
Bachelor thesis
Computing Science

Radboud University

A new semantics for array programming
languages; how to introduce some

laziness without being lazy

Author:
J.M. (Jordy) Aaldering, s1004292
j.aaldering@student.ru.nl

First supervisor/assessor:
Prof. dr. S.B. (Sven-Bodo) Scholz

svenbodo.scholz@ru.nl

Second assessor:
dr. P.W.M. (Pieter) Koopman

pieter@cs.ru.nl

March 17, 2021

Abstract

Array programming languages are often used in mathematical and engineering applica-
tions with very large and complicated equations. In these languages all values are repre-
sented as arrays, these arrays can usually be multi-dimensional. These multi-dimensional
arrays have a shape vector which describes the length of each of its dimensions. The
separation of knowledge of these arrays allows programs to potentially be rewritten ac-
cording to the required level of information of an array, reducing the computational load
by only requiring the shape or dimensionality of that array.

This paper defines a way to infer this required level of information and delivers rules
for rewriting programs in a way that requires a lower level of information without losing
strictness, finding a balance between lazy and strict evaluation. Along with this paper
also comes a prototype language, created in a strict functional programming language,
which implements these rules. This language will show how to implement these rules in
the real world and will be used to validate and benchmark the results.

Contents

1 Introduction 3

2 Background 4
2.1 Array programming . 4
2.2 Strict vs. lazy evaluation . 4

3 Syntax 5
3.1 Grammar . 5
3.2 Example . 7
3.3 Operational semantics . 8

4 Inference 11
4.1 Demand level . 12
4.2 Propagation vectors . 12
4.3 Shape demand . 13
4.4 Example . 14

5 Rewrite 18
5.1 Rules . 18
5.2 Example . 21

6 Correctness 24
6.1 Proof . 24
6.2 Induction . 25

6.2.1 Base cases . 25
6.2.2 Inductive cases . 27

7 Implementation 33
7.1 Parser . 33

7.1.1 Abstract Syntax Tree . 34
7.2 Rewrite . 34
7.3 Evaluator . 35

1

8 Performance 36

9 Conclusion 37
9.1 Future work . 37

10 Bibliography 38

2

1 Introduction

In this paper we will be discussing a way of optimising array programming languages. In
array programming languages all values are represented as, possibly multi-dimensional,
arrays. These arrays also come with a shape vector, which gives the length of each
dimension. Sometimes when executing a program we will not need the actual values
of an array. Perhaps we only need the shape or dimensionality, or even nothing at all.
Our goal then is to rewrite that program in such a way that any unused information is
removed, avoiding unnecessary computations. If we apply this idea to a strictly evaluated
language we get some of the benefits of lazy evaluation, without the added overhead it
introduces. This idea of generating new programs by optimising them before evaluation
is called partial evaluation[4][5][11].

We will start this paper by defining a small prototype language, to which we will apply
our rewrite. This rewrite is a set of rules, one for each expression in the language,
which defines how a certain expression has to be rewritten for each required level of
information. We will also discuss what it means for these rules to be correct, which will
then be proven using induction. To be able to define these rules we must also know the
minimal required level of information, so we will first have to find a way to do this before
we are able to define our rewrite rules. Previous works have also looked at possible ways
of finding this required level of information[1][2][12].

The implementation of the prototype language will briefly be explained, after which we
will use it to evaluate the impact of these rewrite rules on the runtime of an example
program, which will show that this rewrite has a noticeable impact on the performance
of a small but realistic program.

3

2 Background

2.1 Array programming

Array programming languages are a type of programming languages that are often used
for scientific and engineering applications. They are languages in which the only data
types are scalars and arrays. An array is a list of numbers along with some shape vector,
this shape gives the length of each dimension of the array. These arrays can usually
be of any dimension. Scalars are simply a decimal or integer value, which is internally
represented as an array with a dimensionality of 0.

Because the only data types are arrays, array programming languages allow the program-
mer to apply operations to an entire set of values, without having to result to explicit
loops over each individual element like in other languages. This also makes programs
easier to read, as they more closely resemble the mathematical notation.

Two important terms in array programming are shape and dimensionality. The shape
describes the length of each dimension of an array. A special case are scalars; they have
an empty shape: [], note that an empty array would be have a shape of zeros: [0], and
not an empty shape. The dimensionality describes the number of dimensions, or rank,
of an array. It corresponds to the length of the shape vector.

2.2 Strict vs. lazy evaluation

The language we will be constructing will try to find a balance between strict and lazy
evaluation. These are two different ways of evaluating a program. A strict program
evaluates expressions immediately when it encounters them, and a lazy program only
evaluates expressions when their resulting values are required. Both of these have their
up- and downsides. Strict evaluation potentially has to do more calculations, if the
resulting values are not required later, but for lazy evaluation to avoid this it has to
keep track of the program in order to be able to backtrack and evaluate expressions only
when required. One thing to note here, because we will encounter it later, is that a
program that runs properly in a lazy evaluation might not run in a strict evaluation, as
problematic expressions that, for instance, produce a runtime error might not have been
evaluated by the lazy evaluation.

4

3 Syntax

We start this paper by creating a small array programming language, which we will
use throughout this paper. This language will have the basic functionality which most
array programming languages have, with which we will be able to create most simple
programs. The syntax follows a lambda-calculus style, where a program is defined as a
single expression, recursively containing sub-expressions. Every program must evaluate
to a value.

3.1 Grammar

In this section we will use the Backus–Naur form[10] to explain the program’s control
structure, with the added symbol ‘+’ which means ‘one or more’. Anything between
quotes are the literal characters of the syntax. We will also allow for comments in our
language; comments start at a ‘#’, and stop at the end of a line.

Our language consists of scalars, which are simply a decimal value, and arrays. These
arrays can be made up of numbers, but they can also contain expressions. Additionally;
arrays can also be empty, meaning they do not contain any values. We also have variable
identifiers which are strings that point variable names to their values.

〈value〉 ::= 〈scalar〉
| 〈array〉
| 〈var-id〉

〈scalar〉 ::= 〈decimal〉

〈array〉 ::= ‘[]’ | ‘[’ 〈expr〉 (‘,’ 〈expr〉)+ ‘]’

Since all our expressions evaluate to values, we can easily define binary and unary oper-
ations to transform values. In the case of binary operations, the right expression must
always be of the same shape as the left expression or it must be a scalar.

〈binary〉 ::= 〈expr〉 〈bop〉 〈expr〉

〈unary〉 ::= 〈uop〉 〈expr〉

5

〈bop〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ (maths)
| ‘=’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ (equality)

〈uop〉 ::= ‘-’ | ‘||’ (maths)
| ‘!’ (equality)

We can assign values to a variable by using a let-expression. This expression takes the
variable name and an expression to compute its value. This variable will then be in scope
for the second expression, after the ‘in’. Similarly we can also assign a lambda expression
to an identifier, which essentially makes the identifier the name of a function which can
later be called with a number of arguments. These functions can be recursive.

〈let〉 ::= ‘let’ 〈var-id〉 ‘=’ 〈expr〉 ‘in’ 〈expr〉

〈fun-def 〉 ::= ‘let’ 〈fun-id〉 ‘=’ 〈lambda〉 ‘in’ 〈expr〉

〈lambda〉 ::= (‘\’ 〈var-id〉 ‘.’)+ 〈expr〉

So now we need to be able to call these user-defined functions, as well as our built-
in primitive functions, by passing them values which gives us some result. The first
argument of selection is the array from which we want to select, the second argument is
the index at which to select. The selected value can be a scalar, but it can also be an
array; when the dimensionality of the selection index is lower than that of the array. We
can also call a lambda function directly instead of assigning it to a function identifier
first. Every function call takes at least one, and potentially multiple, arguments.

〈call〉 ::= 〈prf 〉 (primitive function)
| 〈fun-id〉 〈expr〉+ (user-defined function)
| ‘(’ 〈lambda〉 ‘)’ 〈expr〉+ (lambda application)

〈prf 〉 ::= 〈expr〉 ‘.(’ 〈expr〉 ‘)’ (selection)
| ‘shape’ 〈expr〉 (shape)
| ‘dim’ 〈expr〉 (dimensionality)

We also define a conditional expression. Since our language only has scalars and arrays,
and no boolean values, we define a scalar as being false if it is 0, else it is true. One
thing to note is that there there must always be an else branch. This follows from the
fact that an expression must always evaluate to a value, and thus the expression must
evaluate to a value for both cases.

