if a cell is
connected to that numbered cell. In SMT:

( dec la re −fun Ce l l ( Int Int ) Int )
( dec la re −fun Ce l lCo lo r ( Int Int ) S t r ing )
( dec la re −fun ConnectedWithNumberedCell ( Int Int Int Int ) Bool )

We write the given numbers in the SMT file, for example:

(= ( Ce l l x y ) 1)
(= ( Ce l l x y + 1) 3)
(= ( Ce l l x y + 1) 2)
· · ·

We can now start with the constraints. We must make sure that there are
exactly n cells connected to a cell with the number n. We use a way to
assert that exaclty n variables are true, using the plus operator. If a field is
connected, we add 1. If not we add 0. In this way, we can exactly reach the
desired number. So for a certain numbered field (nX, ny) and all possible
connected cells (within a range of n of the numbered field) in SMT, we get
for example:

(=
(+
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( i t e ( ConnectedWithNumberedCell nX nY nX nY) 1 0)
( i t e ( ConnectedWithNumberedCell nX nY nX−1 y ) 1 0)
( i t e ( ConnectedWithNumberedCell nX nY nX+1 y ) 1 0)
( i t e ( ConnectedWithNumberedCell nX nY nX−2 y ) 1 0)
( i t e ( ConnectedWithNumberedCell nX nY nX+2 y ) 1 0)
· · ·
)
n
)

The next constraint we add, is that the numbered fields must have the white
color. This is an easy constraint in SMT. For all numbered fields, we write:

(= ( Ce l lCo lo r x y ) ”White” )

Now, we state that each white cell should be connected to exactly one
numbered cell. A numbered cell have to be trivially connected to itself. All
non-numbered cells should have one other cell that they connect with. All
black cells must not be connected with any numbered cell. For the numbered
cells, we write:

( ConnectedWithNumberedCell x y x y )

For all other cells, we write:

( i m p l i e s (= ( Ce l lCo lo r x y ) ”White ”)
( or

( ConnectedWithNumberedCell n1X n1Y x y ) ( not (
ConnectedWithNumberedCell n2X n2Y x y ) ) · · ·

( ConnectedWithNumberedCell n2X n2Y x y ) ( not (
ConnectedWithNumberedCell n1X n1Y x y ) ) · · ·

· · ·
)

)
( i m p l i e s (= ( Ce l lCo lo r x y ) ” Black ”)

( not
( or

( ConnectedWithNumberedCell n1X n1Y x y )
( ConnectedWithNumberedCell n2X n2Y x y )
( ConnectedWithNumberedCell n3X n3Y x y )
· · ·

)
)

)

We can state that cells have to be connected to a numbered cell, but how
do we assert that they are actually adjacent in the puzzle? To assert this,
we use the connectivity constraint, but than in a small setting. For each
island, we will assert that every cell that is connected to the numbered cell
in the island, is reachable from the numbered cell. The numbered cell gets
value 0, and all other cells in that island must have a neighbour that has
the value of the cell minus one. This is the same idea as our constraint in
section 4.1. For each numbered cell, we write in SMT:
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(= (Number x y ) 0 )

For each other cell, we write:

( i m p l i e s
(= ( Color x y ) ” Black ”)
(= (Number x y ) −1 )

)
( i m p l i e s

(= ( Color x y ) ”White ”)
( and

( > (Number x y ) 0 )
(= (Number x−1 y ) (− (Number x y ) 1) )
(= (Number x+1 y ) (− (Number x y ) 1) )
(= (Number x y−1) (− (Number x y ) 1) )
(= (Number x y+1) (− (Number x y ) 1) )

)
)

However, we have not constraint that the islands must be separated from
each other by black cells. They may not touch each other. We do this by
stating that if a cell is white, and the right or the top neighbour is also
white, that cell must be connected to the same numbered cell. So they must
have the same values for the function connectedWithNumberedCell. For
example, we write in SMT:

( i m p l i e s ( Color x y )
( i m p l i e s (= ( Color x+1 y ) t rue )

(= ( connectedWithNumberedCell n1X n1y x y ) (
connectedWithNumberedCell n1X n1y x+1 y ) )

(= ( connectedWithNumberedCell n2X n2y x y ) (
connectedWithNumberedCell n2X n2y x+1 y ) )

(= ( connectedWithNumberedCell n3X n3y x y ) (
connectedWithNumberedCell n3X n3y x+1 y ) )

· · ·
)

)
· · ·
( i m p l i e s ( Color x y )

( i m p l i e s ( Color x y+1)
(= ( connectedWithNumberedCell n1X n1y x y ) (

connectedWithNumberedCell n1X n1y x y+1) )
(= ( connectedWithNumberedCell n2X n2y x y ) (

connectedWithNumberedCell n2X n2y x y+1) )
(= ( connectedWithNumberedCell n3X n3y x y ) (

connectedWithNumberedCell n3X n3y x y+1) )
· · ·

)
)

The next constraint we add is the constraint that no 2x2 areas may be
all black. We do this by stating that for all cells the top, right diagonal,
and right adjacent cell may not be all black if that cell is black. We write
in SMT:
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( not
( and

(= ( Ce l lCo lo r x y ) ” Black ”)
(= ( Ce l lCo lo r x y+1) ” Black ”)
(= ( Ce l lCo lo r x+1 y+1) ” Black ”)
(= ( Ce l lCo lo r x+1 y ) ” Black ”)

)
)

The last constraint we have to add is the connectivity constraint. Since
we do not have to deal with one single loop, using the first constraint of
section 4.1. We need an extra constraint here, because we don’t want that
the starting point of the connected part is white, because all black cells have
to be connected.

