BACHELOR THESIS
COMPUTING SCIENCE

Fia:

a
é\9 Ny
S
orrer

MiNe €

RADBOUD UNIVERSITY

Using Equations to Define
Non-Structurally Recursive
Functions in Coq

Author: Supervisor/assessor:
Kirsten Hagenaars Prof. Dr. Herman Geuvers
51020609 h.geuvers@cs.ru.nl

kirsten.hagenaars@student.ru.nl

Assessor:
Dr. Robbert Krebbers
mail@robbertkrebbers.nl

January 10, 2021

Abstract

The Equations plugin for the Coq Proof Assitant allows for defining non-
structurally recursive functions in Coq. We explore how Equations can
be used to define non-structurally recursive functions in Coq. We do so by
creating quicksort, mergesort, and binary search using Equations, along with
quicksort on vectors instead of on lists. We aim for these implementations
to be straightforward and to stay close to their typical Haskell definitions.
We also prove the correctness of these implementations.

Furthermore, the LiquidHaskell verifier allows for proving properties of
Haskell programs. We explore how LiquidHaskell can verify the correct-
ness of Haskell functions by doing this for quicksort and mergesort.

Contents

2 Preluinacies

2.1 Introduction to Coq|
2.1.1 Typesin Coq|
[2.1.2 Definitions in Coq|
[2.1.3 Inductive types| L.
[2.1.4 Fixpoint definitions|
[2.1.5 The Option typel
[2.1.6 The Sumbool typel
[2.1.7 Predicate subtypingl
[2.1.8 Dependent pairs and Sigma types|.
2.1.9 Prootsin Coq|.

2.2 Mathematical definitiond

[2.2.1 Structural and generative recursion|.

13

The Equations plugin|

3.1 Equations definitions|
|3.2 Properties generated by kEquations|
|3.3 Proof tactics tor kEquations|

Applications of Equations|

4.1 Sorted lists and Permutations of lists|
4.2 Quicksort|
4.2.1 quicksort_elim|
|4.2.2 Correctness of quicksort|
4.3 Mergesort|
[4.3.1 merge_elim and mergesort_elim
|4.3.2 Correctness of mergesort|.
4.4 Binary Search|. o oo 000
|4.4.1 Correctness property of binary search|

18
18
20
21

4.6 Quicksort on vectors| L.
[4.6.1 quicksort_elimon vectors|
|4.6.2 Correctness of quicksort on vectors|

[5 The LiquidHaskell verifier|
b.1 Quicksort and mergesort|
[5.2 The permutation property|

6 Related Workl
6.1 Quicksort using the Bove-Capretta approachl
6.2 Quicksort on vectors by Sozeau|
6.3 Mergesort using Fixpoint definitions|
6.4 Proving properties of functional programs|

50
50
52

54
o4
55
o7
59

61

Chapter 1

Introduction

The Coq Proof Assistant allows for writing formal specifications and pro-
grams, and for constructing proofs to show that programs adhere to the
given specifications. More specifically, one can write functional programs in
Coq. What sets Coq aside from functional languages such as Haskell is its
ability to guide and verify mathematical proofs. For example, one can define
a function with its specifications and construct a formal proof showing the
function complies with the specifications.

However, there are restrictions for function definitions in Coq, which do not
exist in Haskell. Namely, recursive functions must be structurally recur-
sive (see Section [2.2.1)). This means that functions over recursively defined
structures (such as lists and trees) are only allowed to have recursive calls on
immediate substructures of the current arguments. These structures have
minimal elements (such as the empty list and a leaf node), which ensures
that the recursive function will terminate. Termination is a requirement for
any program in Coq. Coq enforces this restriction by means of a simple
syntactic check; only functions passing this check are accepted by Coq. An
example of a function where the strict requirements of Coq pose a problem
is quicksort, which can be recursively defined in a functional language such
as Haskell:

quicksort :: Ord nat => [nat] -> [nat]

quicksort [] = []

quicksort (x:xs) = quicksort (filter (<=x) xs) ++
[x] ++ quicksort (filter (>x) xs)

In this example, the immediate substructures of the list x:xs in the case
for quicksort (x:xs) are x and xs. As the recursive calls are done on
filter <= x xs and filter > x xs, Coq will not accept a function def-
inition like this.

To alleviate this restriction, the Coq plugin called Equations allows for re-
cursive functions that are not structurally recursive. Equations allows for
function definitions on inductive types, which includes recursively defined
structures. These function definitions look more similar to those in other
functional languages compared to plain Coq, due to the support for depen-
dent pattern matching. Aside from enabling definitions of complex func-
tions, it also provides strong proof principles for these functions. This allows
for nontrivial proofs about functions defined using Equations. These proof
principles are based on existing proof tactics but are specifically constructed
to accommodate functions defined using Equations. To ensure termination,
Equation-defined recursive functions have to be well-founded (see Section
, which means that they should have a base case thatf will be reached.
One shows that a function is well-founded by explicitly stating the decreas-
ing argument in the signature of the function. This generates corresponding
proof obligations which, once proven, ensure that the function terminates.
These obligations need to be proven by the user. However, Equations does
help with these proofs and proves some obligations on its own. Simply said,
Equations can help us in showing Coq that a function terminates.

We will explore the possibilities of Equations by defining functions that are
not structurally recursive and therefore not allowed by plain Coq. We aim
to make these functions well-readable by staying as close as possible to the
Haskell definitions. The correctness of the resulting functions will be shown
as Coq proofs. This project is made using Coq 8.12 and the corresponding
version of Equations.

LiquidHaskell is a verifier for Haskell which allows for proving properties of
Haskell programs. Instead of translating a Haskell definition to Coq to prove
properties about it, LiquidHaskell may enable us to prove these properties
without using Coq. We will briefly explore the possibilities of LiquidHaskell
by defining some of the same functions we will define using Equations. We
will attempt to verify the correctness of the resulting functions using Lig-
uidHaskell. We use Haskell 8.6.5 and the corresponding version of Liquid-
Haskell.

Chapter [2| provides the necessary information on Coq, along with important
mathematical definitions. Chapters [3] and [4] provide a detailed description
of the research that has been carried out on Equations. Chapter [5|describes
the research carried out on LiquidHaskell. Chapter [6] places this work in the
context of related work. Chapter [7] contains the conclusions.

The Coq and Haskell files created can be found here: https://github.com/
KirstenHagenaars/BachelorThesis/tree/main/Codel

https://github.com/KirstenHagenaars/BachelorThesis/tree/main/Code
https://github.com/KirstenHagenaars/BachelorThesis/tree/main/Code

Chapter 2

Preliminaries

2.1 Introduction to Coq

The Coq system [§] is based on the formalism called the Calculus of Inductive
Constructions. This means that all expressions in Coq are terms which
have a type in the type system pCIC (predicative Calculus of Inductive
Constructions). Note that this also holds for Coq proofs. More detailed
information on this formalism can be found in the Coq documentation [10].
At its core, Coq is a type-checker. This section serves as a guide to the
basics of Coq. Basic constructions in Coq will be introduced in the form of
examples.

A Coq program consists of a series of Coq commands. Such a command is
terminated by a period. From now on, this font is used for user input to
the Coq system and this font is used for the systems response.

Coq has an interesting feature called program extraction, which can extract
a Coq program to another language. The languages currently supported are
Haskell, Ocaml, and Scheme.

2.1.1 Types in Coq

As mentioned before, all expressions are terms that all have a type. We will
introduce three of the most important types:

1. The type Set is meant for computations. Terms of this type remain
during program extraction.

2. The type Prop is meant for propositions. Terms of this type are dis-
carded during program extraction, which allows for terms only used
in proofs to be thrown away.

3. The type Type is the sort of all types (a sort is the type of a type),
thus Set : Type and Prop : Type. Moreover, to avoid inconsisten-
cies such as Type : Type, Coq internally keeps track of universe levels
like this: Type;: Type;,;. These are not available to the user.

Another important note about types in Coq is about comparing values.
When we want to compare values we use =7, <? and <=7. This will return
a boolean, which can be used as a condition in an if-statement but can not
be used as a proposition.

The notations =, < and <= return propositions, which can not be used as a
condition in an if-statement.

2.1.2 Definitions in Coq

Functions can be defined using the Definition keyword. See this example
which squares a natural number:

Definition square (n : nat) := n*n.

This line adds the function square : nat -> nat to the system. This func-
tion can now be used in other commands. For example, using the Compute
keyword to compute a function:

Compute square 2.

Coq responds with: =4: nat.

For case distinctions on booleans, one can use the if ... then ... else
. .. construct, see this function which returns the negation of a given boolean
b:

Definition not (b : bool) := if b then false else true.

Another way to make a case distinction is to use pattern matching, which is
done with the match ... with ... end construct. See this function which
checks whether a given natural number equals 0:

Definition is_zero (n : nat) :=
match n with

0 => true

| S x => false
end.

where S returns the successor of a given natural number. More on natural
numbers in Coq can be found in Section [2.1.3

Lambda expressions can be defined using the fun keyword. For example,
the following function uses a lambda expression to double a given natural
number:

Definition double := fun (n : nat) =>2x*n.

2.1.3 Inductive types

Inductive types are types constructed using constructors. Examples of in-
ductive types are natural numbers, lists, and trees. We will take natural
numbers as an example to further illustrate inductive types.

In Coq, natural numbers are defined as either 0 or the successor of a natural
number, which is captured by the following definition, which introduces nat
as a new type, of type Set:

Inductive nat : Set :=
0 : nat
| S : nat -> nat.

This corresponds to Peano’s encoding of natural numbers. The functions
that produce the terms are called constructors. In the case of natural num-
bers, 0 and S are the constructors. Inductive types are closed under their
constructors, so if x : nat then S x : nat. Case distinction and recursion
are suitable computational concepts for inductive types.

Coq derives induction principles for inductive types. These are useful for
proving properties of that type by induction. For natural numbers, the
induction principle looks like this:

nat_ind : forall P : nat -> Prop,
PO
->
(forallm : nat, Pn -> P (S n))
->
forall n : nat, P n.

To show that property P holds for all natural numbers, one can apply this
principle with the induction tactic or with apply nat_ind (applying math-
ematical induction on natural numbers). This will result in 2 goals, P 0
and forall n : nat, P n -> P (S n) (implications are right-associative
in Coq).
Another important inductive type aside from the definition of natural num-
bers is the definition of lists:
Inductive list (A : Type) : Type :=

nil : list A

| cons : A -> list A -> list A

A list is either an empty list (nil) or the result of adding an element to an
existing list (cons). The infix notation for cons a 1isa :: 1, where 1 is

a list and a is being added to the list. This results in, for example, the list
[1,2,3] being denoted as 1 :: 2 :: 3 :: nil in Coq.

2.1.4 Fixpoint definitions

For recursive function definitions, one uses the Fixpoint keyword. Here is
an example function that appends two lists:

Fixpoint app {A} (1 1': list A) :=
match 1 with

nil => 1"

| a :: tl =>a :: app t1 1'
end.

Since recursive functions typically have a case distinction (a base case and
a recursive case), the match ... with ... end construct is often used to
accommodate this. As mentioned before, recursive functions in Coq must be
structurally recursive. This means that recursive calls can only be made on
subterms of the initial argument. To enforce this constraint, those subterms
need to be obtained by pattern matching, meaning that they need to be
explicitly stated before the =>. In the case of app, the recursive call is done
on tl which indeed is a subterm of 1 and indeed is obtained through pat-
tern matching. More on structural recursion can be found in Section [2.2.1]
Recursive functions may have multiple arguments, in this case, there must
be one that satisfies the structural recursion requirement. This argument
is referred to as the decreasing argument. The decreasing argument can be
stated explicitly by using the {struct 1} syntax in the function signature,
where 1 is the decreasing argument. Coq can often figure out the decreasing
argument, therefore it is usually omitted in function definitions. Note than
when the length of an argument decreases, we will refer to the length of the
argument as the decreasing argument instead of the argument itself.