〈if 〉 ::= ‘if’ 〈expr〉 ‘then’ 〈expr〉 ‘else’ 〈expr〉

Finally we have the with expression, which is arguably the most useful in array program-
ming languages. We use this expression to generate arrays. This expression first takes
a shape for the new value to generate, along with a default argument for the iteration.
If the shape of this argument has size n, that shape should correspond with the last n
arguments of the first expression. Then it takes two bounds, and a variable name that
will iteratively be assigned all possible values within those bounds, the dimensionality

6

of these bounds should be the dimensionality of the first expression minus n. Then the
in-expression is expected to return a value of the same shape as the default value, which
is then placed at the correct spot in the new array. We also allow a shorter case, which
simply assigns the default value to every element.

〈with〉 ::= ‘gen’ 〈expr〉 〈expr〉
‘with’ 〈expr〉 ‘<=’ 〈var-id〉 ‘<’ 〈expr〉
‘in’ 〈expr〉

| ‘gen’ 〈expr〉 〈expr〉

Combining these we get the core expression, which we use to generate our programs.

〈program〉 ::= 〈expr〉

〈expr〉 ::= 〈fun-def 〉
| 〈call〉
| 〈let〉
| 〈if 〉
| 〈with〉
| 〈binary〉
| 〈unary〉
| 〈value〉

3.2 Example

We will now look at part of a program as an example to see how this grammar works in
practise. This example will be used throughout the paper. In this example we define a
function shift n arr, this function shifts the values of the given array n spots to the
right if n is positive or n to the left otherwise. With zeros at all empty positions.

let shift = \n.\arr.

let pad = gen (shape (take n arr)) 0 in

let xs = drop (-n) arr in

if n > 0 then pad ++ xs

else xs ++ pad

in

We start by defining a function shift n arr, which takes two arguments. We then
assign a value to the variable pad by using a with-expression. This with-expression
creates a new array with a shape equal to the shape of the result of the function take n

arr, which is user-defined. Then we assign a value to the variable xs with the other user-
defined function drop n arr. Then we go to the conditional expression and, depending
on the value of n, we append the values of the variables pad and xs. Here we have no
more expressions so the result of this conditional expression is then the returned value
when calling the function shift n arr.

7

3.3 Operational semantics

Now that we have a grammar, we know how a program is formed but not how it gives
us a result. For this we will define semantics that tell us how we get the results from
expressions. We will formalise the semantics of this language using big-step operational
semantics. Here we will denote a value with dimensionality n as a pair of shape and
data: 〈[shp1, . . . , shpn], [data1, . . . , datam]〉, where we have m =

∏n
i=1 shpi.

This semantics will make use of a program environment: σ, which maps all variable
names that are currently in scope to their corresponding values.

First we look at how scalars and vectors are transformed into their internal represen-
tation. A scalar is simply placed in an array with an empty shape. An array can be
multi-dimensional and thus the elements can be arrays themselves, note here that all of
these elements must evaluate to the same shape.

scalar
(x, σ) ⇓ 〈[], [x]〉

array
∀i∈[1,n] : (ei, σ) ⇓ 〈[shp1, . . . , shpm], [datai1, . . . , data

i
p]〉

([e1, . . . , en], σ) ⇓ 〈[n, shp1, . . . , shpm], [data11, . . . , data
1
p, . . . , data

n
1 , . . . , data

n
p]〉

where p =
∏m

i=1 shpi

We can also get a value from a variable name, which we find by looking that variable
name up in the program environment σ.

var
(s, σ) ⇓ σ[s] = 〈[shp1, . . . , shpn], [data1, . . . , datam]〉

Next we have the primitive functions dim, shape, and sel. We can get both the dimen-
sionality and shape by looking at the shape vector of the value.

dim
(e, σ) ⇓ 〈[shp1, . . . , shpn], 〉

(dim e, σ) ⇓ 〈[], [n]〉

shape
(e, σ) ⇓ 〈[shp1, . . . , shpn], 〉

(shape e, σ) ⇓ 〈[n], [shp1, . . . , shpn]〉

Selection can be done with an index vector with a lower dimensionality than that of
the array we are selecting from, giving a sub-array of that array as a result. The
dimensionality of this result is the difference of the dimensionality of the index vector
and the array. If this difference were to give us [shp1, . . . , shp0] we will read that as an
empty shape: [].

8

We get the values of the result by first finding the start index. We find that index using
a function row major, it is not important how this function works exactly. Then from
there we take the correct amount of values, which we get from the index vector.

sel

(iv, σ) ⇓ 〈[n], [idx1, . . . , idxn]〉
(e, σ) ⇓ 〈[shp1, . . . , shpp], [data1, . . . , dataq]〉

(sel iv e, σ) ⇓ 〈[shp1, . . . , shpp−n], [datax, . . . , datax+s−1]〉

where x = row major iv e

and s =
∏p−n

i=1 shpi

Unary mathematical operators apply the operator to each element of the array. Binary
mathematical operators work element-wise, meaning that the two arrays must be of the
same shape. Additionally the right hand array may also be a scalar, which is internally
broadcast to be of the same shape as the left hand array. Broadcasting means that if
the right hand side is a scalar, it becomes an array of the same shape as the left hand
argument filled with the original value of that scalar.

unary
(e, σ) ⇓ 〈[shp1, . . . , shpn], [data1, . . . , datam]〉

(uop e, σ) ⇓ 〈[shp1, . . . , shpn], [uop data1, . . . , uop datam]〉

binary

(el, σ) ⇓ 〈[shp1, . . . , shpn], [datal1, . . . , data
l
m]〉

(er, σ) ⇓ 〈[shp1, . . . , shpn], [datar1, . . . , data
r
m]〉

(el bop er, σ) ⇓ 〈[shp1, . . . , shpn], [(datal1 bop data
r
1), . . . , (data

l
m bop datarm)]〉

Unary and binary equality operators work slightly differently, as they will always return
a boolean value, which is internally represented as a scalar of value 0 for false, and 1 for
true. For the unary case the shape does not matter, but for the binary case we will have
to make sure both sides are of the same shape.

unary
(e, σ) ⇓ 〈 , [data1, . . . , datam]〉

(uop e, σ) ⇓ 〈[], [uop data1 ∧ · · · ∧ uop datam]〉

binary

(el, σ) ⇓ 〈[shp1, . . . , shpn], [datal1, . . . , data
l
m]〉

(er, σ) ⇓ 〈[shp1, . . . , shpn], [datar1, . . . , data
r
m]〉

(el bop er, σ) ⇓ 〈[], [(datal1 bop data
r
1) ∧ · · · ∧ (datalm bop datarm)]〉

In the with expression we use the generator to get the shape of the result and the
default argument. This default argument corresponds to some sub-list of the shape. We
then find the range, to which we will apply the in-expression, from the lower and upper
bounds. For each index in this range we add a variable x to the environment that maps
to this index. The resulting value, which can be a scalar or an array, is then placed at
the correct position in the result, replacing the default argument.

