
Bachelor thesis
Computing Science

Radboud University

E-mail phishing prevention
proposal: CEPP

Author:
Lars Jeurissen
s1022856
lars.jeurissen@student.ru.nl

First supervisor/assessor:
dr. ir. B.J.M. Mennink
B.Mennink@cs.ru.nl

Second assessor:
prof. dr. J.J.C. Daemen

J.Daemen@cs.ru.nl

June 1, 2021

Abstract

One of the biggest problems in e-mail communication is phishing. Thou-
sands of people lose money to phishing attacks every year. Although many
techniques have been created that attempt to stop phishing attacks, none
are very effective, and most techniques miss a lot of phishing e-mails.

In this thesis, we present CEPP: Certificate-based E-mail Phishing Pre-
vention. CEPP is a new, simple protocol that can significantly reduce the
number of phishing attacks. CEPP stops phishing attacks by requiring each
e-mail to contain a certificate signed by a ‘Mail Authority’ (MA). This cer-
tificate signs the domain, along with some additional parameters. Upon
receiving an e-mail, a user can then verify the CEPP certificate, and there-
fore conclude that the domain from which the mail is sent can (in principle)
be trusted. If a mail with a CEPP certificate turns out to be a phishing
mail, i.e., the certificate should not have been attached to this mail, users
can report the e-mail to the responsible MA, who can decide to remove the
e-mail sender’s trust. This way, an environment will be created where the
MA keeps a timely view on which domains can be trusted. We develop
CEPP by first giving an overview of the current status of phishing attacks
in e-mail. Then, we will provide the specification of the CEPP protocol. We
also provide a proof of concept implementation in the form of a Thunderbird
add-on.

Contents

1 Introduction 4
1.1 What is phishing? . 4
1.2 The impact of phishing attacks 5
1.3 Types of phishing . 6
1.4 Attempts to prevent phishing 6
1.5 Goal . 7
1.6 Proposal and outline . 7

2 Preliminaries: E-mail and phishing 8
2.1 Basic e-mail terminology . 8
2.2 Why phishing attacks are so effective 9

2.2.1 Trustworthy sources 9
2.2.2 Money . 10
2.2.3 Speed . 11

2.3 Types of phishing attacks . 11
2.3.1 Mass e-mails . 11
2.3.2 Spear phishing . 12
2.3.3 Whaling . 12
2.3.4 Business e-mail compromise 12
2.3.5 Clone phishing . 12

2.4 Techniques to stop phishing attacks 13
2.4.1 Communication level 13
2.4.2 Target level . 17
2.4.3 User level . 19

3 Preliminaries: Certificates 20
3.1 Asymmetric cryptography . 20
3.2 Public key certificates . 21

3.2.1 Certificate chains . 21
3.3 Certificate validation levels 22

3.3.1 TLS . 22
3.3.2 S/MIME . 23

3.4 Certificate problems . 23

1

3.4.1 Advantages . 24
3.4.2 Disadvantages . 24
3.4.3 Extended Validation Certificates 24

4 Requirements and goals 26
4.1 Functional requirements . 26
4.2 Non-functional requirements 27
4.3 Security . 27

4.3.1 Trust model . 27
4.3.2 Attacker model . 27
4.3.3 Security goals . 28

5 Proposal 29
5.1 Certificates . 29
5.2 The certificate authorities . 30

5.2.1 Problem with existing CAs 30
5.2.2 Mail Authorities . 30

5.3 Certificate levels . 31
5.3.1 Level 1: No certificate 31
5.3.2 Level 2: Basic certificate 31
5.3.3 Level 3: Extended certificate 31

5.4 Removing company trust . 32
5.4.1 Reporting spam . 32
5.4.2 Remarks . 32

6 Specification 33
6.1 Digital Signatures . 33

6.1.1 Signature scheme . 33
6.2 Certificate generation . 34

6.2.1 Certificate data . 34
6.2.2 Certificate signature 36
6.2.3 Example . 37

6.3 Certificate validation . 39
6.3.1 Validating the DMARC 39
6.3.2 Validating the CEPP signature 39
6.3.3 Validating the CEPP data 39
6.3.4 Example . 40

6.4 Spam report generation . 40
6.4.1 Overview . 41

6.5 Spam report validation . 41
6.5.1 Report filtering . 42

6.6 CEPP usage locations . 42

2

7 Proof of concept 44
7.1 The CEPP addon . 44

7.1.1 The basic functionality 44
7.1.2 Development assumptions 45

7.2 Usage showcase . 45
7.2.1 Generating a certificate 45
7.2.2 Adding a certificate 45
7.2.3 Validating a certificate 46
7.2.4 Reporting an e-mail 46

8 Discussion 48
8.1 Evaluation of functional requirements 48
8.2 Evaluation of non-functional requirements 48
8.3 Overview of advantages and disadvantages 49

8.3.1 Advantages . 49
8.3.2 Disadvantages . 49

9 Conclusion 51
9.1 Future research . 51

A Thunderbird addon code 56
A.1 Project structure . 56

A.1.1 The ‘API’ part . 57
A.1.2 The ‘cepp’ part . 57
A.1.3 The ‘data’ part . 57

A.2 Code files . 58
A.2.1 background.html . 59
A.2.2 compose popup.html 60
A.2.3 manifest.json . 62
A.2.4 certificate.js . 63
A.2.5 compose.js . 66
A.2.6 display.js . 70
A.2.7 ca private keys.js . 75
A.2.8 trusted ca public keys.js 76