2.1.5 The Option type

Objects of the Option type can either contain a value or be empty. In other
words, an object of the Option type is a list with at most one element.
It serves the same purpose as Haskell’s Maybe type. It is defined as an
inductive type:

Inductive option (A : Type) : Type :=
Some : A -> option A
| None : option A

When the object contains a value a it is denoted as Some a, when it is empty
it is denoted as None.

An example where the Option type is useful is the head function, which

returns the head of a given list. In case this list is empty, there is no head to
return. To accommodate this, one can use an Option type as a return type.
When the list is empty, None is returned, otherwise the head a is returned
as Some a.

Definition head {A} (1: list A) : option A :=
match 1 with

nil => None

la::t => Some a
end.

2.1.6 The Sumbool type

A regular disjunction A \/ B is an element of Prop. The inductive type
Sumbool is used for the informative disjunction, which is an element of
Set instead of Prop, meaning that it will not be erased during program
extraction. The informative disjunction between logical propositions A and
B is written as {A}+{B} : Set. Its extraction is isomorphic to the type of
booleans, therefore the value of a Sumbool is decidable. Take a look at the
definition of Sumbool:

Inductive sumbool (A B : Prop) : Set :=
left : A -> {A} + {B}
| right : B -> {A} + {B}

An object of type Sumbool contains a left when A holds and contains a
right when B holds. The constructors take elements of type A or B, to result
in a Sumbool object. Since these are propositions, their elements these are
proofs of these propositions. These proofs are typically infered by Coq and
not given explicitly by the user. Because Sumbool is an inductive type with
constructors left and right, one can pattern match on a given object of
Sumbool to find out/decide whether A or B holds:

Definition id_bool (b : bool): bool :=
match sumbool_of_bool(b) with

| left _ => true

| right _ => false
end.

As the name suggests, sumbool_of _bool creates a Sumbool object from a
given boolean. A commonly used alias for this function is dec, which will
also be used in this project.

Sumbool is often used for propositions and their negations. For example,
the le_dec decision procedure decides whether a given n : nat is less than
or equal than a given m : nat.

le_dec : forall nm : nat, {n <=m} + {7 n <= m}

2.1.7 Predicate subtyping

The Program tactic commands allow for enriched specifications and for prov-
ing that the code complies with these specifications. This is done by the
predicate subtyping mechanism, where type checking conditions are gener-
ated for types with added specifications. Use the Set Program Mode com-
mand to enable using predicate subtyping. When you have a type T : Set
and you want only a specific subtype that adheres to certain specifications
you can use {x : T | P x} instead, where P : T -> Prop is the property
all objects of this type should have. In other words, {x : T | P x} is the
subtype of T : Set where P holds. An object of such a type is a pair <x, p>,
where x is an element of T and p is a proof of P x. This p needs to be given
by the user, which is done by proving the conditions generated by the sub-
typing mechanism mentioned above. Once these proofs are given, the Coq
term is complete.

For example, if the return type of a function is nat but we know that its
value will always be below 4, then we can specify this by using {x : nat |
x < 4} as the return type. In this case, the property P x is x < 4. This
gives rise to proof obligations to verify that x < 4 always holds.

This property P may also depend on the input to the function. Take this
overly elaborate definition of successor, which applies the constructor S
(the successor from the standard library) twice and substracts 1.

Definition successor (n : nat) : {m : nat | m = S n} :=
(8 (Sn)) - 1.

The return type is the subtype {m : nat | m = S n}, specifying that the
output m is indeed the successor of the input n. This gives rise to one proof
obligation:

successor_obligation_1 : forall n : nat, S (Sn) -1 =Sn
This property is trivial and therefore it is automatically solved by Coq.

Note that P may be as elaborate as one wishes, making it suitable for cor-
rectness properties and pre-and post-conditions.

Furthermore, note that the generated obligations when using if-statements
may be unprovable since the value of the boolean test of the if-statement is
not taken into account. This problem does not occur when using decidability
combinators introduced in Section [2.1.6] instead. For example:

Program Definition id (n : nat) : { x : nat | x =n } :=
if dec (n =7 0) then O

10

else S (n - 1).

2.1.8 Dependent pairs and Sigma types

Dependent pairs are pairs where the type of the second element depends on
the value of the first element. For example, take the pair (a,b) where a € A
and b € B a, the type of b depends on the value of a. We will discuss three
ways of creating such a dependent pair in Coq, which depend on the type
of B.

1. Using an existential quantifier: exists (x:A), B x : Prop. This is
only applicable in case B : A -> Prop.

2. Using a subset: {x:A | B x} : Set/Type. This is also only applica-
ble in case B : A -> Prop.

3. Using Sigma types: sig (x:A), B x : Set/Type. This is applicable
regardless of the type of B.

Even though all given options essentially create the same dependent pair,
there is a slight difference. When you have a proof of exists (x:4), B x,
Coq can not give you an a for which B a holds by using an exists-elimination.
This is different from the subset or Sigma type. Thus, the use of an exis-
tential quantifier is more restrictive.

2.1.9 Proofs in Coq

Coq allows for interactive proofs of, for example, lemmas or theorems. Such
a proof consists of commands called proof tactics. When proving, Coq dis-
plays information about what the user needs to prove. This information,
also known as the goal, consists of the conclusion and the context. The con-
clusion is what one needs to prove. The context contains all of the assumed
information in the form of hypotheses. Often, there are multiple subgoals.
When applying a proof tactic, Coq will update the corresponding subgoal.
This can lead to more or fewer subgoals, or it can change the conclusion or
a hypothesis. Once there are no more subgoals left, the proof is complete.

A proof tactic, just like any other command, is terminated by a period. To
apply a tactic t to all subgoals resulting from tactic u, use a semicolon to
combine the tactics into one command like this: u; t..

See Table for an overview of useful tactics to apply on logical connec-
tives either in a hypothesis or in the conclusion. The Coq standard library
contains countless lemmas one may apply in a proof. These are already
verified and thus make your proofs more concise. Application of a lemma is
done by the apply keyword followed by the name of the lemma. The tactics
Qed or Defined are applied at the end of a proof. Applying Qed makes the

11

Hypothesis H Conclusion

\ apply H intros H
elim H
3 case H exists v

destruct H as [x H1]

elim H

- intros H
case H
elim H

A case H split

destruct H as [H1 H2]

elim H
left or
\% case H
right
destruct H as [H1 | H2]
— apply H intros H
o rewrite H ring
rewrite <- H reflexivity
elim H
False
case H

Table 2.1: Tactics for logical connectives [1]

proof term opaque, meaning that it can not be unfolded. Applying Defined
makes the proof term transparent, allowing the unfolding of the definition.

One important proof tactic is intro, which applies a forall-introduction or
an implication-introduction. When the tactic is followed by a name, this
becomes the name of the new hypothesis resulting from applying the tactic,
otherwise, Coq decides the name. The tactic intros repeatedly applies the
intro tactic until it no longer applies.

Another important proof tactic is induction, which applies induction on
a given inductive type. This will create a subgoal for each constructor of
the inductive type. Use induction n to apply induction on n. One can
also follow up the induction tactic with a numeral n, this will apply intro
until it encounters the n-th non-dependent product in the goal. Afterward,
it applies induction on the hypothesis which was last introduced to the
context.

!The content of this table is from Coq in a Hurry [3]

12

Example of a Coq proof

We will further illustrate Coq proofs using an example. Let’s say we want
to prove that the app function defined previously, which appends two lists,
is associative. First, we formalize this as a lemma:

Lemma app_associative {A} :
forall (x y z: list A),

app (app x y) z = app x (app y 2).

When running this line, Coq launches the proof mode. In case one does not
want to prove the lemma yet, one can use the command Admitted. This
will close the proof mode and simply assumes that the lemma holds. The
lemma can then already be applied in other proofs. Table [2.2] contains a full
proof walkthrough for this lemma. Every step in the proof corresponds to a
row, where each row is divided by a dashed line. The current goal is above
the dashed line and the proof tactic that is applied in response to this goal
is below the dashed line, along with some explanation.

A Type

(/1
forallxy z: list A, app (app X y) z = app X (ApP Y 2)

This tactic does a forall-introduction for x, y, and z

A Type
X, Y. z: list A

(a/m
app (apPpP X y) Z = app X (app Y 2)

induction x.

This tactic launches a proof by induction on x, the current goal is split into
a base step and an inductive step

A Type
Y, z: list A
(1/2)
app (app nily) z = app nil (app Y 2)
(2/2)

13

app (app (A x) y) Z=app (a:: X) (PP Y 2)

reflexivity.

This is the base step. It is easily solved by simplifying both sides of the
equation, which is done using this tactic

A Type

a: A

X, Y. z: list A

IHX : app (app xy) z = app x (AppP Y 2)

(/1)

app (app (@ X) y) z=dpp (a:: X) (app Y 2)

simpl.
We have now entered the inductive step. This goal is simplified using the
definition of app

A Type

a: A

X, Y,z list A

IHx : app (app xy) z = app X (appP Y 2)
(a/m

a:app (@ep Xxy)z=a: app X (appy2)

rewrite IHx.

This tactic rewrites the goal by applying hypothesis IHx, which is the in-
duction hypothesis

A Type

a: A

X, Y. z: list A

IHX : app (app X y) z = app x (ApPpP Y 2)
(/1)
a:appx(Appyz) =a: app X (app Y 2)

14

This goal trivially holds, therefore it is solved using this tactic

No more subgoadls.

Now that there are no more subgoals left, one can use the command Qed to
save the proof. The lemma can now be applied in other proofs using the
command apply app_associative

Table 2.2: Step-by-step proof of lemma app_associative

2.2 Mathematical definitions

2.2.1 Structural and generative recursion

In general, recursion can be divided into two types, structural and gener-
ative recursion [7]. The terms ’generatively recursive functions’ and 'non-
structurally recursive functions’ refer to the same set of functions and will
be used interchangeably.

Structurally recursive functions work on inductive types and perform their
recursive calls on immediate substructures of those types. An example of
such a function is one that returns the sum of the values of a list:

Fixpoint sum 1 :=
match 1 with

nil => 0

[hd :: t1 => hd + sum tl
end.

In this case 1 is a list, which is an inductive type. A list is either an empty
list (nil) or the result of an element added to a list (hd :: tl1). Notice
how these constructors are used in the match ... with statement. This
function sums up the values of the list by recursively adding the value of
the head (hd) to the sum of the tail (t1). The recursive call is done on the
tail of the list, which is an immediate substructure of a list, making this
function structurally recursive.

Generatively recursive functions perform recursive calls not in the immediate
substructures, but on some generated values. An example of this is the
function that computes the greatest common divisor of two natural numbers:

Fixpoint gcd (a b : nat): nat :=
match a with

15

0=>0bD
| S a' =>gcd (b mod (S a')) (S a')
end.

Notice that the recursive call is done on b mod (S a') and S a'. The
function is not structurally recursive since the recursive call is not simply
done on a'. However, we can see that argument a is decreasing, meaning
that the base case will be reached. Since this is a simple case, Coq can figure
out that the function terminates and thus accepts it. For more complex
functions this is not the case.

We make a distinction between these two types of recursion when inves-
tigating termination. For structurally recursive functions we clearly have
a decreasing argument since the recursive call is always done on a smaller
object. Therefore we know that the base case will be reached, which is nil
in the sum function. This ensures that the function terminates. Proof of
termination for such functions is done by structural induction:

Definition 2.2.1 (The Principle of Structural InductionEI).
If

1. proposition P holds for all the minimal structures

2. if proposition P holds for the immediate substructures of structure X
(the Induction Hypothesis)
then proposition P also holds for X

then proposition P holds for all such structures.

Structural induction is not suitable for proving termination of generatively
recursive functions, since the recursive calls are not done on immediate sub-
structures. Therefore, termination needs to be proven in some other way.
One possibility is by proving that the function is well-founded, which we
discuss in the following section.

