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Abstract

This thesis shows how to use Partially Observable Markov Decision Pro-
cesses (POMDP) in industrially relevant and safety critical settings. A spe-
cific type of safety critical system will be described using a POMDP whose
observations become less useful over time. This description is then turned
into a model using the PRISM language. Furthermore, using several model
checkers some properties of this model are examined.
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Chapter 1

Introduction

One of the incredible things computing science has allowed us to do is solving
real world problems. Models have been developed to solve Rubik’s cubes, en-
cryption problems and much more. Solving problems becomes a lot more dif-
ficult however once a combination of uncertainty, non-deterministic choices
and probability becomes involved.

Problems such as Rubik’s cubes are by no means easy to solve. What is how-
ever an alleviating factor when trying to find a solution is that outcomes
are certain. When turning an edge to the left it is guaranteed what the
new assortment of the Rubik’s cube will look like. This certainty definitely
makes for fun programming, however most things in the world do not have
interactions with deterministic outcomes. Algorithms that interact with ma-
chines, people and animals have to deal with the inherent uncertainty that
is brought on with this type of interaction. People do unexpected things,
machines break down and even the best simulations do not always conform
to the interactions an automated agent has when navigating outside of an
controlled environment. Dealing with this uncertainty is very important
however, since we do want systems that can fulfill a role in this world of
ours. From simple things like allowing children to cross at a red light to
complicated situations such as the control at a power station, dealing with
uncertainty makes all of this possible.

A specific type of problems involving uncertainty are so called control prob-
lems [25]. These are the type of problems were the goal is optimization of a
cost variable. This variable can be anything, such as energy spent, financial
cost or an self defined cost function. As long as it is possible to quantify
desirable outcomes. Possible control problems range from solving 2048 [27]
to modeling financial systems [14]. Since optimization of cost functions is
something we know how to deal with quite well, and a lot of problems can
be formulated as a control problem, this provides a useful framework for
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dealing with uncertainty.

Some of the problems one would want to model are so called safety-critical
systems. Typically these are defined as systems were failure would involve
significant loss of life, serious injury, property damage or environmental
destruction [18]. When talking about these types of systems it is very im-
portant that we are sure some guarantees can be given about operations.
One would want to know when to expect failure and its consequences. How-
ever, testing these systems in a contained environment is often incredibly
expensive and sometimes not even conceivable. So how do we ensure that
these systems are up to standards?

The solution is by simulating these type of systems in a formal model. This
allows one to simulate the uncertainty the real world brings using proba-
bilistic methods [19]. Although of course not a perfect representation of
the real world, it gives us some insight in behavior, allows optimization of
cost parameters and is a cheap and safe method for verifying otherwise pro-
hibitively expensive and difficult properties a system might have.

There are many ways to model uncertain systems. One of the ways of
dealing with this is the Markov Decision Process (MDP) [5]. This type of
model allows a practitioner to develop a method for decision making were
both non-deterministic choices are taken into account and were the unpre-
dictability of their resulting outcomes are considered. An MDP consists of
different possible states the system can take. Another part of this system are
actions. Actions can be chosen to transition between states. These actions
then have a set probability to transition the system to one or more other
states. Transitions, states or both can provide a reward. Such a reward can
alternatively be used as a cost. Once such a system is described, this infor-
mation can be used to develop a policy. A policy is a set of actions taken
from the current state. The outcome for actions is not certain, but one can
take the uncertainty of actions into account when developing a policy. If
you do this to optimize your expected reward, you are making an optimal
policy. When developing such a policy, knowledge about previous actions
or states of the system is unnecessary, since only information about current
and future actions are needed to find an optimal set of actions from the
current state of the system. This is the markovian porperty and guaranteed
for all MDPs [31].

Lets try and flesh out this idea of an MDP with an example. The ex-
ample is a similar but simpler version of the underlying MDP of the system
we will describe in section 3.2 of this thesis. Imagine you have a safety-
critical system. The system is either in-control of out-of-control. You can
take an action G to continue operating. If you do this from in-control you
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have probability of 0.9 to continue operating in-control and a probability of
0.1 to reach the out-of-control state. If you are in the out-of-control state
action G will give you a probability of 1 to stay that way. Furthermore, there
is also the option to action H. This will guarantee you to transition to the
the in-control state no matter what state you are in. If we try to depict this
as a visual model you wil get figure 1.1. Now lets say that if you end an

Figure 1.1: Example MDP

action in the control state or take action H, there is a cost of 10 incurred.
Since we want to minimize the time spent in the out-of-control state, the
policy we would design simply would be to minimize the cost. The way to
do this is to minimize the expected cost the current action brings and to
also minimize the expected cost future actions bring. This is a very basic
description of Bellman’s optimality principle which guarantees optimality
for any MDP [6]. As this is a very basic system, a decent policy can be
figured out intuitively. If you are in the in-control state, it is always a good
idea for minimizing cost to take action G since action H guarantees a cost.
Furthermore, you have a high probability of staying in the in-control state
which again is good for minimizing cost in the near future. If you are in the
out-of-control state, it is always a good idea to take action H. The cost is
equal for taking action H or taking action G and staying in the out-of-control
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state, but you do have a lower expected cost in the in-control state in the
near future. This concludes a very basic description of a policy. Do keep in
mind that this is an almost stupidly simple system to introduce an MDP,
and that for larger problems it is much more difficult to determine a good
or even optimal line of actions to take.

Now lets move on to partial observability. Partially Observable Markov
Decision Processes (POMDPs) [29] are an extended version of MDPs, The
difference with MDPs is that knowledge about the current state cannot be
directly observed and instead needs to be inferred through observations that
provide partial information about what state the system currently resides
in. Once such a model is described it again is possible to look for an op-
timal policy. This problem is know to be undecidable however. Therefore
significantly more difficult to solve [21].

In order to understand this, the example MDP we presented will be ex-
tended. Nothing will change about the underlying MDP, so the model will
still transition in the same way. The difference is that instead of seeing
the states directly we now have three observables, o1, o2 and o3. If we
are in the in-control state, there is a probability of 0.5 to observe o1 and
a 0.5 probability to observe o2. If we are in the out-of-control state there
is a probability of 0.5 to observe o2 and 0.5 to observe o3. The resulting
POMDP is displayed in figure 1.2. To be clear, although the underlying
MDP still transitions in exactly the same manner as before, we are unable
to see the exact state of the system. All we have for information is the
observations o1,o2 and o3. If we see observation o1 or o2, we have certainty
that the system is either in-control of out-of-control. If we see o2, there is
an equal chance that the system is in one of those states. If we now want
to solve the problem of taking the appropriate actions, we have to base it
solely on the observations available to us making the problem of finding an
optimal or even an good solution significantly more difficult, especially for
models more complicated then this simple example. One of the ways to
solve POMDPs is to cast them to belief MDPs [17]. This is a specific type
of continuous state MDP where you operate from a belief state, which is the
likely state you are currently residing in. Value iteration can then be used
with the current and future belief states to determine the best action to take.

As mentioned, optimality in POMDPs is undecidable. It is still worth-
while automating property verification though. This is done using model
checkers. Verifying properties of a model automatically is done with the use
of a model checker. A model checker is thus used to verify if a described
system meets a given property. Examples of model checkers that are ca-
pable of model checking POMDPs are Prism [20] and Storm [13]. In order
to perform model checking in these environments one would first need to
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Figure 1.2: Example POMDP

describe their POMDP in a formal language designed to specify POMDPs.
The PRISM language [26] is an example of such a language. Once such a
model is described, the model checker can then be used to verify certain
properties of the model or find optimal values for others.

Recently a system was described that has a safety-critical system and dete-
riorating sensors [30]. This comes down to a POMDP wherein the usefulness
of the observations provided decreases over time. So when thinking back of
the example described in figure 1.2, the probabilities of observing o1,o2 or
o3 are no longer stagnant but change over time. This change will make it
more difficult as operation continues to differentiate between the in-control
state and the out-of-control state as time passes.

This thesis will cover all knowledge necessary for understanding the problem
described in the previous paragraph. The original problem of a system with
deteriorating sensors [30] will now be turned form a formal description into
a much more descriptive depiction of what this POMDP actually looks like.
This is then used to develop a generalized PRISM model for said problem
and perform model checking on a few numerical examples.
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Chapter 2

Preliminaries

2.1 Definition MDP

A Markov Decision Process (MDP) is a way of modeling non-deterministic
choices that have a probabilistic transition. A slightly altered definition for
MDPs can be derived from the book Principles of Modelchecking [5]. An
MDP is a tuple M=〈S,A, P,R〉 where:

• S is a finite set of states.

• A is a finite set of actions.

• P is a transition probability function defined as P : S×A×S → [0, 1]
such that for all states s ∈ S and actions α ∈ A∑

s′∈S
P (s, α, s′) = 1

• R is a reward function defined as R : S ×A→ R

It should be mentioned for the purposes of this thesis that the reward func-
tion may also function as a cost function.