3

Chapter 1

Introduction

The date is June 26th, 2014. Keith McMurtry, the corporate controller
of the American company ‘Scoular’, received an e-mail from company CEO
Chuck Elsea. The instructions were simple; McMurtry was asked to transfer
$780.000 to a bank in China for a Chinese company’s takeover. McMurtry
was requested to ‘only communicate (...) through this e-mail, in order for
us not to infringe SEC regulations’. Additionally, McMurtry received an
e-mail from one of the company’s accounting firm employees, telling him
where to send the money to. This e-mail also contained a phone number
that McMurtry called to make sure the transaction was valid. The call was
answered by someone with the correct name, indicating that the transfer was
indeed legitimate. That day, Keith McMurtry transferred 780.000 dollars
to the Shanghai Pudong Development Bank. The next day, McMurtry re-
ceived a second e-mail, asking him to transfer 7 million more dollars, which
McMurtry did. Three days later, another e-mail came in with the request
to transfer an additional 9.4 million dollars. McMurtry wired the money.

Over four days, Scoular lost 17.2 million dollars. The e-mails were ille-
gitimate, as was the phone number. The e-mails were not sent by the
company CEO and an employee from the company’s accounting firm but
by two e-mail addresses that were later resolved to a Russian server. The
phone number was also not legitimate; McMurtry’s call was answered by
one of the attackers. Scoular fell victim to a spear-phishing attack, a type of
phishing attack where the attackers first spend a lot of time getting to know
their victim. This attack could have easily been prevented, but it happened
anyway [Jou15] [Mun15].

1.1 What is phishing?

First things first. What is actually meant by the term ‘phishing’? The
term ‘phishing’ was first recorded in 1995 in a cracking toolkit created by

4

Rekouche [WAB16], as a combination of the words ‘fishing’ and ‘phreaking’.
In 2006, Dhamija et al. defined phishing as ‘the practice of redirecting users
to fraudulent web sites’ [DTH06]. One year later, in 2007, Jagatic et al.
have described phishing as ‘(...) a form of deception in which an attacker
attempts to fraudulently acquire sensitive information from a victim by im-
personating a trustworthy entity.’ [JJJM07]. Then in 2019, Sumner and
Yuan described phishing as the act in which ‘an attacker poses as a trust-
worthy source in an attempt to have the victim release personal or private
information.’ [SY19]. Additionally, non-scientific (online) dictionaries and
other types of non-scientific sources (e.g., websites) have a pretty distributed
opinion on the actual definition of phishing.

In general, there is no consensus on what exactly phishing means. Most
definitions say phishing is fraudulent and has to do something with someone
posing as a trustworthy entity, but not all definitions contain this informa-
tion. In this thesis, we will be defining phishing as follows:

Phishing is the fraudulent act of attempting to get private information from
a victim, via online communication, by posing as a trustworthy entity.

This definition is a combination of most other definitions. According to us,
this definition represents phishing accurately and succinctly.

1.2 The impact of phishing attacks

Phishing is a huge problem in today’s society. Millions of people and
companies fall victim to it every year. According to Verizon’s 2020 Data
Breach Investigation Report, 25% of all data breaches involved phishing at-
tacks [Ver20]. Furthermore, 94% of all malware is delivered using e-mail.
Symantec’s Internet Security Threat Report 2019 claims that 65% of all
attack groups used spear-phishing as the primary infection vector [Sym19].
The end goal is usually to install malicious software, with a quoted 96% of
e-mails being focused on gathering intelligence.

In 2020, phishing attacks reached new heights. The Anti-Phishing Work-
ing Group (APWG) Phishing Activity Trends Report reported over 165.000
phishing sites detected in the first quarter of this year and over 145.000 in
the second quarter [APW20]. Although this thesis focuses on phishing e-
mails, these numbers are still relevant, since many phishing attacks attempt
to get victims to go to a phishing website. The report claims a quantity of
phishing attacks that have not been seen since 2016. This most likely has
to do something with the COVID-19 virus since many COVID-19 themed
phishing attacks have started since then. On top of this, phishing attacks
are becoming more and more sophisticated. According to the same report,

5

78% of all phishing sites now use TLS. People have been thought that ‘a
lock icon in the browser means that the website is secure’. Although the
connection to the website might be secure, the website itself can still be
malicious. Since so many phishing websites now use TLS, people are easier
tricked into believing that they can trust these websites.

1.3 Types of phishing

Phishing can be conducted over multiple communication media. The most
prominent are e-mail-, phone-, and text-based phishing. In this section, we
will briefly discuss phishing via these three communication media. In the
next section, we will give a general overview of attempts to prevent phishing.

1. E-mail phishing is the most common type of phishing attack. In e-mail
phishing, an e-mail is sent to the victim, which will usually attempt to
get victims to click a link to a malicious website, where the attackers
will try to get the victim’s login credentials for a real website.

