
Bachelor thesis
Computing Science

Radboud University

Effect of Surface Form Dictionary
on Effectiveness in Entity Linking

Author:
Hermen van Westen
S4797620

First supervisor/assessor:
Dr. ir. F. Hasibi

F.Hasibi@cs.ru.nl

Second assessor:
Prof. dr. ir. A. P. de Vries

a.devries@cs.ru.nl

November 1, 2021

Abstract

This thesis aims to explore the effect of using ClueWeb annotations for
candidate selection and disambiguation in entity linking. We used the Rad-
boud Entity Linker (REL) to test various configurations, and discovered
that using these annotations can have a significant impact on both recall
and disambiguation. We think this research indicates that it is worthwhile
to consider including ClueWeb annotations in the candidate selection part
of entity linking systems.

Contents

1 Introduction 3
1.1 Objectives . 4
1.2 Approach and Contributions 4
1.3 Outline . 5

2 Background 6
2.1 Entity Linking . 6

2.1.1 Definition . 6
2.1.2 Importance of Entity Linking 7

2.2 Entity Linking Systems . 7
2.2.1 TAGME . 8
2.2.2 End-to-End Neural Entity Linking 8
2.2.3 CHOLAN . 8

2.3 The Radboud Entity Linker 8
2.3.1 Candidate Selection in REL 9

2.4 Evaluating an entity linking system 9
2.5 The ClueWeb annotations . 10

3 Approach 12
3.1 Processing the ClueWeb annotations 12
3.2 Computing the prior . 14
3.3 Using ClueWeb for candidate selection 15
3.4 Using a database for candidate selection 15

4 Results 17
4.1 Memory Usage . 17
4.2 Recall . 18
4.3 Entity Disambiguation . 19
4.4 Analysis . 20

5 Conclusions 21
5.1 Future Directions . 21

A Code Examples 25

1

B Recreating the experiments 30

C Output of evaluation in REL 32

2

Chapter 1

Introduction

Entity linking is a tool that helps people reading an article understand addi-
tional context or background without disrupting their reading flow. For ex-
ample, someone reading an article on Wikipedia might hover over a specific
event or person that is mentioned in the text, and get a better understand-
ing of the article by doing so. We also use entity linking to improve both
search results themselves and the way we can interact with these results.
Finally, entity linking also plays a role in other research areas such as text
summarization and question answering [1]. An example how entity linking
is used can be found in Figure 1.1.

Paris is the capital of France

wikipedia.org/
wiki/Paris

wikipedia.org/
wiki/France

Figure 1.1: Example of entity linking

In this example we have a sentence that contains two mentions, which
we then link to their appropriate Wikipedia page. We do this entity linking
by first scanning the text and finding all the mentions, after which we can
link them to their corresponding entries in the knowledge repository [1]. A
knowledge repository is nothing more than a collection of entities that also
contains other information such as relationships between entities and entity
types. We use Wikipedia for this purpose in our research, since it has proved
well-suited for this task [2, 3].

A common approach to implementing an entity linking system is to use
a pipeline with three steps. This pipeline starts with mention detection to
find mentions as discussed before. Then it does candidate selection, where
it provides a list of candidate entities that each mention can be linked to. It
finishes with disambiguation, where it decides on a single entity to link the
mention to. We discuss these systems again in Section 2.2.

3

We use the Radboud Entity Linker (REL) [17] as the entity linker in our
research, which also makes use of this pipeline. In particular, we focus on
the candidate selection step of this pipeline. While REL normally uses a
combination of Wikipedia, CrossWiki and YAGO to determine which enti-
ties are provided in the list of candidate entities at the end of the candidate
selection step [16, 9], we are interested in the effect of replacing one or more
of these with ClueWeb.

These ClueWeb annotations were automatically created by researchers
at Google, and are based on data from ClueWeb09 and ClueWeb12, which
contain web documents retrieved in 2009 and 2012. These annotations were
named the Freebase Annotations of the ClueWeb Corpora, v1 (FACC1), and
they exist for both ClueWeb091 and ClueWeb122.

1.1 Objectives

To be specific, the goal of this thesis is to answer the following questions:

• How does using ClueWeb annotations influence the candidate selection
of an entity linker?

• How are the end-to-end entity linking results affected by incorporating
these ClueWeb annotations?

1.2 Approach and Contributions

To find answers to these questions, we first have to process the ClueWeb
data for use in REL, which means creating a mapping from the Freebase
entities to Wikipedia entities. We then create various configurations that
all use these annotations, which we then use in our entity linking system to
see how candidate selection and end-to-end entity linking is affected.

We also develop an alternative implementation of candidate selection
that uses less memory than the default implementation that REL provides.
This was necessary since we ran into some memory issues when executing
the program on our machine. This version does, however, lead to longer
execution times. Our contributions then are as follows:

• We release a version of the candidate selection that has a lower memory
footprint

• We show how using ClueWeb annotations affect the candidate entity
selection of the entity linker

1https://lemurproject.org/clueweb09/FACC1/
2https://lemurproject.org/clueweb12/FACC1/

4

https://lemurproject.org/clueweb09/FACC1/
https://lemurproject.org/clueweb12/FACC1/

• We check how end-to-end entity linking results are affected by using
ClueWeb annotations during candidate selection

• The code, alongside steps to recreate our experiments, can be found
at https://github.com/hvwesten/REL-experiments.

• Our extended and commented version of REL can be found at
https://github.com/hvwesten/REL.

1.3 Outline

The rest of this thesis is structured as follows. In Chapter 2, we provide
some more information about entity linking and about our data. We also
cover some related work in this chapter. Chapter 3 then covers the approach
we took to find answers to our research questions, followed by the results of
our work in Chapter 4. We then state our conclusions in Chapter 5, where
we also touch on some future work. Finally, Appendix A contains some
examples of the most important pieces of our code, Appendix B contains
the steps to take to replicate our results, and Appendix C gives an example
of output retrieved after evaluation.