9

with

(egen, σ) ⇓ 〈[n], [shp1, . . . , shpn] = shp〉
(edef , σ) ⇓ 〈[shpp, . . . , shpn], [def1, . . . , defm] = def〉

(el, σ) ⇓ 〈[p], [idxl1, . . . , idx
l
p] = l〉

(eu, σ) ⇓ 〈[p], [idxu1 , . . . , idx
u
p] = u〉

∀i∈[l,u) : (e, σ{x→i}) ⇓ 〈[shpp, . . . , shpn], [datai1, . . . , data
i
q] = di〉(gen egen edef

with el ≤ x< eu in e, σ
)
⇓ 〈shp, [def, . . . , def, dl, . . . , du−1, def, . . . , def]〉

In the conditional expression then, the conditional must evaluate to a scalar. A scalar
internally represents false if it is 0 and true otherwise. Depending on this scalar the
conditional expression then evaluates to either the true case or the false case. These
cases do not have to be of the same shape.

cond

(ec, σ) ⇓ 〈[], [x]〉
(et, σ) ⇓ 〈[shpt1, . . . , shptn], [datat1, . . . , data

t
m]〉 = vt

(ef , σ) ⇓ 〈[shpf1 , . . . , shp
f
p], [dataf1 , . . . , data

f
q]〉 = vf

(if ec then et else ef , σ) ⇓ if x 6= 0 then vt else vf

We add variables to the program environment using the let-expression. We get the result
of the first expression and assign it to the variable name in the environment of the second
expression, where this variable name can then be used to get that result.

let

(e1, σ) ⇓ 〈[shpx1 , . . . , shpxn], [datax1 , . . . , data
x
m]〉 = v1

(e2, σ{x→v1}) ⇓ 〈[shp1, . . . , shpp], [data1, . . . , dataq]〉
(letx= e1 in e2, σ) ⇓ 〈[shp1, . . . , shpp], [data1, . . . , dataq]〉

The let-expression can also be used to add functions to the environment. These functions
must also be able to use variables defined before this function, so the function needs to
keep track of its own environment. We call this a closure.

fun-def

(λx. e1, σ) ⇓ cls(λx. e1, σ)
(e2, σ{f→cls(λx. e1, σ)}) ⇓ 〈[shp1, . . . , shpn], [data1, . . . , datam]〉

(let f = λx. e1 in e2, σ) ⇓ 〈[shp1, . . . , shpn], [data1, . . . , datam]〉

Now that we can add lambda expressions to the environment, we can apply arguments
to these expressions to get their results. These arguments must be values since we do not
have a higher-order language. When the expression is another function, we use currying
to apply multiple parameters. So an application can result in a value, or in a closure to
which we can again apply an argument.

apply

(a, σ) ⇓ 〈[shpa1, . . . , shpan], [dataa1, . . . , data
a
m]〉 = va

(e, σ′{x→va}) ⇓ (if e = λy. e2 then cls(λy. e2, σ
′[x→ va])

else 〈[shp1, . . . , shpp], [data1, . . . , dataq]〉) = ve

((cls(λx. e, σ′)) a, σ) ⇓ ve

10

4 Inference

Our goal now is to rewrite programs in this language in a way that minimises the level
of required information. Lets go back to the shift n arr example.

let shift = \n.\arr.

let pad = gen (shape (take n arr)) 0 in

let xs = drop (-n) arr in

if n > 0 then pad ++ xs

else xs ++ pad

in

Here we see that we take the shape of the take n arr function. So perhaps we can
rewrite shape (take n arr) to some new function take s n’ arr’, which simplifies
the computations within. This is possible because we know that we do not need the
actual values of this result, only its shape, which allows us to simplify all expressions
computing these values.

We need a way to find out how far we can rewrite expressions, which we are going to
do by finding a demand environment. Rewriting the take expression might also reduce
the required level of information of the arguments n and arr, allowing us to also rewrite
those. Here they are simply variables but keep in mind that these can also be complex
expressions, which can benefit greatly from a rewrite.

To do so we need to know the demand of these arguments n and arr within the function
take s, we call this the propagation vector of take s. This propagation vector is a
list of demands, with a demand for each argument. For instance; the propagation vector
of selection, which takes two arguments, is [[0, 2, 2, 3], [0, 1, 2, 3]. In this chapter we will
see how we find these propagation vectors and demand environments.

11

4.1 Demand level

As discussed before. a value consists of three parts; the data, the shape of that data, and
its corresponding dimensionality. Including the case where no information is required
at all we get four levels of demands, from high to low: full, shape, dimensionality, and
none. Which we will assign the values 3 through 0 respectively.

The required level of information, the demand, is represented as an array containing
four values. Each index number corresponds with the requested level of information,
and the number at that index describes the lowest information level we can rewrite the
expression to in order to retain the requested information.

So if, for example, we have a demand [0, 2, 2, 3] and we wish to rewrite according to a
demand level of dimensionality (1), we take index 1, which is a 2, which tells us that we
must rewrite this argument with a demand level of shape in order to retain the requested
dimensionality information of the result.

4.2 Propagation vectors

The function PV (expr, γ) takes a primitive expression and returns the propagation vec-
tors of that expression, which is a list of demands with a demand for each argument
of the expression. The indices of these demands correspond with the indices of the
arguments of the expression.

In case of the operands; mathematical operations are straightforward and return the
identity demand. Equality always results in a 0 or 1 so we always already know its
dimensionality and shape. The demands of the primitive functions can easily be inferred
from the semantics.

PV (bop, γ) =

{
[[0, 1, 2, 3], [0, 1, 2, 3]] if bop ∈ maths
[[0, 0, 0, 3], [0, 0, 0, 3]] if bop ∈ equality

PV (uop, γ) =

{
[[0, 1, 2, 3]] if uop ∈ maths
[[0, 0, 0, 3]] if uop ∈ equality

PV (sel, γ) = [[0, 2, 2, 3], [0, 1, 2, 3]]

PV (shape, γ) = [[0, 0, 1, 2]]

PV (dim, γ) = [[0, 0, 0, 1]]

We can also get the propagation vector of a lambda-expression, we first get the demand
environment of the inner expression. We discussed this demand environment in our
example, its implementation will be explained in the next section. Then from that
environment we take the demands of the variable names of the lambda.

PV (λs1, . . . , λsn. e, γ) = [env[s1], . . . , env[sn]]

where env = SD(e, [0, 1, 2, 3], γ)

12

4.3 Shape demand

To find an environment of these demands we define a function SD. The function
SD(expr, dem, γ) takes an expression, the current demand which we got from the pre-
vious expression, and the environment γ containing pre-computed propagation vectors
for all user-defined functions. It returns an environment with a demand for each free
variable of the given expression.

We also define the operator ⊕ which takes the union of the given demand environments.
If a variable exists in multiple environments the element wise maximum of its demand
vectors is taken. As an example we will take {x: [0, 1, 2, 3], y: [1, 1, 2, 2]}⊕{y: [0, 0, 3, 3]}.
Here x only occurs on the left, so it will stay the same. But y occurs on both side, so we
will look at both demands and take the maximum of the two at each index. This will
then give us the new environment {x: [0, 1, 2, 3], y: [1, 1, 3, 3]}.

We have two non-recursive cases; value (a scalar or an array) and VarId. A value
produces no demand, as we already have the value itself. A variable name adds that
variable to the environment with the current demand.

SD(value, dem, γ) = ∅
SD(VarId, dem, γ) = {VarId :dem}

The let-expression combines two demand environments. The demand of the first ex-
pression depends on the demand of the second one, since the second expression uses the
result of this expression. We get that demand by getting the propagation vector, and
combining it with our current demand. Then we take the demand environment of the
second expression with our original demand, but since we provide the variable s in this
let-expression, we remove it from the demand environment.

SD(let s= e1 in e2, dem, γ) = SD(e1, dems, γ)

⊕ (SD(e2, dem, γ)\ {s})
where dems = PV (λs. e2, γ)[0][dem]

Since we always need the result of the condition if we want to know anything about the
result, we must use a demand of [0, 3, 3, 3] for the condition of the conditional expression.
Then we can simply combine it with the demand environments of the two branches since
we have no way to know which branch will terminate at this point.

SD(if ec then et else ef , dem, γ) = SD(ec, [0, 3, 3, 3], γ)

⊕ SD(et, dem, γ)

⊕ SD(ef , dem, γ)

The with-expression is a bit more complicated. egen and edef can be calculated as normal.
But the bounds depend on the demand of the last expression, so like before we take the
propagation vector of that expression and use it to get the demand environments of our

13

bounds. Similar to in the let-expression we remove s from the demand environment of
the last expression since it is provided by the with-expression itself.

SD
(gen egen edef

with el ≤ s < eu in e, dem, γ
)

= SD(egen, dem, γ)

⊕ SD(edef , dem, γ)

⊕ SD(el, dems, γ)

⊕ SD(eu, dems, γ)

⊕ (SD(e, dem, γ)\ {s})
where dems = PV (λs. e, γ)[0][dem]

Finding the demand of a primitive expression is simple, since the propagation vectors are
known to us, as we have already seen in section 4.2. So we can simply get this demand
and combine it with our current demand, to then pass it through to the parameters of
the primitive expression.

