BACHELOR THESIS
COMPUTING SCIENCE

h

G .
é.\9 Ny |
orrer

O’”INe-‘?QJ

RADBOUD UNIVERSITY

Differential Analysis of
SATURNIN and SPONGENT

Author: First supervisor/assessor:
Giovanni Uchoa de Assis prof. dr. J.J.C. Daemen (Joan)
51030506 j.daemen@cs.ru.nl

Second supervisor:
ir. D.W.C. Kuijsters (Daniél)

d.kuijsters@cs.ru.nl

Second assessor:
dr. ir. B.J.M. Mennink (Bart)
b.mennink@cs.ru.nl

November 3, 2021



Abstract

There are many different methods for analyzing block ciphers and cryp-
tographic permutations. The most common method is to study how the
round functions that make up each cipher or permutation work in isolation,
e.g., looking at the branch number of mixing layers or the nonlinearity of
S-boxes. However, a less common approach is to study how the different
functions within the permutation interact with each other. One way to do
this consists of investigating the linear and differential propagation prop-
erties. Within this thesis, permutations obtained by fixing the key in the
block cipher SATURNIN to 0 and another one used by the construction
SPONGENT will be analyzed by looking at their differential propagation.
We will show how their differential trails cluster in differentials. We will also
show how differential and differential trail weights clip due to there being
an upper bound on these possible weights.

Keywords: symmetric cryptography, permutations, round functions, clus-
tering, differential cryptanalysis, clipping
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Chapter 1

Introduction

Encryption is used everywhere in the modern world. One popular method
of encryption consists of using block ciphers and permutations as building
blocks for encryption.

Different ciphers or permutations are designed with different goals in mind.
One type of cipher that is currently being looked at, is the lightweight ci-
pher. A lightweight cipher is a cipher designed for use on devices that have
limitations, such as low processing power or latency, and can not handle the
current encryption methods that were designed for devices like a desktop or
server [§]. NIST is currently running a lightweight cryptography competi-
tion to choose the standard lightweight cipher going forward.

Within the lightweight ciphers, there are two designs we will analyse.

The first one is the cipher SATURNIN, which was designed using the wide
trail strategy. The wide trail strategy attempts to design the round functions
to limit the number of trails with a low weight. This is done by focusing
a lot of resources on the linear step of the round functions to improve the
diffusion of the trails [6]. If a cipher uses this strategy, the bounds for the
differential probability of their trails become easy to verify. This cipher
made it to the second round of the NIST lightweight ciphers competition.
The second design is used by the construction SPONGENT, which was
designed using the principles of PRESENT and thus uses a PRESENT-like
permutation. This permutation was used in the finalist ELEPHANT [1][10].
It only uses S-box layers and shuffle mechanisms. These two permutations
are what we will analyse.

1.1 Related Work

Within Thinking Outside the Superbor Bordes et al. have analyzed align-
ment and clustering properties of SPONGENT and SATURNIN, as well
as RIJNDAEL and XOODOO [4]. They have shown the importance of



alignment for the differential and linear propagation properties of a cipher
or permutation. They also put forward that while aligned ciphers result in
easy-to-verify bounds compared to unaligned ciphers, they do result in more
clustering. We will be expanding on that paper and analyzing the expected
differential probability (EDP) of the differentials, as well as the differential
probability (DP) of the differential trails. Differentials do not take into ac-
count what path was taken within the permutation. Due to the differential
trails including the path taken in the permutation, multiple trails can cluster
in a differential. Both differentials and trails also have a limit on how spread
out they can be, which causes them to clip and not spread out as well as
would be expected. We will distinguish between when differential trails are
clustering in differentials and when the weight is being clipped due to there
being an upper bound on the possible weights.

1.2 Contributions

When examining a cipher or a permutation, differences in the input propa-
gate into differences in the output. Inadequate diffusion within the cipher
or permutation can cause these differences to be unevenly distributed. Both
clustering and clipping affect how these differences are distributed. Because
of this, we will be making a distinction between the property of clustering
and that of clipping.

This brings us to the research question we try to answer:

How do clustering and clipping affect SATURNIN and SPONGENT with
respect to differential cryptanalysis?

1.3 Outline

Within this paper, we will first show the notations and conventions. In
Chapter 2] we will give a background into cryptanalysis and, more specif-
ically, differential cryptanalysis. Chapter |3| will give an insight into the
design of SPONGENT and SATURNIN. In Chapter [ we will explain what
weights, clustering, and clipping are and how they affect SPONGENT and
SATURNIN. Then in Chapter [5} the EDPs of differentials and the DPs of
differential trails will be calculated so that we can make the distinction clear
between clustering and clipping. This will be compared to preceding work
done in previous papers, mainly in Thinking Outside the Superbox [4].

1.4 Notation and Conventions

Because this thesis is a continuation on the work done by Bordes et al. [4],
we will be following their already defined conventions which we will repeat



below.

Whenever we use indices, they always begin at zero. We write k as a non-
negative integer k € Z>g. We use k as a placeholder for any non-negative
value. We also define [0,k — 1] = {i€ Z>0: 0 <i <k —1}.

For a given set S, #S represents its cardinality. A given equivalence relation
on set S is represented by ~. If a € S, then the equivalence class can be
represented by [a].. We write eF, for the ith standard basis vector in F5.
We write + for vector addition in F%.

A state a is represented by a vector of b bits. It is either a vector that
the permutation is applied to or a difference. For such a state a € F}, a;
refers to its ith component.

The main task of this paper is studying permutations of the form

f:Fy > T (1.1)

A permutation is a bijection with an equal domain and codomain.