5

https://github.com/hvwesten/REL-experiments
https://github.com/hvwesten/REL

Chapter 2

Background

In this chapter we will explain what entity linking is and how it is used in
some machine learning tasks. We then discuss some relevant entity linking
systems, after which we dive into the system that our research uses, focusing
on the part that is most relevant to our research question. Next, we describe
how we measure the performance of an entity linking system, after which we
finish with an explanation of the data that we will be using in our research.

2.1 Entity Linking

2.1.1 Definition

In natural language processing (NLP) our goal is to make machines under-
stand and use human-generated text. Being able to identify entities in text
plays a big role in understanding what a text is about. Since mentions of en-
tities can sometimes be ambiguous, we need some way to link these entities
to their correct ‘meaning’. Although humans can use their prior knowledge
and the context to make this decision, machines tend to find this task rela-
tively challenging. In entity linking (EL) we aim to solve this problem. The
book ‘Entity-oriented search’ by K. Balog defines entity linking as

“(...) the task of recognizing entity mentions in text and linking
them to the corresponding entries in a knowledge repository”.

This definition captures the idea behind entity linking very well, since
our goal is to find a link for each mention in the text to its corresponding
entity. The knowledge repository here is just a catalog of entities that a
given mention can be linked to. A more formal definition of the entity
linking task is: given a text d and a knowledge repository with a set of
entities E, our goal is to find the mentions Md in this text, and to map each
mention m ∈ Md to its corresponding entity e ∈ E in the knowledge base.
This results in the set of annotations Ad for this specific text [1, 15].

6

2.1.2 Importance of Entity Linking

Once again, the reason that we want these annotated texts is to increase
the understanding of machines from natural language text. We now discuss
some specific natural language tasks that benefit from well-annotated text
to show how the annotations provided by entity linking are used in practice.

One such task is information extraction, where text is processed to ex-
tract structured information such as entities and the relationships between
them. These entities can often be ambiguous, which is why linking them to
a knowledge base can be useful for disambiguation.

Another example of such a task is information retrieval in which we aim
to retrieve documents that contain text related to a specific information need
within a large collection of documents [12]. A straightforward example would
be an internet search that returns several relevant web pages. Successful
information retrieval systems then require annotations for both avoiding
query ambiguity and determining the relevant web pages.

As a final example, we also use these annotations for automatic knowl-
edge base population. New mentions that involve relations with entities al-
ready within the knowledge base then have to be linked using entity linking.
These are just some examples among many, and we hope that this shows
how entity linking is relevant for other natural language processing tasks
[1, 15].

2.2 Entity Linking Systems

Several systems have been developed over the years that execute entity link-
ing. Many of these systems use a three-step approach to generate the an-
notations. A text is first scanned to find the mentions (mention detection),
after which several possible candidate entities are retrieved to which the
mention could be linked (candidate selection). Finally, a decision is made
in the third step as to which entity each mention finally gets linked to (dis-
ambiguation). An illustration of these steps can be found in Figure 2.1.

text

annotations

Mention

Detection

Candidate

Selection
Disambiguation

Figure 2.1: Entity linking pipeline

7

We now describe some entity linking systems that also follow a similar ap-
proach. The research discussed in this thesis can also be relevant for these
systems since it affects the candidate selection step.

2.2.1 TAGME

One of the most popular entity linking systems is TAGME [5], with the
original paper getting nearly 800 citations on Google Scholar at the time of
writing. Although this system was originally designed to efficiently annotate
short texts, it has also been used for longer text with great success.

TAGME uses a pipeline of three steps, namely parsing, disambiguation
and pruning. The mentions and a set of candidate entities for each mention
are retrieved in the parsing step, after which the best candidate is selected
in the disambiguation step. The pruning step is then used to get rid of any
annotations that are not meaningful [5, 8]. These steps are similar to the
ones in the common approach we described earlier.

2.2.2 End-to-End Neural Entity Linking

The paper ‘End-to-End Neural Entity Linking’ [10] also describes an entity
linking system using neural network-based approach. They describe their
EL system as first generating all possible mentions and then giving each
combination a score based on the context, encouraging the correct combina-
tion during training. Although this system does not describe a full seperate
entity linking step, we still think our research can be relevant for this system.

2.2.3 CHOLAN

Another recently released entity linking system is CHOLAN [13], which
also provides a modular approach to entity linking. Their paper uses an
architecture consisting of mention detection, candidate generation and entity
disambiguation, and employs the popular BERT transformer model [4] for
both mention detection and disambiguation. This modular approach also
corresponds to the three-step approach we described earlier.

2.3 The Radboud Entity Linker

In 2020 the Radboud Entity Linker was released. It aims to provide an
entity linking system based on the latest developments in natural language
processing research. By using a modular approach to creating such a system,
they facilitate modifications and improvements. Since it is open-source, the
code for it can be found on GitHub1. This sytem also uses a three-step
approach, and is the one that we will mainly be using in our research.

1https://github.com/informagi/REL

8

https://github.com/informagi/REL

2.3.1 Candidate Selection in REL

The Radboud Entity Linker provides 7 candidate entities for each mention
[6, 11, 17]. The first 3 are chosen based on their similarity to the context of
the mention, but our research does not concern these. The other 4 are chosen
based on a prior P (e|m), which is a combination of PWiki(e|m), calculated by
counting how often each mention-entity combination occurs and dividing this
by the total amount of combinations for this mention for both Wikipedia
and Crosswiki [16], and PYAGO(e|m), calculated similarly except we only
count each combination once (as in a uniform probablility) for YAGO [9].
These are then combined as follows:

P (e|m) = min(1, PWiki(e|m) + PYAGO(e|m) (2.1)

This P (e|m) is stored in a surface form dictionary together with the actual
mentions and entities. A simplified example of such a surface form dictionary
can be seen in Figure 2.2.

Paris
Paris
Disneyland_Paris
Paris_Texas

...