2.1.1 Solving MDP

It is possible at every state to take the optimal action to optimize the ex-
pected reward. A property of MDPs is that you do not need knowledge
of previous states to do this for specific properties like expected reward or
reachability. This is called the Markov property [31]. The way to do this is
to get an optimal reward for the current state or action and an optimal ex-
pected reward for future states and actions. This idea is based in Bellman’s
principle of optimality and can be used to optimize MDPs. This leads to
the following definition for an optimal policy [10].
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• γ is an discount factor where 0 < γ < 1

• If we want to minimize cost then

V (s) = minα∈A(R(s, α) + γ
∑
s′∈S

P (s, α, s′)V (s′))

It is also possible to maximize reward. For that one simply needs to max
instead of min. This definition is over an infinite horizon. Since models
often loop and can be fairly large it is wise to limit the amount of iterations
you use this value function for.

2.2 Definition POMDP

A Partially Observable Markov Decision Process (POMDP) is an extension
of an MDP where, in contrast to a regular MDP, you do not have knowledge
of the state and are only capable of deriving information about the current
state using some observations. A definition for POMDPs can be derived
from the chapter on POMDPs from the book Reinforcement Learning [29].
There, POMDPs are defined as a tuple M=〈S,A,Ω, P,O,R〉 where:

• S is a finite set of states.

• A is a finite set of actions.

• Ω is a finite set of observations.

• P is a transition probability function defined as P : S×A×S → [0, 1]
such that for all states s ∈ S and actions α ∈ A∑

s′∈S
P (s, α, s′) = 1

.

• O is an observation function defined as O : S × Ω → [0, 1] such that
for all states s ∈ S ∑

y∈Ω

O(s, y) = 1

.

• R is a reward function defined as R : S ×A→ R.

It is still possible to try and develop a policy to maximize or minimize the
expected reward. Unlike with an MDP this problem is undecidable [21].
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2.3 Belief MDP

There are multiple strategies that can be used to attempt to solve POMDPs,
and there are also many optimization strategies available for those strate-
gies [8]. In this thesis no attempt will be made at solving a POMDP with a
formal proof. It is still useful however to understand how a model checker
tries to find a solution. Therefore it will be explained how a POMDP can be
turned into a belief MDP [17] which then can be solved using value iteration.
The specific solution methods of the model checkers used in this thesis are
also mentioned in section 2.6.

A belief MDPs definition is similar to that of an MDPs definition. The
difference is that instead of a set of states S the belief MDP has a set of
belief states B. These belief states give a probability distribution over the
states the system currently resides in, and are dependent on the POMDP
you turn into a belief MDP. A belief state can be updated based on the ac-
tion taken, the current observation and the previous belief state [32]. After
taking action α ∈ A and reaching the next state s’, observation y ∈ Ω is
made. A belief state b is then a probability over state space S. The function
b(s) gives the probability that the the system currently resides in state s.
The belief state is updated by:

b′(s′) = ηO(s′, y)
∑
s∈S

P (s, α, s′)b(s)

Where

η = 1/Pr(b, α)

This Pr(b,a) is a normalizing constant defined as

Pr(b, α) =
∑
s′∈S

O(s′, α)
∑
s∈S

P (s, α, s′)b(s)

Using these definitions a belief MDP [17] can be formally defined as a tuple
M= 〈B,A,Υ, T 〉

• B is a set of belief states

• A is is a set of actions

• Υ is the reward function over belief states. This is defined as Υ :
B ×A→ R such that for all belief states b ∈ B and actions α ∈ A

Υ(b, α) =
∑
s∈S

b(s)R(s, α)
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• T is a transition probability function defined as T : S×A×S → [0, 1]

T (b, α, b′) =
∑
o∈Ω

ρ(b, α, o)Pr(α, b)

Remember that Ω is the set of observations. Furthermore:

ρ : B ×A×O → {0, 1}

Where

ρ(b, α, o)

1, if the belief update returns b’

0, otherwise
(2.1)

All of this can then be used to make an adapted version of the Bellman
equation shown earlier, which then looks like this:

V (b) = minα∈A(Υ(b, α) + γ
∑
s′∈S

Pr(b, α)V (s′))

Since there are uncountably many belief states this is generally unsolvable.
There are, as mentioned, several ways of dealing with this. One of the more
common is value iteration. This method partitions the belief space into a
finite amount of regions by projecting the vectors of possible policies, which
are sets of actions, onto the belief space [28]. These vectors are known to be
piece-wise linear and conve. This, and the fact that these vectors converge
over iterations can be used to determine the best policy given a certain
amount of iterations. The best policy is determined by after projecting the
vectors and partitioning the belief space into regions based on where each
vector has the highest value, choosing the vector that yields the largest area
over the belief space.

2.4 PRISM Language

The PRISM language is a simple language which can be used to develop
a range of different state-based models. Among others, it can be used to
develop both MDPs and POMDPs. In this section relevant knowledge for
understanding the final model will be discussed. The examples discussed
here can be found on or are based around information found on the publicly
available manual for PRISM [2].

2.4.1 Models, modules and variables

Lets look at a first example:
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mdp

module M1

x : [ 0 . . 2 ] i n i t 0 ;

[ ] x=0 −> 0 . 8 : ( x ’=0) + 0 . 2 : ( x ’=1) ;
[ ] x=1 & y!=2 −> (x ’=2) ;
[ ] x=2 −> 0 . 5 : ( x ’=2) + 0 . 5 : ( x ’=0) ;

endmodule

module M2

y : [ 0 . . 2 ] i n i t 0 ;

[ ] y=0 −> 0 . 8 : ( y ’=0) + 0 . 2 : ( y ’=1) ;
[ ] y=1 & x!=2 −> (y ’=2) ;
[ ] y=2 −> 0 . 5 : ( y ’=2) + 0 . 5 : ( y ’=0) ;

endmodule

At the top of the model, the type of the model is defined. PRISM allows
for several options, although MDPs and further on POMDPs are the only
ones worth mentioning for this thesis. After that there are two modules.
Modules allow for two things: a definition of variables and commands. They
begin with the ”module” keyword and a name for the module, and end with
”endmodule”. Variables define the possible states the module can be in.
Variables are made up of a name, an optional range and optional initial
value.

2.4.2 Commands

For explaining commands, lets look at the following altered command from
the example:

[ a ] x=0 −> 0 . 8 : ( x ’=0) + 0 . 2 : ( x ’=1) ;

Commands are made up out of several parts. The first is an optional action
name, in this case a. These actions can be used if you want to assign
transitional rewards, which will be explained later. Actions can also be
used for synchronisation. Synchronisation happens if you have multiple
modules and you have the same action for commands in different modules.
During synchronisation these commands now occur simultaneously. This
thesis does not use this synchronisation feature. After the action is the
guard. This guard corresponds to the condition of the model at the start of
a transition. Everything after the right arrow describes the possible states
after transitioning and the corresponding probability of transitioning to that
state. In this case for example if you are in state x=0 action [a] will have
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an 80% chance of leading to state x=0 and a 20% chance of leading to state
x=1. PRISM allows for local non-determinism meaning that if we write:

[ ] x=0 −> 1 : ( x ’=0) ;
[ ] x=0 −> 1 : ( x ’=1) ;

Both x=0 and x=1 are reachable from x=0.

2.4.3 Constants

Besides the definition of modules, PRISM also allows you to define global
constants outside of modules:

const i n t rad iu s = 12 ;
const double p i = 3 .141592 ;
const double area = pi ∗ rad iu s ∗ rad iu s ;
const bool yes = true ;

As the name suggests, the value of these cannot be changed by commands.
They can be used anywhere a value would be expected.

2.4.4 Rewards

The next piece of information important for understanding how MDPs, or
specifically the MDP presented in this thesis, work in PRISM is understand-
ing how rewards work. Lets look at the following example:

rewards
x=1 : 1 ;
[ ] t rue : some constant ;
[ b ] x=0 : 2 ;

endrewards

Rewards can be awarded to states and to transitions. Rewards have an
optional label, a condition and the corresponding reward. Rewards without
a label are given if the model is in a state matching the condition. In the
example above, x=1 is a state specific reward. For any state x=1, the reward
is 1. Any reward with a label, empty or not, is rewarded upon a transition.
An empty label gives its reward without a transition label. In this case
the empty label has true as condition, giving all transitions without a label
some constant as its reward. Non-empty labels apply to transitions with a
matching labels, its condition is applied to the state it starts its transition
in. Transitions labeled b starting in x=0 will be rewarded 2 in this model.