When calling a user-defined function we do something similar, but instead of finding the
propagation vector we look up the demand of the function in the pre-computed function
environment γ.

SD(Prf e0 . . . en, dem, γ) = SD(e0, dem0, γ)⊕ · · · ⊕ SD(en, demn, γ)

where demi = PV (prf, γ)[i][dem]

SD(FunId e0 . . . en, dem, γ) = SD(e0, dem0, γ)⊕ · · · ⊕ SD(en, demn, γ)

where demi = γ[FunId][i][dem]

4.4 Example

As an example, let’s take a look at a function ‘take n arr’, which we have talked about
before but not yet seen. This function takes the first n values from the list arr if n is
positive, or the last n values of arr if n is negative. In our language this function looks
as follows:

let take = \n.\arr.

let ofs = if n > 0 then 0 # offset

else (sel [0] (shape arr)) + n

in

gen |n| 0 with [n * 0] <= iv < [|n|] in

sel (iv + ofs) arr

in

Say we want to find the propagation of this function, we then need to solve:

PV (λn. λarr. ebody, γ) = [env[n], env[arr]]

where env = SD(ebody, [0, 1, 2, 3], γ)

14

For readability purposes we will start at the end and work our way up. So lets first
take a look at the inner expression of the with-loop; sel (iv + offset) arr, with the
identity demand [0, 1, 2, 3]. First we apply the rule for primitive functions. which will
require us to get the propagation vector for sel:

SD(sel (iv + ofs) arr, [0, 1, 2, 3], γ) = SD(iv + ofs, PV (sel, γ)[0][0, 1, 2, 3], γ)

⊕ SD(arr, PV (sel, γ)[1][0, 1, 2, 3], γ)

PV (sel, γ) = [[0, 2, 2, 3], [0, 1, 2, 3]]

This gives us two cases we need to solve. One for the binary operator for addition, and
one for the variable named arr.

SD(iv + ofs, pv[0][0, 1, 2, 3], γ) = SD(iv + ofs, [0, 2, 2, 3], γ)

= SD(iv, PV (+, γ)[0][0, 2, 2, 3], γ)

⊕ SD(ofs, PV (+, γ)[1][0, 2, 2, 3], γ)

= SD(iv, [0, 1, 2, 3][0, 2, 2, 3], γ)

⊕ SD(ofs, [0, 1, 2, 3][0, 2, 2, 3], γ)

= SD(iv, [0, 2, 2, 3], γ)⊕ SD(ofs, [0, 2, 2, 3], γ)

= {iv : [0, 2, 2, 3]} ⊕ {ofs : [0, 2, 2, 3]}
= {iv : [0, 2, 2, 3], ofs : [0, 2, 2, 3]}

SD(arr, pv[1][0, 1, 2, 3], γ) = SD(arr, [0, 1, 2, 3], γ)

= {arr : [0, 1, 2, 3]}

Combining these results, we get the following demand environment for sel.

SD(sel (iv + ofs) arr, [0, 1, 2, 3], γ) = {iv : [0, 2, 2, 3], ofs : [0, 2, 2, 3]} ⊕ {arr : [0, 1, 2, 3]}
= {iv : [0, 2, 2, 3], ofs : [0, 2, 2, 3], arr : [0, 1, 2, 3]}

We can now use this to get the environment for the entire with-expression. This requires
us to find the five inner environments of that expression.

SD
(

gen |n| 0
with [n ∗ 0]≤ iv < [|n]]

in e, [0, 1, 2, 3], γ

)
= SD(|n|, [0, 1, 2, 3], γ)

⊕ SD(0, [0, 1, 2, 3], γ)

⊕ SD([n ∗ 0], demiv, γ)

⊕ SD([|n]], demiv, γ)

⊕ (SD(e, [0, 1, 2, 3], γ)\ {iv})
where demiv = PV (λiv. e, γ)[dem]

15

Going from top to bottom, we get the first environment by finding the propagation vector
of the primitive function for the absolute value ‘||’. The second environment is just a
scalar value, so this gives the empty set. The third and fourth case are similar to the
first one, usually we would have to keep in mind that these use the newly found demand,
instead of the original one, but in this case we will not have to do this computation since
both expressions are just arrays and will simply evaluate to an empty environment,
whatever the demand is. This allows us to skip some computations and leaves us with
only the following two cases:

SD(|n|, [0, 1, 2, 3], γ) = SD(n, PV (||, γ)[0, 1, 2, 3], γ)

= SD(n, [[0, 1, 2, 3]][0, 1, 2, 3], γ)

= {n: [0, 1, 2, 3]}
SD(e, [0, 1, 2, 3], γ)\ {iv} = {iv : [0, 2, 2, 3], ofs : [0, 2, 2, 3], arr : [0, 1, 2, 3]} \ {iv}

= {ofs : [0, 2, 2, 3], arr : [0, 1, 2, 3]}

We have now found that the demand environment of the with-expression is {n: [0, 1, 2, 3]}
⊕ {ofs : [0, 2, 2, 3], arr : [0, 1, 2, 3]} = {n: [0, 1, 2, 3], ofs : [0, 2, 2, 3], arr : [0, 1, 2, 3]}. Now let
us move another step up and take a look at the let-expression that encapsulates the
with-expression we just solved.

SD(let ofs= econd in ewith, [0, 1, 2, 3], γ) = SD(econd, demofs, γ)

⊕ (SD(ewith, [0, 1, 2, 3], γ)\ {ofs})
where demofs = PV (λofs. ewith, γ)[0][0, 1, 2, 3]

Before we can find the demand environment of our conditional expression, we need to
know what demand its resulting value, ofs, will have in the with-expression. This is easy
to find, as we have already found the demand environment of the with-expression.

PV (λofs. ewith, γ) = [SD(ewith, [0, 1, 2, 3], γ)[ofs]]

= [{ofs : [0, 2, 2, 3], arr : [0, 1, 2, 3]}[ofs]]
= [[0, 2, 2, 3]]

Now, using this newly found demand, let us find the demand environment of the condi-
tional expression. We have looked at quite a few examples already, so I will gloss over
this one. As an exercise you could try to solve this one yourself.

SD(if n > 0 then [0] else ef , [0, 2, 2, 3], γ) = SD(n > 0, [0, 3, 3, 3], γ)

⊕ SD([0], [0, 2, 2, 3], γ)

⊕ SD(ef , [0, 2, 2, 3], γ)

= {n: [0, 3, 3, 3]}
⊕ {n: [0, 2, 2, 3], arr : [0, 0, 1, 2]}

= {n: [0, 3, 3, 3], arr : [0, 0, 1, 2]}

16

Using what we now know we can solve the let-expression.

SD(let ofs= econd in ewith, [0, 1, 2, 3], γ) = SD(econd, [0, 2, 2, 3], γ)

⊕ (SD(ewith, [0, 1, 2, 3], γ)\ {ofs})
= {n: [0, 3, 3, 3], arr : [0, 0, 1, 2]}
⊕ {n: [0, 1, 2, 3], arr : [0, 1, 2, 3]}

= {n: [0, 3, 3, 3], arr : [0, 1, 2, 3]}

Finally we can use this to find the propagation vector of the lambda expression using
the calculation from the start.

PV (λn. λarr. ebody, γ) = [env[n], env[arr]]

where env = {n: [0, 3, 3, 3], arr : [0, 1, 2, 3]}
= [[0, 3, 3, 3], [0, 1, 2, 3]]

Which shows us that the propagation vector of the user-defined function take n arr

is [[0, 3, 3, 3], [0, 1, 2, 3]]. If we now, for example, want the shape of the result of this
function, we see that the demand of n is 3 and the demand of arr is 2. This tells us
that to get the shape of the take function we must have the full value of n and only the
shape of arr.

17

5 Rewrite

The symbols F , S, D, and N explain the different levels of information of a value.
They correspond to the demand values 3, 2, 1, and 0 from the propagation vectors
respectively.