2. Phone call phishing (also called ‘voice phishing’ or ‘vishing’) is a way
of phishing where the attacker will call the victim and will attempt
to get a victim’s PIN code, social security number, or other private
information.

3. Text message phishing (also called ‘SMS-phishing’ or ‘smishing’) is a
way of phishing where the attacker attempts to get the victim to click
a link to a website via a text message. Usually, SMS messages are
used, but other text platforms like WhatsApp are also possible.

There are more types of phishing attacks, like attacks via social media or
search engine optimization, but they are not used very often.

1.4 Attempts to prevent phishing

Phishing can be prevented on multiple levels in multiple ways. Some tech-
niques rely on the user’s ability to recognize phishing, whereas others try to
prevent the phishing attack from ever reaching the user. The techniques to
stop phishing attacks can be roughly divided into three categories (levels):

1. The communication level. This level represents the actual communi-
cation medium used between the attacker and the victim. Usually, the
medium is e-mail, but phone calls and text messages are possible as
well. A common measure to stop attacks at the communication level
is a spam filter, but this only works for e-mail-based phishing attacks.

6

2. The target level. This level represents the place where users will give
their private information to an attacker. This place is almost always
a malicious website. Standard measures to stop these attacks include
browser (plugin) warnings (explained in Section 2.4.2) and TLS (al-
though TLS is not really effective anymore, as we will see in Section
2.4.2).

3. The user level. This level represents the user’s ability to recognize
and stop phishing attacks themselves. Many companies try to protect
themselves from phishing attacks by educating their employees/cus-
tomers to recognize and stop phishing attacks.

1.5 Goal

This thesis aims to find a way to stop as much e-mail based phishing attacks
as possible, in the communication level. In this thesis, we will look at
a way to prevent phishing e-mails, but more generally, malicious e-mails.
Therefore, the research question is:

What measures can we implement to structurally protect humans from
phishing e-mails without disrupting their normal e-mail behaviour?

1.6 Proposal and outline

In this thesis, we propose Certificate-based E-mail Phishing Prevention
(CEPP): a protocol that allows for effective combat against phishing attacks
in e-mail. We will do this by first providing the preliminaries: in Chapter 2,
we will look at the current e-mail structure and anti-phishing measures. In
Chapter 3, we will give an overview of how certificates work, since we will
need them for the proposal. The next step is to specify all goals of CEPP.
This will be done in Chapter 4. Then, we need to give an overview of how
CEPP will work (Chapter 5), followed by a formal specification (Chapter 6).
To prove that CEPP works, we will then give a proof of concept. We will
do this by creating an add-on for Thunderbird that implements the CEPP
specification. We will provide an overview of this add-on in Chapter 7. In
Chapter 8, we will discuss how accurately the protocol meets the require-
ments specified in Chapter 4. Chapter 9 concludes the research. Appendix
A contains a description of the Thunderbird add-on code.

7

Chapter 2

Preliminaries: E-mail and
phishing

In this chapter, we will be looking at some of the essential preliminaries. We
will first provide a general overview of how e-mail works in Section 2.1. In
Section 2.2, we will explain why phishing attacks are so effective. In Section
2.3, we will provide the most common types of phishing attacks. In Section
2.4, we will list widely used techniques to prevent phishing attacks.

2.1 Basic e-mail terminology

In this section, we will quickly go through the most important components
of the e-mail process. An abstract overview of the e-mail process is depicted
in Figure 2.1.

Figure 2.1: Abstract overview of the e-mail process

When someone writes an e-mail, it all starts at the sending Mail User
Agent (MUA). An MUA is simply an application that can be used to send
and receive e-mails. Popular MUAs include Mozilla Thunderbird and Mi-
crosoft Outlook Desktop, but also browser-based MUAs like Gmail and Ya-
hoo Mail.

8

When the e-mail is sent, the Simple Mail Transfer Protocol (SMTP) is used
to deliver the e-mail to the Mail Submission Agent (MSA). The MSA then
forwards the mail to the Mail Transfer Agent (MTA) [Gel11], also using
SMTP. The MSA and MTA are usually part of the same system and are
generally called the ‘mail server’. Each domain has a mail server that man-
ages its inbound and outbound e-mails. A lot of mail server software exists.
Microsoft, for example, uses their own Microsoft Exchange Server. Google
also uses their own mail server software.

The outbound MTA (the MTA belonging to the domain of the e-mail sender)
then uses SMTP to send the mail to the receiving domain’s mail server (the
recipient). This mail is delivered to the (inbound) MTA of the receiving
mail server. This MTA then forwards the mail to the mail server’s Mail De-
livery Agent (MDA), again using SMTP. The MDA then stores the e-mail
and waits for the recipient to request the e-mail.

The last step in the process is the recipient requesting the e-mail. This
is usually done using either the IMAP or POP3 protocol. The main differ-
ence between these protocols is that POP3 usually deletes the e-mail from
the MDA, whereas IMAP keeps the e-mail on the MDA. After the receiving
MUA has received the e-mail from its MDA, it can then display the e-mail
to the recipient.

2.2 Why phishing attacks are so effective

Phishing is a form of social engineering. Social engineering is (among others)
the art of manipulating people into giving away their private information.
Social engineering attacks are conducted in many ways, but phishing is one
of the most well-known ones. Social engineering is based on the idea that
it is a lot easier to find private information by manipulating people into
giving it away themselves than finding it by actually breaking into a house
or hacking a computer.