2.4.5 Labels

Labels are of little consequence to the actual functioning of the model. They
are used as a method for identifying a state or a set of states.

l a b e l ”end” = time==maxtime ;
l a b e l ” l a t e ” = time>=10;
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In the example above the label ”end” applies to all states were the time
variable equals the maximum time variable. The label ”late” applies to
all states were the time variable is greater then or equal to ten. Although
labels are not of consequence to the workings of the model they are still
important to mention since the environments for model checking POMDPs
seem unable to identify state properties directly and instead need labels to
identify said properties.

2.4.6 POMDPs and observables

Now that we understand how MDPs function, it is time to move on to
POMDPs in PRISM. As explained previously the difference is that only
some of the information about the state is observable. The way this is done
in the PRISM language is to indicate which of the variables can be observed.
All the other variables are still part transitions but simply cannot be used
in making policy choices when solving the model. Lets adapt the MDP
discussed previously into an POMDP. This looks as follows:

pomdp

obse rvab l e s
x

endobservab le s

module M1

x : [ 0 . . 2 ] i n i t 0 ;

[ ] x=0 −> 0 . 8 : ( x ’=0) + 0 . 2 : ( x ’=1) ;
[ ] x=1 & y!=2 −> (x ’=2) ;
[ ] x=2 −> 0 . 5 : ( x ’=2) + 0 . 5 : ( x ’=0) ;

endmodule

module M2

y : [ 0 . . 2 ] i n i t 0 ;

[ ] y=0 −> 0 . 8 : ( y ’=0) + 0 . 2 : ( y ’=1) ;
[ ] y=1 & x!=2 −> (y ’=2) ;
[ ] y=2 −> 0 . 5 : ( y ’=2) + 0 . 5 : ( y ’=0) ;

endmodule

As you can see there are two main differences. The first one is that the
model now begins with the keyword ”pomdp” instead of ”mdp”, indicating
that it is in fact a POMDP. The second is that one now needs to define
which variables are actually observable when solving the model. In this case
only x is observable, but as many variables as necessary can be chosen as
long as they are separated with a comma. It is also possible to only have a
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range of a variable be observable. This looks as follows:

obse rvab l e ”pos” = l >0;

For this thesis this option will not be used.

2.5 Properties in PRISM

CTL stands for computation tree logic, a temporal branching logic that can
be used to verify properties in systems with non-deterministic choices [5].
PCTL stands for probabilistic computation tree logic and is an extension to
CTL in that it allows verification of systems with non-deterministic choices
that have a probabilistic transitions [12]. Property verification in the PRISM
language is based on PCTL. Without going into to much detail in this
section about what PCTL is, a quick understanding will be given about
how property verification works in PRISM.

2.5.1 Queries and operators

Any property one wants to verify takes the following basic shape:

query [ pathproperty ]
or

operator bound [ pathproperty ]

This thesis makes use of three properties. Two of them follow the query
structure, and one the operator bound structure.
The first propertythat follows the query structure used in this thesis looks
as follows:

Rmin=? [ pathproperty ]

This traverses the model returns the minimum expected reward for a given
path property. One can also maximize the property with Rmax. Typically
this is the query of interest when verifying properties about a POMDP
since minimization (or maximization) of a reward is often the main goal of
a model.
The second property with a query structure looks as follows:

Pmin=? [ pathproperty ]

This traverses the model and returns the minimum expected probability for
a given path property to be reached. One can also maximize the property
with Pmax. This property is useful since not all model checkers are capa-
ble of checking a bound, which is the next property we will discuss. This
problem can then be alleviated by simply using this property where you
would otherwise use a bound and seeing if it matches what you were trying
to check. The third property and the only operator bound one used in this
thesis is the P operator. The P operator also called the probability operator.
The operator takes the following shape:
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P bound [ pathproperty ]

The operator holds true if the probability of the path-property occurring
meets the condition set by the bound. So for example:

P>0.2 [ pathproperty ]

Means that the probability that pathproperty is satisfied by the path that
starts from state s is greater than 0.2. This bound can be any atomic propo-
sition.

2.5.2 Path property

There is only one path property of interest to us. The finalize or eventually
property. An expression for the finalize property would look something like
this:

F ”Some s t a t e ”

This property holds if the model eventually reaches a state labeled ”Final
state”. So eventually is true in the initial state if for all possible paths, with
all possible probabilities of transitioning, there is a path in which eventually
the state is reached labeled some state.

2.6 Verification environments

The POMDP described in this thesis was developed in the PRISM language.
There are different ways of actually model checking the POMDP. The three
tools used in this thesis were Storm [13], Prism Model Checker [20] and a
Toolchain that relies on Storm developed at the Radboud university, UC
Berkeley and UT Austin[9]. On the websites of Storm [3] and Prism Model
checker[1] detailed instructions are available if you plan on using these model
checkers. For the tool-chain a link is included in the appendix to a Github
repository which includes the tool chain and installation instructions.

2.6.1 Storm

Storm [13] is a model checker for models involving random or probabilistic
phenomenon. Storm was benchmarked [11] to be the fastest model checker
currently available. For this thesis the interest lies with its ability to model
check POMDPs in the PRISM language. Furthermore it’s python API al-
lows one to develop their own program to interact with the different mod-
ules Storm has on offer. The Method Storm uses to solve POMDPs is an
abstraction-refinement framework that uses discretised belief MDPs [7], re-
sulting in bounds of the actual value of a policy. Model checking a POMDP
in Storm is done by issuing the following command in your console:
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. / Storm−pomdp −−prism [ path to model ] −−prop [ path to props
f i l e ] −−b e l i e f −exp l o r a t i on

The property file is simply a file containing the properties you want to model
check. It is also possible to fill in a singular property you want to model
check instead of a path to a property file.

2.6.2 Prism Model Checker

As of the latest update (4.7) Prism Model Checker [20] also has the ability to
verify properties of POMDP’s. The method Prism Model Checker uses by
default for its verification is called value iteration and grid-based methods
[24]. The way it works is by starting at the end point and refining an
estimate of the given property by repeatedly working its way backwards.
The user can either define a maximum number of iterations or Prism will
choose one. This has a similar effect to the method used by Storm in that
the final answer provided is an estimation and not an absolute solution.
Model checking in Prism is done by issuing the following command in your
console:

. / prism [ path to model ] [ path to props f i l e ]

2.6.3 Toolchain Radboud University

The final method used for verification is with the Toolchain Developed here
at the Radboud University [9]. The Toolchain works by turning the POMDP
into a parametric Markov chain [16] and then performing parameter synthe-
sis to solve this chain [15]. For operators and their bounds the tool also
guarantees correctness because it model checks the result verifying the solu-
tion. This means that when checking a threshold correctness is guaranteed.
This guarantee is not possible when minimizing or maximizing a value how-
ever. Running the model is done by editing the solver.py file to the model
and property you want to check and then running solver.py.
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Chapter 3

Research

3.1 Example problem

In order to get a more concrete idea of what the model that will be described
can be used for, an example will be sketched to give some insight.

An offshore wind turbine is a way of generating renewable energy that is
becoming more and more common. As with most other forms of renewable
energy, it does not require a constant input of resources to continue oper-
ating. It does require maintenance. The advantages of an offshore turbine
compared to one on land is that, in general, offshore counterparts produce
more power. The disadvantage is that maintenance is a lot more difficult and
costly. It is also more costly to do a manual checkup. A way to mitigate this
would be to install a sensor on the turbine to minimize visits. Such a sensor
would give some indication about the disposition of the turbine, although it
would not result in perfect knowledge. The Turbines disposition is usually
in control, meaning it is operational and not costing anything because of
this. Every so often it breaks down resulting in it being out of control.

When in ownership of an offshore wind turbine like this, it is incredibly
important to make deliberate decisions about how to minimize or maximize
certain attributes as to get the most out of your asset. An obvious goal
could be to minimize operational costs, although less obvious goals could
also be to minimize maintenance visits over a certain period or maximizing
the total time the system spends in a state of being operational.

The outcome of these properties could be found by describing the system
as a POMDP. This could be done by describing the disposition of the tur-
bine (in-control or out-of-control) combined with the time as the underlying
state, taking the imperfect sensor observation as the observation function
and applying a cost to maintenance visits and the turbine being not oper-
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ational. Actions between transitions would then be to continue operations
or to perform a maintenance visit at a cost.

This example can be described using a ”regular” POMDP. In fact, it has
been done so before [22] [23]. Those solutions however do not take into
account that not only the turbine deteriorates but that the sensor also de-
teriorates.

If the owners of the wind turbine would want to model the system tak-
ing this into account, they would have to model the system in such a way
that over time observation provide less useful information until sensors are
replaced. This adds the action of replacing the sensors to the possible op-
tions. If they would want to minimize a property such as operational costs,
the solution would now have to balance costly maintenance of the turbine
and very costly maintenance of the sensors with the risk of operating the
system in an out of control state. As will be shown in this thesis, this can
be achieved with a POMDP whose observation function is affected by the
time spend operating the system.