2.2.2 Well-founded relations

Definition 2.2.2 (Well-founded relations). A binary relation R on a class
X is well-founded if the following holds:

VSCX [S#D—3TdJmeS [VseS [-sRm]]

In natural language: every non-empty subset S of X contains an m such
that sRm does not hold for any s € S. Such an m is called a minimal
element. So for a relation to be well-founded, every non-empty subset of the

2This principle is derived from the Principle of Structural Induction given in Semantics
With Applications [14]

16

corresponding class should contain such a minimal element. An equivalent
definition of a well-founded relation R on a class X is that there does not
exist an infinitely decreasing R-chain, where a decreasing R-chain looks like
this:

(s(i=3)R(s(i—2) R(s(i—1)) R (s1)

where s : Z — X and ¢ € Z. Note that this chain continues infinitely to the
left.

An example of a well-founded relation is the relation < on natural numbers.
For every non-empty subset of N there is a minimal element. In the case
of N, the minimal element is 0, since there does not exist an n € N for
which n < 0 holds. In any other non-empty subset of N there also exists
an element that is the lowest, which is the minimal element. The relation
< on natural numbers, however, is not well-founded. For example, the set
S ={0,1} does not contain a minimal element because 0 <0 < 0.... This
is due to the reflexivity of <. This problem does not arise for < since this
is not reflexive.

Definition 2.2.3 (Reflexive relations). A binary relation R on a class X is
reflexive if the following holds:

Ve e X [zRzx]

So in a reflexive relation, every element relates to itself. It follows that
reflexive relations do not have minimal elements and therefore are not well-

founded.

Non-reflexive relations are not necessarily well-founded. For example, the
relation < on the integers is not reflexive but Z does not contain a minimal
element (no integer is the lowest).

17

Chapter 3
The Equations plugin

Equations is a tool for Coq originally created by Matthieu Sozeau in 2010
[19]. Together with Cyprien Mangin, Sozeau rewrote Equations in 2019 to
make it more powerful [20]. Equations is the current solution for proving that
functions are well-founded and for proving properties about these functions.
Equations serves as a improvement to the Program package [18] and the
Function package [2]. When defining a function, the user has to explicitly
state the decreasing argument. This will generate proof obligations to show
that this argument is indeed decreasing. Once these have been proven, Coq
knows that the function terminates and therefore accepts the definition.
Furthermore, Equations supports dependent pattern matching and with-
and where-clauses.

In this chapter, we will introduce some of the features of Equations. The
true inner workings of Equations are out of scope for this project, but it is
important to note that Equations is merely a definitional extension to Coq;
it does not extend the core logic of Coq, therefore assurance is not sacrificed.

3.1 Equations definitions

This section serves as a guide to defining functions using the Equations
plugin. The function sum computes the sum of all elements of a list of
natural numbers. Here it is defined using a regular Fixpoint definition:

Fixpoint sum (1 : list nat) : nat :=
match 1 with

nil => 0

| (h::tl) => h + sum tl
end.

Here it is defined using Equations:

18

Equations sum (1 : list nat) : nat :=
sum nil := 0 ;
sum (h::tl) := h + sum tl.

An Equations definition starts with the keyword Equations. Notice that the
Equations definition uses pattern matching in a similar syntax to Haskell
and thus does not need the match ... with ... end construct. Similarly
to Haskell, one can pattern match on _ when the value of the corresponding
parameter does not matter. To enter proof mode immediately after running
the function definition, follow up the Equations keyword with a ? in the
regarding function.

Generatively recursive functions can be defined using the by wf ... R con-
struct in the function signature, where R is the well-founded relation. On
the dots should be the argument for which the well-founded relation holds.
See the following example, which computes the greatest common divisor of
two given natural numbers:

Equations gcd (n m : nat) : nat by wf m 1lt:=
ged x 0 := x ;
gcd x vy :=gcd y (x mod y).

In this case the well-founded relation R is < (1t) and the corresponding
argument is m. We refer to m as the decreasing argument. The value of m
will eventually become 0, which is the minimal element in the relation <
(1t) of the natural numbers. This makes the function gcd well-founded.
However, this does need to be proven before the function is defined. Equa-
tions generates multiple proof obligations for this, which are automatically
solved except for one, which should be manually proven by the user. Once
this proof is complete, the function gcd is defined successfully.

An Equations definition supports predicate subtypes as return types, we
have seen these types in Section 2.1.7] The Set Program Mode command
must be executed first to enable it, just like for Program definitions. For
clarity, we present the div2 function implemented once using Program and
once using Equations. This function divides natural number by two (round-
ing down) and returns a predicate subtype:

Program Fixpoint div2 (n : nat)

{x :nat | n=2*x\/n=2x*x+17%} :=
match n with

| S (S p) =>8 (div2 p)

| _=>0

end.

Equations div2 (n : nat)

19

{x :nat | n=2«x\/n=2*x+171% :=
div2 (S (S p)) S (div2 p);
div2 _ := 0.

3.2 Properties generated by Equations

When defining a function using Equations, certain properties of this func-
tion are derived. These properties are useful in Coq proofs about Equations
definitions. We will discuss these properties using the Equations definition
for sum given in Section Firstly, for each of the patterns a lemma is cre-
ated corresponding to the function definition. These lemmas are essentially
rewrite rules, allowing the user to treat the function definition as a rewriting
system. In the case of sum, these lemmas are called sum_equation_1 and
sum_equation_2:

sum_equation_1 : sum nil = O

sum_equation_2 :
forall (n : nat) (1 : list nat),
sum (n :: 1) =n + sum 1

Notice how these lemmas indeed correspond to the definition of sum.

Then Equations generates the inductive type sum_graph, which holds lists of
natural numbers and their sums. The relation sum_graph defines the func-
tion sum as a relation. It defines the graph of the function sum : sum 1 = n
if and only if the type sum_graph 1 n is inhabited.

Inductive sum_graph : list nat -> nat -> Set :=
sum_graph_equation_1 : sum_graph nil O
| sum_graph_equation_2 : forall (n : nat) (1 : list nat),
sum_graph 1 (sum 1)
->
sum_graph (n :: 1) (n + sum 1)

The property sum_graph_rect is the standard induction principle for the
inductively defined relation sum_graph:

sum_graph_rect :
forall P : list nat -> nat -> Type,
P nil O
->
(forall (n : nat) (1 : list nat),
sum_graph 1 (sum 1)
->
P1 (sum 1)
->

20

P(m::1 (n+ sum 1))
->
forall (1 : list nat) (n : nat),
sum_graph 1 n -> P 1 n

The following property shows that sum and sum_graph correspond correctly,
meaning that any list of natural numbers together with its sum forms a
sum_graph. That is, sum_graph is indeed the graph of the function sum.

sum_graph_correct
forall 1 : list nat,
sum_graph 1 (sum 1)

The following eliminator lemma is useful for proving properties of sum, where
P is the property.

sum_elim :
forall P : list nat -> nat -> Type,
P nil O
->
(forall (n : nat) (1 : list nat),
P1l (sum 1)
->
P(@::1) (n+ sum 1))
->
forall 1 : list nat,
P1 (sum 1)

Chapter [4 will present examples of using such an eliminator.

3.3 Proof tactics for Equations

The Equations plugin includes some proof tactics that work well with
Equations-defined functions, which we introduce in this section.

The Coq standard library tactic simpl can be used to simplify function
applications of functions defined using Fixpoint. This tactic does not work
with Equations definitions. Fortunately, a tactic with similar results for
Equations definitions is provided, namely simp fi ... f,, where f1... f,, are
the names of the Equations definitions you want to simplify. This tactic
is an alias for autorewrite with fi...f,; try typeclasses eauto with
Below subtermrelation fi... f,. The tactic works by applying rules from
the internal associated rewrite hint databases of Coq.

Equations also provides the funelim f args tactic, where f is a function
and args are its arguments. This tactic eliminates f by creating subgoals
according to the case splitting tree of f.

21

Chapter 4

Applications of Equations

We explore Equations in practice by defining a couple of well-known gener-
atively recursive functions in Coq using Equations. For each function, we
also prove its correctness in Coq. This chapter discusses these functions and
gives an overview of how the proofs are done, where some trivial lemmas are
left out. Refer to the Coq files for the full proofs.

In this chapter, we often speak of lists or vectors being permutations of
each other. Note that the binary relation of ’being a permutation of’ is
symmetric, so if list /1 is a permutation of list lo, then the same holds the
other way around.

22

4.1 Sorted lists and Permutations of lists

As preparation for creating quicksort, mergesort, and binary search on lists,
we here introduce the definition of a sorted list and the definition of two
lists being permutations of each other.

For the definition of a sorted list we use the Sorted predicate from the Coq
library Coq.Sorting.Sorted. We will first look at the HdRel predicate, which
is used in the definition of Sorted:

Variable A : Type.
Variable R : A -> A -> Prop.

Inductive HdRel a : list A -> Prop :=
| HdRel_nil : HdRel a []
| HdRel_cons b 1 :
Rab
->
HdRel a (b :: 1).

The function R takes two elements of type A and returns a proposition,
making R a binary relation on type A. Ana : Aanda (b :: 1) : list A
inhabit HdRel if R a b holds. In other words, if the binary relation R holds
on a and b, then HdRel a (b :: 1) holds.

The Sorted predicate is defined as follows:

Inductive Sorted : list A -> Prop :=
| Sorted_nil : Sorted []
| Sorted_cons a 1 :
Sorted 1
->
HdRel a 1
->
Sorted (a :: 1).

This defines a sorted list for the following reasons. Firstly, an empty list is
always sorted. Secondly, a non-empty list a :: 1 is sorted if 1 is sorted and
if HdRel a 1 holds. Thus, a list is sorted according to the binary relation R
if all pairs of subsequent elements in the list are related according to R.

For the definition of two lists being a permutation of each other, we use the
Permutation type from the Coq library Coq.Sorting.Permutation.

Variable A:Type.

Inductive Permutation : list A -> list A -> Prop :=
| perm_nil: Permutation [] []

23

| perm_skip x 1 1'
Permutation 1 1'
->
Permutation (x::1) (x::1')
| perm_swap x y 1 : Permutation (y::x::1) (x::y::1)
| perm_trans 1 1' 1''
Permutation 1 1'
->
Permutation 1' 1''
->
Permutation 1 1'"'.

Firstly, two empty lists are clearly permutations of each other. Secondly,
two lists are permutations of each other when they have the same head and if
their tails are permutations of each other. Thirdly, a list is a permutation of
the same list but with the first two elements swapped. Lastly, Permutation
can be seen as a binary relation which is transitive. For both the definition
Sorted and Permutation, there are many lemmas given in their respective
libraries.

24

4.2 Quicksort

Quicksort is a recursive sorting algorithm that can sort a list with an ex-
pected running time of ©(n log n) and a worst-case running time of ©(n?),
where n denotes the length of the input list [5]. It works by choosing one
element from the list, which we refer to as the pivot, and splitting the re-
mainder of the list into those less or equal to the pivot and those greater
than the pivot. Consecutively, a recursive call is made on the two resulting
lists. The base case is reached when there is an empty list; in this case,
quicksort returns an empty list. Recall the Haskell definition:

quicksort :: Ord nat => [nat] -> [nat]

quicksort [] = []

quicksort (x:xs) = quicksort (filter (<=x) xs) ++
[x] ++ quicksort (filter (>x) xs)

When trying to replicate this definition in Coq using Fixpoint, you run into
problems since quicksort is not structurally recursive. This is the case be-
cause (filter (<=x) xs) and (filter (>x) xs) are not immediate sub-
lists of the input list. Notice, however, that the recursive calls are done
on smaller lists than the input list, making quicksort well-founded on the
length of the input list. This will allow us to define quicksort using Equa-
tions. Using the by wf _ R syntax, we can tell Equations that the decreasing
argument is the length of the list. This results in the following definition:

Equations? quicksort (1 : list nat)
list nat by wf (length 1) 1lt:=
quicksort nil := nil ;
quicksort (h :: t) := (quicksort (filter_lte h t)) ++
(h :: (quicksort (filter_gt h t))).

where filter_lte and filter_gt are helper functions for readability:
Definition filter_lte (a: nat) (1 : list nat) :=

filter (fun n=> n <=7 a) 1.
Definition filter_gt (a: nat) (1 : list nat) :=

filter (fun n=> negb(n <=7 a)) 1.