There are various reasons why phishing attacks (and social engineering at-
tacks in general) are so effective. In general, phishing is effective because the
perspective of gaining something (money, or other valuable things) blinds
people. In this section, we will look at the different aspects of phishing
attacks that make them so effective.

2.2.1 Trustworthy sources

Usually, social engineering attackers pretend to be a trustworthy entity. In
phishing, e-mails will (for instance) appear to be from a bank, the govern-

9

ment, a good friend, or a family member. This is already the first step:
people trust these sources. After all, the first step into checking the trust-
worthiness of an e-mail is by checking the e-mail address that the e-mail
was sent from. It is, however, trivial to forge the source e-mail address
when sending an e-mail. This is called e-mail spoofing. Measures to prevent
e-mail spoofing include SPF, DKIM and DMARC, which we will discuss in
Section 2.4.1 (Spoof Protection).

Even if e-mails are protected against e-mail spoofing, there are still prob-
lems with sources appearing to be trustworthy. For one, the e-mail accounts
of other people can be hacked. Secondly, if we have a trustworthy bank
moneybank.com, it is trivial to claim a domain like money-bank.com and
use that one to send e-mails. People are bad at detecting these kinds of
tricks, which is one of the main reasons they will trust the e-mail.

Furthermore, people can often have a hard time detecting whether an e-
mail is phishing or not, since many legitimate e-mails also look.

2.2.2 Money

Most phishing attacks are about money. Although at first glance not every
attack might seem to be directed towards earning money, a deeper look of-
ten reveals that this is the final goal. If the attackers want to get a victim’s
password, they will probably use it to log in to the victim’s e-mail to find
banking details. They might also use a victim’s data to target other victims.

Money is (and has always been) a reason for people to act before think-
ing clearly. A good and recent example of this is the Twitter Bitcoin scam
conducted on July 15th, 2020 [Iye20]. Over 130 high-profile Twitter ac-
counts sent messages, claiming to send back twice the amount of money
that people sent them, via Bitcoin. Funnily enough, this was possible be-
cause of another social engineering attack on Twitter employees. In the end,
about $110.000 was sent to the associated Bitcoin addresses. Although this
is not much money, it does show how vulnerable people are to these kinds
of attacks. The line ‘If it seems too good to be true, it probably is.’ once
again turned out to be correct.

Most phishing attacks use similar ideas to bait people into acting with-
out thinking. Usually, the e-mails indicate that the victim can earn or lose
much money. This is immediately one of the most significant phishing at-
tacks indicators: is there much money involved? If this is the case, it is
likely that the e-mail is a phishing e-mail.

10

2.2.3 Speed

The last main reason why social engineering attacks are so effective is all
about speed. Usually, these attacks will encourage victims to act quickly.
Many people might panic slightly, which means they will not think clearly
and will not check the message’s legitimacy.

The 2020 Twitter attack is again an excellent example of this. The tweets
mentioned that the Bitcoin deal would only be live for 30 minutes. This
made people forget about the message’s weirdness; why would someone dou-
ble any amount? If someone were to do that legitimately, they would be out
of money instantly. Because of the 30 minute indication, some people did
not think about this, and that is why over 320 transactions to the bitcoin
addresses were conducted.

Most phishing attacks have some sort of time warning in them. Deals might
only last for a short amount of time, or something happens to the victim
if they do not act quickly enough. This is the last significant indicator
of phishing e-mails: do they want the victim to act as soon as possible?
Not thinking clearly about issues like these causes people to fall for social
engineering attacks.

2.3 Types of phishing attacks

In this section, we will be looking at the most used types of phishing attacks.
Many of these techniques are covered by Ramzan [Ram10].

As mentioned before, phishing attacks can be conducted over multiple com-
munication media. In this thesis, we will mainly discuss e-mail-based phish-
ing. This section will list all types of phishing attacks that can be conducted
using e-mail.

2.3.1 Mass e-mails

Mass e-mails (or e-mail blasts) are mails sent to many people, hoping a few
people will respond or interact with the mail. Typically, these e-mails are
all the same, but some parts of the e-mail can be altered. Minor tweaks to
mass e-mails can include personal information like the target’s name in an
attempt to come across as more trustworthy. Spam filters have gotten pretty
good at detecting mass e-mails, and most people do not even respond to non-
personalized e-mails anymore. Therefore, phishing attackers are switching to
other, more successful phishing techniques. There are still a few techniques
that work very well for mass e-mails, however. Usually, if the mail states
that quick action is required, more people will fall for the scam. So, although

11

mass e-mails are used less and less to attack companies, they are often used
to attack individual households.

2.3.2 Spear phishing

Spear phishing is the most common type of phishing attack [Sym19]. Spear
phishing attacks are directed at specific targets, usually certain individuals
in a company. In spear phishing, the attackers usually spend time gather-
ing information about their target to create an e-mail that appears highly
trustworthy. For example, the attack on Scoular (that we described in the
introduction) is a good example of a spear phishing attack.