3.2 Description of the model

Since this is not a thesis about wind turbines but about POMDPs with
deteriorating sensors, this section will be used to abstract away from the
example and give a description of the model. Some further explanation will
also be included. This model is based on the paper [30]. Figure 3.1 also
serves as a visual aide for understanding the model described.

3.2.1 The state space

The following describes the state space of the POMDP:

• A disposition i ∈ D of the system is either in-control which corresponds
with ”0” or out of control which corresponds with ”1”

• Periods are indexed by the set N

• The underlying state of the system is made up of the pair (i, t) ∈ D×N

The disposition can be either in an in control ”0” or an out of control
state ”1”. A cost is incurred for being out-of-control. It is a discrete time
system over the interval {0,1,.,n}. An upper limit n should be chosen to
properly define the observation function later on. The states of the POMDP
constitute a combination of the disposition, these states are displayed as the
blue circles in figure 3.1.
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Figure 3.1: A part of the model showing all the possible transitions from
both an in control and out of control state from states at time interval 1

3.2.2 The actions

The following describes the actions of the POMDP:

• The action space is A={G,H,J}. Action G is continue operation, ac-
tion H is full inspection without sensor replacement, Action J is full
inspection with sensor replacement.

• If action G is taken a normal transition takes place as described by the
transition function.

• If action H is taken, it is as if action G takes place from state (1,t).

• If action J is taken, it is as if action G takes place from state (1,0).

In layman’s terms this means the following:
There are three actions that can be taken, each available at every state of
the system except the final states.
Action G continues to operate the system, with a chance of failure. Contin-
uing operations is always free. If the system is already out of control it will
always stay out of control when continuing operations.
Action H will always reset the system back to in-control before continuing
with operations. Resetting the system always has a cost but more so when
the system is out of control. The age of the sensor is not affected by this.
The transition of action H is as if action G is taken from state (0, t).
Action J resets the system and the sensors before continuing with opera-
tions. Resetting the system and the sensors always has a high cost but more
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so when the system is out of control. The transition of action J is as if action
G is taken from state (0,0).
These actions are labeled as the letters in the blue boxes in figure 3.1.

3.2.3 Observations

The following describes observations of the POMDP:

• At each transition epoch the model perform a costless imperfect ob-
servation O = {0,...,y}.

It is important to note that only a single observation is made at every state.
This observation gives some indication of what state the system is in. How
these observation relate to the state is explained in the subsection on the
observation function.

3.2.4 Transition function

The following describes the transition function of the POMDP:

• The system changes as a discrete time Markov chain over the disposi-
tions. Since the actions do not have different transitional probabilities
the current and next state are sufficient information to differentiate
the transitional probabilities. Furthermore, the time is always incre-
mented by 1 meaning information about the time is also unnecessary.
In the model this has the notation Pij = [0, 1] with i, j ∈ D. The
transitional probability Pij then means the the probability for state
(i, t) to transition to state (j, t+ 1).

The transitional probabilities are displayed in figure 3.1 as the blue letters
and numbers without an outline.

3.2.5 Observation function

The following description is given of the observation function

• The observational probabilities at state (i, t) ∈ D×N can be denoted as
a set Q(i,t) = { q(i, t, 0), q(i, t, 1), .., q(i, t, y−1), q(i, t, y)} with q(i, t, k)
denoting the individual observational probability for k ∈ O

• The function for determining singular observational probabilities is the
probability mass function for independent trials in a binomial distri-
butions. For this instances this is defined as follows: q(i, t, k) is defined
as q(i, t, k) =

( y
k

)
pi(t)

k(1 − pi(t))y−k for i ∈ D, k ∈ O, |O| = y. Fur-
thermore p0(t) = a · t+ b and p1(t) = −a · t+ c with a, b, c ∈ [0, 1] and
b <= c . Finally ∀t, pi(t) ∈ [0, 1]
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The observation function explains for every possible observation the chance
it will be observed in a certain state. For each state the result of the obser-
vation functions over all observations sum up to exactly 1, corresponding to
that only 1 actual observation will be made.
The more unique part of this model is that the observations are affected by
how long the system has been operating. This is why t is a variable in the
observation function. Depending on the exact definition of q(i, t, k) this can
have a number of different affects.
If q(i,t,k) = q(i,t’,k) for ∀t, t′ ∈ T then the observations are not affected by
time. This happens when in pi(t), a = 0. This means that no deterioration
takes place and removes what makes the model of interest.
Additionally the definitions of p0(t) and p1(t) should be chosen in such a
way that p0(n) = p1(n) with n being the maximum value of T . This will
make it more difficult to distinguish what state the system is in as time
increases until it is completely impossible to distinguish.
Since it can be quite difficult to visualize this, it may help to look at figure
3.4 in the next section. There you can see how in the numerical example
presented in section 3.4, as the age of the sensor increases the chance that
an observation can be made in both the in control and out of control state
increases as well.
In figure 3.1 the observation function is displayed as the function in the red
box attached to the red arrow. It is only displayed for the two observations
on display.

3.2.6 Reward function

The following description is given of rewards in this model:

• Cd is the cost for transition to an out of control state (1,t).

• Cs is the cost for full inspection. This cost is always incurred when
taking action H.

• Ci is the cost for replacing the sensors. This cost is always incurred
when taking action J.

• Cr is the cost for resetting the system. This cost is always incurred
when action J or action H is taken from an out of control state (1,t)

Although still called reward, in this specific model it the reward function is
used more as cost. Therefore maximizing rewards is probably not something
that will be of interest with this model. The rewards are shown in the model
inside the yellow rectangles.
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3.3 Visual model of the POMDP

Using the description the POMDP, a visual depiction of the model was
created. Figure 3.2 shows a smaller version over the period {0,1,2} and
figure 3.3 shows a slightly larger version over the period {0,1,2,3,4,5}. As
the description suggest, in principal the model can be extended over any
period size. After the first state (0,0), it constitutes a constantly repeating
pattern. The only exception are the final two states at the maximum time
interval. In the case of figure 3.2 these are (0,2) and (1,2). From these final
states a transition is no longer possible.

Figure 3.2: POMDP for (i, t) ∈ {0, 1} × {0, 1, 2}
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Figure 3.3: POMDP for (i, t) ∈ {0, 1} × {0, 1, 2, 3, 4, 5}
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3.4 Numerical example

The description above gives a generic POMDP whose observations are influ-
enced by the age of the sensors. To implement this in PRISM a move from
this generic implementation to a numerical implementation is necessary. For
this, the first numerical example presented in [30] was used. There are two
small changes from the model described in the paper. The state space was
changed from (i, t) ∈ {0, 1} × {0, ...., 10} to (i, t) ∈ {0, 1} × {0, .., 5}. Fur-
thermore, the rate of sensor deterioration was doubled to match the smaller
state space. In the PRISM model different sizes where tested, so this change
in size mostly applies to the description and depiction presented in this sec-
tion. With these changes included, this implementation of the POMDP is
defined as follows:

• The state space is (i, t) ∈ {0, 1} × {0, .., 5}.

• The observations O = {0,...,50}, this means y=50.

• The transition matrix is P11 = 0.9, P12=0.1, P21=0 and P22=0.

• Elements of Q(i,t) are given by q(i, t, k) =
( y
k

)
pi(t)

k(1− pi(t))y−k for
i ∈ D, k ∈ O, p1(t) = 0.4+0.030t and p2(t) = 0.7−0.030t. This implies
that for t >= 5 sensor decisions are completely uninformative. This
means that for t = 5 the probability of observing o ∈ O is the same
regardless of whether the observation is made from the in-control or
out-of-control state.

• Cd=100, Cs=75, Cr=50 and Ci=20.

Using python to calculate the values of the observations, figure 3.4 showcases
the probability mass function at different sensor ages. Figure 3.5 shows the
model with all the values filled in.