Mention Entity p(e|m)

0.85
0.10
0.05

Surface Form Dictionary

Michael
Jordan

Michael_Jordan
Michael_I._Jordan
Michael_B._Jordan

0.53
0.35
0.12

... ...

Figure 2.2: Example of a surface form dictionary

A typical dictionary may contain up to a 100 entities per mention. Of
these entities, the top 4 scoring entities get selected as the candidates for
the mention. These candidates then get processed in the disambiguation
step, which ultimately determines the actual entity that the mention will be
linked to.

2.4 Evaluating an entity linking system

To assess an entity linking system, we compare the system-predicted an-
notations against a reference standard. We use several evaluation mea-
sures, namely precision, recall and the F-measure. Since we are interested
in the performance over several documents, we calculate these measures ei-
ther by aggregating across mentions (micro-averaged) or documents (macro-
averaged). We use AD to denote the set of generated annotations for a set of
D documents, and ÂD for the reference annotations for these D documents.

9

The micro-averaged precision and recall are then calculated as follows:

Pmicro =
|AD ∩ ÂD|

|AD|
, Rmicro =

|AD ∩ ÂD|
|ÂD|

,

where |AD ∩ ÂD| refers to the number of correctly linked entity mentions.
The macro-averaged versions of these scores are as follows:

Pmacro =
1

|D|
∑
d∈D

|Ad ∩ Âd|
|Ad|

, Rmacro =
1

|D|
∑
d∈D

|Ad ∩ Âd|
|Âd|

.

The F-measure (using either the micro or macro precision and recall scores)
is then calculated like so:

F1 =
2PR

P + R
.

Although these scores show the performance of our entity linking system
on a specific set of documents, we need some way to compare the perfor-
mance of several systems against each other. For this purpose we use an
evaluation platform called GERBIL [14] that uses standardized experiments
to provide this benchmarking solution. It can be used either locally or by
using the web version2 and connecting this to your own entity linking sys-
tem via an API. We are interested in the prediction being a precise match of
the true entity, which is known as strong matching. Furthermore, we only
consider mentions that actually have entities in our knowledge repository
(InKB).

2.5 The ClueWeb annotations

The data we use in our research consists of annotations made by research
at Google for both ClueWeb093 and ClueWeb124. The ClueWeb09 data is
split up into 10 parts, and each of these parts contains several folders.

These folders then contain tsv files, where each line contains a mention,
some information about its location and posterior (the probablity that this
mention will occur given the mention and the context), and the entity itself.
The entity is denoted by a Freebase identifier, which is from a deprecated
corpus that we no longer use (more on this in Section 3.1). An example line
from ClueWeb09 is shown below:

Paris 21089 21092 0.99 0.0006 /m/0k3xf

2https://gerbil.aksw.org/gerbil/config
3https://lemurproject.org/clueweb09/FACC1/
4https://lemurproject.org/clueweb12/FACC1/

10

https://gerbil.aksw.org/gerbil/config
https://lemurproject.org/clueweb09/FACC1/
https://lemurproject.org/clueweb12/FACC1/

The data for ClueWeb12 looks exactly the same, although it is split up into
20 parts instead of 10. We use this ClueWeb data mainly since it seems to
cover similar entities as CrossWiki, but we are unsure how this works when
actually using it for candidate selection and entity linking.

11

Chapter 3

Approach

In this chapter we will describe the approach and methods that we used in
our research. We start by describing how we processed the ClueWeb data
in such a way that it can be used in the Radboud Entity Linker. Next, we
illustrate how we actually use this data to calculate the prior that we need.
We then describe how we use this prior in our entity linking system, and
finish with a description of our implementation of candidate selection that
makes use of a database to store the data.

3.1 Processing the ClueWeb annotations

Before we could actually use our ClueWeb annotations, we first had to con-
vert the Freebase entities that it contains to Wikipedia entities, because that
is what REL uses. To do so, we used the latest mapping from Freebase to
Wikidata from Google1, and mapped these Wikidata entities to Wikipedia
titles using a tool called wikimapper2. This tool can be used with vari-
ous Wikipedia indices, but we used it with the index for Wikipedia 2019
that is provided in this repository. Since the mapping from Wikidata IDs
to Wikipedia titles is not unique due to redirects, we get multiple possible
Wikipedia titles for each ID. Our approach was to use the most common
title, but other approaches can be used.

Our implementation (named FreebaseWikipediaMapper) can be found
in the mapping folder in the repository for the experiments3. It works by
going through all the combinations from the Freebase to Wikidata file, look-
ing these Wikidata entities up using the wikimapper, and finally creating a
dictionary full of Freebase mentions and their Wikipedia entities. We make
sure that all entries in this dictionary are actual Wikipedia entities by using
an auxiliary function provided in REL.

1https://developers.google.com/freebase/
2https://github.com/jcklie/wikimapper
3https://github.com/hvwesten/REL-experiments/tree/main/mapping

12

https://developers.google.com/freebase/
https://github.com/jcklie/wikimapper
https://github.com/hvwesten/REL-experiments/tree/main/mapping

To use this data in our calculation of the prior p(e|m) in REL, we then
have to count how often each combination of mention and entity occurs in
the data. We save this data in a json file so that we can more easily use
this data across multiple experiments. A short excerpt from this file looks
like this:

{

"Paris Saint-Germain": {

"Paris_Saint-Germain_F.C.": 2260,

"Paris_Saint-Germain_Academy": 17,

"Paris_Saint-Germain_Féminines": 23,

"Paris_Saint-Germain_Rugby_League": 1,

"Colborne_Parish,_New_Brunswick": 121,

"Paris_Saint-Germain_F.C.": 1,

"Paris_FC": 1,

"St._George's_Parish,_Bermuda": 2,

},

"Paris France": {

"Paris": 177

"Paris_Saint-Germain_F.C.": 2,

"Belleville,_Paris": 17,

"Kingston_Parish": 21,

},

...