2.3.3 Whaling

Whaling is a phishing attack that is often directed at top executives. They
are high-value targets since they have much power in the company. Whal-
ing can be seen as a form of spear phishing. Usually, a lot of information is
collected about a target, where attackers sometimes also look for vulnera-
bilities in the target’s emotional status. Using all this information, a highly
personalized e-mail (or set of e-mails) is constructed. Often, they will try to
convince executive offers to install certain malware, set up a business e-mail
compromise attack, or transfer a significant sum of money.

2.3.4 Business e-mail compromise

An attack with possibly devastating consequences for companies is a busi-
ness e-mail compromise (BEC) attack. In this attack, attackers impersonate
a senior executive to get company employees to transfer money to the at-
tacker. Usually, this involves taking over the executive officer’s e-mail. This
can be done through vulnerabilities in the companies software or by using
spear phishing. Victims will then receive an e-mail that usually states an ur-
gent money transfer is required. Furthermore, victims are often instructed
to not tell anyone about it because of a variety of reasons. According to
the Phishing Activity Trend Report, the amount of BEC attacks is increas-
ing [APW20].

2.3.5 Clone phishing

Clone phishing is a phishing attack where the attacker will copy a previously
sent message’s contents and send the same message again, but with a few
alterations. For example, the e-mail attachments or links in the mail could
have been changed to malicious ones. Often, the attacker then indicates that
the new e-mail is an update or the old e-mail contained a mistake. Usually,
clone phishing requires either the sender or the receiver to have been hacked
before. Otherwise, the attacker cannot get their hands on the original mail.

12

2.4 Techniques to stop phishing attacks

In this section, we will take a look at the techniques that have been developed
to stop phishing attacks. Since none of these attacks can prevent phishing
completely, they are usually combined.

2.4.1 Communication level

The communication level represents the actual communication between the
attacker and the victim. For e-mail based phishing attacks, these are the
e-mails themselves. For phone-based phishing attacks, these are the phone
calls; for text-based phishing attacks, the messages themselves. A variety of
techniques have been developed to prevent victims from ever receiving the
phishing message. We will discuss those techniques in this subsection.

Spam filters

The most well-known technique used to stop phishing attacks at the commu-
nication level is a spam filter. Spam filters are most commonly used to filter
e-mails, but they can also be deployed on other communication mediums.
Popular mail providers like Gmail and Outlook have deployed a spam filter
in their MTA.

Each e-mail will always pass through an MTA at least once. Therefore,
an MTA is a good place to filter spam. Most mail providers use both in-
bound and outbound filtering; they will filter mail sent to their users, but
they will also filter mail that their users send to other users. This is why it
is hard to send a malicious e-mail with a Gmail or Outlook account.

Techniques have been developed to detect whether an e-mail is spam or
not. Dozens of methods exist to stop spam [Ram10][HvdHS08][BESH07],
some more effective than others. Filtering can be divided into two parts:
content-based filtering and header-based filtering (spoof protection). In this
section, we will discuss content-based filtering. These methods can be di-
vided into roughly three categories:

1. User-based filters
User-based filters require the user to set up their spam protection.
Examples include disabling HTML in e-mails and reporting spam e-
mails. In general, user-based filters are not super effective to protect
against sophisticated phishing attacks since most users do not take the
time to set up good spam protection.

2. Automated filters
Automated filters are spam filters that are usually set up by the e-mail

13

administrator or the company providing the mail server. This can be a
public e-mail provider or a dedicated group of employees for a certain
company. There are many types of automated spam filters, and it is an
ongoing topic of research [KNL20]. Some examples are the following.

• Rule-based filtering, where e-mails with certain words will not be
accepted. Often, these are checked by attempting to match a reg-
ular expression (which specifies a search pattern). For example,
say one might want to block e-mails containing the word ‘nige-
ria’. The regular expression would then look like /b(nigeria)/b.
After checking the mail content for these regular expressions, one
can then decide whether the e-mail should be blocked.

• DNS blacklists, where the IP of the sender MTA (stored in the
e-mail header) of the incoming e-mail can be checked against a
DNS blacklist (DNSBL) and where the mail will be rejected if
the IP has been blacklisted [DNS20].

• URL filtering, where all URLs in the mail header and body are
looked up in blocked-domain lists like Spamhaus DBL, SURBL,
and URIBL [MMDCL09]. Mails will be rejected if any of the
URLs in the mail are malicious.

• Statical (or Bayesian) spam filtering is a naive Bayes classifier
that uses the bag-of-words-model (which counts the number of
times each word occurs) to determine whether a mail is spam or
not. It depends on the user to mark e-mails as spam (or not) and
uses that information to train the classifier. A big advantage of
this method is that it will conform more and more to the user’s
needs.

• Spam traps, or honeypots, are e-mail addresses that anti-spam
organizations like Project Honey Pot create. They will, for ex-
ample, hide these addresses in a websites source code. When
a user visits the website, they will not see the mail address, but
when an attacker uses a website scraper, they might find the mail
address in the code. After they send an e-mail to the address,
the anti-spam organization will know that the e-mail sender was
a spammer. This can then be used to blacklist the e-mail address.

Most e-mail providers use a combination of many techniques to at-
tempt to protect their users/employees against spam e-mails.