25



Figure 3.4: Probability mass function of the sensor observations as a function
of the sensor age. Blue is the in control state ”0”, red is the out of control
state ”1”
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Figure 3.5: POMDP for (i, t) ∈ {0, 1}×{0, 1, 2, 3, 4, 5} with numerical values
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3.5 Modeling the MDP in PRISM

PRISM was used to develop a model of the underlying MDP from the
POMDP. When first working on the problem PRISM did not yet support
POMDPs, so it was decided to first focus on the MDP. Seeing as this is only
a MDP both observations and a observation function are not part of the
model. Furthermore, since action J only really makes sense if the age of the
model affects the observations, action J was left out of the model. This led
to the following generic description of the PRISM model:

mdp
// cons tant s
const double p11 = t r a n s i t i o n a l p r obab i l i t y from in con t r o l to

in con t r o l ;
const double p12 = t r a n s i t i o n a l p r obab i l i t y from in con t r o l to

out o f c on t r o l ;
const double p22 = t r a n s i t i o n a l p r obab i l i t y from out o f c on t r o l

to out o f c on t r o l ;

const i n t cs = cos t o f a c t i on H, guarantee ing re turn to in
con t r o l s t a t e ;

const i n t cr = add i t i ona l co s t o f a c t i on h i f performed from out
o f c on t r o l s t a t e ;

const i n t cd = cos t o f opera t ing in out o f c on t r o l s t a t e ;
const i n t maxt = maxtmum time i n t e r v a l ;

//modules
module m1

i : [ 0 . . 1 ] i n i t 0 ;
t : [ 0 . . maxt ] i n i t 0 ;

// from in−c on t r o l
[G] i = 0 & t < maxt −> p11 : ( i ’=0) & ( t ’= t+1) + p12 : ( i

’=1) & ( t ’= t+1) ;
[H] i = 0 & t < maxt −> p11 : ( i ’=0) & ( t ’= t+1) + p12 : ( i

’=1) & ( t ’= t+1) ;

// from out−of−c on t r o l
[G] i = 1 & t < maxt −> p22 : ( i ’=1) & ( t ’= t+1) ;
[H] i = 1 & t < maxt −> p11 : ( i ’=0) & ( t ’= t+1) + p12 : ( i

’=1) & ( t ’= t+1) ;

endmodule
l a b e l ”end”= t = maxt ;

rewards
i = 1 : cd ;
[H] i = 0 : cs ;
[H] i = 1 : cs+cr ;

endrewards

A few things to note with the model:
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• A description for the variables is given to give a generic version of this
model. A numerical version based on the example discussed earlier
can be found in appendix.

• The value i = 0 is used for in control and the value i = 1 is used for
out of control in the model.

• The constant ”maxt” is used to indicate the maximum value ”t” can
have within this model.

• The actions are labelled with what action they correspond too. This
is used in the reward function to apply action specific costs to action
H.

• The cost of operating in the out-of-control disposition is applied to the
state and not the transition.

• Technically, this implementation creates the state (1,0) which should
not exits. This state is unreachable however, and it was not removed
for simplicity reasons.

3.6 Modeling the POMDP in PRISM

After having developed the MDP attention was shifted to making the POMDP.
This of course is a lot more interesting since the unique identifying feature of
this model is related to the observation function. After much consideration
the following generic implementation of the model was developed:

pomdp

obse rvab l e s
o , t , b

endobservab le s

// cons tant s
const double p11 = t r a n s i t i o n a l p r obab i l i t y from in con t r o l to

in con t r o l ;
const double p12 = t r a n s i t i o n a l p r obab i l i t y from in con t r o l to

out o f c on t r o l ;
const double p22 = t r a n s i t i o n a l p r obab i l i t y from out o f c on t r o l

to out o f c on t r o l ;

const i n t c i = add i t i o na l co s t o f a c t i on J , r e s e t t i n g t to 0 ;
const i n t cs = cos t o f a c t i on H, guarantee ing re turn to in

con t r o l s t a t e ;
const i n t cr = add i t i ona l co s t o f a c t i on H and j i f performed

from out o f c on t r o l s t a t e ;
const i n t cd = cos t o f opera t ing in out o f c on t r o l s t a t e ;
const i n t maxt = s i z e o f the time i n t e r v a l ;
const i n t max0 = s i z e o f the obse rvat i on space ;
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module m1
i : [ 0 . . 1 ] i n i t 0 ;
t : [ 0 . . maxt ] i n i t 0 ;
o : [ 0 . . maxo ] i n i t 0 ;
b : bool i n i t t rue ;

// t=0
[ o ] i=0 & t=0 & ! b −> p r obab i l i t y o f observ ing o = 0 f o r

t = 0 and i =0:(o ’ = 0) & (b ’ = true ) + . . . . . +
p r obab i l i t y o f observ ing o = maxo f o r t = 0 and i =0:(
o ’ = max0) & (b ’ = true ) ;

[ o ] i=0 & t=0 & ! b −> p r obab i l i t y o f observ ing o = 0 f o r
t = 0 and i =1:(o ’ = 0) & (b ’ = true ) + . . . . . +

p r obab i l i t y o f observ ing o = maxo f o r t = 0 and i =1:(
o ’ = max0) & (b ’ = true ) ;

. . . . .
// t=maxt
[ o ] i=0 & t = maxt & ! b −> p r obab i l i t y o f observ ing o =

0 f o r t = maxt and i =0:(o ’ = 0) & (b ’ = true ) + . . . . .
+ p r obab i l i t y o f observ ing o = maxo f o r t = maxt and
i =0:(o ’ = max0) & (b ’ = true ) ;

[ o ] i=0 & t = maxt & ! b −> p r obab i l i t y o f observ ing o =
0 f o r t = maxt and i =1:(o ’ = 0) & (b ’ = true ) + . . . . .
+ p r obab i l i t y o f observ ing o = maxo f o r t = maxt and
i =1:(o ’ = max0) & (b ’ = true ) ;

// from in−c on t r o l
//G
[G] i = 0 & t < maxt & b −> p11 : ( i ’=0) & ( t ’= t+1) & (b’=

f a l s e ) + p12 : ( i ’=1) & ( t ’= t+1) & (b’= f a l s e ) ;
//H
[H] i = 0 & t < maxt & b −> p11 : ( i ’=0) & ( t ’= t+1) & (b’=

f a l s e ) + p12 : ( i ’=1) & ( t ’= t+1) & (b’= f a l s e ) ;
//J
[ J ] i = 0 & t < maxt & b −> p11 : ( i ’=0) & ( t ’= 1) & (b’=

f a l s e ) + p12 : ( i ’=1) & ( t ’= 1) & (b’= f a l s e ) ;

// from out−of−c on t r o l
//G
[G] i = 1 & t < maxt & b −> p22 : ( i ’=1) & ( t ’= t+1) & (b’=

f a l s e ) ;
//H
[H] i = 1 & t < maxt & b −> p11 : ( i ’=0) & ( t ’= t+1) & (b’=

f a l s e ) + p12 : ( i ’=1) & ( t ’= t+1) & (b’= f a l s e ) ;
//J
[ J ] i = 1 & t < maxt & b −> p11 : ( i ’=0) & ( t ’= 1) & (b’=

f a l s e ) + p12 : ( i ’=1) & ( t ’= 1) & (b’= f a l s e ) ;

endmodule
l a b e l ”end”= t = maxt ;
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l a b e l ” i n c on t r o l ” = i = 0 ;
l a b e l ” ou t o f c on t r o l ” = i = 1 ;

rewards
i = 1 : cd ;
[H] i = 0 : cs ;
[H] i = 1 : cs+cr ;
[ J ] i = 0 : cs+c i ;
[ J ] i = 1 : cs+c i+cr ;

endrewards

Considerably more interesting design choices were made in this model com-
pared to the MDP. In the following subsections these will be explained.
This again is a generic implementation of the model. An implementation
that models a numerical example of section 3.4 is added in the appendix.
Other examples are also available on the Github repository.

3.6.1 Bool b and guards

The design choice was made to distinguish between states where observations
are made and those where the actions take place with a bool b. This would
have been avoided if at all possible, since it increases the size of the model.
Normally you would use multiple modules and through labels synchronise
the observations with the actions of the model. This would require the
actions and the observations to have the same labels. This however is not
possible. The reason for this is that the actions have the same guard, and
sharing a label is then not allowed when in the same module. It is also not
possible to have these actions in different modules since that would mean
they synchronise with each other as well as with the observations. The
guards in the model are therefore not used for synchronisation but mostly
for clarity. It is necessary for the guards of the observations to all be the
same because the POMDP functionality of PRISM will generate an error if
it is not possible to take the same action from different states. For all these
reasons it was a necessary design decision to add this guard. The labels of
action G, H and J also relate to the reward.

3.6.2 Observation

Perhaps the most interesting and most distinguishing feature is the way
the observations are set up. PRISM does not allow for complex functions.
This is problematic because typically the observational probabilities for this
model are a binomial distribution, beyond the capabilities of PRISM to
turn into a function. Furthermore it is not allowed to use variables as part
of transitional probabilities. This leaves as only solution to generate all ob-
servational probabilities for any given period size and size of observational
space beforehand. Therefore, to the authors knowledge, it is not possible to
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generalize this model using variables within PRISM. Instead different spe-
cific implementations need to be made for differing sizes of observational
space and periods. To this end a simple script was developed in Java that
allows you to create a custom observation function where you can pick your
own observational and period size. Furthermore the definition of this func-
tion is according to the specifications given in 3.2.5.

3.7 Properties of the PRISM model

Having developed the model, now properties can be used to model check the
POMDP. Three properties will be discussed here.