}

We executed this conversion on both the ClueWeb09 and ClueWeb12
annotations, and saved them in a special save folder so that they can be
easily loaded in future experiments. This means that we don’t have to repeat
the same conversion every experiment, which saves a lot of time since this
conversion can take up to 2 hours to complete. This is also the reason why
we decided not to implement this conversion within REL itself, but instead
place it alongside the rest of the code in our experiments.

As a sidenote, we first tried to implement this conversion using a database,
but we soon discovered that this would take too long. The candidate selec-
tion part of the program has to retrieve data thousands of times, which can
take a long time when using a database. This is why we decided to keep the
mappings in memory instead.

13

3.2 Computing the prior

To see how using ClueWeb09 and ClueWeb12 annotations affects candidate
selection we decided to do our experiments using just ClueWeb09 and the
combination of both, which we call ClueWeb09+12 . We use these counts
to compute a new PWiki, as described in Equation 2.1. Specifically, PWiki is
computed by summing up counts from Wikipedia, CrossWiki and ClueWeb
annotations (when necessary, depending on the setting). We experiment
with seven different configurations. These provide various possibilities in
which one could use the annotations. For brevity, we represent the counts
from Wikipedia with W, from CrossWiki with CW, from YAGO with Y,
from ClueWeb09 with C9, and from ClueWeb-09+12 with C9+C12 :

1. C9 (+ C12) + W + Y

This configuration replaces CrossWiki with the ClueWeb annotations,
either ClueWeb09 or ClueWeb09+12.

2. CW + C9 (+ C12) + Y

This configuration replaces Wikipedia with the ClueWeb annotations,
either from ClueWeb09 or ClueWeb09+12.

3. CW + W + C9 (+ C12)

This configuration replaces YAGO with the ClueWeb annotations, ei-
ther ClueWeb09 or ClueWeb09+12.

4. C9 (+ C12)

This configuration uses only ClueWeb09 or ClueWeb09+12.

5. Y + C9 (+ C12)

This configuration only uses ClueWeb09 or ClueWeb09+12, together
with YAGO.

6. CW + C9 (+ C12)

This configuration only uses CrossWiki and ClueWeb09 or ClueWeb09+12.

7. CW + W + Y + C9 (+ C12)

This configuration combines all our datasets by extending the baseline
with either ClueWeb09 or ClueWeb09+12.

In total, this gives us 14 different results, which we will explore in Section
4.2. Not only are we interested in how each of these configurations performs,
but also what the difference is between using just ClueWeb09 versus com-
bining both in ClueWeb09+12. The code that we used for this calculation
can be found in code snippet 1 and 3 from Appendix A.

14

The main thought behind our implementation was to facilitate replace-
ment of our datasets with other data, although some of our configurations
required a hard-coded solution.

3.3 Using ClueWeb for candidate selection

Once we have the prior that we want to use, we continue, and use this for
candidate selection. The steps are relatively straightforward, and are de-
scribed in Appendix B. To complete the candidate selection step, we need
Wikipedia embeddings to create the 3 other candidate entities based on sim-
ilarity. This step is not required, since the authors of REL already created
them and they are provided in their repository. We did not execute this step
either since executing it would take a lot of compute power, but we include
it anyways for the sake of completeness.

The next step is to generate the training and testing files. This is where
we add the top 4 ranked entities from the surface dictionary. With this
done, we can continue to the disambiguation step.

The code for training and evaluating our EL system can be found in
code snippet 5 from Appendix A. Two important things to note here are
the location of our data (which is described in Appendix B), and the location
of our resulting models, which in our case was

base url/wiki 2019/baseline cw <No.experiment>.

We ended up with 15 different models (including the baseline model),
although not all of them were fully trained. We either trained the models
for 5 epochs in order to look at the recall scores, or trained them fully when
we wanted to use them for the disambiguation step.

The recall scores are retrieved by evaluating a model (either fully or
non-fully trained), since doing so prints these scores. The F1-scores are also
retrieved in this way, although these are only relevant when the model has
been fully trained. An example of the output is shown in Appendix C.

3.4 Using a database for candidate selection

The first time that we started processing the ClueWeb data, we ran into
memory problems. The default implementation of the prior calculation
seemed to run out of memory on our machine, requiring more than 16GB
of memory to finish the calculations. Since we still wanted to continue our
experiments, we decided to implement an alternative version that uses a
database to store all the mentions and their entities.

15

We used SQLite4 to store the data. The Wikipedia and CrossWiki counts
are retrieved using the same method that REL uses, but this time they
are also saved in a database. The ClueWeb counts are read from the file
described in Section 3.1, and are also saved in a database.

They are saved in base url/counts/ as wiki.db and custom.db , re-
spectively, although these locations can easily be changed. Both these
databases are filled in batches of 500 000 to keep the memory usage as
low as possible, and an index is used to make future retrievals as quick as
possible. These counts are then read in batches, and are used to calculate
the actual p(e|m) values. These values are kept in memory until they get
saved in a different database (which the default REL already does).

The most important thought behind the implementation is the batch
insertion and retrieval, which you can find in code snippet 2 and 4 from
Appendix A. It is important to note that, while our implementation is fully
functional, we did not spend a lot of time optimizing it, since soon after we
swapped to a new machine for efficiency reasons.

4https://sqlite.org/index.html

16

https://sqlite.org/index.html

Chapter 4

Results

In this chapter we show the results of experiments. We start by looking at
the memory usage of our candidate selection implementation. Unfortunately
we ended up not using this implementation very much. We then look at
the recall scores that we got when using the ClueWeb09 and ClueWeb12
datasets. Finally, we check whether these recall scores actually resulted in
more effective entity disambiguation.

4.1 Memory Usage

We compared the default p(e|m) calculation (denoted by no db) against two
versions of our implementation described in Section 3.4, one of which re-
creates the database every run (db), while the other preloads the data (db
+ preload). This was tested while calculating the configuration W + CW +
C9 (+ C12), although it could be possible that a bigger improvement can
be found using a different configuration. We also compare the difference
between using ClueWeb09 and ClueWeb09+12.