(= ( Ce l lCo lo r StartPointX StartPointY ) ”White ”) )

If a cell is white, it gets the number −1, because it is not part of the con-
nected cells. If a cell is black, there is a connection with another cell if
that cell is adjacent and also white. For one of the connected cells, it must
hold that it has a lower number. This is an implementation of the general
approach as described in section 4.1.
If we now run Z3 on the file, we get a solution which exactly describes which

cells should be black, and which cells should be white. This is the solution
of our puzzle.

5.5.3 Generating Nurikabe puzzles

Just like Hitori, the most trivial approach to generate these puzzles is to
put random numbers in a grid and check if there is a solution. However,
this will not be the most smart way to generate these puzzles. It was not in
the scope of this research to find out another way to generate those puzzles.
This could be done in future research.
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5.6 Hashi

The last puzzle we consider is Hashi. Hashi is also known as Hashiwokahero,
Bridges or Chopsticks. The puzzle is invented by Nikoli in 2004[4]. The
puzzle is proven to be NP-complete by Andersson in 2009[1]. Hashi contains
lines and connectivity but the lines do not have to form a loop. The puzzle
consist of islands, with numbers on them. The numbers are in the range 1
to 8. The goal of the puzzle is to connect all the given islands with lines.
Each line must be horizontal or vertical. Lines may not cross each other.
Between two islands, at most two lines may be drawn. The number on the
island states how many lines must be connected to that island. In the end,
there must be a path between all pairs of islands. Therefore, we will use the
connectivity constraints.

5.6.1 Examples

In the following figures we have some Hashi examples6. The first two are
just regular examples. Figure 5.44 is an edge case with only two islands.

Figure 5.42 Figure 5.43 Figure 5.44

And here we see the solutions:

6The examples 5.42 and 5.43 are taken from https://www.puzzle-bridges.com/
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Figure 5.45 Figure 5.46 Figure 5.47

5.6.2 Solving using SMT

For this last puzzle, we will also show how this puzzle can be solved using
SMT. We first define a function to describe the islands. The Island function
has the coordinates of the island as input, and the number in it as an
integer output. We will use a Line function that is slightly different from
the line function we used in the previous puzzles. The line function has the
coordinates of the first island and the second island which the line connects
as input. The result of the function is an integer, more precisely zero, one
or two. Zero means that no line is drawn at all. One means that exactly one
line is drawn. Two means that two lines are drawn between the two islands.
In SMT we define the following functions:=

( dec la re −fun I s l and ( Int Int ) Int )
( dec la re −fun Line ( Int Int Int Int ) Int )

We use a script to generate the SMT file. In this SMT-file, we create a list
of all possible lines. If two cells are in the same row, and no cell is between
them, there can possibly be one or more lines between them. The same
holds for the column. For each line, we make sure that it gets value zero,
one or two.

( or
(= ( Line x y x+ 1 y ) 0)
(= ( Line x y x+ 1 y ) 1)
(= ( Line x y x+ 1 y ) 2)

)

Now for each island, we check which possible lines can reach this island. We
make a list of the possible lines that start or end in those island. The sum of
those lines must add up to the number inside the island. To show this with
an example, assume that we have an island with the number 5 on it. There
are other islands above, below and right to that island. Then we write in
SMT: (= (Island x y) (+ (Line (x y x y + 1)) (Line (x y x+ 1 y)) (Line (x
y − 1 x y)) ) )
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The next constraint we have is that the lines may not cross each other.
Two lines cross each other if two islands are in the same row, and there
are some other islands in a column which the horizontal line crosses and
one of the islands is above the horizontal line and the other is below the
horizontal line. We can easily check when this is the case using the script.
For each of these cases, we have to make sure that one of the lines has value
zero. In that way, the lines cannot cross. For two possible crossing lines
(x1, y1, x2, y1) and (x3, y2, x3, y3) we write in SMT:

( or
(= 0 ( Line x1 y1 x2 y1) )
(= 0 ( Line x3 y2 x3 y3) )

)

The last constraint we have is the connectivity constraint. We only need one
constraint from section 4.1 because it is not necessary to create a loop as
solution. We add the first number-constraint to make sure that all islands are
connected. When we run Z3 on the generated SMT file, we see exactly which
possible lines get value zero, one or two with respect to all the constraints.