A fixed key perspective means that the key used for a block cipher is fixed
to a specific value. By using a fixed-key perspective, the block ciphers
used are transformed into permutations. We fix all key bits to zero. These
permutations consist of lightweight round functions of the form

f=R,0---0R10Ry (1.2)

With r e Z>0.

We write f[r] = Ry o---0 Rj o Ry. We write f[0]= id with id the iden-
tity function. Each round function R is composed of three possible step
functions:

e 3 linear transformation L
e a nonlinear transformation N
e a constant addition i.

A linear transformation L: F§ — F4 of a can be written as L(a) = Ma with
M representing a matrix of the form M € ngb' Such a linear transformation
can be represented by a simple linear mapping between each state. This is
not the case for a non-linear transformation. For the nonlinear transforma-
tion N, we write n for the number of S-boxes of N and m for the size of the
S-boxes. Suppose Bj = jm,...,(j +1)m — 1. Permutations of the index
space are written as 7 : [0,b — 1] — [0,b — 1]. By shuffle, we mean a linear
transformation 7 : F} — F} given by 7(a) = Pra, where P, is a permuta-
tion matrix associated with some 7 obtained by permuting the columns of
a (b x b) identity matrix according to 7.



The index sets B; < [0,b — 1] forms an ordered partition. A projection onto
bits of a indexed by the ordered partition B; is written as:

Py(a) : Fy — F#5i (1.3)

Let II be a partition of the index space consisting of k& boxes of size [. A
shuflle layer is called a II-shuffle if the associated permutation matrix can be
partitioned into k identity matrices of dimension (I x ). For a step function
to be II-aligned, it must respect the boundaries of the boxes.



Chapter 2

Preliminaries

2.1 Cryptanalysis

A cryptographic permutation is built up of a combination of round func-
tions, which themselves consist of step functions. The linear propagation
properties of a permutation are analyzed by linear cryptanalysis, and the
differential propagation properties are analyzed through differential crypt-
analysis.

2.2 Differential Cryptanalysis

Differential cryptanalysis looks at differences in the output of a block ci-
pher, given fixed differences in the input. It looks at how these differences
propagate within the cipher. Differential cryptanalysis consists of a chosen-
plaintext attack to apply these differences in the input and see how they
propagate to the output of the ciphers [2].



V ¥
y y + Doyt

ordered pair: (X, Xx+Aj)
differential: (A, Aout)

Figure 2.1: Differential propagation with input difference A;, and output
difference A,y:.

To explain differential cryptanalysis, certain definitions first need to be ex-
plained. As this builds upon Thinking Outside the Superbox, we will be
using many definitions and conventions introduced by them within section
2.1: Differential Cryptanalysis [4]. We will start off by explaining what a
differential is and what the differential probability is. Then we will explain
what the differential trails and the EDP are and how they can be calculated.

Definition 1. The ordered pair is the ordered pair of the input and the
input with its difference (zipn, Zin + Ain).

Definition 2. The differential is the ordered pair of the input difference
and the output difference (Ajn, Aout)-

While the differential is also an ordered pair, going forward, we will be using
ordered pair to refer to Definition (1] while differential will refer to Definition
Both are visualised in Figure 2.1

Take an ordered pair (z,x + Ay,) with f(x) + f(z + Aiy) = Ague. Then
the ordered pair follows the differential (A, Ayyt). The ordered pairs that
follow a differential form its solution set.



Definition 3. Let f : F} — F} be a permutation and define
Vi(Dins Aout) = {z € Fy s f(2) + f(z + Ain) = Dout} (2.1)

We call Vi(Aipn, Aout) the solution set of the differential (A, Agut)-

Any ordered pair (z, x4+ Agy) with x € Vi (A, Aou) follows the differential
(Ain, Aout). For (Ajp, Apur) to be a wvalid differential, at least one ordered
pair must follow it.

We now have the total amount of trails following a differential, but we would
like to know the likelihood of a random ordered pair following a differential.
This likelihood is the differential probability (DP) of the differential.

The DP of a differential is the number of ordered pairs in the solution set
over the total number of possible ordered pairs.

Definition 4. The differential probability (DP) of a differential (A, Aput)
over the permutation f : F§ — F} is

#Vf (Azna Aout)
2b

The differentials and the DP are the core of the research. The differential
trails and the EDP build upon the differentials and the DP.

DPf(Azny Aout) =

(2.2)
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ordered pair: (a, a+Ajn)
enveloping differential: (Aj,, Aout)
differential trail: (A, Ap, Ac, Aoyt)

Figure 2.2: 3-round differential trail propagation with ¢ as input and d as
output.

The differential trail consists of the ordered pair of the input and output
difference, just like the differential. However, it also consists of the sequence
of intermediate differences in the permutation.

Definition 5. A sequence Q = (¢(©, ¢, ...,¢®)) € (F4)*+1 that satisfies
DPg, (¢, ¢*Y) > 0 for 0 < i < (k—1) is called a k-round differential trail.

For our purposes, the sequences we are investigating have the q values in
between the round functions. This is displayed in Figure

4 R a R1 —.— Rg -q®-~

Figure 2.3: A trail Q.

Take an ordered pair (x,x + A;,). Then the ordered pair is said to follow a
differential trail (q(o), o q(k)) if all differences of the sequence it creates are
the same as the differences in the differential trail. Any given ordered pair
follows only one differential trail. This means that the trails partition the
set of ordered pairs following a differential.
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A differential trail follows the differential (A;,, Agy) if ¢ = A, and
g% = Agu. We call (Ain, Aout) the enveloping differential of the trail.
This is visualised in Figure

The differential trail core consists of the values of the differential trail with-
out the values of the differential (A, Agur) : ¢V, ..., gD,

DT(Ajn, Aoyut) represents the set of differential trails in the (enveloping)
differential (Aip, Aout), with Ay, = ¢ and Ay = ¢®).
Aout)-

Definition 6. For any given differential (A, Aous), if
#DT (Aip, Apur) > 1 (2.3)
then there are multiple trails clustering in that differential.