The recursive functions F (expr, ε), S (expr, ε), D(expr, ε), and N (expr, ε) define the
rewrite rules of the expression for the corresponding demand values. The rewrite rule
N (expr, ε) always returns 0. Here the environment ε indicates to which level the corre-
sponding variable at runtime will have been evaluated at that point.

5.1 Rules

We will start with the cases for values and variables. The value rule is very straightfor-
ward, we just rewrite the value to the required level. In the case of VarId, we first check
if the variable has already been rewritten previously, and then only rewrite it again if
necessary. For example, in the S case, if the variable is currently still in its full version,
we take the shape of that variable. But when the variable has already been rewritten to
the shape level, no more rewrites are necessary and we thus leave it as is.

F (value, ε) = value

S (value, ε) = shape value

D(value, ε) = dim value

F (VarId, ε) = VarId

S (VarId, ε) =

{
shape VarId if ε[VarId] = F
VarId if ε[VarId] = S

D(VarId, ε) =

dim VarId if ε[VarId] = F
(shape VarId)[0] if ε[VarId] = S
VarId if ε[VarId] = D

Next up we will look at lambda-expressions and -applications. Here we see how the
variable from the base case VarId can be rewritten before being evaluated. First we get

18

the demand of the free variable by looking at its propagation vector. We then rewrite
the variable to that level. This rewritten variable is then passed to the rewritten lambda
function, where the environment is updated with the new level of the free variable to
avoid incorrectly reducing the level multiple times.

F (λx. e, ε) =

{
λx.F (e, ε{x→X}) if pvx[3] = X ∈{F ,S,N}
F (e, ε) if pvx[3] = N

S (λx. e, ε) =

{
λx.S (e, ε{x→X}) if pvx[2] = X ∈{F ,S,N}
S (e, ε) if pvx[2] = N

D(λx. e, ε) =

{
λx.D(e, ε{x→X}) if pvx[1] = X ∈{F ,S,N}
D(e, ε) if pvx[1] = N

where pvx = PV (λx. e, γ)[0]

F ((λx. e) a, ε) =

{
(λx.F (e, ε{x→X})) X (a, ε) if pvx[3] = X ∈{F ,S,N}
F (e, ε) if pvx[3] = N

S ((λx. e) a, ε) =

{
(λx.S (e, ε{x→X})) X (a, ε) if pvx[2] = X ∈{F ,S,N}
S (e, ε) if pvx[2] = N

D((λx. e) a, ε) =

{
(λx.D(e, ε{x→X})) X (a, ε) if pvx[1] = X ∈{F ,S,N}
D(e, ε) if pvx[1] = N

where pvx = PV (λx. e, γ)[0]

The let-expression works similarly to the lambda cases, where we find the best level to
rewrite the variable x to and pass that on to the inner expression.

F (letx= e1 in e2, ε) =

{
letx=X (e1, ε) inF (e2, ε{x→X}) if pvx[3] = X ∈{F ,S,N}
F (e2, ε) if pvx[3] = N

S (letx= e1 in e2, ε) =

{
letx=X (e1, ε) inS (e2, ε{x→X}) if pvx[2] = X ∈{F ,S,N}
S (e2, ε) if pvx[2] = N

D(letx= e1 in e2, ε) =

{
letx=X (e1, ε) inD(e2, ε{x→X}) if pvx[1] = X ∈{F ,S,N}
D(e2, ε) if pvx[1] = N

where pvx = PV (λx. e2, γ)[0]

The conditional expression is also very simple. We always need the full rewrite of the
condition, since even the dimensionality of the two branches can differ. Then we rewrite
the two branches according to the requested rewrite level.

F (if ec then et else ef , ε) = if F (ec, ε) then F (et, ε) else F (ef , ε)

S (if ec then et else ef , ε) = if F (ec, ε) then S (et, ε) else S (ef , ε)

D(if ec then et else ef , ε) = if F (ec, ε) then D(et, ε) else D(ef , ε)

19

Since the with-expression we use expects the shape of the resulting value as an argument,
the rewrites can simply use that value to find the shape and dimensionality. Making the
rewrite of the with-expression very simple.

F
(gen egen edef

with el ≤ x< eu in e, ε
)

=
gen F (egen, ε) F (edef , ε)

with F (el, ε)≤ x<F (eu, ε)
inF (e, ε)

S
(gen egen edef

with el ≤ x< eu in e, ε
)

= F (egen, ε)

D
(gen egen edef

with el ≤ x< eu in e, ε
)

= S (egen, ε)[0]

Next we have all primitive functions and operators. Selection is quite difficult as the
dimensionality of the index vector can be smaller than that of the expression, because
we allow selecting sub-arrays and not just individual scalars.

When taking the shape we select the first few values from the shape of the expression,
depending on the dimensionality of the index vector. When taking the dimensionality
we know that it must be the difference of the expression and index vector.

F (sel iv e, ε) = sel F (iv, ε) F (e, ε)

S (sel iv e, ε) = S (e, ε)[:D(iv, ε)]

D(sel iv e, ε) = D(e, ε)−D(iv, ε)

F (shape e, ε) = S (e, ε)

S (shape e, ε) = [D(e, ε)]

D(shape e, ε) = 1

F (dim e, ε) = D(e, ε)

S (dim e, ε) = []

D(dim e, ε) = 0

And finally we get to binary and unary operations. These contain two separate cases
for maths and equality operations. This is because we know that an equality operation
will always return a scalar, specifically always 0 or 1, so we will always know exactly
what the shape and dimensionality will be. Maths operations are applied element-wise,
where the right hand argument might have been broadcast, so maths operations will not
change the shape and dimensionality of the left hand argument.

20

F (el bop er, ε) = F (el, ε) bop F (er, ε)

S (el bop er, ε) =

{
S (el, ε) if bop ∈ maths
[] if bop ∈ equality

D(el bop er, ε) =

{
D(el, ε) if bop ∈ maths
0 if bop ∈ equality

F (uop e, ε) = uop F (e, ε)

S (uop e, ε) =

{
S (e, ε) if uop ∈ maths
[] if uop ∈ equality

D(uop e, ε) =

{
D(e, ε) if uop ∈ maths
0 if uop ∈ equality

5.2 Example

Lets now take a look at an example of a rewrite. We will be extending the example take

n xs from the inference. We will use this function to implement a function that shifts
the values of an array left or right by some amount n.

This program is shown below, along with the pre-computed demands for each user-
defined function, these are computed like we did in the inference section (4). The
program creates a list ranging from 0 to 99 and shifts those values 20 indices to the
right, placing zeros at the now empty indices.

demand: [[0,3,3,3], [0,1,2,3]]

let take = \n.\arr.

let ofs = if n > 0 then 0

else (shape arr).([0]) + n

in

gen [|n|] 0 with [n * 0] <= iv < [|n|] in

arr.(iv + ofs)

in

demand: [[0,3,3,3], [0,1,2,3]]

let drop = \n.\arr.

if n > 0 then

take (n - (shape arr).([0])) arr

else

take ((shape arr).([0]) + n) arr

in

21

demand: [[0,3,3,3], [0,1,2,3]]

let shift = \n.\arr.

let pad = gen (shape (take n arr)) 0 in # (1)

let xs = drop (-n) arr in

if n > 0 then pad ++ xs

else xs ++ pad

in

let size = 20000 in

let arr = gen size 0

with 0 <= iv < size in iv in

shift 5000 arr

As can be seen in the first line of the shift function (1), we compute the entire result of
take, but then only use its shape. So instead of looking at rewriting the entire program
we will look at how this line would be rewritten, as it is the most interesting.

Lets assume we want the full result of this expression and that the parameters have not
been rewritten to a lower level, we would then have to apply the following rewrite rule
to the with-expression:

F (gen (shape (take n arr)) 0, ε) = genF (shape (take n arr), ε) F (0, ε)

= genF (shape (take n arr), ε) 0

We know that if we want the full value of a shape, we can rewrite the inner expression
to the shape level. We would officially use currying currying here, but we won’t worry
about those extra steps in this example and just combine them.

F (gen (shape (take n arr)) 0, ε) = genS ((take n) arr, ε) 0

= genS (take n arr, ε) 0

Now we are going to need a new version of the take function, which we will call take s.
Usually this would already been done by this point but for readability we’ll change the
order up a bit. First we can the let-expression by removing the variable ofs (offset),
this is possible because the demand of ofs in the with-expression is N . The rewrite of
the with-expression is also very simple as we only need its shape, which is given by the
programmer.