3. Automated sender filters
Automated sender filters are spam filters that will prevent users from
sending spam themselves. These filters are applied in most widespread
e-mail providers like Gmail and Outlook, and there is a wide variety
in the types of filters. An evident approach is to do a background

14

check on newly registered users and limiting the number of e-mails a
user can send, but there are also more sophisticated approaches. Note
that for widespread e-mail providers (like Gmail and Outlook), there
is an incentive to not send spam e-mails. If they do, their domains
(gmail.com, outlook.com, etc.) might get blacklisted, resulting in a
considerable portion of users not being able to send e-mails to certain
target domains.

Bypassing spam filters

Similarly, a lot of creative techniques to bypass spam filters have been cre-
ated by researchers and attackers. Some techniques that occur often are the
following.

1. Simple e-mail formatting
Simple e-mail formatting is probably the most straightforward way of
bypassing spam filters. If an e-mail is free of spelling/grammatical
errors and doesn’t contain big chunks of capitalized text or multiple
punctuation marks, it is more likely that a spam filter will not cate-
gorize that e-mail as spam.

2. Spam obfuscation
Spam obfuscation is a general technique representing all methods to
obfuscate text so that the victim can still read it, but the spam filter
cannot. Numerous techniques exist to obfuscate spam. A few tech-
niques are the following.

• Basic obfuscation
One can purposefully misplace spaces, misspell words, or add
strange characters to the text. This way, spam filters might
fail to parse the input or recognize what text is actually dis-
played [Tho04].

• Unicode-obfuscated spam
This is a simple technique that can be used very easily. Unicode
contains many characters that appear the same but have different
byte codes. When substituting characters in an e-mail with other
Unicode characters that appear the same, filters like Bayesian
classifiers might not work anymore. Liu and Stamm [LS07] wrote
an informative paper about this technique, and they discuss meth-
ods to combat it, including a way to combat this type of obfus-
cation.

It is trivial to come up with other ‘simple’ spam filter bypassing tech-
niques. Some techniques that we came up with are the following.

15

• HTML-obfuscated Spam
It is trivial to obfuscate text using HTML tags. Tags like <p></p>
will not render anything special to the user but might disrupt a
spam filter.

• Image-based obfuscation
It is possible to put the text inside an image and include it with
HTML or attach it to the mail. Word-based spam filters will be
unable to read this text since there is no actual text.

• Attachment-based obfuscation
It is possible to hide text from spam filters by including the text
in the e-mail attachment. In the mail, the victim will then be
instructed to open the attachment and read the phishing text.

These are only a few techniques that attackers use. There are dozens of
methods that are combined to create e-mails that bypass spam filters. Spam
filter detection is a constant battle between attackers (and researchers) on
the one hand and spam filter developers on the other.

Spoof protection

Spoof protection can be seen as part of a spam filter. Many attackers at-
tempt to make their e-mails more believable by changing the From field in
the mail header to the actual e-mail address of an organization they are
trying to impersonate. The SMTP protocol does not protect against this
by default. Many techniques have been developed and proposed to protect
these (and other) SMTP envelope and mail header fields. The most common
techniques have been described thoroughly by Wallis de Vries [Ste20]. We
will give a summary.

1. Sender Policy Framework
The Sender Policy Framework (SPF) is a protocol that is used in
MUAs and MTAs to authenticate e-mails by verifying the domain
of the sender’s e-mail address. Providers that work with SPF have
specific DNS records that specify which IP addresses are allowed to
send mails with the given e-mail domain [Ste20]. The problem with
SPF is that the From part in the e-mail header can still be forged since
SPF does not check that. SPF only works for the MAIL FROM field in
the SMTP header.

2. Domain Keys Identified Mail
Domain Keys Identified Mail (DKIM) is a protocol that was estab-
lished in 2007 [All07]. In this protocol, the e-mail sender uses a digital
signature algorithm. They generate a public/private key pair, and
publish the public key via a DNS record. They then add a signature
to each e-mail, using the generated key pair. This is a signature over

16

the important header fields and the hash of the e-mail body. The re-
ceiver can then verify the mail by requesting the public key from the
e-mail sender’s DNS and checking the signature.

3. Domain-based Message Authentication, Reporting, and Con-
formance
Domain-based Message Authentication, Reporting, and Conformance
(DMARC) is a solution to a problem with both SPF and DKIM: if
an e-mail does not use them, the recipient will still receive and accept
the mail. When using DMARC, the sender will publish DNS records
indicating whether SPF and DKIM are used. DMARC will also check
the From field, so spoofing becomes nearly impossible.

Wallis de Vries describes quite a lot of problems with all of these proto-
cols [Ste20]. The solution he proposes is SMTPsec, a protocol that fixes
these (and other) problems in electronic mailing. Opposed to SMTPsec
(which attempts to make SMTP better and more secure), our protocol at-
tempts to prevent phishing attacks.

2.4.2 Target level

The target level represents the place where users will give their private in-
formation to the attackers. For phone-based phishing, this is usually given
via the phone call. For e-mail and text-based phishing, this is often happen-
ing in web browsers. To be precise, a lot of e-mail and text-based phishing
attacks instruct victims to click a link that opens a seemingly trustworthy
website. In this section, we will examine the techniques developed to counter
phishing attacks in the web browser.