An example is given in Figure [2.4

0011
0001— Ro R1 ——0100

0010
0001— Ro R1 ——0100

Q4=(0001,0011,0100) Q,=(0001,0010,0100)
DT(0001,0100) =2

Figure 2.4: The trails Q1, Q2 clustering in differential (0001,0100).

Each round differential (¢(”,q®+")) has a solution set Vg, (¢?, ¢#*1). Take
the transformed set of points V; = f[i]~*(Vr,(¢®, ¢"*1)) at the input of
f. We say that an ordered pair (z,z + ¢(9) follow the differential trail if
it holds that x € V§(Q) = fz_ol V;. The fraction of states a satisfying this
equation is the DP of a trail.

Definition 7. The differential probability (DP) of a differential trail is

_ #V5(Q)
-5

DP#(Q) (2.4)

11



Given that the permutation consists of round functions, you can specify a
differential with their own DP over each round function.

Next to the DP, there is also the EDP. This is the expected differential
potential for a differential over all keys instead of over a fixed key [7]. The
EDP of the differential trail is the expected differential potential over all
keys as well.

Definition 8. Assume the keys have length k. The expected differential
probability (EDP) of a differential is the average DP of that differential over
all keys.

2k
DPe AinaAou
EDP(Ain, Aout) = Y. ’“y(zk 23

key=0

(2.5)

In the case that the round differential probabilities act independently, then
the DP and EDP are the same.

Now that we have the basic definitions, we need a method to do calculations
using the DP and the EDP. Depending on the structure of our permutation,
different methods may facilitate the calculation of the DP and EDP over
the full width of the round function. For this, we have other definitions for
the (E)DP of a permutation.

Definition 9. The round differentials in a trail are said to be independent
if

k—1
DP#(Q) = [ [ DPri(¢™, ¢"*). (2.6)
i=0

Definition 10. The DP of the differential is the sum of the DPs of all dif-
ferential trails with initial difference A;, and final difference Ay;.

DP (Ain, Aput) = > DP;(Q). (2.7)
QeDT(Ain,Aout)

Definition 11. The EDP of a differential is the sum of the EDP values of
all the trails in that differential [7].

EDP(Ain, Aouy) = 2 EDP(Q). (2.8)
QEDT(ATFL 7Aout)

Take the function R = ¢ o N o L consisting of a non-linear S-box layer
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N and a linear layer L with the addition of a round constant i. The differen-
tial trail of a differential (A, Asyt) over R can be defined by specifying the
intermediate differences as b,c, which results in (A, b, ¢, Agyt). The value
b can be represented as L(A;,) because of the linearity of L. Because a dif-
ference does not change when a constant is added, we know that ¢ = Agy:.
This implies that the differential (A;,, b, ¢, Agyt) has only one trail with a
DP equal to the DP of the differential (A;y,, L™ (Aout)) over the S-box layer.
It means that the DP of a round differential R is the product of DP values
of the S-box differentials.

DPR(AM’UAOUt 1_[ DPS )) P(L(Aout))) (29)

0<j<b

Definition 12. The restriction weight of a differential (A, Ayye) that sat-
isfies DP f(Ajn, Aput) > 0 is defined as

w’r(Ain’ Aout‘) = _ZOQQ(DPf(Aina Aout)) (210)

This also means that given the weight, you can easily find the DP as DP =
27", For the differential trail, we add up the weights of the round differen-
tials.

Definition 13. The restriction weight of a differential trail Q = (q © ¢ q(k))
is defined as

2 ¢t (2.11)

The restriction weight of a differential trail corresponds to its EDP. It is
possible to use this weight to get the DP in specific situations. If the round
differentials of the differential trail are independent, then this weight also
represents the DP. Then the sum of the weights of the round differentials
corresponds to the product of the round DPs.

2.3 Alignment

If a permutation is aligned, it allows us to reason about the bounds of the
DP of differential (trails) of that permutation. Alignment allows us to define
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a superbox that can be convolved to get the (E)DP for a two-round prop-
agation. This way, we do not need to define a complete system. Because
of this, this section will explain what alignment is. This way, we can show
that our permutations are aligned and reason about the DP of trails more
easily.

For alignment, we will examine the non-linear layer N consisting of n S-
boxes of size m as displayed in Figure 2.5 These S-boxes are laid out in
parallel. We again refer to Thinking Outside the Superbox [4].

ao a1 an
S-box S-box S-box
l } l
b 0 b_1 b_n

Figure 2.5: The non-linear layer N.

N consists of parallel applications of S-boxes to disjoint parts of the state
indexed by B;. We can write it as the following Sg x S1 X .... X S;,_1 with it
characterized by

PZ'O(Soxsl><...XSnfl)ZSiOPifOFOSZ'én—l. (212)

N then defines a unique ordered partition Il = (By, ..., B,—1) of the index
space [0, b — 1 | with IIy being the box partition defined by N. We call the
B; N-boxes. For a partition to be non-trivial, it must contain at least two
elements.

Let II be a partition of the index space consisting of k boxes of size l.

Definition 14. We call IT a refinement of II' and write II < II' if for every
(4, B;) € 1I there exists a (j, B}) € II' such that B; < B’.