S (let ofs= econd in ewith, ε) = S (ewith, ε)

= F ([|n]], ε)

= [F (|n|, ε)]
= [|F (n, ε)]]

= [|n]]

22

So our take n arr function is now a lot simpler.

let take s = λn. λarr. [|n]]

We now get the application rule, but since take is a pointer to a lambda expression, we
will point to the rewritten function of the required level by changing the name of this
pointer. We also need to know to what level we need to rewrite the variables, for this
we use the demand we have found earlier. Again, in the rules we would use currying,
but here we will just do both parameters at once.

F (gen (shape (take n arr)) 0, ε) = gen (take s X (n, ε) Y (arr, ε)) 0

where X = PV (take, γ)[0][2]

= [[0, 3, 3, 3], [0, 1, 2, 3]][0][2]

= [0, 3, 3, 3][2]

= 3

and Y = PV (take, γ)[1][2]

= [[0, 3, 3, 3], [0, 1, 2, 3]][1][2]

= [0, 1, 2, 3][2]

= 2

= gen (take s F (n, ε) S (arr, ε)) 0

Which finally results in the program below. Especially if we expand take s we see that
this computation is a lot faster and skips a lot of steps that have become unnecessary
when computing only the shape.

F (gen (shape (take n arr)) 0, ε) = gen (take s n (shape arr)) 0

= gen ((λn. λarr. [|n]]) n (shape arr)) 0

23

6 Correctness

One important consideration is whether the rewritten program is semantically equivalent
to the original program, e.g. whether for every input of the original program, the
rewritten program produces the same result. It turns out that this is not always the
case. Consider the very simple expression shape (3/0), which rewrites to:

F (shape (3/0), ε) = S (3/0, ε)

= S (3, ε)

= shape 3

= []

In the original program the expression 3/0 would result in a zero-division error, thus not
evaluating to a value. But the rewritten expression removes unnecessary computations,
causing this rewritten program to evaluate to the value [] instead of an error.

To avoid this we will create a new semantics, we get this new semantics by applying
our rewrite F to our current rewrite rules, defined in section 3.3. We would like this
semantics to be an extension of the original semantics, where the set of valid programs
and their evaluations for the original semantics are a subset of the set of valid programs
of our new semantics, where these evaluated values are the same.

6.1 Proof

The property we just discussed can be defined formally as the following theorem.

∀prg: ((prg, ∅) ⇓ val)→ ((F (prg, ∅), ∅) ⇓ val)

Which states that for every possible program; if that program, initially with the empty
program environment, evaluates to a value val, then the full rewrite of that program
must also evaluate to the value val.

To prove this theorem we need to show something similar for the shape and dimension-
ality cases. But since these cases change the rewrite level of variables, we will need to
use that rewrite level environment ε to also update the program environment.

24

To do so we will write ε.σ, which takes keys x from the program environment σ and
updates their values v into (shape v) if ε[x] = S, and into (dim v) if ε[x] = D.

For example lets take a program environment that contains a value v for the variable x,
then: σ = {x: v}, and a rewrite level environment where x has been rewritten to level
S, then: ε = {x:S}. Then ε.σ takes key x and finds that its rewrite level is S, which
means that the new program environment σ′ becomes {x:S(v)} = {x: shape v}.

Using this we can now create a lemma that includes cases for shape and dimensionality.
For those cases we update their program environments. We will now also look at separate
expressions, and not the entire program. So here we have the environments σ and ε
instead of empty sets.

∀expr: ((expr, σ) ⇓ val)→ ((F (expr, ε), σ) ⇓ val)
∧ ((S (expr, ε), ε.σ) ⇓ shape val)

∧ ((D(expr, ε), ε.σ) ⇓ dim val)

Here we can not take any rewrite level environment ε, but luckily we know all possible
states for this environment. We find these by first applying our SD rule to the expression,
which gives us an environment mapping the free variables of the expression to their
corresponding demands. Then for each of these demands we take one specific index,
depending on the rewrite rule this environment is in. These being 3 for F , 2 for S, and 1
for D. The environment ε is then a combination of all possible assignments of variables
to rewrite levels, where this rewrite level is at least the one we just found.

For example, lets say that applying SD(expr, [0, 1, 2, 3], γ) resulted to the environment
{x: [0, 2, 2, 3], y: 0, 1, 2, 3}. Then in the case of S (expr, ε) we take index 2 of both x and
y, giving us: {x: 2, y: 2}. Now both x and y must be at least S. Getting all possible
combinations with at least this demand then gets us the following possible environments:
ε ∈ { {x:S, y:S}, {x:S, y:F}, {x:F , y:S}, {x:F , y:F} }.

6.2 Induction

We will show using structural induction that this theorem holds, which will prove that
that these rewrite rules do not change the result of a valid expression with a valid input.
In some cases we will be able to prove this by showing that the rewrite evaluates to the
same expression. In other cases this will not be possible, in which case we will show that
the rewrite evaluates to the same value as the original program.

6.2.1 Base cases

Our base cases are two non-recursive expressions value and VarId. The case value
trivially holds, as it just gets the data, shape, or dimensionality of the value as requested
by the rewrite.

25

Next we have the VarId case, where we will take a variable x with corresponding value v
from the program environment. We have to show that the rewrite rules hold for different
cases of the current rewrite level of x. We do this by showing that the expressions
evaluate to the correct values, these being: v for F , (shape v) for S, and (dim v) for D.
In this case we will also see why our choice for possible ε’s is correct.

The F case is easy, we can always simply lookup the value of variable x in the program
environment without any extra work. So we will take this opportunity to show how
these prove rules will be formulated.

(F (x, ε), σ) = (x, σ)

⇓ σ[x]

= v

In the first line we use our definition of the rewrite rules from section 5 to rewrite the
expression, here with level F . This then gives us an expression we can evaluate. In the
second line we then use our semantic rules from section 3.3 to get the evaluated value
from this expression.

For the shape and dimensionality cases we need to make use of the ε.σ rule defined above
to update the program environment before we can evaluate these expressions. This new
environment can then be used to find the (potentially rewritten) value of variable x,
which we can then use to evaluate the expression using our semantics.

(S (x, ε), ε.σ) = (shape x, ε.σ) if ε[x] = F
= (shape x, σ{x→F (v, ε)})
= (shape x, σ{x→v})
⇓ shape (σ′[x])

= shape v

(S (x, ε), ε.σ) = (x, ε.σ) if ε[x] = S
= (x, σ{x→S (v, ε)})
= (x, σ{x→shape v})
⇓ σ′[x]

= shape v

For both cases, in the second line we find this new environment by mapping our variable
x to either F (v, ε) or S (e, ε), depending on x’s current rewrite level. In the third line
we can then evaluate this expression using our rewrite rules, after which we can use this
new environment to lookup the value of the variable x.

26

We apply the same steps to the D cases.

(D(x, ε), ε.σ) = (dim x, ε.σ) if ε[x] = F
= (dim x, σ{x→F (v, ε)})
= (dim x, σ{x→v})
⇓ dim (σ′[x])

= dim v

(D(x, ε), ε.σ) = ((shape x)[0], ε.σ) if ε[x] = S
= ((shape x)[0], σ{x→S (v, ε)})
= ((shape x)[0], σ{x→shape v})
⇓ (shape (σ′[x]))[0]

= (shape (shape v))[0]

= dim v

(D(x, ε), ε.σ) = (x, ε.σ) if ε[x] = D
= (x, σ{x→D(v, ε)})
= (x, σ{x→dim v})
⇓ σ′[x]

= dim v

In the case of F the expression evaluates to just v. For S it evaluates to shape v, and for
D it evaluates to dim v. This is exactly what we want to show, so this case holds.

6.2.2 Inductive cases

For the inductive cases we use the lemma defined above as our induction hypothesis.
Lets start simple and begin with binary and unary operations. First we take a look at
only the mathematical operations. Since we know that mathematical operations do their
operations element-wise, potentially using broadcasting on the right hand side if it is a
scalar; it follows that the result has the same shape as the array on the left. Because
of this potential broadcasting we must take the left hand side and not the right hand
side.