Dataset Version Peak Memory Usage Elapsed Time

ClueWeb09+12

no db 17.6GB 6:40

db 17.5GB 12:18

db + preload 17.4GB 11:32

ClueWeb09

no db 16.9GB 6:32

db 16.0GB 12:17

db + preload 16.0GB 10:29

Table 4.1: Memory usage and execution time

As can be seen in Table 4.1, our implementation of the p(e|m) calculation
indeed uses less memory, but trades this off for a longer execution time. Since
ClueWeb09+12 contains many more mentions than ClueWeb09, it seems to
need more memory, which is to be expected.

17

They do, however, both take approximately the same time to finish,
which indicates that the difference lies mainly in storage, not processing.
These numbers are achieved on a system with a Ryzen 5 5600X processor and
32GB of memory. Since the default version is much quicker on this machine,
we decided to use this implementation for the rest of our experiments. Note
that this version did not work on our previous machine, which is why we
decided to create a database version in the first place, as described in Section
3.4. We expect that memory usage can be reduced even more by fine-tuning
the insertion and retrieval of data from the database, but, as we mentioned
before, we did not spent as much time optimizing our implementation.

4.2 Recall

As described in Section 3.2, we experimented with seven different configu-
rations. The recall scores of these are compared on seven datasets, namely
AIDA-A and AIDA-B, which are hand-annotated datasets based on the
CoNLL 2003 data [9], AQUAINT, which contain news articles with link-
able mentions from a news corpus that, among others, includes the New
York Times, MSNBC, with linkable mentions from news articles from the
MSNBC, ACE2004, which is an annotated subset of the documents used in
the ACE20004 Coreference documents [7], and the ClueWeb and Wikipedia
datasets. The scores are shown in Table 4.2.

Recall A
ID

A
-A

A
ID

A
-B

A
C

E
20

04

A
Q

U
A

IN
T

C
L

U
E

W
E

B

M
S
N

B
C

W
IK

IP
E

D
IA

CW+W+Y (baseline) 94.8 96.3 88.3 93.4 88.6 97.2 86.2

C9+W+Y 94.2 94.9 86.4 90.1 89.9 96.0 82.3

CW+C9+Y 94.8 96.3 88.3 93.3 91.6 97.7 84.5

CW+W+C9 92.8 94.6 88.3 93.3 89.7 97.1 83.8

C9 84.4 86.2 82.1 75.9 81.7 82.7 60.5

Y+C9 92.5 93.3 84.8 71.7 87.4 93.9 72.4

CW+C9 92.7 94.4 87.9 92.6 89.1 96.2 82.8

CW+W+Y+C9 95.1 96.3 88.7 93.5 92.0 97.9 85.3

Table 4.2: Recall ClueWeb09

Our best results were achieved by combining Wikipedia, CrossWiki,
ClueWeb09 and YAGO. This configuration achieved higher scores than our
baseline on all datasets except on Wikipedia itself. As expected, including
CrossWiki helps with the recall on the Wikipedia dataset. Interestingly,
using ClueWeb instead of Wikipedia already results in relatively good recall
scores. When also including the ClueWeb12 counts, we see similar improve-
ments as shown in Table 4.3.

18

Recall A
ID

A
-A

A
ID

A
-B

A
C

E
2
0
0
4

A
Q

U
A

IN
T

C
L

U
E

W
E

B

M
S
N

B
C

W
IK

IP
E

D
IA

CW+W+Y (baseline) 94.8 96.3 88.3 93.4 88.6 97.2 86.2

C9+C12+W+Y 94.4 94.9 86.4 90.4 89.8 95.6 82.2

CW+C9+C12+Y 94.9 95.8 88.3 92.8 91.2 96.9 84.5

CW+W+C9+C12 93.4 94.8 88.3 93.4 89.5 97.1 83.9

C9+C12 85.1 86.6 82.5 76.2 82.2 82.8 61.1

Y+C9+C12 92.7 93.4 84.8 72.6 87.5 93.6 72.6

CW+C9+C12 93.1 94.6 87.9 92.7 89.1 96.2 83.0

CW+W+Y+C9+C12 95.3 95.9 88.7 93.1 91.3 97.1 85.1

Table 4.3: Recall ClueWeb09+12

As you can see, the configuration that uses all the datasets still per-
forms pretty well, getting either the highest or second highest recall scores.
Still, it does not perform our baseline model as much as the configuration
using ClueWeb09 did, most likely because of domination of highly frequent
entities.

4.3 Entity Disambiguation

We only trained the models with the best recall scores, which included
CW+W+C9, CW+C9+Y, CW+W+Y+C9 and CW+W+Y+C9+C12. We
evaluated their performance using the GERBIL platform [14] that we cov-
ered in Section 2.4. To be specific, we set up a local entity linking system
and used this in the online platform1. The results can be found in Table
4.4.