3.7.1 Reachability

The first property tests whether it is possible to reach the final state of the
model. The property is:

P>=1 [ F ”end” ]

This property means ”The algorithm eventually reaches the end label with
probability 1”. The end label is given to states that have the maximum value
of t. If this value is true it indicates that termination is always possible.

3.7.2 Probability of reaching the end

The second property tests what the probablity is of reaching the end of the
model if it is our intention to do so. the property is:

Pmax=? [ F ”end” ]

This property mean ”The maximum expected probability of the algorithm
eventually reaching end”. The reason to include this property is also ex-
plained in the results, but has to do with some of the model checkers being
unable to process the reachability property.

3.7.3 Expected minimum cost

The thrid property test what the cost is that is expected to incur when we
try to minimize the cost. The property is:

Rmin=? [ F ”end” ]

This property means ”The minimum expected reward if the algorithm even-
tually reaches end”. Note that expected minimum value does not mean the
minimum value but the minimum value taking transitional probabilities into
account. This is by far the most interesting and relevant property to check
if you plan on using the model for optimization.
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3.8 Results with varying observation space

The following sections shows the results achieved when model checking the
properties from the previous section. The model was checked for three
different sizes of the observations space. This was chosen as the only variable
since it allowed the rest of the model to stay much more consistent. For the
observation space, a maxo of 1, 5 and 10 was chosen. Although the different
solution methods indicate a different number of states at different sizes of
the model, the model should at least grow by the size of the state space for
each observation added, and the number of transitions should increase by
threefold that. This made it impossible to perform property verification on
models with a larger observation space for this state space. When keeping
all other variables of this model equal, 8 observations is when in most model
checkers I started experiencing problems. At 20 observations all models were
unable to perform property verification. All values besides the observations
space correspond with the numerical example described in section 3.4.

3.8.1 Reachability

Table 3.1: Reachability

maxo
P ≥ 1 [F”end”]

Storm Prism Toolchain

1 not possible false 1

5 not possible false 1

10 not possible false 1

Table 3.1 displays the results of testing the reachability property, P ≥ 1
[F”end”]. Lets cover the results for each of the outcomes separately.

Storm As specified in the documentation for properties in Storm [4] it
is not possible to verify a property in a non-deterministic model without
knowing if it needs to be minimized or maximized. As a workaround the
property ”Pmax=? [F ”end”]” was also attempted. This property does in
fact work and for all sizes that were attempted it provided an answer of 1.

Prism For Prism the reachability property is false. However, this is not
actually the result of the property verification but is more so the result
of only min and max properties being defined for POMDPs in Prism [2].
Just like with Storm we can attempt to alleviate this by using the property
”Pmax=? [F ”end”]. For this property Prism gives a result of ≈ 0.5. This is
an average of the bounds it finds for this property however. The bounds it
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finds are 0.0 and ≈1.0. These respectively represent an under-approximation
and an over-approximation of the given property [24]. These bounds and
how to interpret them will be further discussed in section 3.9.1.

Toolchain The Toolchain is capable of model checking this property in
an appropriate manner to show that in fact the ”end” is reachable from the
initial state.

3.8.2 Expected minimum cost

Table 3.2: Expected minimum cost

maxi
Rmin=? [F”end”]

Storm Prism Toolchain

1 [146.42, 178.316734] 177.011682292056 186.385936625735

5 [141.2648347, 180.135328] 166.215066356857 174.488417923098

10 not possible 157.49152121347 not possible

Depending on what solution method used the answer for this property
takes a slightly different format. For Storm a range of answers is delivered.
Prism provides an answer with a margin for error. All the margins for error
were less then one in this case, and therefore left out to make it more legible.
The Toolchain provides an exact solution but cannot guarantee a minimal
value. The Toolchain is designed to provide guarantees on a threshold, but
this does not guarantee optimal value. All the solution methods are not
perfect and therefore this should not be seen as an exact solution. They
do give a good estimation however. Since they all also fall within the same
range of solutions one can be fairly sure that these give a good indication of
what the expected minimum cost can be if an good policy is applied. There
also seems to be a correlation between the amount of available observations
and the overall costs. This is to be expected since with maxo = 1 only 2
observations are available. Even in states with a low value for t this makes
the observations barely indicative of the true state of the system. With a
higher amount of observations they become much more disjoint in indicating
the state of the system, especially for low values of t. Finally it should be
noted that for a maxo = 10 both Storm and the Toolchain seem unable to
solve the property. The best explanation that can be given for this is that
it seems to create numerical errors for larger sizes of the model as currently
designed since it results in an 8 decimal probability. Since the Toolchain
uses the Storm python API it makes sense that if Storm fails, it fails too.
To resolve this adaptations to the program generating observations would
have to be made.

34



3.9 Results with varying period sizes

The model was also tested in the model testing environments for different
period sizes. During these test the number of observations was set at 5.
Furthermore as little alterations as possible were made to the numerical
implementation used previously. In order for the deterioration to match
the new sizes of the model a slight alteration was made to the observation
function. This alteration simply means that the distinguishing between in
control and out of control states becomes impossible at the new maximum
interval instead of earlier. For the period size 2 this means that in the
observation function for Pi a=0.75 was used, and for period size 10 a=0.015.

3.9.1 Probability of reaching the end

Table 3.3: Probability of reaching the end

maxt
Pmax=? [F”end”]

Storm Prism Toolchain

2 1 0.4999999995 1

5 1 0.499999996355 1

10 1 0.5000000002952447 1

In the previous section we have already seen that reachability property
does not work in Storm and Prism. Therefore instead the probability of
reaching the end was also briefly discussed. Here the results of that prop-
erty are displayed since they did produce some interesting results in Prism.
First of, both in Storm and in the tool chain the property produced results
much as expected and in line with the results we saw in the previous section.

Now the results in Prism. As discussed in the previous section the num-
ber Prism outputs is simply the average of a lower and an upper bound.
The lower bound is always 0.0. This means the higher bound is always
twice the average that is displayed in the table. Furthermore Prism always
indicates how far off it can be from the actual solution. In both this and
the previous section the output could be offset both positively and nega-
tively by the number Prism gives as a final answer. Now for this model
one would expect the higher bound to be exactly 1.0, since always taking
action G should always result in the model reaching the label ”end”. This
is because even when out of control the label ”end” is simply the maximum
period. However for smaller periods this upper bound is slightly less then
that and for larger periods it is slightly more. This same seemed to happen
when increasing the size of the observation space. For both observation size
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10 and period size 10 this upper bound even exceeds 1. At first I thought
this was simply an oddity but after looking carefully through my models I
found one size for which this did not happen. This was when the period
was 5 and max0 1. The explanation for this seems to be the following: For
most models, when generating the observational probabilities, the sum of
all probabilities from a certain state does not perfectly round to 1 due to
rounding errors when generating the individual probabilities. It is however
always incredibly close to 1 usually being of by just a ten thousandths or
less. This is close enough for the model checkers to not see this as a rea-
son for generating an error about the probabilities not summing up to 1.
At maxO 1 the probabilities do however sum to exactly 1. This seems to
indicate that although Prism still accepts a model for probabilities that are
not perfectly 1, it still works with these faulty probabilities and is able to
generate an upper limit higher than 1. This was a little surprising for me
since these probabilities are also not related to the transitions, just to the
observations. This is however the only explanation I could find. Although
for me this was a surprising find, this is however not a wrong answer because
the final solution including bound it gives falls within the range of a correct
solution.

3.9.2 Expected minimum cost

Table 3.4: Expected minimum cost

maxt
Rmin=? [F”end”]

Storm Prism Toolchain

1 0 0 1.5078488488788224

2 [19.9999999, 19.9999999] 20.000000236113443 23.12232870713059

5 [141.2648347, 180.135328] 166.215066356857 174.488417923098

10 not possible 458.2009471674771 not possible

The expected minimum costs for larger period sizes does not produce
many interesting results. As with a large number of observations Storm and
the Toolchain get numerical errors for a large period size. As expected the
cost is significantly lower for lower operation times. The one result that I
found quite interesting is that for a period size of 1 both Storm and Prism
expect no cost, unlike the Toolchain which accounts for a little amount of
cost. Since there is a state based reward related to being out of control, and
there is a chance that you transition immediately to out of control, one would
expect a small amount of expected cost. Since with this period size after
transition the end of the model is reached immediately, this means that it
seems that Storm and Prism check if the final state is reached before applying
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any state based cost or reward on the final state, while the Toolchain does
apply a state based cost before checking if a final state is reached.
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Chapter 4

Related Work

Optimal policies for safety critical systems and its deteriorating
sensor [30] provides a description for the model used in this thesis. They
also provide some conditions for an optimal policy concluding with the as-
sessment that there is always a threshold structure in the policy until which
it is advantageous to generally take actions that do not reset the sensors
and after which it always is advantageous to take actions that do reset the
sensor. The contributions added to this by this thesis are primarily turn-
ing this description in a generalized PRISM model and performing model
checking on instances presented in the paper. Furthermore the presentation
of the model in this thesis is more fleshed out and descriptive making it a
lot more accessible to a layman.