Definition 15. We call ¢ : Fg - Fg II-aligned if we can decompose it as

k—1 k—1
Bo X X pp_1: X Fy— X F, (2.13)
1=0 =0

where ¢; represents the box functions.

14



Definition 16. Take a round function composed of parallel application N
of equally sized S-boxes, a linear layer L, and an addition i of a constant.
We say it is aligned if it is possible to decompose the linear layer L as L =
M o 7 in such a way that:

e 7 is a IIy-shuffle

e M is aligned to a non-trivial partition II;; that satisfies Il < Iy

If the round functions of a primitive are aligned, then the primitive is also
aligned. Any primitive that is aligned has a superbox structure [9].

2.3.1 Superbox

Now take a two-round structure of the form: mroM o Nomwo M o N as seen
in Figure Since m o M are linear steps, they will have no effect on the
distribution. If we then define N’ as 7~ 1o N o, we can replace NoroMoN
by mo N'o M o N as IIy = II. This then allows us to remove linear layer
m. Because II'y, = IIy < II,;, this can be viewed as a parallel application
of superboxes. This is called a superbox layer. This results in our linear
layer being m o M o 7 and the non-linear layer being N’ o M o N. For our
two-round structure to be aligned, the non-linear layer has to be aligned to a
non-trivial partition II such that Il < II;;. Then the two-round structure
is aligned to IIy,.

15
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Figure 2.6: The two-round structure roM o Nomo Mo N.
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Chapter 3

Saturnin and Spongent

This chapter will present the permutations that we will be investigating and
explain how they are designed. While SATURNIN is a block cipher, it is
turned into a permutation by taking a fixed key perspective and setting that
key to zero.

3.1 Saturnin

The first permutation that we investigate is the one constructed by using
SATURNIN [5].

51 55 59 63
63
35 39 43 47
47
19 23 27 .31 62
“ 31
3 7 11 15 46
15 61
3 7 11 15 130
H 9
14 60
29
2 6 10 14 M
13
1 5 9 13 28
12
0 4 8 12 Y ,,’%
xr

Figure 3.1: 4 x 4 x 4 nibbles of SATURNIN [5].
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15

14

13

—_
ot
©
=
w

12

Figure 3.2: A SATURNIN slice, sheet and column respectively. Modified
from [5].

It is a 256-bit block cipher with an equally sized key. It has three represen-
tations:

e A three-dimensional cube representation consisting of 4-bit nibbles in
a 4 x 4 x 4 cube represented in Figure (3.1

e A two-dimensional representation consisting of 16-bit registers.
e A one-dimensional representation as 256 bits.

We will be using the three-dimensional cube representation going forward.
The cube can be dissected into different sections, which are represented in
Figure A slice is a subset of the nibbles with z constant. A sheet is a
subset of the nibbles with x constant. A column is a subset of the nibbles
with x and z constant.

The actual algorithm that SATURNIN uses involves superrounds which
consist of two (smaller) rounds. These smaller rounds consist of even and
odd-numbered rounds. The even rounds only have one design, while the odd
rounds have two designs. The designs are built up of 5 possible transforma-
tions.

A non-linear S-box layer S, which makes use of 2 different S-boxes forms,
the non-linear transformations. A linear mixing layer MC and linear nibble
permutation SR form the linear transformations. And a round constant ad-
dition RC and a round key addition RK form the constant additions.

The S-box layer applies a 4-bit S-box on all nibbles with an even index
and a different 4-bit S-box on all nibbles with an odd index.

The MC layer uses 16 copies of a linear operation M over (F3)*. This linear
operation is applied to each column.

The nibble permutation SR is an operation that mixes the columns in each

18



of the sheets (SRgpeet) or the slices (SRgjice). For (SRgiice), the nibble coor-
dinates are mapped from (x,y,z) to (z +y mod 4,y,z). An example can
be seen in Figure For (SRgiice), the nibbles are mapped to (z,y + 2
mod 4, z).

3|7 |11/15 7 (1115 3
2|6 |10]14 _10]14| 2 |6
159|138 "3 1|59
ola4]|8|12 0|4]8[12

Figure 3.3: SRgjice Operation [5].

All even rounds consist of a linear and a non-linear layer: MC o S.

The odd rounds use all transformations in the following structure: RC o RK
oSR'oMCoSR o8.

Rounds 4r+1 uses an SR permutation using slices : RC o RK o SR;lzlce o
MC o SRgjice © S.

Rounds 4r+3 uses an SR permutation using sheets RC o RK o SR;hl6 et ©
MC o SRgpeet © S.

We define the partition I1g so as to divide the state into 64 nibbles. Both nib-
ble permutations created by the SR permutation are IIg-shuffles. The mixing
layer is aligned to a non-trivial partition Il;;¢ that divides the state into

16 columns, each consisting of 4 nibbles. This then means that I1g < ITj;¢.
Following Definition SATURNIN is aligned.

For SATURNIN, there is not only a superbox but also a hyperbox. These
hyperboxes consist of 4 superboxes put together and result in a width of
64 bits. These consist of the super-rounds that are a unique trait of SAT-
URNIN. These super-rounds can be written in the form of the superbox
layer consisting of S o MC o S and the linear layer SRQ}CE o MC o SRS_Z}C .
The superbox layer is aligned to the partition II;¢, while the linear layer
is aligned to the non-trivial partition Ilg;ee.1lgce divides the state into four
slices with four columns each, so Il ;o < Ilge.. The same holds for Ilgpeer,
which divides them into four sheets with IIy;c < Ilgpeers. This means that
the super-rounds are aligned and have their own superboxes, which are the
hyperboxes.