Macro F1

Micro F1 A
ID

A
-B

D
er

cz
y
n
sk

i

K
O

R
E

50

M
S
N

B
C

N
3-

R
E

U
T

E
R

S
-1

28

N
3-

R
S
S
-5

00

O
K

E
-2

01
5

O
K

E
-2

01
6

A
v
e
ra

g
e

Baseline
82.9 62.3 54.4 86.3 58.2 61.7 64.0 67.0 67.1

84.0 62.0 54.0 85.8 64.9 64.1 64.3 67.3 68.3

CW+W+C9
77.9 63.2 47.6 85.0 58.3 59.5 65.0 66.6 65.4

77.4 62.5 50.5 84.0 62.9 61.3 65.3 66.9 66.4

CW+C9+Y
82.1 63.4 48.6 85.8 58.2 61.7 64.0 61.5 65.7

82.5 61.1 50.5 85.4 63.7 65.0 64.4 63.2 67.0

CW+W+Y+C9
82.6 62.9 53.2 87.1 58.5 61.7 63.8 65.0 66.9

83.1 61.5 55.4 86.0 64.1 65.0 63.5 66.1 68.1

CW+W+Y+C9+C12
80.9 65.3 60.2 84.8 58.4 61.9 62.7 65.9 67.5

80.5 63.5 62.5 84.8 63.4 65.7 63.2 67.1 68.8

Table 4.4: ED results on GERBIL

1https://gerbil.aksw.org/gerbil/config

19

It seems like we get the most effective disambiguation when we include
all of the datasets from the baseline (Wikipedia, CrossWiki and YAGO). In-
cluding ClueWeb09 and ClueWeb12 gives us our best result, getting the best
average Macro- and Micro-F1 scores among all configurations. The biggest
improvement seems to occur on the Derczynski and KORE50 datasets. More
details about the datasets used for entity disambiguation can be found in
[7].

4.4 Analysis

When considering our initial goal of seeing how using ClueWeb annotations
influences candidate selection and end-to-end entity linking, we see that
including ClueWeb09 annotations results in good recall and therefore can-
didate selection. This, however, did not directly translate into good ED
results, most likely because this dataset does not cover many of the entities
included in the standard experiments on GERBIL.

When including ClueWeb09+12, we do not see such large improvements
in the recall scores, but we do get our best ED results, and thereby our best
end-to-end entity linking system. We can safely say that including some
combination of ClueWeb data (most likely ClueWeb12 or ClueWeb09+12)
in the candidate selection step actually results in better candidate selection
and entity linking.

20

Chapter 5

Conclusions

In this thesis we created a mapping from Freebase entities to Wikipedia
titles. We tried saving this mapping in a database, but this was not ef-
ficient enough for our purposes. The mapping was used to process the
ClueWeb09 and ClueWeb12 annotations, which resulted in our ClueWeb09
and ClueWeb09+12 counts. These counts were used in the computation of
the prior in our entity linking system, in 14 different configurations. We also
developed an implementation of candidate selection that uses a database to
store the data, but we ended up not using this very much in our research.

Most of our the configurations showed high recall scores. This means
that candidate selection definitely benefits when including the ClueWeb an-
notations, which answers the first question we set out to ask at the be-
ginning of this thesis. With regard to entity disambiguation, our efforts
were not as successful. We only have one configuration that outperforms
the baseline model, and this configuration only extends the baseline with
ClueWeb09+12. We did succeed in showing how various configurations in-
fluence the ED results and thereby our entity linking system, which answers
the second question that we posed at the start of this thesis.

5.1 Future Directions

Creating an entity linking system using a different dataset involves many
steps and decisions. This means that there are several directions in which
our research can be extended.

To start, we think that our database implementation can be improved
upon. Although we managed to reduce the memory usage by around 1GB,
we expect that it can be reduced even more, either by using something other
than SQLite, or by improving upon the insertion and retrieval of data from
the database. We also hope that the execution time can be reduced, since
our implementation sometimes take twice as long as the default version, but
we are not sure if this is possible.

21

We also think that more research can be done about the exact reason
for the difference in performance between ClueWeb09 and ClueWeb09+12.
Although we guessed at the reason for this effect, we expect that finding the
exact reason can help in maximizing the performance of an entity linking
system that uses ClueWeb annotations.

Finally, we think our experiments should be repeated with using just the
ClueWeb12 annotations. This will help answer the issue mentioned above,
but will probably also result in an entity linking system that is perhaps just
as effective as the configuration that uses both ClueWeb09 and ClueWeb12
while using less data.

22

Bibliography

[1] Krisztian Balog. Entity-Oriented Search, volume 39 of The Information
Retrieval Series. Springer, 2018.

[2] Razvan Bunescu and Marius Paşca. Using Encyclopedic Knowledge
for Named Entity Disambiguation. In 11th Conference of the European
Chapter of the Association for Computational Linguistics, Trento, Italy,
April 2006. Association for Computational Linguistics.

[3] Silviu Cucerzan. Large-Scale Named Entity Disambiguation Based
on Wikipedia Data. In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), pages 708–716, Prague,
Czech Republic, June 2007. Association for Computational Linguistics.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. CoRR, abs/1810.04805, 2018.

[5] Paolo Ferragina and Ugo Scaiella. TAGME. In Proceedings of the 19th
ACM international conference on Information and knowledge manage-
ment - CIKM '10. ACM Press, 2010.

[6] Octavian-Eugen Ganea and Thomas Hofmann. Deep Joint Entity Dis-
ambiguation with Local Neural Attention. CoRR, abs/1704.04920,
2017.

[7] Zhaochen Guo and Denilson Barbosa. Robust Named Entity Disam-
biguation with Random Walks. Semantic Web, 9(4):459–479, June
2018.

[8] Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. On the
reproducibility of the TAGME Entity Linking system. In roceedings of
38th European Conference on Information Retrieval, ECIR ’16, pages
436–449. Springer, 2016.

[9] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen
Fürstenau, Manfred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan

23

Thater, and Gerhard Weikum. Robust Disambiguation of Named En-
tities in Text. In Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages 782–792, Edinburgh,
Scotland, UK., July 2011. Association for Computational Linguistics.

[10] Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas Hofmann. End-
to-End Neural Entity Linking. CoRR, abs/1808.07699, 2018.

[11] Phong Le and Ivan Titov. Improving Entity Linking by Modeling La-
tent Relations between Mentions. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1595–1604, Melbourne, Australia, July 2018. As-
sociation for Computational Linguistics.

[12] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval. Cambridge University Press,
Cambridge, UK, 2008.

[13] Manoj Prabhakar Kannan Ravi, Kuldeep Singh, Isaiah Onando Mu-
lang, Saeedeh Shekarpour, Johannes Hoffart, and Jens Lehmann.
CHOLAN: A Modular Approach for Neural Entity Linking on
Wikipedia and Wikidata. CoRR, abs/2101.09969, 2021.