(F (e1 bop e2, ε), σ) = (F (e1, ε) bop F (e2, ε), σ)

⇓ e1 bop e2
(S (e1 bop e2, ε), σ) = (S (e1, ε), σ)

⇓ shape e1

= shape (e1 bop e2)

(D(e1 bop e2, ε), σ) = (S (e1, ε), σ)

⇓ dim e1

= dim (e1 bop e2)

27

(F (uop e, ε), σ) = (uop F (e, ε), σ)

⇓ uop e

(S (uop e, ε), σ) = (uop S (e, ε), σ)

⇓ uop (shape e)

= shape (uop e)

(D(uop e, ε), σ) = (uop D(e, ε), σ)

⇓ uop (dim e)

= dim (uop e)

Next come the equality operations, which always return the same default value for the
shape and dimensionality cases. Here we make use of the fact that equality operators
always return a scalar, namely 0 for false or 1 for true cases.

(F (el bop er, ε), σ) = (F (el, ε) bop F (er, ε), σ)

⇓ el bop er
(S (el bop er, ε), σ) ⇓ []

= shape scalar

= shape (el bop er)

(D(el bop er, ε), σ) ⇓ 0

= dim scalar

= dim (el bop er)

(F (uop e, ε), σ) = (uop F (e, ε), σ)

⇓ uop e

(S (uop e, ε), σ) ⇓ []

= shape scalar

= shape (uop e)

(D(uop e, ε), σ) ⇓ 0

= dim scalar

= dim (uop e)

Now we will take a look at the primitive functions. The shape and dimensionality cases
are not very hard, though they use some common guaranteed information we get from
these operations. We know that the shape always is a 1-dimensional array (which we
will call a list), from which it follows that the shape of a shape is the shape of a list, and
thus is a scalar.

28

(F (shape e, ε), σ) = (S (e, ε), σ)

⇓ shape e

(S (shape e, ε), σ) = ([D(e, ε)], σ)

⇓ [dim e]

= shape (shape e)

(D(shape e, ε), σ) ⇓ 1

= dim list

= dim (shape e)

(F (dim e, ε), σ) = (D(e, ε), σ)

⇓ dim e

(S (dim e, ε), σ) ⇓ []

= shape scalar

= shape (dim e)

(D(dim e, ε), σ) ⇓ 0

= dim scalar

= dim (dim e)

Our third primitive function is selection. The full rewrite of selection is very simple, but
the other two cases are quite complicated.

In the shape case we know that the dimensionality of iv is a scalar, whose length is shorter
or equal to the length of the shape of e, so in the rule after the induction hypothesis
we take the first few values from this shape. But we can now also do it the other way
around by first selecting the correct values and then taking the shape, which then gives
us exactly the rule we want.

In the dimensionality case, we can move the dimensionality operations outward to com-
bine them in one. To do this we must also somehow subtract iv from e, since we are
going to only take its dimensionality we can do this be selecting iv in e.

(F (sel iv e, ε), σ) = (sel F (iv, ε) F (e, ε), σ)

⇓ sel iv e

(S (sel iv e, ε), σ) = (S (e, ε)[:D(iv, ε)], σ)

⇓ (shape e)[:dim iv]

= shape (sel iv e)

(D(sel iv e, ε), σ) = (D(e, ε)−D(iv, ε), σ)

⇓ dim e− dim iv

= dim (sel iv e)

29

The conditional expression is fairly straightforward, here we can move the shape or
demand expression outside of the conditional if both branches apply it.

(F (if ec then et else ef , ε), σ) = (if F (ec, ε) then F (et, ε) else F (ef , ε), σ)

⇓ if ec then et else ef

(S (if ec then et else ef , ε), σ) = (if F (ec, ε) then S (et, ε) else S (ef , ε), σ)

⇓ if ec then (shape et) else (shape ef)

= shape (if ec then et else ef)

(D(if ec then et else ef , ε), σ) = (if F (ec, ε) then D(et, ε) else D(ef , ε), σ)

⇓ if ec then (dim et) else (dim ef)

= dim (if ec then et else ef)

The next expression is the with-expression. Here we require the programmer to give us
the resulting shape with egen. The F case is trivial, in the other two cases we can simply
use this egen inside of a new with-expression of which we take the shape of demand,
which will discard the computed values.(

F
(gen egen edef

with el ≤ x< eu in e, ε
)
, σ
)

=

(
gen F (egen, ε) F (edef , ε)

with F (el, ε)≤ x<F (eu, ε)
inF (e, ε), σ

)
⇓

gen egen edef
with el ≤ x< eu in e(

S
(gen egen edef

with el ≤ x< eu in e, ε
)
, σ
)

= (F (egen, ε), σ)

⇓ egen

= shape
(gen egen edef

with el ≤ x< eu in e
)

(
D
(gen egen edef

with el ≤ x< eu in e, ε
)
, σ
)

= (S (egen, ε), σ)

⇓ (shape egen)[0]

= dim
(gen egen edef

with el ≤ x< eu in e
)

30

Next we get the let-expression. From our semantics we know that; if the let-expression
evaluates to a value v2, then there exists an evaluation v1 of e1 such that expression e2
with x mapped to v1 evaluates to v2.

((letx= e1 in e2, σ) ⇓ v2)→ ∃v1: ((e1, σ) ⇓ v1) ∧ ((e2, σ{x→v1}) ⇓ v2)

Like with VarId, we have separate cases within each rewrite rule, depending on the
demand of the variable x; demx, which we find by computing PV (λx. e2, γ)[0]. Here
these cases overlap nicely, so we can combine them in a single case where the demand
of x is X .

if demx[3] = X :

(F (letx= e1 in e2, ε), σ) = (letx=X (e1, ε) inF (e2, ε), σ)

⇓ letx=X (v1) in (F (e2, ε{x→X}), ε.σ)
= letx=X (v1) in (F (e2, ε{x→X}), σ{x→X (v1)})
= (F (e2, ε{x→X}), σ{x→X (v1)})
⇓ v2

if demx[2] = X :

(S (letx= e1 in e2, ε), ε.σ) = (letx=X (e1, ε) inS (e2, ε), σ)

⇓ letx=X (v1) in (S (e2, ε{x→X}), ε.σ)
= letx=X (v1) in (S (e2, ε{x→X}), σ{x→X (v1)})
= (S (e2, ε{x→X}), σ{x→X (v1)})
⇓ shape v2

if demx[2] = X :

(D(letx= e1 in e2, ε), ε.σ) = (letx=X (e1, ε) inD(e2, ε), σ)

⇓ letx=X (v1) in (D(e2, ε{x→X}), ε.σ)
= letx=X (v1) in (D(e2, ε{x→X}), σ{x→X (v1)})
= (D(e2, ε{x→X}), σ{x→X (v1)})
⇓ dim v2

31

And finally we have function application. From our semantics we know that if; the
application-expression evaluates to a value ve, then there exists an evaluation va of a
such that expression e with x mapped to va evaluates to ve.

(((λx. e) a, σ) ⇓ ve)→ ∃va: ((a, σ) ⇓ va) ∧ ((e, σ{x→va}) ⇓ ve)

We again have separate cases within each rewrite rule, depending on the demand of the
variable x. Here we find this demand with: demx = PV (λx. e, γ)[0]. Again there is a
lot of overlap within these cases, so like before we combine them using X for the demand
we find for x.

if demx[3] = X :

(F ((λx. e) a, ε), σ) = ((λx.F (e, ε{x→X})) X (a, ε), σ)

⇓ (λx. (F (e, ε{x→X}), ε.σ)) X (va)

= (λx. (F (e, ε{x→X}), σ{x→X (va)})) X (va)

= (F (e, ε{x→X}), σ{x→X (va)})
⇓ ve

if demx[3] = X :

(S ((λx. e) a, ε), ε.σ) = ((λx.S (e, ε{x→X})) X (a, ε), σ)

⇓ (λx. (F (e, ε{x→X}), ε.σ)) X (va)

= (λx. (F (e, ε{x→X}), σ{x→X (va)})) X (va)

= (S (e, ε{x→X}), σ{x→X (va)})
⇓ shape ve

if demx[3] = X :

(D((λx. e) a, ε), ε.σ) = ((λx.D(e, ε{x→X})) X (a, ε), σ)

⇓ (λx. (D(e, ε{x→X}), ε.σ)) X (va)

= (λx. (D(e, ε{x→X}), σ{x→X (va)})) X (va)

= (D(e, ε{x→X}), σ{x→X (va)})
⇓ dim ve

We have now shown that the theorem holds for each of our expressions, which concludes
this proof and shows that; for all valid programs prg in the original semantics, the rewrite
F (prg, ∅) of this program is part of our new semantics and evaluates to the same value
as the original program.