Notice how close this definition is to Haskell’s definition; the readability was
not compromised.

Equations generates two proof obligations to show the well-foundedness of
the definition:

length (filter_lte h t) < S (length t)
length (filter_gt h t) < S (length t)

25

Notice how these proof obligations indeed correspond to length 1 being
the decreasing argument. Both goals were provable by induction on t. The
base case was trivial. In the inductive step we made a case distinction on
whether x <= h, where x is the the first element of t and h is the pivot.

4.2.1 quicksort_elim

As seen in Section one of the lemmas generated by Equa-
tions corresponding to the quicksort definition is the eliminator lemma
quicksort_elim. For readability, we present this lemma as a derivation
rule. The premises of the derivation rule are given on top of each other,
above the line, separated by one line of whitespace. The conclusion of the
derivation rule is given below the line.

The derivation rule for quicksort_elim is defined as:
P nil nil

(forall (n : nat) (1 : list nat),
P (filter_lte n 1) (quicksort (filter_lte n 1))
->
P (filter_gt n 1) (quicksort (filter_gt n 1))
->
P (n :: 1) (quicksort (filter_lte n 1) ++
n :: quicksort (filter_gt n 1)))

[quicksort_elim
forall 1 : list nat, P 1 (quicksort 1)

where P : list nat -> list nat -> Type.

This lemma allows for proving a property (P) of the quicksort function. This
lemma is used multiple times when proving the correctness of the quicksort
definition in the following section.

4.2.2 Correctness of quicksort

Now that we have proven the well-foundedness of our quicksort definition
and Coq has accepted the definition, we need to prove its correctness. We
define the correctness of a sorting algorithm as follows: the resulting list is
sorted and the resulting list is a permutation of the input list. As definitions
of sorted lists and two lists being permutations of each other, we use the
definitions specified in Section

Proof of the permutation property

We start by proving that the quicksort implementation returns a permuta-
tion of the input list. We start with this since this property comes in handy

26

when showing that quicksort returns a sorted list (but it is not required).
For this proof, we have created multiple lemmas. We first go over these
lemmas.

Lemma perm_app :
forall (1 11 12 : list nat),
(exists (13 14 : list nat),
Permutation 13 11
/\
Permutation 14 12
/\
Permutation 1 (13 ++ 14))
->
Permutation 1 (11 ++ 12).

This lemma was proven by applying some lemmas from the standard library.

Lemma perm_lte_gt
forall (1 : list nat) (n : nat),
Permutation 1 (filter_lte n 1 ++ filter_gt n 1).

This lemma was proven by induction on 1. In the inductive step, a case
distinction similar to the one in the well-foundedness proof is used.

Theorem quicksort_permutation :
forall (1 : list nat),
Permutation 1 (quicksort 1).

The most important step in proving that quicksort returns a permutation
of the input list was applying quicksort_elim. We also used the previously
defined lemmas perm_app and perm_lte_gt.

Proof of the sorted property

Now that we know that quicksort returns a permutation of the input list,
we want to prove that quicksort always returns a sorted list. By a sorted
list is meant a list in non-decreasing order. For this proof, we have created
multiple lemmas. We first go over these lemmas.

Lemma in_gt
forall (elem n : nat),
(exists (1 : list nat),
In elem (filter_gt n 1))
->
elem > n.

Lemma in_1lte
forall (elem n : nat),

27

(exists (1 : list nat),
In elem (filter_lte n 1))
->
elem <= n.

Both of these lemmas were proven using basic proof tactics and some lemmas
from the standard library.

Lemma in_qgs
forall (1 : list nat) (elem : nat),
In elem 1
<>
In elem (quicksort 1).

This lemma was easily proven using the fact that we have already shown
that quicksort returns a permutation of the input list.

Lemma sort_app :
forall (1 1': list nat) (n : nat),
Sorted le 1
->
Sorted le 1'
->
(forall (elem : nat),
In elem 1
->
elem <= n)

(forall (elem : nat),
In elem 1'
->
elem > n)
->
Sorted le (app 1 (n::1')).

This lemma is proven by induction on 1.

Theorem quicksort_sorted :
forall (1 : list nat),
Sorted le (quicksort 1).

We used quicksort_elim to show that quicksort always returns a sorted
list. We also used the previously defined lemmas in_gt, in_lte, in_gs, and
sort_app.

28

Conclusion

Now that we have shown that quicksort permutes and sorts, we can easily
prove its correctness by proving:

Theorem quicksort_correct
forall (1 : list nat),
Sorted le (quicksort 1) /\ Permutation 1 (quicksort 1).

Applying quicksort_sorted and quicksort_permutation proves this the-
orem.

29

4.3 Mergesort

Mergesort is a recursive sorting algorithm with a time-complexity of
©(n log n), where n denotes the length of the input list [5]. It works by re-
cursively splitting the list, sorting the two resulting lists, and then merging
them in such a way that the result is a sorted list. The base case is an empty
list or a singleton list, which both trivially are sorted. Our implementation
concerns sorting lists of natural numbers in non-decreasing order. We first
take a look at a mergesort implementation in Haskell [12]. First, we look at
merge, which merges two lists. In the application of merge, these two lists
will always be sorted. The merge function merges these sorted lists into one
sorted list. It does so by looking at the first elements of both of the lists and
comparing them, the smallest of the two will be put in front of the resulting
list.

merge :: Ord a => [a] -> [a] -> [a]

merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys) | x <=y x:merge xs (y:ys)
| otherwise = y:merge (x:xs) ys

Note that there is not one fixed decreasing argument, depending on whether
x<=y the recursive call is made on either the tail of the first list (xs) and
the entire second list (y:ys) or the entire first list (x:xs) and the tail of the
second list (ys). Because of this, Coq cannot guess the decreasing argument
and therefore we need the help of Equations.

The functions firstHalf and secondHalf return the first and the second
half of a given list, respectively. They are just there for readability’s sake.
Mergesort (msort) does a recursive call on the first half and the second half
of the list and then merges the resulting lists. Note that the [a] case is
necessary to ensure termination, otherwise you end up in an infinite loop
when the given list contains one element.

firstHalf xs = let { n = length xs } in take (div n 2) xs
secondHalf xs = let { n = length xs } in drop (div n 2) xs
msort :: Ord a => [a] -> [a]

msort [] = []

msort [a] = [a]

msort xs = merge (msort (firstHalf xs)) (msort (secondHalf xs))

Note that mergesort is not structurally recursive. The recursive calls are
made on the first and the second half of the list which are substructures of
the list but are not immediate substructures of the list. This means that we
can not define it in Coq as is, but we can when using Equations. We first

30

define merge. The decreasing argument is length 1 + length 1', since
this decreases in every recursive call. Aside from specifying the decreasing
argument, the definition is just a translation from Haskell.

Equations? merge (1 1' : list nat)
list nat by wf (length 1 + length 1'):=

merge xs nil := xs ;

merge nil ys := ys ;

merge (x::xs) (y::ys) :=
if x <=7 y then x :: merge xs (y::ys)
else y :: merge (x::xs) ys.

This gives rise to one proof obligation to show that length 1 + length 1'
is indeed the decreasing argument making the function well-founded:

S (length xs + length ys) < S (length xs + S (length ys))
This trivially holds and is proven using the tactic lia.

For the mergesort definition we have also defined two helper definitions
for readability. These are first_half and second_half, which return the
first half and the second half of a given list, respectively. They make use
of the functions firstn and skipn from the standard library. The function
Nat.div2 divides a given natural number by two. If the length of the list is
uneven, the element in the middle will be in the second half of the list since
Nat.div2 rounds downwards. The resulting definition once again is just a
translation from Haskell. The decreasing argument is length 1, since this
is divided by 2 for every recursive call and therefore decreases.

Definition first_half (1: list nat) :=
(firstn (Nat.div2 (length 1)) 1).

Definition second_half (1: list nat) :=
(skipn (Nat.div2 (length 1)) 1).

Equations? mergesort (1 : list nat)
list nat by wf (length 1) 1t :=
mergesort nil := nil;
mergesort (a::nil) := a::nil;
mergesort 1 :=
merge (mergesort (first_half 1)) (mergesort (second_half 1)).

This definition gives rise to two proof obligations, which together show that
length 1 is indeed the decreasing argument and the function is thus well-
founded. The context for both obligations is the following:

n, n0 : nat
10 : list nat
1l :=n :: n0 :: 10 : list nat

31

We first take a look at the first proof obligation:

S (length (firstn (Nat.div2 (length 10)) (nO :: 10)))
< 8 (S (length 10))

This corresponds to the first recursive call, mergesort (first_half 1),
where the argument should be smaller than its current value. This proof
obligation was proven by induction on length 10. We now take a look at
the second proof obligation:

length (second_half 1) < S (S (length 10))

This, more clearly, corresponds to the second recursive call. This proof
obligation was proven by induction on 10.

4.3.1 merge_elim and mergesort_elim

As we have seen in Section Equations derives an eliminator for its func-
tions. Such an eliminator can be used to prove properties about these func-
tions. Both the eliminator for mergesort and merge will be used in showing
the correctness of mergesort in Section These eliminators are shown
below as derivation rules. Section [£.2.1] describes how such a derivation rule
should be read.

The derivation rule for merge_elim is defined as:
(forall 1 : list nat, P 1 nil 1)
(forall (n : mnat) (10 : list mnat), P nil (n :: 10) (n :: 10))

(forall (n0 : nat) (1 : list nat) (n : nat) (10 : list nat),
P1l (n :: 10) (merge 1 (n :: 10))
->

P (n0 :: 1) 10 (merge (n0 :: 1) 10)

->
P (n0 :: 1) (n :: 10)
(if n0 <=7 n then n0 :: merge 1 (n :: 10)
else n :: merge (n0 :: 1) 10))

[merge_elin]
forall 1 1' : 1list nat, P 1 1' (merge 1 1')

where forall P : list nat -> list nat -> list nat -> Type.

32

The derivation rule for mergesort_elim is defined as:
P nil nil
(forall n : nat, P (n :: nil) (n :: nil))

(forall (n nO : nat) (1 : list nat),
P (first_half (n :: n0 :: 1))
(mergesort (first_half (n :: n0 :: 1)))
->

P (second_half (n :: nO :: 1))
(mergesort (second_half (n :: n0 :: 1)))

->
P(@m::mn0 :: 1)
(merge (mergesort (first_half (n :: nO :: 1)))
(mergesort (second_half (n :: n0 :: 1)))))

[mergesort_elim]

forall 1 : list nat, P 1 (mergesort 1)
where P : list nat -> list nat -> Type.

4.3.2 Correctness of mergesort

As we have done with quicksort in Section we prove the correctness of
our mergesort definition by proving that the resulting list is always sorted
and that the resulting list is always a permutation of the input list. We use
the definitions of a sorted list and of two lists being a permutation of each
other given in Section

Proof of the permutation property

We start by proving that mergesort returns a permutation of the input list.
We first go over the lemmas created for this proof.

Lemma perm_merge :
forall (11 12 13 : list nat),
Permutation 11 (app 12 13)
->
Permutation 11 (merge 12 13).

This lemma was proven using merge_elim and a few lemmas from the stan-
dard library.

Lemma perm_app :
forall (1 11 12 : list nat),
(exists (13 14 : list nat),
Permutation 13 11
/\

33

Permutation 14 12
/\
Permutation 1 (13 ++ 14))
->
Permutation 1 (11 ++ 12).

This lemma was proven using a few lemmas from the standard library.

Theorem mergesort_permutation :
forall (1 : list nat),
Permutation 1 (mergesort 1).

Using the previously shown lemmas in combination with mergesort_elim,
this theorem was proven. We have now shown that mergesort returns a
permutation of the input list.