[14] Michael Röder, Ricardo Usbeck, and Axel-Cyrille Ngonga Ngomo.
GERBIL - Benchmarking Named Entity Recognition and Linking con-
sistently. Semantic Web, 9(5):605–625, 2018.

[15] Wei Shen, Jianyong Wang, and Jiawei Han. Entity Linking with a
Knowledge Base: Issues, Techniques, and Solutions. IEEE Transactions
on Knowledge and Data Engineering, 27(2):443–460, February 2015.

[16] Valentin I. Spitkovsky and Angel X. Chang. A Cross-Lingual Dictionary
for English Wikipedia Concepts. In Proceedings of the Eighth Interna-
tional Conference on Language Resources and Evaluation (LREC’12),
pages 3168–3175, Istanbul, Turkey, May 2012. European Language Re-
sources Association (ELRA).

[17] Johannes M. van Hulst, Faegheh Hasibi, Koen Dercksen, Krisztian Ba-
log, and Arjen P. de Vries. REL: An Entity Linker Standing on the
Shoulders of Giants. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR ’20. ACM, 2020.

24

Appendix A

Code Examples

We show some of the more important code snippets here that show how we
load the counts and how we use these counts to calculate p(e|m).

def __load_counts(self, custom_add):

"""

Updates mention/entity for Wiki with these additional counts

:return:

"""

for mention, entity_dict in custom_add.items():

if mention not in self.wiki_freq:

self.wiki_freq[mention] = {}

for entity, count in entity_dict.items():

Preprocess the entity name

ent_name = self.wikipedia.preprocess_ent_name(entity)

if ent_name in (self.wikipedia.

wiki_id_name_map["ent_name_to_id"]):

if mention not in self.mention_freq:

self.mention_freq[mention] = 0

self.mention_freq[mention] += count

ent_name = ent_name.replace(" ", "_")

if ent_name not in self.wiki_freq[mention]:

self.wiki_freq[mention][ent_name] = 0

self.wiki_freq[mention][ent_name] += count

Code Snippet 1: Loading counts from a given file (without a database)

25

def __load_custom_db(self, custom=None):

custom_list = []

db = sqlite3.connect(self.custom_db_url)

c = db.cursor()

n = 0

for mention, entity_dict in custom.items():

n += 1

if n % 500000 == 0:

c.execute("BEGIN TRANSACTION;")

c.executemany('''INSERT INTO

custom_counts(mention, entity, count) VALUES (?, ?, ?)

ON CONFLICT(mention, entity) DO UPDATE SET count=count + ?

''', custom_list)

c.execute("COMMIT;")

custom_list = []

mentions = []

entities = []

counts = []

for entity, count in entity_dict.items():

Process wikipedia title

ent_name = self.wikipedia.preprocess_ent_name(entity)

Only add the mention if it is in the KB

if ent_name in (self.wikipedia.

wiki_id_name_map["ent_name_to_id"]):

ent_name = ent_name.replace(" ", "_")

mentions.append(mention)

entities.append(ent_name)

counts.append(count)

temp = [(m, e, c1, c2) for m, e, c1, c2 in zip(mentions,

entities, counts, counts)]

custom_list.extend(temp)

Insert last few mentions into database

c.execute("BEGIN TRANSACTION;")

c.executemany('''INSERT INTO custom_counts(mention, entity, count)

VALUES (?, ?, ?) ON CONFLICT(mention, entity) DO UPDATE SET

count=count + ? ''', custom_list)

c.execute("COMMIT;")

c.close()

db.close()

Code Snippet 2: Loading counts from a given file (with a database)

26

def compute_wiki(self, special_case=False, custom_main=None,

custom_add=None):

if special_case:

print(f"You selected the special option: "{special_case}")

if special_case == "only_clueweb":

self.__load_counts(custom_main)

elif special_case == "only_crosswiki":

self.__cross_wiki_counts()

elif special_case == "all":

self.__wiki_counts()

self.__cross_wiki_counts()

self.__load_counts(custom_main)

else:

if custom_main:

self.__load_counts(custom_main)

else:

self.__wiki_counts()

if custom_add:

self.__load_counts(custom_add)

else:

self.__cross_wiki_counts()

Step 1: Calculate p(e|m) for wiki.

print("Filtering candidates and calculating p(e|m) values"

"for Wikipedia.")

for ent_mention in self.wiki_freq:

if len(ent_mention) < 1:

continue

ent_wiki_names = sorted(

self.wiki_freq[ent_mention].items(), key=lambda kv: kv[1],

reverse=True

)

Get the sum of at most 100 candidates, but less if less

are available.

total_count = np.sum([v for k, v in ent_wiki_names][:100])

if total_count < 1:

continue

self.p_e_m[ent_mention] = {}

for ent_name, count in ent_wiki_names:

self.p_e_m[ent_mention][ent_name] = count / total_count

if len(self.p_e_m[ent_mention]) >= 100:

break

del self.wiki_freq

Code Snippet 3: Creating the final p(e|m) (without a database)

27

def compute_wiki_with_db(self):

self.wiki_db_url = os.path.join(self.base_url, "counts/wiki.db")

self.__create_wiki_db()

self.__wiki_counts(using_database=True)

self.__cross_wiki_counts(using_database=True)

self.__create_wiki_index()

db = sqlite3.connect(self.wiki_db_url)

c = db.cursor()

d = db.cursor()

c.execute('''SELECT DISTINCT mention FROM wiki_counts''')

num_mentions = 0

batch_size = 50000

while True:

batch = c.fetchmany(batch_size)

if not batch:

break

for row in batch:

num_mentions += 1

ent_mention = row[0]

if len(ent_mention) < 1:

continue

d.execute('''SELECT entity, count FROM wiki_counts

WHERE mention=? ORDER BY count DESC''', (ent_mention,))

ent_wiki_names = d.fetchall()