32

7 Implementation

Accompanying this paper is a prototypical implementation of the grammar and rules
discussed above. The code is based on the languages SaC[6] and heh[3], and can be
found on GitHub1. The language is implemented in the strict programming language
OCaml[8], throughout this chapter we will see the benefits of choosing this language.

The language consists of three main stages; the parser, the rewrite, and the evaluator.
In the parser the user’s input is processed and transformed into a tree. The rewrite then
applies the rules discussed in this paper to rewrite that program, which is then evaluated
in the evaluator, producing a result and printing that to the screen.

Parserinput Rewrite Evaluator output

Figure 7.1: Program pipeline

7.1 Parser

The first step in processing our input is parsing the program. The parser transforms
the text file that contains the program to a something that is easily readable by our
compiler, we will do this using an abstract syntax tree. This tree consists of nodes of
expressions, where each node has subtrees containing the sub-expressions. Leaf nodes of
the abstract syntax tree must always be strings (variables) or values. Before parsing we
must transform the input program such that it is represented as tokens. This is easily
done in OCaml using its built-in lexer[7].

Lets look a look at our shift example again.

let shift = \n.\arr.

let pad = gen (shape (take n arr)) 0 in

let xs = drop (-n) arr in

if n > 0 then pad ++ xs

else xs ++ pad

in

1https://github.com/JordyAaldering/Bachelor-Thesis

33

7.1.1 Abstract Syntax Tree

The root of the abstract syntax tree is then the let expression that defines the function.
The first child must be a string, so we get a leaf containing ‘shift’, the second child is
then the lambda expression that describes this function which has children itself, and the
final expression is the rest of our program, which we have omitted here. This produces
the syntax tree shown in figure 7.2.

let

body

...

lambda

lambda

let

let

cond

...

apply

var

‘arr ’

apply

unary

var

‘n’

-

‘drop’

‘xs’

with

scalar

0

shape

apply

var

‘arr ’

apply

var

‘n’

‘take’

‘pad ’

‘arr ’

‘n’

‘shift ’

Figure 7.2: Abstract Syntax Tree

7.2 Rewrite

This syntax tree is then passed on to the rewrite, where the tree will be rewritten using
our rewrite rules. Doing this is now very easy because our rules work very well on this
syntax tree. Lets say we want to rewrite the outer let-expression.

F (letx= e1 in e2, ε)→ F (let shift= lambda in body, ε)

We can then easily get the three arguments of the expression by getting the three child
nodes and continuing the rewrite at each of those children. Implementing this in code
is also very easy, as we can simply use pattern matching[9].

34

7.3 Evaluator

After rewriting the abstract syntax tree we pass it on to the evaluator. The evaluator
passes over this tree to compute the resulting value. The evaluator also has to keep track
of an environment that maps variables to their corresponding values or functions. For
instance; when we encounter a let-expression we map the variable to the result of the
first expression, and than add that to the environment of the second expression. Using
pattern matching again we do certain operations and computations for each expression,
which will eventually get us the result after having evaluated the entire tree.

35

8 Performance

There exist very many programs, some of which will profit greatly from our rewrite rules
and some of which might not differ at all. This makes evaluating the performance of
our rewrite rules in a general case very hard, so instead we will again look at the shift
example discussed earlier and see how it fares, to get an idea of the possible performance
improvements. This way we can still get an idea of the potential benefits of the rewrite
rules, using a realistic example.

Figure 8.1 below shows the performance of both the original and rewritten program
when shifting a list of length 20000 by some amount to the right.

Figure 8.1: Running time of shifting a list of length 20000

0 2,000 4,000 6,000 8,000 10,000
0

100

200

300

400

Shift distance

T
im

e
(m

s)

original
rewrite

From our examples we know that most of the performance is gained by rewriting the
take n arr expression to a version that only gets its shape. The farther we shift, the
longer the original program will spend in the with-expression of this function. This is not
necessary in our rewritten program, which is why we see greatly improved performance
with an increasing shift distance.

36

9 Conclusion

In this paper we have seen how programs written in array programming languages can
be rewritten in a way that finds a balance between strict and lazy evaluation. To do so
we have created a small language along with rules which define how to rewrite programs
written in this language by rewriting its expressions. This makes use of inference rules
which find the required level of information for these expressions. Using a small example
we have seen how to apply the knowledge provided by this paper, along with a quick
look at the performance benefits of using these rewrite rules.

Along with the paper also comes a prototype, which implements the grammar and rules
discussed in this paper. This prototype has shown that these rules can also be used in
practise. Using our example program this prototype clearly shows the benefits of this
rewrite by showing that the evaluation time can be greatly reduced.

9.1 Future work

Although this paper has clearly shown how these rewrite rules can be implemented to
improve the performance of programs, the language discussed in this paper is not very
extensive, making it hard to use it in actual applications. Instead, this paper has shown a
new way of rewriting programs that, with further research, could be used for languages
larger than the array programming language shown here. For example, it could be
applied to the objects in an object oriented language using the techniques shown in this
paper to remove unused properties and computations on these properties, decreasing the
computational and memory load of these objects.

One big problem in the language discussed here is that these rewrite rules do not allow
for higher order functions. Possible future research could look into extending the results
from this paper by allowing rewrites on higher order functions to create a larger, more
complete, array programming language.

37

10 Bibliography

[1] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. A binding scope analysis
for generic programs on arrays. In Andrew Butterfield, Clemens Grelck, and Frank
Huch, editors, Implementation and Application of Functional Languages, pages 212–
230, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[2] Rogardt Heldal and John Hughes. Binding-time analysis for polymorphic types.
In International Andrei Ershov Memorial Conference on Perspectives of System
Informatics, pages 191–204. Springer, 2001.

[3] Stephan Andreas Herhut. Auxiliary computations: a framework for a step-wise,
non-disruptive introduction of static guarantees to untyped programs using partial
evaluation techniques. University of Hertfordshire, 2010.

[4] Neil Jones. An introduction to partial evaluation. ACM Comput. Surv., 28:480–503,
09 1996.

[5] Neil Jones, Carsten Gomard, and Peter Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall International, 1 1993.

[6] Dietmar Kreye. A compiler backend for generic programming with arrays. Faculty
of Engineering at Christian-Albrechts-Universität, 01 2004.

[7] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and
Jérôme Vouillon. Ocamllex and Ocamlyacc, pages 193–211. Apress, Berkeley, CA,
2007.

[8] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and
Jérôme Vouillon. The ocaml system release 3.12. Institut National de Recherche en
Informatique et en Automatique, 2011.

[9] Luc Maranget. Compiling pattern matching to good decision trees. In Proceedings
of the 2008 ACM SIGPLAN Workshop on ML, ML ’08, page 35–46, New York,
NY, USA, 2008. Association for Computing Machinery.

[10] Daniel D McCracken and Edwin D Reilly. Backus-naur form (bnf). In Encyclope-
dia of Computer Science, pages 129–131. John Wiley and Sons Ltd., Baffins Lane
Chichester West Sussex PO19 1UD, United Kingdom, 2003.

38

[11] Sven-Bodo Scholz and Artjoms Šinkarovs. Tensor comprehensions in sac. In Proceed-
ings of International Symposium on Implementation and Application of Functional
Languages, pages 1–12, USA, New York, 2020. ACM.

[12] Kai Trojahner, Clemens Grelck, and Sven-Bodo Scholz. On optimising shape-generic
array programs using symbolic structural information. In Zoltán Horváth, Viktória
Zsók, and Andrew Butterfield, editors, Implementation and Application of Func-
tional Languages, pages 1–18, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

39