The alignment properties are displayed in Figure [3.4]

19
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SIS s [s)[s1[s] [s] [s] [s] [s][s] 5]

[ MC || MC || MC | | MC |
GIEIBIEI BB B B B ] B
| SRilice |
[ MC || MC || MC | | MC |
| SRk |
CIEIGIEEI B EIE EB S BB BB E
| MC || MC || MC | | MC |
GGG B BB E] B E B S BB B B E]
| SR.heet

[ MC || MC || MC || MC |
| SR,

(11 ][] [s] [s] [s[s] [s] [s] [s] [s] [s] [s] [5]
[ MC || MC || MC | | MC |

GIEIEIEEIBIEI B EI B EI B B ][]

Figure 3.4: Alignment properties of SATURNIN [4].
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3.2 Spongent

SPONGENT is a construction designed after the principles of PRESENT
[3]. It uses a sponge construction that takes in a variable-length input and
produces a variable-length output. This is displayed in Figure Within
SPONGENT, there is a permutation function 7, that takes in a state of b
bits. We will consider the case b = 384. These b bits consist of an inner
layer of r bits and an outer layer of ¢ bits. The bits in the inner layer of the
state are XORed with the message, unlike the bits in the outer layer. These
do not get affected until they join the first application of permutation .

We are not interested in SPONGENT itself however, but in the permu-
tation m, within SPONGENT.

Vet aiinkInlink

pL My Ty L Ty T,

Figure 3.5: Construction of SPONGENT [3].

The permutation 7, uses three different step functions to build its round
function:

e a non-linear S-box layer sBozLayer, consisting of 4-bit S-boxes with
S:F; —Fj

e a round constant addition [Counter that uses a [logaR]-bit LFSR
e a bit shuffle pLayer

96 j mod 383 if j € [0, 382]
383 if j = 383

pLayer(j) =

21



These are used in the following structure:

fori=1to R do

state < [Counter;®’"*¢(i) @ state @ [Countery (i)
state «— sBox Layery(state)

state «— pLayery(state)

The pLayer can be deconstructed into a linear mixing layer SpongentMixLayer
followed by a box shuffle SpongentBoxShuffie.

SpongentMizLayer applies the mixing function SpongentMiz to 24 subgroups
of S-boxes [3]. Each subgroup consists of 4 S-boxes and is 16 bits wide. Each
group consists of 4 subgroups and is 64-bits wide. The grouping is displayed
in Figure This mixing function is a bit shuffle that is associated with
an index permutation on a subgroup. SpongentBozShuffle is a box shuffle
associated with a box index permutation of a box with a width of 96.

Group 1
63626160 15141312 111098 76854 3210
" lj:' ﬁé——‘
5135193 483216 0 4832160 4832160 4832160
Subgroup 1

Figure 3.6: Groups and subgroups of S-boxes operated on by pLayer [3].

The sBoxLayer defines the box-partition Ilspozrayer corresponding to 96
4-bit boxes. The SpongentMixLayer is aligned to the non-trivial partition
ILspongent MizLayer that splits into 96 16-bit subgroups [4]. So ILpozLayer <
ILspongentMizLayer- This means that SPONGENT m, itself is aligned, and we
can define a superbox that can be convolved into the complete permutation.
The alignment properties of SPONGENT 7, are represented in Figure
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I EIBIE]BI S ] ]S ] ] [s] 3]

| SpongentMix || SpongentMix || SpongentMix || SpongentMix

I SpongentBoxShuffle

I BIEI BB B S 1 I ] (s[5

Figure 3.7: Alignment properties of SPONGENT m;, [4].

3.3 Superbox Setup

The superboxes of SATURNIN and SPONGENT have already been defined
in Sections [3.2] and They are of the form f = No Lo N.

The 16-bit values are represented by an uppercase letter e.g. A that repre-
sents the complete state, A = ag, a1, as, ag with a; representing the nibbles
going into the i-th S-box. This is because the design of the superbox consists
of four 4-bit S-boxes for the non-linear layer.

The first and second non-linear layers are both S-box layers (S). The SAT-
URNIN superbox uses two distinct types of S-boxes. Each S-box layer con-
sists of two S-box functions: S-box_even and S-box_odd. When a 16-bit input
is entered as xg, x1, T2, T3, the bits in g and x2 go through S-box_even and
x1 and x3 go through S-box_odd. This is visualised in Figure [3.8

Both SATURNIN and SPONGENT use their own linear layers.

The SATURNIN superbox uses a mixing layer (M) : SA = S o M oS while
SPONGENT uses a shuffle layer (SH) : SP = SoSHo S.

The basic setups of the superboxes are displayed in Figure [3.9

ao a1 a? a3

l | J J

S-box_even|| S-box_odd ||S-box_even|| S-box_odd

| ! ! |
b_0O b_1 b 2 b 3

Figure 3.8: SATURNIN S-box layer.
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Chapter 4

Research Basis

The data that has been gathered will be displayed as clustering histograms.
These histograms show us how much the active bits or boxes cluster together.
We will explain what bit and box weights are and what it means to measure
their weight.

4.1 Bit and Box Weights

To understand bit and box weights, we will again be referring to definitions
from Thinking Outside the Superbox [4].