Get the sum of at most 100 candidates, but less if

less are available.

total_count = np.sum([v for k, v in ent_wiki_names][:100])

if total_count < 1:

continue

self.p_e_m[ent_mention] = {}

for ent_name, count in ent_wiki_names:

self.p_e_m[ent_mention][ent_name] = count / total_count

if len(self.p_e_m[ent_mention]) >= 100:

break

Code Snippet 4: Creating the final p(e|m) (with a database)

28

from REL.training_datasets import TrainingEvaluationDatasets

from REL.entity_disambiguation import EntityDisambiguation

base_url = "/home/hvwesten/Projects/thesis/data/"

wiki_version = "wiki_2019"

datasets = TrainingEvaluationDatasets(base_url, wiki_version).load()

model_pth = f"{base_url}/{wiki_version}/baseline_cw_5/model

config = {

"mode": "train",

"model_path": model_pth,

}

model = EntityDisambiguation(base_url, wiki_version, config)

if config["mode"] == "train":

model.train(

datasets["aida_train"],

{k: v for k, v in datasets.items() if k != "aida_train"}

)

else:

model.evaluate({k: v for k, v in datasets.items()

if "train" not in k})

Code Snippet 5: Code for training and evaluating our EL system

29

Appendix B

Recreating the experiments

This project uses our modified REL to conduct the experiments 1. We
mostly follow the tutorials2 given in the original REL while using our own
modified version of REL.

To recreate the experiments, you should first do the setup described in
these tutorials. You can then download the ClueWeb09 and ClueWeb12
annotations, and place them in the base url folder alongside wiki 2019/

and generic/. Your folder structure should look something like this:

base_url

|----generic/

|----wiki_2019/

|----ClueWeb09/

|---- ClueWeb09_English_1.tgz

|---- ...

|----ClueWeb12/

|---- ClueWeb12_English_1.tgz

|---- ...

You can then execute the following steps:

0) Generate ClueWeb counts with 00 clueweb to json.py.
1) Create p(e|m) in one of two ways:

a) Using memory, with 01a generate pem clueweb.py

b) Using the database, with 01b generate pem clueweb using DB.py

2) (Not Required) Re-create embeddings with 02 train embeddings.py

3) Generate the training and test files with 03 generate train test files.py

4) Train or evaluate with 04 train eval.py

5) Execute the full end-to-end entity linking pipeline with 05 e2e entity linking.py

1https://github.com/hvwesten/REL/tree/master/REL
2https://github.com/informagi/REL/tree/master/tutorials

30

We give an overview of the steps in figure B.1. The main point of note is
that the result of step 1 and 2 both get saved in the same file, which then
gets used in the other steps.

01 p(e|m)

entity_word_embedding.db

(02) embeddings

Paris

Rome

Paris 0.88

0.07

Paris

03 datasets
04 train

model

05 use

model

04 e7 cc 3e c0

5b 60 be 3d 2c

AIDA-B

AQUAINT

MSNBC

....

Figure B.1: A diagram of the implementation steps

These steps can also be found in our repository for the experiments 3. The
code itself also contains comments that help in understanding and executing
the steps mentioned above.

3https://github.com/hvwesten/REL-experiments

31

Appendix C

Output of evaluation in REL

This is an example of the printout after executing the evaluation step.

Loading aida_train

Loading aida_testA

Loading aida_testB

Loading wned-ace2004

Loading wned-aquaint

Loading wned-clueweb

Loading wned-msnbc

Loading wned-wikipedia

model_pth:

/home/hvwesten/Projects/thesis/data//wiki_2019/baseline_cw_9/model

No LR model found, confidence scores ED will be set to zero.

Loading model from given path:

/home/hvwesten/Projects/thesis/data//wiki_2019/baseline_cw_9/model

Recall for aida_testA: 0.9509496973491964

Recall for aida_testB: 0.9632107023411371

Recall for wned-ace2004: 0.8871595330739299

Recall for wned-aquaint: 0.9353507565337001

Recall for wned-clueweb: 0.9199630314232902

Recall for wned-msnbc: 0.9785276073619632

Recall for wned-wikipedia: 0.8527670908552827

32

Micro F1: 0.8816530995616781, Recall: 0.8816530995616781,

Precision: 0.8816530995616781

aida_testA None

Total NIL: 0

Micro F1: 0.8900780379041249, Recall: 0.8900780379041249,

Precision: 0.8900780379041249

aida_testB None

Total NIL: 0

Micro F1: 0.8732394366197183, Recall: 0.8443579766536965,

Precision: 0.9041666666666667

wned-ace2004 None

Total NIL: 17

Micro F1: 0.8679245283018867, Recall: 0.8541953232462174,

Precision: 0.8821022727272727

wned-aquaint None

Total NIL: 23

Micro F1: 0.7734024339456759, Recall: 0.772365988909427,

Precision: 0.7744416643499212

wned-clueweb None

Total NIL: 29

Micro F1: 0.912442396313364, Recall: 0.911042944785276,

Precision: 0.9138461538461539

wned-msnbc None

Total NIL: 2

Micro F1: 0.709797776285352, Recall: 0.7037585084344481,

Precision: 0.7159415926539214

wned-wikipedia None

Total NIL: 115

33

	Introduction
	Objectives
	Approach and Contributions
	Outline

	Background
	Entity Linking
	Definition
	Importance of Entity Linking

	Entity Linking Systems
	TAGME
	End-to-End Neural Entity Linking
	CHOLAN

	The Radboud Entity Linker
	Candidate Selection in REL

	Evaluating an entity linking system
	The ClueWeb annotations

	Approach
	Processing the ClueWeb annotations
	Computing the prior
	Using ClueWeb for candidate selection
	Using a database for candidate selection

	Results
	Memory Usage
	Recall
	Entity Disambiguation
	Analysis

	Conclusions
	Future Directions

	Code Examples
	Recreating the experiments
	Output of evaluation in REL