Browser functionality/plugins

Browsers and browser plugins can implement methods to warn users about
certain websites. Some of these methods still require the user to check
something, whereas others explicitly deny access to a website unless the
user accepts the risk. We give discuss two measures that are implemented
a lot.

1. TLS
TLS, previously known as SSL, is a protocol that encrypts traffic in
client/server applications [Res18]. It is best known for encrypting
traffic between users and web servers. All widely used browsers have
an indication for when a website uses TLS. Usually, this indication
is in the form of a ‘lock’ icon next to the address bar. Browsers will
also display a warning if the TLS certificate (which is used to prove
that the public key of a website is correct) is not (or no longer) valid.
Checking whether a website uses TLS used to be a good indicator for

17

a legitimate website, but it is not anymore. The quarter 2 AWPG
trends report of 2020 claimed that over 78% of phishing websites now
use TLS [APW20].

2. URL blacklisting
An easy solution that is used by nearly all browsers is a URL black-
list. This is a vast database containing URLs of phishing websites that
were blacklisted. Upon visiting websites like these, most browsers will
display a warning and ask the user if they want to continue. There
also exists a lot of anti-virus software that does the same; they keep
track of blacklisted URLs and warn users before they continue to those
websites. Most browsers also have functionalities to report phishing
websites. If a reported website is indeed a phishing website, it is then
added to the blacklist. Sadly, URL blacklisting is a method that is
lagging behind events. It is unable to protect victims against websites
that are not (yet) blacklisted. Attackers can quickly get themselves
a new website, and it is not expensive anymore to protect a website
with TLS.
Some companies have taken measures to blacklist unfinished phish-
ing websites. For example, if someone is getting a certificate for
trustworthy-bank.com, the owners of trustworthybank.com can al-
ready send a message to the website provider of trustworthy-bank.com,
asking them if the website could be taken offline. This can (for exam-
ple) be done by using Google’s Certificate Transparency project, which
logs all issued TLS certificates. This method is not fail-proof either.
Websites can always slip through, and not all relevant companies are
doing these kinds of checks.

Protocols

A few protocols have been created to prevent phishing, and more generally,
leaking password attacks. Leaking password attacks are attacks where the
attacker attempts to get the password of the victim. In this section, we will
describe two protocols that attempt to prevent leaking password attacks:
SRP and TLS-PSK.

1. SRP
SRP [Tay07] [BESH07] is a protocol that prevents users from actually
sending the password to the server. Instead, the user only shows to
the server that they have the password via a challenge-response. This
is much more secure than sending the password over TLS. When using
this protocol, phishing websites cannot use the password since they do
not know it. SRP under TLS has been standardized. Unfortunately,
not many companies use this protocol.

18

2. TLS-PSK
TLS-PSK [Ero05] [BESH07] is a protocol that uses a key that has been
established between two parties in advance of the communication. The
protocol uses symmetric key cryptography, which has two advantages.
Firstly, symmetric cryptography is less performance-demanding than
asymmetric cryptography. On systems where performance is essential,
this helps a great deal. Secondly, attackers cannot get sensitive data
since they do not have the pre-shared key.

2.4.3 User level

Finally, we have the last set of methods to prevent phishing attacks: making
sure people know about the threat and how to avoid it. People are unreli-
able and are very prone to be scammed. In this section, we will discuss the
education of people and the pitfalls in this education.

One of the most common measures against phishing attacks is education.
Reminders in the news, warning mails and app warning messages all tell
users to be careful when trusting people. Banks have mentioned over and
over again that they never ask for credentials through e-mails or over phone
calls, but people still fall for the scams. That is the main problem with
education: people tend to forget what they have learned [SY19].

Young-McLear et al. [YMWBYM16] conducted an experiment on a uni-
versity. An e-mail was sent to 198 students asking them to log in to a
website because there was information about their grades. Precisely 146
students opened the e-mail, clicked the link, and entered their credentials.
The strange part: nearly all students were active in the cybersecurity area
of computing science. Most of them knew about the threat of phishing, but
they fell for it nonetheless. This shows that even trained (young) profes-
sionals can have trouble distinguishing phishing e-mails from trustworthy
e-mails.

Summer and Yuan [SY19] argue that education and training for partic-
ular groups (such as employees that just finished their study) should be
emphasized. Furthermore, they argue that education should constantly be
repeated since people tend to forget what they have learned. Many ap-
proaches exist to teach people about the risks of phishing attacks, but the
best underlying principle is repetition. Many automated measures can be
taken, but in the end, there is always the user. A well-educated user can
spot and prevent phishing attacks easily.

19

Chapter 3

Preliminaries: Certificates

The problem of phishing is essentially a problem of message origin authen-
tication. How can one be sure that the entity they think they are com-
municating with is the entity they are actually communicating with? A
standard cryptographic solution (in public-key cryptography) to this prob-
lem involves public key certificates. In this chapter, we will be looking
into public key certificates (also called digital certificates), their function in
TLS and S/MIME, and their strengths and weaknesses. We hope to apply
the obtained knowledge about certificates to find a solution to the phishing
problem.

3.1 Asymmetric cryptography

We will first introduce some important concepts in digital security.

• Confidentiality means that communication data cannot be read by
those that are not allowed to.