Proof of the sorted property

Now that we have shown that mergesort permutes, we will show that it
always returns a list sorted in non-decreasing order. We first go over the
lemmas defined for this proof. The definition of HdRel is given in Section

41

Lemma hdrel_merge
forall (1 1' : list nat) (a a' : nat),
Sorted le (a :: 1)

->
Sorted le (a' :: 1')
->
a <= a'
->
HdRel le a (merge 1 (a' :: 1'))
/\
HdRel le a (merge (a' :: 1') 1).

This was proven by destructing on 1, which behaves the same as induction
but leaves out the induction hypothesis. A case distinction is made by
comparing a' and the head of 1.

Lemma merge_sorts
forall (1 : list nat),

Sorted le 1
->
forall (1' : list nat),
Sorted le 1'
->

Sorted le (merge 1 1').

34

This lemma is proven using induction 1, Section describes what this
does. The inductive step is proven using induction 1. A case distinction
is made by comparing the values of the heads of the two lists 1 and 1'. The
lemma created previously, hdrel_merge, was also applied.

Theorem mergesort_sorted :
forall (1 : list nat),
Sorted le (mergesort 1).

By first applying mergesort_elim and then merge_sorts, this theorem was
proven. We have now shown that mergesort returns a sorted list in non-
decreasing order.

Conclusion

Now that we have shown that mergesort permutes and sorts, we can easily
prove its correctness by proving:

Theorem mergesort_correct
forall (1 : list nat),
Sorted le (mergesort 1) /\ Permutation 1 (mergesort 1).

Applying mergesort_sorted and mergesort_permutation proves this the-
orem.

35

4.4 Binary Search

The binary search algorithm finds the position of a given target value in
a given sorted list. This list should be sorted in non-decreasing order. Its
worst-case running time is ©(log n), where n is the length of the input list
[5]. The binary search algorithm searches for the position of the target value
by comparing the element in the middle of the list to the target value. If
the target value equals the element in the middle of the list, we have found
its position. If the target value is lower, we know that its position is in the
first half of the list. Furthermore, if the target is higher, we know that its
position is in the second half of the list. These conclusions can be drawn
due to the list being sorted.

In this implementation, we also cover the case where the given target value
is not in the given list. This is done by having Maybe Int as the return
type of the function, which equals Nothing if the target is not in the list
and Just p otherwise, where p is the position of the target value in the list.

We will refer to the part of the list in which the target value could still be
as the relevant part of the list. In this implementation, we keep track of the
relevant part of the list by keeping track of its borders, where 1 denotes the
left border position and r denotes the right border position. These borders
are both included in the relevant part of the list. The first element of the
list has position 0.

We first look at a binary search implementation in Haskell:

binarysearch :: Ord a => [a] -> a -> Int -> Int -> Maybe Int
binarysearch list t 1 r

| 1 > r = Nothing

| 1ist !!' m < t = binarysearch list t (m+l) r

| list !!' m > t = binarysearch list t 1 (m-1)

| otherwise = Just m

where m = (1l+r) ~div™ 2

Once 1 > r, the relevant part of the list is empty. This means that the
target value is not in the list, therefore we return Nothing.

The recursive calls are done with either 1 increased or r decreased, making
this function not structurally recursive. The function is well-founded on R-L,
since its value decreases every recursive call. Note that R-L corresponds to
the length of the relevant list.

When translating this implementation to Coq one encounters a problem.
Equations generates proof obligations to show that binary search is well-
founded on R-L, which look like this:

R - (Nat.div2 (L + R) + 1) <R - L

36

Nat.div2 (L +R) -1 - L <R -1L

The only relevant restriction in the corresponding context is that
(R <? L) = false, so it can be the case that R = L. This would mean that
R - L = 0. Bearing in mind that we are working with natural numbers, we
can not prove that something is less than 0. To solve this problem, we need
to mold the definition of binary search in such a way that its termination
becomes provable in Coq.

We do this by shifting the right border r one spot to the right, meaning that
it now points to the first position after the relevant part of the list. The
right border is now no longer included in the relevant part of the list but
the left border still is. Instead of checking whether 1 > r, we now check
whether 1 >= r. This makes the termination of the resulting definition
provable because we now have (R <=7 L) = false in our context instead
of (R <? L) = false. It follows that R > L, therefore R - L does not equal
0 and we no longer have the described problem. To ensure that the right
border stays one position to the right from the relevant part of the list,
we need to change the arguments given to the second recursive call. This
recursive call is executed when the target should be to the left of the middle
of the list, which means that the right border should become the current
middle of the list (m) instead of one position to the left of the middle of the
list (m-1). Note that shifting r has an effect on the value of m, but this is not
a problem due to the nature of the algorithm. After presenting the resulting
definition and its proof of termination, we will walk through an execution
of binary search including a visualization.

This leads to the following definition of binarysearch:

Equations? binarysearch (1: list nat) (target L R :nat)
option nat by wf (R-L) 1lt:=
binarysearch 1 t L R with dec(R <=7 L) =>
| left H => None;
| right H with dec(t =7 nth (Nat.div2 L+R) 1 (t+1))=>
| left H => Some (Nat.div2 L+R);
| right H => if nth ((Nat.div2 L+R)) 1 (t+1) <7 t
then binarysearch 1 t ((Nat.div2 (L+R))+1) R
else binarysearch 1 t L ((Nat.div2 (L+R)))

where nth (Nat.div2 L+R) 1 (t+1) returns the (Nat.div2 L+R)-th ele-
ment of 1 and returns t+1 in case this element is out of bounds. Note that
Nat.div2 (L+R) corresponds to the middle of the relevant part of the list,
previously denoted as m.

Since only the second recursive call has been altered, only the second proof
obligation has changed:

37

R - (Nat.div2 (L + R) + 1) <R - L

Nat.div2 (L + R) - L <R - 1L

In each subproof of these obligations, including proofs of newly defined lem-
mas, many lemmas on natural numbers were used from the standard library.
These proofs were more challenging than they seem, which is due to the
properties on < on natural numbers being generally weaker than those on
< on integers (since no natural number is less than 0).

The first proof obligation was proven using the following lemma:

Lemma lte_div2 :
forall (n m : nat),
n <=m
->
Nat.div2 n <= Nat.div2 m.

which was proven using a couple of lemmas from the standard library.
The second proof obligation was proven using the following lemma:

Lemma 1t_div2_min :
forall (n m : nat),
n <m
->
Nat.div2 (n + m) - n <m - n.

which was proven using this lemma:

Lemma lte_plus_div2 :
forall (n m : nat),
m<=(n+m /2
->
m <= n.

which also was proven using lemmas from the standard library.

For clarity, we will now walk through an execution of the binary search
implementation. See Figure for a visualization of the state at every
iteration. In the figure, the squares of elements outside of the relevant part
of the list are colored grey. The positions L and R denote the left and
right border of the relevant part of the list, respectively. Recall that L is
included in the relevant part of the list and R is not. The position M is the
middle of the relevant part of the list, calculated as M = L#J For this
example, we have 4 as our target value and [1,3,4,6,8,9] as our list which
is sorted in non-decreasing order.

38

0 1 2 3 4 5
1 1 3 4 6 8 9
L M R
0 l 1 l 2 3 l 4 &
2 1 3 4 6 8 9
LM R
[} 1 2 l 3 l 4 5
3 1 3 4 6 8 9

Figure 4.1: Visualization of the binary search algorithm

1. At the start, L = 0 and R = 6, making M = LO%GJ = 3. This position
holds the value 6. Since 4 < 6 we know that the target value 4 is
somewhere to the left of position M, therefore we set R to M, so
R =3.

2. We now recalculate M = L%J = 1. At this position we have value 3.
Since 3 < 4 we know that the target value 4 is to the right of position
M, and therefore we set L to M + 1 = 2.

3. We, once more, recalculate M = L%J = 2. At this position we have
the target value 4, which means we return the current value of M (the
position of the target value).

4.4.1 Correctness property of binary search

The proof of correctness of the binary search implementation is not executed
due to time restrictions. However, we do present the correctness property
defined for binarysearch.

We define the correctness of binarysearch as follows: given a sorted list
and a target value that is in the list, binarysearch returns a position in
the list where the corresponding value equals the target value. Furthermore,
given a sorted list and a target value that is not in the list, binarysearch
always returns None.

Bear in mind that there may be duplicates in the list, more specifically, the

39

target value may be in the list multiple times. In this case, it does not
matter which instance of the target value is found, as long as binarysearch
returns a position at which the value equals the target value. This means
that the following correctness property is incorrect: when given a sorted list
with the target value at position p, binarysearch returns position p.

We have attempted to prove its correctness by defining the correctness prop-
erty as theorems, just like we did for the other implemented algorithms. Un-
fortunately, this leads to information loss in the context of the goal, making
them unprovable. To show this, one theorem is included in the Coq file.
We found that specifying the correctness property in the return type of the
binarysearch function as a predicate subtype does not lead to information
loss. Information on predicate subtypes can be found in Section [2.1.7] This
results in the following return type of binarysearch:

{p : option nat |
Sorted le 1
->
(forall (e:nat),
p=Some e
->
nth e 1 (target+1) = target)
/\
(p=None -> ~ In target 1)}

where nth e 1 (target+1) returns the e-th value of list 1 and returns
target+1 in case e is out of bounds.

This return type will give rise to proof obligations verifying the specified
property. Proving these obligations will prove that the correctness property
holds for the binarysearch function.

40

4.5 Sorted vectors and Permutations of vectors

As preparation for creating a version of quicksort that operates on vectors,
we here introduce the definition of vectors and some definitions about vec-
tors. The definition of vectors we use is from the Vectors.VectorDef library
(with adjusted constructor names):

Inductive vector (A : Type) : nat -> Type :=
Vnil : vector A O
| Vcons : A -> forall n : nat, vector A n -> vector A (S n)

Note that a vector is partially defined by its length, which is 0 for the empty
vector Vnil and S n when an element is added to a vector of length n.

We use the definition of In created by Sozeau [I7], which returns True if
and only if a given value is an element of a given vector:

Equations In {A n} (x : A) (v : vector A n) : Prop :=
In x Vnil := False;
In x (Vcons a v) := (x=a) \/ In x v.

As a definition of a sorted vector we use a definition created by Sozeau [17]:

Inductive Sorted {A : Type} (R : A -> A -> Prop)
forall {n}, vector A n -> Prop :=
| Sorted_nil : Sorted R Vnil
| Sorted_cons {a n} {v : vector A n} :
A1l (R a) v
->
Sorted R v
->
Sorted R (Vcons a v).

where A1l is defined as:

Inductive A1l {A : Type} (P : A -> Prop)
forall {n}, vector A n -> Prop :=
[Al1_nil : A1l P Vnmnil
| A11_cons {a n} {v : vector A n} :
P a
->
A1l P v
->
A1l P (Vcons a v).

This definition is similar to the one given for lists in Section [4.1 The
proposition A1l serves the same purpose for vectors as HdRel serves for
lists. In the following section we will specifically consider lists sorted in

41

non-decreasing order, for which we use the following definition also created
by Sozeau [17]:

Definition sorted {n} (v : vector nat n) :=
Sorted (fun x y => x <= y) V.

We also use a couple of lemmas about A1l and In from Sozeau and some
created ourselves in the following section.

For the definition of two vectors being a permutation of each other, we
have created an inductive definition VPermutation which is simply the
Permutation type from the Coq library Coq.Sorting.Permutation translated
to vectors. Basing this definition on the definition for lists allows us to as-
sume its correctness.

Inductive VPermutation {A}:
forall {n m}, (vector A n) -> (vector A m) -> Prop :=
Vperm_nil : VPermutation Vnil Vnil
| Vperm_skip {x n m} {v:vector A n} {w:vector A m}:
VPermutation v w
->
VPermutation (Vcons x v) (Vcons x w)
| Vperm_swap {x y n} {v:vector A n}
VPermutation (Vcons y (Vcons x v))
(Vcons x (Vcons y v))
| Vperm_trans {n m o} {u:vector A n} {v:vector A m}
{w:vector A o}:
VPermutation u v
->
VPermutation v w
->
VPermutation u w.