5.6.3 Generating Hashi puzzles

We did not dive into an approach to generate Hashi puzzles. It is not so
straight-forward as with Slitherlink, so we cannot use the same technique
for that. This subject could be addressed in later research.
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Chapter 6

Shingoki is NP-complete

In this chapter, we will show that the question: ’does a given Shingkoi puzzle
have a solution’ is NP-complete. The proof is very similar to the proof for
Slitherlink by Yato[21] and the proof for Masyu by Friedman[12]. Since
Masyu is very closely related to Shingoki, we will follow the structure of the
proof for Masyu. We do this by creating Shingoki puzzles corresponding to
arbitrary cubic planar graphs. We will show that the following theorem is
holds:

Theorem 2. A cubic planar graph G(V,E) has a Hamiltonian circuit if and
only if the corresponding Shingoki puzzle has a solution

We know that the question: ’does a given cubic planar graph have a Hamil-
tonian circuit’ is NP-complete. That is proven by Garey, Johson and Tarjan
in 1976[15]. The problem is also contained in the overview of Garey and
Johnson[14, p.199]. So if we can construct a Shingoki for an arbitrary graph,
we know that the decision is NP-hard. If we have that, we can complete
the proof by verifying that a solution of a Shingoki puzzle can be checked
in polynomial time.

For the proof, we will use the same example graph as Friedman. The graph
G and its rectilinear representation can be seen in figure 6.1.
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Figure 6.1

The Shingoki puzzle will contain only white pearls, with numbers in them.
We follow the idea of Friedman to use walls. Those walls can be arranged
to form rooms, separated by passageways. The passageways will correspond
to the edges of the graph. Some of the rooms will correspond to the vertices
of the graph.

6.1 Walls

In the proof for Masyu, Friedman uses the idea of walls. Friedmann shows
that for n >= 3, there are only two local solutions for a 2 x n rectangle of
white pearls. He uses the following figure:

Figure 6.2

For the Shingoki puzzle, we can also create the same walls for which only
two local solutions exist. We do this by putting the number 3 into all white
pearls:
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Figure 6.3

If two walls are diagonally adjacent, only one local solution exists. So if we
put these rectangles together, we can create walls with a unique solution. In
each face of G*, we will put a wall unit. The wall units are very flexible in
size, andAn example of a wall unit can be seen in figure 6.4. Note that the
loop has to go further outside the wall unit, because otherwise it will touch
itself some time.

Figure 6.4
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The wall units will be placed next to each other, with a passageway between
them. Every passageway is just one field wide, which ensures that the loop
can only go once through each passageway. The passageways correspond to
the edges of G*. The small blank areas that are created at the intersections
of passageways are called rooms. Each vertex corresponds to one of the
rooms. We can use figure 6 of Friedman to give an example of the rooms
and passageways:

Figure 6.5

The light grey area is a room, the dark grey area’s are passageways. In our
case, the only difference until now will be that in the white pearls of the
walls, the number 3 is used.
In each room corresponding to a vertex of G*, we put a white pearl. We put
the number two in it, so that the rooms can be as small as possible. These
pearls assert that the loop will come to each room. Since G* is cubic and
the passageways can only be passed once, the loop must enter each room
exactly once. Friedman adds to this that the ends of the paths of a wall
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unit must be in a room which corresponds to a vertex in G*. This asserts
that that wall unit will be part of the loop.
Now since we have that each room that corresponds to a vertex needs to
be visited exactly once, and all passageways correspond to edges, the puzzle
will have a solution if and only if the graph has a Hamiltonian circuit.
Now, for the puzzle G, we can create the following puzzle:

Figure 6.6

We see that the puzzle is very similar to the Masyu puzzle that Friedman
uses. Instead of empty white pearls, we now have pearls with the number 3
for the walls, and the number 2 for the pearls in the rooms. In the following
figure, we see a solution for the Shingoki puzzle in figure 6.6:
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Figure 6.7

Friedman cites a paper by de Fraysseix, Pach, and Pollack [9] to state that a
planar graph with n vertices can be realized using O(n2) area. That means
that the mapping we created is polynomial.
To complete the proof, we have to show that a possible solution of a Shingoki

puzzle can be checked in polynomial time. This is the same as for Masyu,
so we use the same argumentation as Friedman. We need to check if the
line goes through each pearl correctly. This can be done in O(n2), since the
number of pearls is at most n2. Furthermore, we need to check that the line
consists of a single loop. This can be done in O(n4), because the number of
possible lines is at most O(n2), and it suffices to check all the pairs of those
lines. This completes the proof that the Shingoki puzzle is NP-complete.
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Appendix

In this appendix, the reader can find some puzzles that are generated during
this thesis. The puzzles have different sizes. The bigger puzzles are more
difficult to solve. The solutions are also given.

A.1 Slitherlink

Slitherlink 5x5

Solution Slitherlink 5x5
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Slitherlink 10x10

Solution Slitherlink 10x10
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Slitherlink 15x15
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Solution Slitherlink 15x15
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A.2 Masyu

Masyu 5x5

Solution Masyu 5x5
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Masyu 7x7

Masyu 7x7 Solution
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Masyu 7x7 - 2

Masyu 7x7 - 2 Solution
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