When measuring the bit and box weights, we measure the weights for a
bit or box activity. For this, we will first define an indicator function. We
define the indicator function 1; : F} — Fy with respect to the box partition
II as
0if Pi(a) =0
1i(a) = { i(e)

1 otherwise

Take a difference or linear mask a € Fg. A bit 7 is active in a if a; = 1. The
bit weight of a is then given by the number of active bits. The bit weight is
defined by

wa(a) = #{i € [0,b—1] : a; # 0}. (4.1)

Take a difference or linear mask a € F}. A box B; is active in a if 1;(a) = 1
holds. Otherwise it is passive. The box weight is determined by the number
of active boxes. If there is a non-zero bit in a box, then this box is considered
active. The box weight of a is defined by

wrp(a) = #{i € [0,b—1] : 1;(a) # 0} (4.2)
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The activity pattern of a is defined by

n—1
rn(a) = Y. 1p, (a)e} (4.3)
i=0

It is the vector whose ith component is one if the box B; is active and zero
otherwise.

Take a two-round trail N o L o N with (A, b,¢,Apu). The box weight
of this two-round trail can be bounded from below by the sum of the num-
ber of active S-boxes at the input and the output of L. This is because in
differential trails, ¢ = L(b).

4.2 Clustering Histogram

We will now look at how this activity clusters together before and after
a transformation. For this, we need to understand cluster-equivalence.
Cluster-equivalence is merely a refinement of the box-activity-equivalence.
This happens when two different states have the same activity relative to a
box partition. Out of the box activity equivalence and Lemma 1, we get our
definition of cluster-equivalence. Lemma 1 and the necessary definitions are
displayed below [4].

Definition 17. Two states are box-activity equivalent if they have the same
activity pattern with respect to a box partition II:

a ~ d' if and only if rr(a) = rr(a’). (4.4)

The box activity class of a is the set of states that are box-activity equivalent
with a. They are represented as [a]~.

Lemma 1 Two trail cores ( ag,bo, ... ,ar—2,br—2) and ( af,bg, ... ,a*_5,b% )

over a function f = N,_10L,_90 N,_g0...0Lyo Ny that are in the same
differential satisfy ag ~ aj and b,_o ~ b_,.

Lemma 1 has already been proven before [4]. By taking the case of r =

2 in Lemma 1, we can refine the box-activity equivalence to the cluster-
equivalence. Cluster-equivalence is shown in Figure [4.1
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Definition 18. Two states are cluster-equivalent with respect to a linear
mapping L: Fg — Fg and a box partition II if they are box-activity equivalent
before L and after it:

a~d if and only if a ~ a’ and L(a) ~ L(d’). (4.5)

The cluster class of a is the set of states that are cluster-equivalent with a.
They are represented as [a]~. The cluster partition is the partition of F} to
these cluster classes.

Figure 4.1: Partitions of F} defined by ~ and ~ [4].

Corollary 1 If two two-round trail cores (a,L(a)) and (a*, L(a*)) over f =
N o Lo N are in the same differential, then a ~ a*.

This corollary has already been proven [4]. From this, it follows that differ-
ences of two-round trail cores cluster together in the same cluster class. If
the cluster classes are small, then there is little clustering. If they are large,
then there is a lot of clustering.

Finally, to get to the clustering histogram, we need to define the cluster
weight. The weight is given by

w([a])~ : For all a’ € [a]x : box weight wyj(a’) + wyj(L(a’)) is the same.
(4.6)

Definition 19. Let L: IFS — IFZ be a linear transformation and let ~ be the
relation given by Definition [I8 The cluster histogram N1, : Zzo X Zzo —
Z=o of L with respect to the box partition II is given by

Nur(k,c) = #{lal~ € Fy/ ~: i([a])x = k A #lals = ¢} (47)

For a fixed box weight, the cluster histogram shows the distribution of the
cluster classes with that box weight. Large cluster classes with small weight
may result in two-round trails with a large DP. So for small weights, small
cluster classes are better.
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Figure 4.2: A simplified illustration of clustering with SATURNIN w = 5
after an SRy transformation. Modified from [5].

The resulting cluster histograms for SATURNIN and SPONGENT can be
seen in Figures [£.3| and [4.4] Here, C represents the cardinality of the equiv-
alence class with respect to relation ~. N Represents the number of equiv-
alence classes with that cardinality. Figure shows a simplified example
of cluster equivalence for SATURNIN.

N x Cmn
SATURNIN superbox
(56 x 15)

(28 x 165)

(8 x 2625)

(1 x 39075)

=

o -1 & Ut

Figure 4.3: Cluster histogram of SATURNIN superbox [4].
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(48 x 1)

(32 x 1)(36 x7)

(8 x 1) (48 x 25)
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(

(

8 x 2161)
1 x 41503)
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Figure 4.4: Cluster histogram of Spongentmix SPONGENT [4].
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4.3 Clustering and Clipping

4.3.1 Clustering

As we have shown before in Chapter and in Figure[2.4] trails can cluster
together in enveloping differentials. Clustering happens a lot less in differen-
tials with less active S-boxes. The more active S-boxes there are, the more
trails will cluster. Given our 16-bit superboxes, this would result in a lot of
differences being found around weight 16.

4.3.2 Clipping

There is more going on than only clustering. Next to clustering, the DP
also experiences clipping. The DP uses a fixed key, while the EDP does
not. This means that the amount of ordered pairs the EDP can have is
multiplied by the number of keys, while the DP only uses one key. This is
the first factor that results in clipping of the DP. The second one is that
the differences are not signed. This means that for any given ordered pair
(z,z + A;y) that follows the differential or the differential trail, there will
also be (z + Ajp,x) following it. This results in every differential over a
superbox having an even number of pairs. This also means that for a k-bit
superbox, there are only k — 1 different pairs, which limits the DP.