We have created lemmas about VPermutation which are lemmas on
Permutation translated from lists to vectors. Among these are lemmas
saying that VPermutation is reflexive, symmetric, and transitive. Further-
more, there are a handful of lemmas about VPermutation in combination
with app, which have also been translated from the Coq.Sorting. Permutation
library.

42

4.6 Quicksort on vectors

We will create a version of quicksort that operates on vectors. As we have
done for lists, we implement quicksort such that it sorts natural numbers
in non-decreasing order. See Section for an explanation of the quicksort
algorithm and why it is not structurally recursive.

We start by defining the filter function on vectors, which does not exist
in the Coq standard library unlike its version on lists. The filter function
should take a vector of natural numbers and a filter condition, which is
a function that returns a boolean given a natural number. The filter
function returns a vector containing only the values from the input vector
that satisfy the filter condition. This is challenging to define since vectors
are partially defined by their length, which means that we need to know the
length of the return vector to specify the return type of the function but
we have no way of statically knowing the length of the return vector. This
length depends on the values in the input vector and on the filter condition.
More specifically, it equals the number of values in the input vector that
satisfy the filter condition. We solve this problem by using a dependent pair
as a return type. More on dependent pairs can be found in Section
The resulting definition looks like this:

Equations? filter {n} (v:vector nat n) (f:nat->bool)
sig (p : nat), {w:vector nat p
| p = len_filtered v £ /\ p<=n /\ filtered f w}:=
filter Vnil £ := (0, Vnil);
filter (Vcons h t) f with dec(f h) :=
{ | left p0 => (_, Vcons h ((filter t £).2)) ;
| right q0 => (_, (filter t f).2)}.

We first look at the function signature. The filter function takes a vector
v of size n and a function £ : nat -> bool, which is the filter condition.
The return type is a dependent pair of p : nat and w : vector nat p,
which is a dependent pair because the type of w depends on the value of p.
This dependent pair is defined as a Sigma type.

To make the return type more specific, we have used predicate subtyping to
specify some properties of the return type. These properties will be useful
in the proof of correctness of quicksort later on. The first property is
p = len_filtered v f, where len_filtered is defined as:

Equations len_filtered {n} (v:vector nat n)(f:nat->bool): nat:=
len_filtered Vnil £ := O;
len_filtered (Vcons h t) f :=
match dec(f h) with
| left p0 => 1+len_filtered t f

43

| right 90 => len_filtered t f
end.

Note that len_filtered is structurally recursive and therefore could also
have been defined as a Fixpoint definition.

This function returns the number of values in the vector v that satisfy the
condition f. As said previously, this value should equal the length of the
return vector w of filter, which is p. The second property is p<=n, which
says that the length of the return vector w is smaller than or equal to the
length of the input vector v. The third propery is filtered f w, where
filtered is an inductive type defined as:

Inductive filtered (f:nat->bool)
forall {n}, (vector nat n) -> Prop :=
| filtered_nil : filtered f Vnil
| filtered_cons {h n} {v:vector nat n}:
f h = true
->
filtered f v
->
filtered £ (Vcons h v).

This property specifies that all values in the return vector w satisfy the
filter condition f. Note that it is also possible to prove these properties of
the return type as lemmas after defining filter without using a predicate
subtype as return type.

We now look at the body of the filter function. We use pattern match-
ing to distinguish between an empty vector Vnil and a non-empty vec-
tor (Vcons h t). In case of the empty vector, we don’t have anything
to filter so we return an empty vector. As the return type is a depen-
dent pair of the length of the vector and the vector itself, we return
(0, Vnil). In case of a non-empty vector, we have another case dis-
tinction to make, which is whether the head of the vector h satisfies the
filter condition f. This is done using dec(f h), see Section for an
explanation of dec. When f h is true we end up in the left pO branch,
where we return (_, Vcons h ((filter t f).2)). The _ notation lets
Coq fill in the value by itself, which Coq can derive since it is the length
of cons h ((filter t f).2. This .2 notation gets the second value of a
dependent pair, in this case, filter t f returns a dependent pair of the
length of the vector and the vector itself, therefore the .2 retrieves the vec-
tor from this pair. When f h is false we end up in the right pO branch,
in this case, h does not satisfy the filter condition and therefore we merely
recurse on the remainder of the vector (_, (filter t £).2).

Note that filter is structurally recursive since it recurses on the tail of the

44

vector, therefore we do not need to show that it is well-founded.

Since this definition of filter uses predicate subtyping, proof obligations
are generated to prove that the function indeed adheres to the given prop-
erties in the predicate subtype. For each case in the filter definition a
proof obligation is generated that corresponds to p = len_filtered v £
/\ p<=n /\ filtered f w. There are 3 such cases, one where v is Vnil
and two where v is Vcons h t, where there is a case for £ h being true and
one for £ h being false. These obligations were easily proven, therefore we
do not go into more detail.

As we have seen before in Section[£.2] quicksort is well-founded on the length
of the input list/vector. This leads to the following definition of quicksort:

Equations? quicksort {n} (1 : vector nat n)
vector nat n by wf n 1t :=
quicksort Vnil := Vnil ;
quicksort (Vcons h t):= app (quicksort (filter_lte h t).2)
(Vcons h (quicksort (filter_gt h t).2))

where filter_lte and filter_gt are defined as:

Definition filter_lte {n} (a: nat) (v:vector nat n) :=
filter v (fun x => x <=7 a).

Definition filter_gt {n} (a: nat) (v:vector nat n) :=
filter v (fun x=> negb(x <=7 a))

This definition gives rise to three proof obligations. The context for all
obligations is the following:

1, h : nat
t : vector nat 1

The first two are for proving that quicksort is well-founded on n, which is
the length of the vector v. This corresponds to showing that the length of
the vector decreases at each recursive call, resulting in the following proof
obligations:

(filter_lte h t).1 < S 1

(filter_gt h t).1 < S 1

Remember filter_1te h t and filter_gt h t are pairs of the length of
the vector and the vector itself. Thus, the .1 retrieves the first element of
the pair, which is the length of the vector. These obligations say that the
vector resulting from filtering t on some condition may not be larger than t.
Both of these obligations are proven using the property p<=n in the return
type of the filter definition. Since the vector t is given as input to filter,

45

its length 1 corresponds ton in filter. Furthermore, (filter_lte h t).1
and (filter_gt h t).1 correspond to p in the filter definition.

The third proof obligation is for proving that the length of the return vector
is n, which ensures that the return type of quicksort is correct. We have
not encountered such proof obligations for lists, since they are not defined
by their length. The proof obligation is the following:

(filter_1te h t).1 + S (filter_gt h t).1 =S 1

This obligation is first transformed using the property p = len_filtered
v f in the return type of the filter definition, resulting in the following
proof obligation:

len_filtered t (fun x : nat => x <=7 h) +
S (len_filtered t (fun x : nat => negb (x <=7 h))) =S 1

This is proven using the len_fixed lemma, which is defined as:

Lemma len_fixed {1}: forall (t: vector nat 1) (h:nat),
len_filtered t (fun x : nat => x <=7 h)
+ len_filtered t (fun x : nat => negb (x <=7 h)) = 1.

This lemma was proven by induction on t.

4.6.1 quicksort_elim on vectors

As a result of the quicksort definition, Equations has defined the lemma
quicksort_elim, as we have seen in Section This lemma can be used
to prove properties of quicksort. We present it as a derivation rule on the
next page, Section describes how to read such a derivation rule.

46

The derivation rule for quicksort_elim is defined as:
P O Vnil Vnil

(forall (n0O h : nat) (tO : vector nat n0),
P (filter_lte h t0).1 (projl_sig (filter_lte h t0).2)
(quicksort (projl_sig (filter_lte h t0).2))
->

P (filter_gt h t0).1 (projl_sig (filter_gt h t0).2)
(quicksort (projl_sig (filter_gt h t0).2))

->
P (8 n0) (Vcons h t0)
(eq_rect ((filter_lte h t0).1 + S (filter_gt h t0).1)
(fun H : nat => vector nat H)
(app (quicksort (projl_sig (filter_lte h t0).2))
(Vcons h (quicksort (projl_sig (filter_gt h t0).2))))
(S n0) (quicksort_obligation_3 n0 h t0)))

[quicksort_elim]
forall (n : nat) (1 : vector nat n), P n 1 (quicksort 1)

where P : forall n : nat, vector nat n -> vector nat n —-> Type.

4.6.2 Correctness of quicksort on vectors

Coq has now accepted the definition of quicksort, we now prove that this
definition is correct. We define the correctness of a sorting algorithm on
vectors as follows: the resulting vector is a permutation of the input vector
and the resulting vector is sorted in non-decreasing order. As definitions of
sorted vectors and two vectors being permutations of each other, we use the
definitions specified in Section The proof of correctness is structured
similarly to the proof of correctness of quicksort on lists. Despite this, we
will discuss the full proof for completeness.

Proof of the permutation property

As we did in the proof of correctness of quicksort on lists, we start by proving
that quicksort returns a permutation of the input vector. This property
will come in handy when proving that quicksort returns a sorted vector.
We go over the lemmas created for this proof.

Lemma perm_app {m n o p g}:
forall (v: vector nat m) (vl: vector nat n)
(v2: vector nat o) (v3: vector nat p) (v4: vector nat q),
VPermutation v3 vl
->
VPermutation v4 v2
->

47

VPermutation v (app v3 v4)
->
VPermutation v (app vi1 v2).

This lemma was proven by using some properties of VPermutation.

Lemma perm_lte_gt {n}
forall (v: vector nat n) (a : nat),
VPermutation v (app (filter_lte a v).2 (filter_gt a v).2).

This lemma was proven by induction on v, along with quite some properties
of VPermutation.

Theorem quicksort_permutation {n}:
forall (v : vector nat n),
VPermutation v (quicksort v).

We prove that quicksort_permutation permutes by applying
quicksort_elim and the previously defined lemmas perm_app and
perm_lte_gt.

Proof of the sorted property

Now that we have shown that quicksort permutes, we also want to prove
that it always returns a sorted list. We go over the lemmas created for this
proof.

Lemma filtered_All {n}
forall (x : nat) (R : nat —-> bool) (v:vector nat n),
filtered (fun x : nat => R x) v
->
In x v
->
R x = true.

This lemma was proven by induction on In x v.

Lemma in_lte {n}
forall (h x: nat) (t: vector nat n),
In x (projl_sig (filter_lte h t).2)
->
x <= h.

Lemma in_gt {n}
forall (h x : nat) (t: vector nat n),
In x (projl_sig (filter_gt h t).2)
->
x > h.

48

Both of these lemmas were proven using the property filtered f win the
return type of filter and the lemma filtered_All.

Lemma in_gs {n}
forall (t: vector nat n) (elem : nat),
In elem t
<=>
In elem (quicksort t).

This lemma was proven using quicksort_permutation along with some
properties of VPermutation.

Lemma sort_app {1 1'}:
forall (v : vector nat 1) (v': vector nat 1') (n : nat),
sorted v
->
sorted v'
->
A1l (fun y : nat =>y > n) v'
->
A1l (fun y : nat => y <= n) v
->
sorted (app v (Vcons n v')).

This lemma was proven by induction on v.

Theorem quicksort_sorted {n}
forall (v : vector nat n),
sorted (quicksort v).

We applied quicksort_elim to prove this theorem. Furthermore, we have
used the previously defined lemmas in_gt, in_lte, in_gs, and sort_app.

Conclusion

Now that we have shown that quicksort permutes and sorts, we can easily
prove its correctness by proving:

Theorem quicksort_correct {n}
forall (v : vector nat n),
sorted (quicksort v)

/\

VPermutation v (quicksort v).

Applying quicksort_sorted and quicksort_permutation proves this the-
orem.