Robust finite-state controllers for uncertain pomdps [9] presents
the toolchain developed at the Radboud university that was used in this
thesis for Model checking. This paper is a much more general paper about
uncertain POMDPs and how this toolchain is shown to be able to solve
these problems witch decent benchmarks and good results. In this thesis
the toolchain is specifically applied to the problem of a system with deteri-
orating sensors.
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Chapter 5

Conclusions

In this thesis safety critical system with deteriorating sensors was success-
fully modeled as a POMDP in the PRISM language. A visual model of
a POMDP was developed for a system with deteriorating observations. A
generalized PRISM model was created that allows one to create a specific
implementation with the use of number of variables available to the practi-
tioner. A small variety of possible implementations were shown within the
thesis and different properties were model checked accordingly. Relatively
consistent reward properties were obtained when testing the model in dif-
ferent model checking environments.
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Appendix A

Appendix

This appendix contains the Java program that can be used to generate
your own observations for a model further specified by you. Furthermore it
contains a Numerical implementation of the MDP that was developed and
a numerical implementation of the POMDP that was developed. All these
things, the other POMDPs used in the results section and the Toolchain
used in modelchecking can also be found on the following github:
https://github.com/vkoenv/bachelor thesis.

A.1 Program for generating observation space

The following java program can be used to generate the observational tran-
sitions necessary for any size of the model.

import java . math . BigDecimal ;
import java . math . MathContext ;
import java . math . RoundingMode ;
import java . t ex t . DecimalFormat ;

public class ObservableMaker {
int s i z e o ;
int tmax ;
double a0 ;
double a1 ;
double b0 ;
double b1 ;
private stat ic DecimalFormat df = new DecimalFormat ( ”

0.00000000 ” ) ;
/∗∗
∗ Constructor f o r the o b s e r v a b l e maker c l a s s e s s e t t i n g up

the v a r i a b l e s
∗ @param s i z e o s i z e o f o b s e r va t i on space
∗ @param tmax s i z e o f time i n t e r v a l
∗ @param a0 c o e f f i c i e n t f o r p1 = a0∗ t + b0
∗ @param a1 c o e f f i c i e n t f o r p1 = a1∗ t + b1
∗ @param b0 cons tant f o r p1 = a0∗ t + b0
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∗ @param b1 cons tant f o r p1 = a1∗ t + b1
∗/

public ObservableMaker ( int s i z eo , int tmax , double a0 ,
double a1 , double b0 , double b1 ) {
this . s i z e o = s i z e o ;
this . tmax = tmax ;
this . a0 = a0 ;
this . a1 = a1 ;
this . b0 = b0 ;
this . b1 = b1 ;

}
/∗∗
∗ c r ea t e s f a c t o r i a l n
∗ @param n s i z e o f the f a c t o r i a l
∗ @return ! n
∗/

public BigDecimal f a c t o r i a l ( int n) {
i f (n>0)

return new BigDecimal (n) . mul t ip ly ( f a c t o r i a l (n−1) ) ;
else

return new BigDecimal (1 ) ;
}
/∗∗
∗ Creates a combination f o r any n and r
∗ @param n t o t a l number o f o b j e c t s in the s e t
∗ @param r number o f choos ing o b j e c t s from the s e t
∗ @return number o f combinat ions
∗/

public BigDecimal combi ( int n , int r ) {
return f a c t o r i a l (n) . d i v id e ( ( f a c t o r i a l (n−r ) . mul t ip ly (

f a c t o r i a l ( r ) ) ) ) ;
}
/∗∗
∗ Generates the t r a n s i t i o n a l p r o b a b i l i t y o f a s i n g l e

o b s e r va t i on at a s p e c i f i c time g iven the s t a t e o f the
system .

∗ @param k the ob s e r va t i on
∗ @param s0 the s t a t e o f the system , t rue i s in−cont ro l ,

f a l s e i s out−of−con t r o l
∗ @param t the time
∗ @return the t r a n s i t i o n a l p r o b a b i l i t y f o r ob s e r va t i on k at

time t and s t a t e s0 .
∗/

public BigDecimal p r obab i l i t y ( int k , boolean s0 , int t ) {
i f ( s0 )

return combi ( s i z eo , k ) . mul t ip ly (new BigDecimal ( a0∗ t+
b0 ) . pow(k ) ) . mul t ip ly (new BigDecimal (1−(a0∗ t+b0 ) ) .
pow( s i z eo−k ) ) ;

else
return combi ( s i z eo , k ) . mul t ip ly (new BigDecimal ( a1∗ t+

b1 ) . pow(k ) ) . mul t ip ly (new BigDecimal (1−(a1∗ t+b1 ) ) .
pow( s i z eo−k ) ) ;

}
/∗∗
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∗ Generates a b inomia l d i s t r i b u t i o n
∗ @param s0 the s t a t e o f the system , t rue i s in−cont ro l ,

f a l s e i s out−of−con t r o l
∗ @param t the time
∗ @return the t r a n s i t i o n a l p r o b a b i l i t i e s a t time t and

s t a t e s0
∗/

public BigDecimal [ ] Binom(boolean s0 , int t ) {
BigDecimal [ ] bigD = new BigDecimal [ s i z e o +1] ;
for ( int k = 0 ; k<=s i z e o ; k++) bigD [ k ] = p r obab i l i t y (k ,

s0 , t ) . round (new MathContext (8 , RoundingMode .
HALF EVEN) ) ;

return bigD ;
}
/∗∗
∗ formats the b inomia l d i s t r i b u t i o n f o r use in prism
∗ @param bd the b inomia l d i s t r i b u t i o n
∗ @return a s t r i n g f o r the update par t o f an ob s e r va t i on

command
∗/

public St r ing Binomial ( BigDecimal [ ] bd ) {
St r ing tussen = ”” ;
for ( int i = 0 ; i<=s i z e o ; i++){

i f ( i != 0)
tussen += ” + ” ;

tussen += df . format (bd [ i ] ) + ” : ( o ’ = ” + i + ” ) & (
b ’ = true ) ” ;

}
tus sen += ” ; ” ;
return tus sen ;

}
/∗∗
∗ formats the en t i r e ob s e r va t i on
∗ @return format ted o b s e r va t i on s f o r use in prism
∗/

@Override
public St r ing toS t r i ng ( ) {

St r ing tussen = ”” ;
for ( int t = 0 ; t<=tmax ; t++){

tus sen+=”// t=” + t ;
tus sen += ”\n [ o ] i=0 & t=” + t + ”& ! b −> ” ;
tus sen += Binomial (Binom( true , t ) ) ;
tus sen += ”\n [ o ] i=1 & t=” + t + ”& ! b −> ” ;
tus sen += Binomial (Binom( false , t ) ) ;
tus sen += ”\n” ;

}
return tus sen ;

}
}

public class Main {

public stat ic void main ( St r ing [ ] a rgs ) {
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// f i l l in your va lue f o r s i z e o f the ob s e r va t i on space
( s i z e o ) , maximum time ( tmax ) , and the o ther v a r i a b l e s
t h a t make up the b ionomia l c o e f f i c i e n t .

ObservableMaker observableMaker = new ObservableMaker (5 ,
5 , 0 . 03 , 0 . 03 , 0 . 4 , 0 . 7 ) ;

System . out . p r i n t l n ( observableMaker . t oS t r i ng ( ) ) ;
}

}

A.2 Numerical implementation of MDP

The following is a single numerical implementation of the MDP. It model
the underlying MDP for a specific model.

mdp
// cons tant s
const double p11 = 0 . 9 ;
const double p12 = 0 . 1 ;
const double p22 = 1 ;

const i n t c i = 20 ;
const i n t cs = 75 ;
const i n t cr = 50 ;
const i n t cd = 100 ;
const i n t maxt = 5 ;

//modules
module m1

i : [ 0 . . 1 ] i n i t 0 ;
t : [ 0 . . maxt ] i n i t 0 ;

// from in−c on t r o l
[G] i = 0 & t < maxt −> p11 : ( i ’=0) & ( t ’= t+1) + p12 : ( i

’=1) & ( t ’= t+1) ;
[G] i = 0 & t < maxt −> p11 : ( i ’=0) & ( t ’= t+1) + p12 : ( i

’=1) & ( t ’= t+1) ;

// from out−of−c on t r o l
[H] i = 1 & t < maxt −> p22 : ( i ’=1) & ( t ’= t+1) ;
[H] i = 1 & t < maxt −> p11 : ( i ’=0) & ( t ’= t+1) + p12 : ( i