Lemma 2 A trail over a b-bit superbox has a DP that is a multiple of
210,

For our chosen superboxes, this means the following: Because the super-
boxes of SATURNIN and SPONGENT are 16 bits wide, the highest weight
the DP can have is also 16, before considering that the differences are un-
signed. Because the differences are not signed, the highest weight is actually
15. The weights for the DP of the differentials and the EDP of the differen-
tial trails have already been calculated in the past [4]. They can be seen in
Figure 4.5
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Figure 4.5: Differentials DP and differential trails EDP in the superboxes
of SPONGENT and SATURNIN [4].

Within Figure we can see the cumulative weight histograms of the dif-
ferentials and the differential trails for both the SATURNIN and the SPON-
GENT superboxes. Within the cumulative histogram, for any given weight
w, we see the number of differences with weight w or less. So any consec-
utive weight w; consists of the previous weight w;_1 with the differences y;
with weight w; added on top.

w; = Wi—1 + Y; (4.8)

Both start closely together, and as the weight grows, they start diverging.
This is the result of clustering as well as clipping.

We can see that SATURNIN has more divergence than SPONGENT. SAT-
URNIN has 50x more differentials DPs than trails EDPs at weight 15 or less
compared to SPONGENTSs 20x more.
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Chapter 5

Research Results

We will now build on the basis given in Chapter [4| by measuring how much
the two-round trails of each permutation are experiencing clustering and
how much they are experiencing clipping. We then compare the information
we obtain with previous works on the DP of differentials and the EDP of
differential trails.

5.1 DP of Differential Trails

There is already a method to calculate the DP of differentials (AA, AD)
[4]. That method traced in which differentials the input differences for all
pairs ended up at. We will be expanding on that by adding a distinction
for the intermediary differences of differentials, so that we are then trac-
ing what differential trails they end up at. For our chosen superboxes, this
means that we have to consider the intermediary differences (AB, AC) as
well. But between these two values, there is a linear layer. This means that
the value of one infers the value of the other one. So we only need one of
the two values to calculate the trails DP. We have chosen to calculate the
value AB for a trail consisting of the values (AA, AB, AD).
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forall A{
forall X{
delta_B= S-boxlayer(A) + S-boxlayer (A+X)
delta_D= superbox(A) + superbox(A+X)
trails[X]= (delta_B,delta_D)

}
sort(trails)
count = O
forall X{
if (trails[X]== trails[X-1]) count ++
else histogram[count]++,
count=1
}

Figure 5.1: Algorithm for computing the DP of differential trails.

The algorithm used to compute the DP of the differential trails is shown
in Figure [5.1l To do the calculation, all possible values for A, B and D
could be iterated over. While this is the most straightforward method, it
is slow and inefficient. This can be improved by iterating over the ordered
pair (A, A + X) instead. We would now only need to calculate the values
for A and X. This results in only needing 232 iterations instead of 248.

As we are interested in the difference and not the results themselves, we
can use the XOR function to only keep the bits that are different after run-
ning input A and A + X through the necessary layers. To get the difference
in B, we XOR the results of running the ordered pair through the S-box
layer. To get the difference in D, we X OR the results of running the ordered
pair through the entire superbox.

Once we have found the AB and AD values, we need to add them as a
valid trail of (AA,AB,AD). We opted for a 1-dimensional array M = bd
with bd consisting of a bit shifted b added to the d, so they are stored within
a single value. However, we do not need the trails themselves, but how often
they appear. To count how often each trail appears, we sort the array of
trails. This results in trails with the same values appearing next to each
other. We can then iterate through the array to count how often a trail
appears in a row. Any time the value in the array changes, we will know
how many times a certain trail (AA, AB, AD) showed up, and we reset our
counter for the new trail. The histogram array counting how often a certain
count was found does not need to be reset, as it will simply get overwritten
on the next iteration over A.
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Figure 5.2: Trails DP with differentials DP and trails EDP of SPONGENT.
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Figures and represent the differential trails DP(trails DP). We see
that the curves end at weight 15 as is expected of clipping.

For SPONGENT, we can see that the trails DP starts at the same weight
and fits within the data for the differential trails EDP and differentials DP
that had already been calculated. The trails DP also grows consistently
between the differentials DP and the trails EDP. We see that the trails DP
curve is consistently a little below the differentials DP, and they end up
merging at the same point at weight 15.

For SATURNIN, the weight of our trails DP starts at restriction weight
10, while the differentials DP starts slightly earlier. We also see a more
significant difference in the number of pairs before they merge at weight
15 compared to SPONGENT. This can be seen at weight 14 or less. For
SPONGENT, there are about two times more differentials DP compared to
the trails DP. This difference is roughly 30 times as large for SATURNIN.

This shows us that for the differential trails, the DP does not fall below
the EDP and is constantly lower than what would be expected because of

clipping. We can also see that SPONGENT gets impacted more throughout
all the weights by clipping than SATURNIN.

34



5.2 EDP of Differentials

The EDP of the differentials can be calculated to make clustering clear
within the permutation. Calculating it however, is not trivial.

The EDP of a differential consists of the average DP over that differen-
tial over all keys. To find the EDP, we can use Definition [§ So if the round
differential probabilities are the same, we simply need to calculate the DP,
and we get the EDP. We start by analyzing the layers of our superbox SB:

SB=SxLxS (5.1)

L represents the linear layer, and S represents the S-box layer. Because L is
a linear layer, we can rewrite C as L(B) and we can avoid having to calculate
the DP of the linear layer. Since we are now only working with S-box layers,
and we know that they work independently, we can apply Definition [9] which
tells us that the DP of the differential is the product of the DP of the S-box
layers.

EDPSB(A, D) = DPS(A, B) X DPS(C, D) (5.2)

We now need to find the DP of the two S-box layers separately. As we know
that the S-box layer is a round differential, we can apply equation (2.9) to
find the DP of each S-box layer. We then get

DPs(A, B) = DPspoz(ao, bo) X D Pspoz (a1, b1) X D Pspoz (a2, b2) x D Pspoy (a3, b3)
(5.3)
The same applies to the DP of both S-box layers.