49

Chapter 5

The LiquidHaskell verifier

In this chapter, we investigate if, using LiquidHaskell, the correctness of a
quicksort and a mergesort implementation in Haskell can be verified. Liquid-
Haskell is a verifier for Haskell which lets you enforce correctness properties
of your program during compile time. It can, for example, check whether
a function is total and whether it always terminates. It does so by gener-
ating verification conditions and feeding them to an SMT-solver. Such an
SMT-solver takes a formula in first-order logic (predicate logic) and returns
whether the formula is satisfiable. Note that this is more powerful than a
SAT-solver, which can decide whether a formula in propositional logic is
satisfiable. Annotations for LiquidHaskell are given in a {-@ @-} comment
block. These annotations include the properties we want LiquidHaskell to
verify. To verify a property of a function, the type signature typically spec-
ifies this property and is thus given within such a comment block. Such
properties are specified using refinement types, which are subtypes that in-
clude some property. These are much like Coq’s predicate subtypes which
we have discussed in Section 2.1.71

5.1 Quicksort and mergesort

We explore LiquidHaskell by using it in an attempt to verify the correctness
of a quicksort and a mergesort implementation in Haskell. This is done
with much help from a blog on LiquidHaskell [2I]. We start by defining
a refined subtype of lists, the sorted list (OrdList). This is defined as a
regular list including the constraint <{\x v -> x <= v}>, which says that
every element in the list is smaller or equal to the subsequent element in the
list.

{-@ type Ordlist a = [al<{\z v -> = <= v}> ©0-}

The implementation of quicksort looks almost like a regular quicksort defi-

50

nition. It takes a list and returns a sorted list. To ensure that LiquidHaskell
can verify that a sorted list is returned, the function app_gs is created, which
holds some properties that a regular append function does not. Specifi-
cally, the function app_gs takes a pivot element (piv) and two sorted lists,
where one contains only elements that are less or equal to the pivot element
(v <= piv) and the other contains only elements that are greater than the
pivot element (v > piv). These properties are specified in the function sig-
nature. LiquidHaskell can verify that if these properties hold for the input
of app_gs then the function returns a sorted list. Since these properties hold
for the application of app_gs in quicksort, LiquidHaskell can verify that
quicksort returns a sorted list.

The / [len 1] notation tells LiquidHaskell that quicksort is well-founded
on the length of 1, where 1 is the input list. This ensures that the function
terminates.

{-@ app_gs :: piv:a
-> Ordlist {v:a | v <= piv}
-> Ordlist {v:a | v > piv}
-> 0Ordlist a
-}
app_gs pivot [] ys = pivot : ys
app_gqs pivot (x:xs) ys = x : app_gs pivot xs ys

{-@ quicksort :: Ord a => l:[a] -> Ordlist a / [len 1] @-}
quicksort [] = []
quicksort (x:xs) = app_gs X
(quicksort ([y | y <= xs, y <= x 1))
(quicksort ([y | y <- xs, y > x 1))

We now look at an implementation of mergesort. The merge function takes
two sorted lists and returns a sorted list. Moreover, it is well-founded
with as decreasing argument len 1 + len 1', ensuring it terminates. The
mergesort function takes a list and returns a sorted list, and is well-founded
with as decreasing argument len 1. This implementation looks like a regu-
lar mergesort definition.

{-@ merge :: Ord a => 1l:0rdlist a -> 1':0rdlist a —->
Ordlist a / [len 1 + len 1'] @-}
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys) = if x <=y
then x : merge xs (y:ys)
else y : merge (x:xs) ys

o1

{-@ mergesort :: Ord a => l:[a] -> Ordlist a / [len 1] @-}
mergesort [] = []
mergesort [x] = [x]
mergesort 1 = merge (mergesort first) (mergesort second)
where first = take half 1
second = drop half 1
half = length 1 “div™ 2

LiquidHaskell manages to verify the annotated properties in the implemen-
tations of quicksort and mergesort, which means that it verifies that both
sorting algorithms return sorted lists. This verification that both implemen-
tations return sorted lists was significantly easier than proving this property
in Coq. Especially for mergesort it was only a matter of giving proper
function signatures. The quicksort implementation did require some cre-
ativity to sufficiently help out the SMT-solver, which was done by creating
the app_gs function and specifying its signature.

This leaves us with having to prove that quicksort and mergesort return
permutations of their input lists. This, unfortunately, is unlikely to be pos-
sible using LiquidHaskell. This is due to this permutation property being of
second-order logic, where you can quantify over properties/functions instead
of merely over values, which is the case in first-order logic. This makes it
impossible to solve with an SMT-solver.

5.2 The permutation property

As explained previously, proving that an implementation of a sorting algo-
rithm returns a permutation of the input list is likely to be impossible using
LiquidHaskell.

We now look at an attempt of proving the permutation property, which
is from an insertion sort case study [II]. This implementation uses sets,
from the Data.Set library, to define the refinement type ListE, which holds
lists containing the same elements as a given set S. The function elems ::
(0rd a) => List a -> S.Set a takes a list and returns a set containing
all elements in the list. Keep in mind that sets only keep track of distinct
elements, therefore this type ignores duplicates in the list and therefore does
not properly enforce the permutation property. This implementation uses
a selfmade List type, where the empty list is denoted as Emp and the :::
notation is synonymous to Haskells : notation.

{-@ type ListE a S = {v:List a [elems v = S} @}

{-0 sortE :: (Ord a) => zs:List a -> ListE a {elems zs} O-}
sortE Emp = Emp

92

sortE (x:::xs) = insertE x (sortE xs)

{-@ insertE :: (Ord a) => z:a -> zs:List a >
ListE a {S.union (S.singleton z) (elems zs)} @-}
insertE x Emp =x ::: Emp
insertE x (y:::ys)
| x <=y =X ity i::ys
| otherwise =y ::: insertE x ys

Replacing sets with multisets (sets where elements can appear multiple
times) in the above implementation would properly specify the permuta-
tion property. But, as mentioned before, LiquidHaskell will not be able to
verify this.

LiquidHaskell also has a feature to specify laws and prove them step-by-step
by writing code. However, this is not interactive as it is in Coq, making it
a quite meticulous task to prove even basic laws. Furthermore, the error-
reporting for proofs does not seem helpful, so you are truly on your own
when using this feature.

93

Chapter 6

Related Work

We look into other implementations of quicksort and mergesort in Coq.
We were unable to find any implementation of binary search in Coq. Af-
terward, we mention a couple of other ways of proving properties about
functional programs aside from using Coq. We hereby want to mention that
the Software Foundations series includes an implementation of mergesort
using Fixpoint definitions [I] and that Sozeau has implemented quicksort
using Program [16]. We will not discuss these implementations.

Throughout this chapter we will speak of the ’typical’ implementations of
quicksort and mergesort, by these, we refer to their Haskell implementations

given in Section [4.2] and respectfully.

6.1 Quicksort using the Bove-Capretta approach

W.R.M. Schols has implemented quicksort using Fixpoint definitions [15].
This is done using the Bove-Capretta approach, which is where you define a
new inductive type on which the definition is structurally recursive, contrary
to the original definition. Schols presents two versions. One of which was
suggested by Gabe Dijkstra [6], which is more complicated but allows for
easier validation. We will only present the other version.

First, the inductive type essential to the Bove-Capretta approach is defined.
The gs_tree type contains tree structures created from a given list. In case
the list is empty, the tree is just a leaf node. Otherwise, the tree is a parent
node containing two child nodes. The lists the child nodes are defined by are
precisely the lists that quicksort would recurse on given the list the parent
node is defined by.

Inductive gs_tree : list nat -> Type :=
| gqs_tree_base : gs_tree nil

o4

| gs_tree_step : forall (x: nat) (xs: list nat),
gs_tree (filter (fun y => leb y x) (xs))
->
gs_tree (filter (fun y => negb (leb y x)) (xs))
->
gs_tree (cons x xs).

The gs_helper function executes the actual sorting of the list. It takes
the list to be sorted and its corresponding gs_tree. Note that a typical
quicksort definition would look like this, minus the use of the qs_tree. This
function recurses on the immediate substructures of the qs_tree (q), also
refered to as the child nodes, which are q0 and q1. Therefore, this definition
is structurally recursive.

Fixpoint gs_helper (1 : list nat) (q : gqs_tree 1) {struct q} :
list nat :=
match q with
| gs_tree_base => nil
| gqs_tree_step x xs q0 ql =>
(gs_helper (filter (fun y : nat => leb y x) xs) q0)
++
(x :: (gs_helper (filter
(fun y : nat => negb (leb y x)) xs) ql))
end.

The following lemma specifies that a qs_tree can be defined by any list (or
made from any list).

Lemma create_gs_tree:
forall (1 : list nat),
(gs_tree 1).

Then quickSort is defined using by passing the list to be sorted to
gs_helper and the corresponding qs_tree.

Definition quickSort (1ls :list nat) :=
gs_helper 1ls (create_gs_tree 1s).

The Bove-Capretta approach is a quite elegant solution to defining functions
that are not structurally recursive. However, using Equations instead of the
Bove-Capretta is arguably easier for the creator and easier to understand
for a reader.

6.2 Quicksort on vectors by Sozeau

Matthieu Sozeau has implemented Quicksort on vectors using Equations
[17]. This implementation was of great help to ours (see Section |4.6)) and is

95

therefore quite similar. The main difference is that Sozeau has created the
pivot function as a helper function for the quicksort implementation. The
definitions of A11, Sorted, and the definition of vectors are given in Section

The filter function is quite similar to our implementation. The return type
is a Sigma type and a predicate subtype, which we have seen in Sections

and respectively.

Equations? filter {n} (v : vector A n) (f : A -> bool)
sig (k : nat), { v : vector A k | k <= n /\
A1l (fun x => f x = true) v } :=
filter nil f := (0, nil);
filter (cons a v') f with dec (f a) :=
{ | left H=> (_, cons a (filter v' £f).2);
| right H => (_, (filter v' £).2) }.

The pivot function divides the given vector into a vector containing the ele-
ments less or equal to the pivot and a vector containing the elements greater
than the pivot. The comparison to the pivot is done using the function f,
which is passed from the gs function as fun x => leb x a (returns true if
x <= a). The return type of pivot specifies a couple properties useful for
proving the correctness of the gs function.

Equations? pivot {n} (v : vector A n) (f : A -> bool)
sig (k : nat) (1 : nat) (v' : vector A k), { w : vector A 1
| (k +1 =mn) % nat /\ forall x, In x v <->
(if £ x then In x v' else In x w) } :=
pivot nil f := (0 , 0 , nil, nil);
pivot (cons a v') f with dec (f a), pivot v' f :=
{| left H| (k, 1, v, w) => (_ , _, cons a v, wW);
| right # | (k, 1, v, w) => (_ , _, v, cons a w) .

The gs function retrieves the vectors lower and higher from the pivot
function, which contain the elements from 1 that are less or equal to a (the
pivot) and greater than a, respectively. The return type of gs is a predicate
subtype, which we get into below. The | :| notation is synonymous to the
:: notation on lists

Equations? gqs {n} (1 : vector A n)
{ v : vector A n | sorted v /\ (forall x, In x 1 <-> In x v)}
by wf n 1t :=
gs nil := nil ;
gs (cons a v) with pivot v (fun x => leb x a) :=
{ | (k, 1, lower, higher) =>
app (qs lower) (a |:| gs higher) }.

o6

The return type of gs specifies that the returned vector is sorted (sorted v).
Unfortunately, the proof of this property uses a lemma that was not proven.
On top of that, the concerning lemma is false:

Lemma Sorted_app {A R n m} (v : vector A n) (w : vector A m)
OSorted AR _ v
->
Sorted R w
->
Sorted R (app v w).
Proof.
Admitted.

For clarity, we disprove the Sorted_app lemma using a counterexample.
Take vectors [2] and [1,2], which both are sorted in non-decreasing order.
Appending these vectors in their given order results in the vector [2,1, 2],
which is not sorted in non-decreasing order. In our implementation of quick-
sort we created the sort_app lemma (see Section which serves the same
purpose as Sorted_app but includes the premises that the values in v should
be less or equal to a set value and the values in w should be greater than
that set value. Due to these additional conditions, the lemma does hold.