’=1) & ( t ’= t+1) ;

endmodule
l a b e l ”end”= t = maxt ;

rewards
i = 1 : cd ;
[H] i = 0 : cs ;
[H] i = 1 : cs+cr ;

endrewards
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A.3 Numerical implementation of POMDP

The following is a numerical impementaiton of one of the possible POMDPs.
Specifically it models the POMDP in the results section for maxo = 5 and
maxt = 5.

pomdp

obse rvab l e s
o , t , b

endobservab le s

const double p11 = 0 . 9 ;
const double p12 = 0 . 1 ;
const double p22 = 1 ;

const i n t c i = 20 ;
const i n t cs = 75 ;
const i n t cr = 50 ;
const i n t cd = 100 ;
const i n t maxt = 5 ;
const i n t maxo = 5 ;

module m1
i : [ 0 . . 1 ] i n i t 0 ;
t : [ 0 . . maxt ] i n i t 0 ;
o : [ 0 . . maxo ] i n i t 0 ;
b : bool i n i t t rue ;

// t=0
[ o ] i=0 & t=0& ! b −> 0 . 07776000 : ( o ’ = 0) & (b ’ = true ) +

0 .25920000 : ( o ’ = 1) & (b ’ = true ) + 0 .34560000 : ( o ’ =
2) & (b ’ = true ) + 0 .23040000 : ( o ’ = 3) & (b ’ = true )
+ 0 .07680000 : ( o ’ = 4) & (b ’ = true ) + 0 .01024000 : ( o ’
= 5) & (b ’ = true ) ;

[ o ] i=1 & t=0& ! b −> 0 . 00243000 : ( o ’ = 0) & (b ’ = true ) +
0 .02835000 : ( o ’ = 1) & (b ’ = true ) + 0 .13230000 : ( o ’ =
2) & (b ’ = true ) + 0 .30870000 : ( o ’ = 3) & (b ’ = true )
+ 0 .36015000 : ( o ’ = 4) & (b ’ = true ) + 0 .16807000 : ( o ’
= 5) & (b ’ = true ) ;

// t=1
[ o ] i=0 & t=1& ! b −> 0 . 06016921 : ( o ’ = 0) & (b ’ = true ) +

0 .22695402 : ( o ’ = 1) & (b ’ = true ) + 0 .34242186 : ( o ’ =
2) & (b ’ = true ) + 0 .25831824 : ( o ’ = 3) & (b ’ = true )
+ 0 .09743583 : ( o ’ = 4) & (b ’ = true ) + 0 .01470084 : ( o ’
= 5) & (b ’ = true ) ;

[ o ] i=1 & t=1& ! b −> 0 . 00391354 : ( o ’ = 0) & (b ’ = true ) +
0 .03972835 : ( o ’ = 1) & (b ’ = true ) + 0 .16132119 : ( o ’ =
2) & (b ’ = true ) + 0 .32753091 : ( o ’ = 3) & (b ’ = true )
+ 0 .33249350 : ( o ’ = 4) & (b ’ = true ) + 0 .13501251 : ( o ’
= 5) & (b ’ = true ) ;

// t=2
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[ o ] i=0 & t=2& ! b −> 0 . 04591650 : ( o ’ = 0) & (b ’ = true ) +
0 .19557029 : ( o ’ = 1) & (b ’ = true ) + 0 .33319382 : ( o ’ =
2) & (b ’ = true ) + 0 .28383178 : ( o ’ = 3) & (b ’ = true )
+ 0 .12089131 : ( o ’ = 4) & (b ’ = true ) + 0 .02059630 : ( o ’
= 5) & (b ’ = true ) ;

[ o ] i=1 & t=2& ! b −> 0 . 00604662 : ( o ’ = 0) & (b ’ = true ) +
0 .05374771 : ( o ’ = 1) & (b ’ = true ) + 0 .19110298 : ( o ’ =
2) & (b ’ = true ) + 0 .33973862 : ( o ’ = 3) & (b ’ = true )
+ 0 .30198989 : ( o ’ = 4) & (b ’ = true ) + 0 .10737418 : ( o ’
= 5) & (b ’ = true ) ;

// t=3
[ o ] i=0 & t=3& ! b −> 0 . 03450252 : ( o ’ = 0) & (b ’ = true ) +

0 .16574742 : ( o ’ = 1) & (b ’ = true ) + 0 .31849505 : ( o ’ =
2) & (b ’ = true ) + 0 .30600505 : ( o ’ = 3) & (b ’ = true )
+ 0 .14700243 : ( o ’ = 4) & (b ’ = true ) + 0 .02824752 : ( o ’
= 5) & (b ’ = true ) ;

[ o ] i=1 & t=3& ! b −> 0 . 00902242 : ( o ’ = 0) & (b ’ = true ) +
0 .07055995 : ( o ’ = 1) & (b ’ = true ) + 0 .22072600 : ( o ’ =
2) & (b ’ = true ) + 0 .34523810 : ( o ’ = 3) & (b ’ = true )
+ 0 .26999390 : ( o ’ = 4) & (b ’ = true ) + 0 .08445963 : ( o ’
= 5) & (b ’ = true ) ;

// t=4
[ o ] i=0 & t=4& ! b −> 0 . 02548040 : ( o ’ = 0) & (b ’ = true ) +

0 .13801882 : ( o ’ = 1) & (b ’ = true ) + 0 .29904077 : ( o ’ =
2) & (b ’ = true ) + 0 .32396083 : ( o ’ = 3) & (b ’ = true )
+ 0 .17547878 : ( o ’ = 4) & (b ’ = true ) + 0 .03802040 : ( o ’
= 5) & (b ’ = true ) ;

[ o ] i=1 & t=4& ! b −> 0 . 01306912 : ( o ’ = 0) & (b ’ = true ) +
0 .09023918 : ( o ’ = 1) & (b ’ = true ) + 0 .24923203 : ( o ’ =
2) & (b ’ = true ) + 0 .34417757 : ( o ’ = 3) & (b ’ = true )
+ 0 .23764642 : ( o ’ = 4) & (b ’ = true ) + 0 .06563568 : ( o ’
= 5) & (b ’ = true ) ;

// t=5
[ o ] i=0 & t=5& ! b −> 0 . 01845281 : ( o ’ = 0) & (b ’ = true ) +

0 .11276719 : ( o ’ = 1) & (b ’ = true ) + 0 .27565312 : ( o ’ =
2) & (b ’ = true ) + 0 .33690938 : ( o ’ = 3) & (b ’ = true )
+ 0 .20588906 : ( o ’ = 4) & (b ’ = true ) + 0 .05032844 : ( o ’
= 5) & (b ’ = true ) ;

[ o ] i=1 & t=5& ! b −> 0 . 01845281 : ( o ’ = 0) & (b ’ = true ) +
0 .11276719 : ( o ’ = 1) & (b ’ = true ) + 0 .27565313 : ( o ’ =
2) & (b ’ = true ) + 0 .33690937 : ( o ’ = 3) & (b ’ = true )
+ 0 .20588906 : ( o ’ = 4) & (b ’ = true ) + 0 .05032844 : ( o ’
= 5) & (b ’ = true ) ;

//G
[ g ] i = 0 & t < maxt & b −> p11 : ( i ’=0) & ( t ’= t+1) & (b’=

f a l s e ) + p12 : ( i ’=1) & ( t ’= t+1) & (b’= f a l s e ) ;
//H
[H] i = 0 & t < maxt & b −> p11 : ( i ’=0) & ( t ’= t+1) & (b’=

f a l s e ) + p12 : ( i ’=1) & ( t ’= t+1) & (b’= f a l s e ) ;
//J
[ J ] i = 0 & t < maxt & b −> p11 : ( i ’=0) & ( t ’= 1) & (b’=

f a l s e ) + p12 : ( i ’=1) & ( t ’= 1) & (b’= f a l s e ) ;
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//G
[ g ] i = 1 & t < maxt & b −> p22 : ( i ’=1) & ( t ’= t+1) & (b’=

f a l s e ) ;
//H
[H] i = 1 & t < maxt & b −> p11 : ( i ’=0) & ( t ’= t+1) & (b’=

f a l s e ) + p12 : ( i ’=1) & ( t ’= t+1) & (b’= f a l s e ) ;
//J
[ J ] i = 1 & t < maxt & b −> p11 : ( i ’=0) & ( t ’= 1) & (b’=

f a l s e ) + p12 : ( i ’=1) & ( t ’= 1) & (b’= f a l s e ) ;

endmodule
l a b e l ”end”= t = maxt ;
l a b e l ” i n c on t r o l ” = i = 0 ;
l a b e l ” ou t o f c on t r o l ” = i = 1 ;

rewards
i = 1 : cd ;
[H] i = 0 : cs ;
[H] i = 1 : cs+cr ;
[ J ] i = 0 : cs+c i ;
[ J ] i = 1 : cs+c i+cr ;

endrewards
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