The DP over an S-box is easy to compute iteratively and is given in Defi-

nition [ As our S-boxes are 4-bits wide, we can iterate over all inputs and
count how often a specific differential appears.
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for a0,al,a2,a3{
for b0,bl,b2,b3{
for c0,cl,c2,c3{
for d0,d1,d2,d3{

DP(AB)=DP(a0,b0)*DP(al,bl)*DP(a2,b2)*DP(a3,b3)
DP(CD)=DP(c0,d0)*DP(c1,d1)*DP(a2,b2)*DP(a3,b3)
DPtrail=DP (a0, b0)*DP(c0,d0)

DP_AD[d] += DPtrail

}
}
count [DP_AD[d]]++;

Figure 5.4: Algorithm for calculating EDP of differentials.

The algorithm used to compute the EDP of differentials is displayed in Fig-
ure Within the code, we calculate the DP of the differentials by going
over all the possible values for A, B, C, and D. Once we find a trail, we
multiply the DP of the S-boxes as well as the DP of each layer. This hap-
pens for the first and the second S-box layers in lines 5 and 6, respectively.
In line 7, we multiply the DP of the layers to get the DP of the differential
trail in (AA, AB,AD). These trails get added up in line 8 into the table,
which gives us the DP of the differential DP(A,D). Since the round differ-
ential probabilities are the same, the EDP and the DP are also the same.
We then count how often we hit a specific count for the DP of the differential.

In Figures and [5.6], we can see how the differentials EDP of SPON-
GENT compares to that of SATURNIN. We can see how for low weights,
there is a lot more clustering for SPONGENT compared to SATURNIN as
the differentials EDP separates itself from the trails EDP. At weight 14 or
less, SATURNIN has almost as many differentials as differential trails, while
SPONGENT has roughly five times as many differentials. Once we reach
weight 16 however, SATURNIN has caught up and surpassed that ratio of
SPONGENT. This means that SATURNIN makes up for its lower cluster-
ing at low weights with a big spike around weight 16. This is visible in
the convex growth between weights 14-16. We also see that the EDP starts
to flatten out at weight 16 for both SPONGENT and SATURNIN. This
happens because of the limited width of their S-box layers, both at 16 bits,
which causes clustering. Since they are limited to 16 bits, this results in a
lot of trails with a weight of around 16 for both permutations. One more
thing of note is how SATURNIN is practically done flattening out at weight
17, while it takes until weight 18 for SPONGENT.
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In Figures and we can see the combined graph of all curves. Like
with the original graphs from Thinking Outside the Superbox [4], we can
again see the EDP curves staying above their respective DP curves. This is
because the DP curves suffer from clipping while the EDP curves do not.
The differentials are also always above their respective differential trails.
They suffer from clustering while the trails do not.

The differentials EDP shows us the effects of clustering, and the trails DP
shows clipping. Those together show us the differentials DP. It is important
to note however that this is not because you can add a weight at the x-axis
up to show clustering and clipping. Instead, clustering and clipping cause
the high weights to fall to lower weights from the right side to the left side
of the graph. This is best seen with SATURNIN.

5.3 Distribution of Pairs

In this section, we will compare the distribution of each of the curves by
looking at what fraction of ordered pairs appear in each curve.
This will show us the following four curves:

1) The fraction of pairs in differentials with given DP.

2) The fraction of pairs in trails with given EDP, assuming independent
difference propagation in the S-boxes.

3) The fraction of pairs in trails with given DP.

4) The fraction of pairs in differentials with given EDP, assuming indepen-
dent difference propagation in the S-boxes.

To analyse the distribution, we will be putting everything in reference to
the total number of ordered pairs. This is because every ordered pair only
follows one differential or differential trail, so we can analyse the distribution
rate up to the total number of ordered pairs.

For the DP values, this can be achieved by multiplying the number of dif-
ferences per weight with the DP. For the EDP curves, we can multiply the
number of differences with the EDP.

Then to get the percentage, we divide all differences by 2'6. We then still
need to take the log to make it more readable, which results in a graph with
a negative y-axis going up to 0.

In Figures 5.9 and we see the result of this in the cumulative graph.

We see how SATURNIN only starts getting affected by both clustering and
clipping a lot at weight 13, while SPONGENT gets constantly affected by
both clustering and clipping from around weight 9. We also see how for
SATURNIN, clustering and clipping are mainly concentrated around weights
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15 and 16, while for SPONGENT, they have a much more spread out ef-
fect. At weight 12 or less, 1/16th of the pairs have already been found for
SPONGENT due to clustering and clipping. Without it, that would be only
roughly 1/64th. Meanwhile, this is only around 1/512th for SATURNIN
whether there is any clustering and clipping, or not. It is now also a lot
more visible how most of the clustering for SATURNIN happens between
weights 15 and 16.
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Chapter 6

Conclusions

Before this thesis, we were only able to see the effects of clipping and cluster-
ing together. We have now separated these two effects. We have provided a
method to calculate the EDP of differentials and the DP of differential trails
for SATURNIN and SPONGENT. We have seen how SATURNIN suffers
significantly from these two effects at higher weights, while SPONGENT
experiences them more gradually through both lower and higher weights.

6.1 Future Work

We would suggest future work to analyse the effects on the linear trails of
both SATURNIN and SPONGENT. It would also be interesting to analyse
how different designs other than those used by SATURNIN or SPONGENT

are affected by clustering and clipping.
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