The return type of gs speciefies another property, namely forall x, In
x 1 <-> In x v, where 1 is the input vector and v is the output vector.
Unfortunately, this is a weaker property than 1 and v being permutations
of each other, since it does not take duplicates into account. As an exam-
ple, the property holds for vectors [1] and [1, 1], but these vectors are not
permutations of each other.

In conclusion, the proof of correctness of the implementation by Sozeau is
incomplete. Both the proof that gs returns a sorted vector and the proof that
the input and the output of gs are permutations of each other is incomplete.

6.3 Mergesort using Fixpoint definitions

The Coq.Sorting.Mergesort library [9] contains an implementation of merge-
sort using Fixpoint definitions. This implementation is very different from
a typical mergesort implementation in a functional language, as seen in Sec-
tion [£.3] This implementation keeps track of a stack of merges. This is done
to work around the problem that mergesort is not structurally recursive.
This implementation has a time complexity of O(n log n), as mergesort
should, which means that no compromise in time complexity was made. We
present the implementation along with some explanation.

The merge function merges two given lists. Since the basic merge function
is not structurally recursive, as we have seen in Section [£.3] the merge_aux

o7

definition uses the let fix ... in ... construct as a workaround. This
trick works by having merge_aux recurse on 12', therefore having 12' as
decreasing argument. We only do a recursive call to merge when 11 decreases
in size, making 11 the decreasing argument of merge.

Fixpoint merge 11 12 :
let fix merge_aux 12 :
match 11, 12 with
[[0, _ => 12
[_, [0 =>11

| at::11', a2::12' =>
if al <=7 a2 then al :: merge 11' 12
else a2 :: merge_aux 12'

end
in merge_aux 12.

The merge_list_to_stack function takes the stack and the list for which
a merge needs to be added to the stack. The Option type is used in a
creative way to perform the correct merges. The insertion and removal of
None objects on the stack ensure that two consecutive lists of the same size
are merged.

Fixpoint merge_list_to_stack stack 1 :=
match stack with
| [1 => [Some 1]

| None :: stack' => Some 1 :: stack'
| Some 1' :: stack' =>
None :: merge_list_to_stack stack' (merge 1' 1)
end.

The merge_stack function takes the stack and applies all merges in the
stack, returning the resulting list.

Fixpoint merge_stack stack :=
match stack with

I 00 =>1
| None :: stack' => merge_stack stack'
| Some 1 :: stack' => merge 1 (merge_stack stack')

end.

The iter_merge function takes the current stack and the list that is to be
sorted. For each element in the given list it adds a merge to the stack,
which it does by using the merge_list_to_stack function. Afterwards, the
merge_stack function is called with the current stack.

Fixpoint iter_merge stack 1 :=
match 1 with

o8

| [1 => merge_stack stack
| a::1'" => iter_merge (merge_list_to_stack stack [a]) 1'
end.

A list 1 is sorted by calling sort 1, which calls the iter_merge function
with an empty stack.

Definition sort := iter_merge [].

We now describe this implementation in order of execution. When sorting
a list using this mergesort implementation we keep track of a stack, which
is a list of Option values. The stack is empty at the start. The iter_merge
function then builds the stack by adding a merge to the stack for each
element in the given list, it does so by using the merge_list_to_stack
function. The merges are pairwise executed by this function. Once a merge
is added to the stack for each element in the list, the function merge_stack
is called with the current stack. The current stack may still hold some
pending merges. This function then applies the possibly remaining merge
and returns the resulting list, which is sorted.

Mergesort typically cuts the list in half, sorts each half recursively,
and merges the resulting list. This implementation does not cut the
list in half, but by merging the elements of the list pairwise in the
merge_list_to_stack function it essentially performs the sorting in the
same manner.

This implementation does not look like mergesort at first glance. Aside
from the merge function, it differs completely from the typical functional
implementation of mergesort. This is not the case for the implementation of
mergesort using Equations given in Section which furthermore is a more
straightforward implementation. Creating this implementation seems more
challenging than doing so by using Equations since creativity was necessary
to come up with a way to implement this generatively recursive function.

6.4 Proving properties of functional programs

Using Coq is not the only way of proving properties of functional programs.
We briefly introduce two proof assistants that achieve similar goals to Coq
and are also interactive. Moreover, recall from Section [5| that the Haskell
verifier LiquidHaskell allows for proving correctness properties of Haskell
programs.

The proof assistant Sparkle [13] can verify the correctness of programs writ-
ten in the lazy functional programming language Clean. The verification of
correctness is accomplished by formal reasoning, which is a mathematical
process that makes use of the semantics of the respective language.

99

Then there is the dependently typed programming language and proof as-
sistant Agda [4]. The language has a syntax similar to Haskell. A big
difference from Coq is that proofs are written in a functional programming
style instead of using proof tactics.

60

Chapter 7

Conclusions

We have seen how we can use the Equations plugin to define functions that
are not structurally recursive in Coq. Recall that this is done by proving
that the function is well-founded, which ensures that it terminates. Specifi-
cally, we have implemented quicksort, mergesort, and binary search on lists
and quicksort on vectors. We have seen that Equations allows for function
definitions that have a similar syntax to Haskell, making them reasonably
easy to create. However, we have seen that some definitions may have to
be altered slightly to be able to prove that they terminate. We have looked
into a couple of existing implementations of the functions mentioned and
have seen that using Equations typically leads to a more straightforward
implementation.

We have seen how LiquidHaskell can verify properties of Haskell programs.
This can be less time consuming than creating a Coq proof. However, Lig-
uidHaskell does have its limitations: only properties expressed in up to
first-order logic can be proven using the underlying SMT-solver.

7.1 Future work

As we have seen, LiquidHaskell is able to verify the termination of a function
given merely the decreasing argument, which we think would be a helpful
feature for Equations. Furthermore, it would be interesting to investigate
the real-world applicability of using Coq and Equations for verifying Haskell
programs. This because translating Haskell programs to Coq may not pre-
serve their semantics and extraction of Coq programs to Haskell results in
programs that do not use Haskells own datatypes. As for LiquidHaskell,
it would be interesting to investigate whether the permutation property is
provable using the feature for theorem proving. We do expect this to be
quite challenging since this feature is difficult to work with.

61

Bibliography

[1]

=

Andrew W. Appel. Software foundations volume 3: Verified func-
tional algorithms. https://softwarefoundations.cis.upenn.edu/
vfa-current/Merge.html. Accessed: 03-01-2021.

Gilles Barthe, Julien Forest, David Pichardie, and Vlad Rusu. Defining
and reasoning about recursive functions: A practical tool for the coq
proof assistant. In Masami Hagiya and Philip Wadler, editors, Func-
tional and Logic Programming, pages 114-129, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

Yves Bertot. Coq in a Hurry. Lecture, June 2016.

Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda —
a functional language with dependent types. In Stefan Berghofer, To-
bias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem
Proving in Higher Order Logics, pages 73-78. Springer Berlin Heidel-
berg, 2009.

Thomas H. Cormen, Charles Eric Leiserson, Ronald Linn Rivest, and
Clifford Seth Stein. Introduction to Algorithms. MIT Press, third edi-
tion, 07 2009.

Gabe Dijkstra. Experimentation project report: Translating haskell
programs to coq programs. 2012.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. How to Design Programs: An Introduction to Program-
ming and Computing. The MIT Press, 2018.

Inria, CNRS, and contributors. The coq proof assistant. https://coq.
inria.fr/. Accessed: 18-10-2020.

Inria, CNRS, and contributors. Library coq.sorting.mergesort. https:
//coq.inria.fr/stdlib/Coq.Sorting.Mergesort.html. Accessed:
10-12-2020.

62

https://softwarefoundations.cis.upenn.edu/vfa-current/Merge.html
https://softwarefoundations.cis.upenn.edu/vfa-current/Merge.html
https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/stdlib/Coq.Sorting.Mergesort.html
https://coq.inria.fr/stdlib/Coq.Sorting.Mergesort.html

[10]

[11]

[20]

[21]

Inria, CNRS, and contributors. Typing rules. https://coq.inria.fr/
refman/language/cic.html. Accessed: 10-10-2020.

Ranjit Jhala, FEric Seidel, and Niki Vazou. Programming with
refinement types: An introduction to liquidhaskell (case study:
Insertion sort). http://ucsd-progsys.github.io/lh-workshop/
04-case-study-insertsort.html#/program-1. Accessed: 29-11-
2020.

Brian Min. Haskell language - merge sort. https://riptutorial.com/
haskell/example/7552/merge-sort. Accessed: 07-11-2020.

Maarten Mol, Marko Eekelen, and Rinus Plasmeijer. Proving properties
of lazy functional programs with sparkle. pages 41-86, 06 2007.

H. Riis Nielson and F. Nielson. Semantics with Applications: A Formal
Introduction. Wiley, 1992.

W.R.M. Schols. Capita selecta: Formal verification quicksort. 2012.

Matthieu Sozeau. Library quicksort. https://www.irif.fr/~sozeau/
repos/coq/misc/sort/quicksort.html. Accessed: 03-01-2021.

Matthieu Sozeau. Typing rules. https://github.com/mattam82/
Cog-Equations/blob/master/examples/quicksort.v. Accessed: 20-
12-2020.

Matthieu Sozeau. Programing finger trees in coq. ACM SIGPLAN
Notices, 42:13-24, 09 2007.

Matthieu Sozeau. Equations: A dependent pattern-matching compiler.
In Matt Kaufmann and Lawrence C. Paulson, editors, Interactive The-
orem Proving, pages 419-434, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

Matthieu Sozeau and Cyprien Mangin. Equations reloaded: High-level
dependently-typed functional programming and proving in coq. Proc.
ACM Program. Lang., 3(ICFP), July 2019.

Niki Vazou and Ranjit Jhala. Putting things in order (sort-
ing lists). https://ucsd-progsys.github.io/liquidhaskell-blog/
2013/07/29/putting-things-in-order.lhs/. Accessed: 27-11-2020.

63

https://coq.inria.fr/refman/language/cic.html
https://coq.inria.fr/refman/language/cic.html
http://ucsd-progsys.github.io/lh-workshop/04-case-study-insertsort.html#/program-1
http://ucsd-progsys.github.io/lh-workshop/04-case-study-insertsort.html#/program-1
https://riptutorial.com/haskell/example/7552/merge-sort
https://riptutorial.com/haskell/example/7552/merge-sort
https://www.irif.fr/~sozeau/repos/coq/misc/sort/quicksort.html
https://www.irif.fr/~sozeau/repos/coq/misc/sort/quicksort.html
https://github.com/mattam82/Coq-Equations/blob/master/examples/quicksort.v
https://github.com/mattam82/Coq-Equations/blob/master/examples/quicksort.v
https://ucsd-progsys.github.io/liquidhaskell-blog/2013/07/29/putting-things-in-order.lhs/
https://ucsd-progsys.github.io/liquidhaskell-blog/2013/07/29/putting-things-in-order.lhs/

	Introduction
	Preliminaries
	Introduction to Coq
	Types in Coq
	Definitions in Coq
	Inductive types
	Fixpoint definitions
	The Option type
	The Sumbool type
	Predicate subtyping
	Dependent pairs and Sigma types
	Proofs in Coq

	Mathematical definitions
	Structural and generative recursion
	Well-founded relations

	The Equations plugin
	Equations definitions
	Properties generated by Equations
	Proof tactics for Equations

	Applications of Equations
	Sorted lists and Permutations of lists
	Quicksort
	textquicksortelim
	Correctness of quicksort

	Mergesort
	textmergeelim and textmergesortelim
	Correctness of mergesort

	Binary Search
	Correctness property of binary search

	Sorted vectors and Permutations of vectors
	Quicksort on vectors
	textquicksortelim on vectors
	Correctness of quicksort on vectors

	The LiquidHaskell verifier
	Quicksort and mergesort
	The permutation property

	Related Work
	Quicksort using the Bove-Capretta approach
	Quicksort on vectors by Sozeau
	Mergesort using Fixpoint definitions
	Proving properties of functional programs

	Conclusions
	Future work