• Integrity means that communication data cannot be modified or
deleted by those that are not allowed to.

• Authenticity means that it is not possible to impersonate a different
entity.

When information is sent to a website, we do not want anyone other than
the website to read (confidentiality) or modify (integrity) that information.
For example, if someone wants to log in to a website, they would not want
an attacker to read their password. This is where asymmetric cryptography
(also known as public key cryptography) comes in. In asymmetric cryp-
tography, the receiver of a message generates two keys, a public key and a
private key. These keys are linked via a mathematical calculation.

If entity X now wants to send confidential information to entity Y , they

20

can encrypt that information using the public key of Y (or using symmetric
cryptography to encrypt the information with a key derived from X’s pri-
vate key and Y ’s public key). If the underlying cryptography is reliable, it
is then infeasible for an attacker to read this information. However, entity
Y can easily decrypt the information using its private key! This way, it is
possible to send confidential information to someone without anyone other
than the receiver being able to read (or modify) it.

This also works the other way around. If entity Y sends a message to entity
X and Y wants to prove that they are really the sender of that message,
they can do that by attaching a digital signature to that message. We will
provide a detailed explanation of digital signatures in Section 6.1.

3.2 Public key certificates

However, there is a catch. How can one be sure that the public key they
are using to encrypt a message is the public key of the entity they want to
communicate with and not the public key of an attacker? This is where pub-
lic key certificates come in. A certificate is a document serving as evidence
of something [Dic20]. A public key certificate is a certificate that proves
the ownership of a public key. A public key certificate contains a section
with information about the key and subject, and a section containing the
certificate issuer’s digital signature. A certificate authority (CA) can issue
a certificate that says: ‘Public key X is owned by entity Y ’. If someone
wants to validate that a public key is owned by entity Y , they can check
that via the CA that issued the certificate. This is done by validating the
certificate’s correctness. This means that both the sender and the receiver
need to trust the CA. We will talk about the problems that CAs cause in
Section 3.4.

Certificate types

There are many certificate types. We have certificates for TLS clients and
servers, e-mail (S/MIME), source code validation, and more. They all have
the same function: they link a public key to an entity.

3.2.1 Certificate chains

As mentioned before, one can obtain a certificate by going to a CA. The
CA will then provide a certificate, and (for example) web browsers can then
verify that certificate. A problem arises though: What CAs can we trust?
This is where certificate chains come in. There are two types of CAs: root
CAs and intermediate CAs.

21

1. Root CAs. Root CAs are CAs that issue certificates for intermediate
CAs. Root CAs use self-signed certificates (root certificates), and they
need to be trusted by operating systems and browsers before they can
be used. They have to use self-signed certificates, since no-one can
issue a certificate for a root CA.

2. Intermediate CAs. Intermediate CAs are CAs that are in between the
website certificates and root CAs. Most website certificates have at
least one intermediate CA. Root CAs issue the certificates of these
intermediate CAs. Furthermore, intermediate CAs can issue certifi-
cates for other intermediate CAs. Lastly, intermediate CAs can issue
certificates for individual entities.

This structure is called a certificate chain, and it is an example of a chain
of trust. Users trust one or multiple sources (root CAs), and these root CAs
trust intermediate CAs. Following that logic, if one trusts a root CA, one
can trust any website with a certificate that ends up in that root CA. Cer-
tificate validation is done by checking the certificate chain and checking if it
ends up in a trusted root CA. If this is the case, the certificate is valid.

An interesting note to these certificate chains is the (arguable) mess they
have created. As of December 8th 2020, Mozilla trusts 140 root certificates
for TLS and 99 root certificates for S/MIME [Moz20]. Microsoft trusts 256
root certificates in Windows [For20]. This means that the intentions of a lot
of root CAs have to be carefully monitored.

3.3 Certificate validation levels

In many circumstances, validation levels can be very useful. Validation levels
indicate how much an organization is trusted. For example, an organization
that can show that they are legally registered (in, for example, a company
register) is more trustworthy than an organization that only owns a domain.

3.3.1 TLS

Depending on the type of certificate that is needed, there are multiple vali-
dation levels. In TLS, we have three validation levels [Coc13]:

1. Domain validation. One can obtain a domain-validated certificate by
proving that one has the administrative rights to modify the domain’s
DNS settings. This is the lowest validation level, and companies like
Let’s Encrypt and Cloudflare now offer free domain-validated certifi-
cates.

2. Organization validation. To obtain an organization-validated certifi-
cate, one needs to prove that they have the administrative rights to

22

modify the domain’s DNS settings. They also have to show that the
organization legally exists. Both domain- and organization-validated
certificates can be obtained automatically, without the need for human
verification. For organization validation, the check that an organiza-
tion legally exists is also done automatically. This is done by (for
example) checking the company name with a company register.

3. Extended validation. To obtain an extended validation (EV) certifi-
cate, one needs to prove their identity to a CA, where actual human
involvement is required. Extended validation certificates can not be
obtained without at least one (real) person’s involvement on the CA’s
end.

3.3.2 S/MIME

In S/MIME certificates, we have two validation levels:

1. Class 1 certificates. These can be compared to domain-validated cer-
tificates in TLS. They will protect the From field in an e-mail. If one
receives an S/MIME protected mail with a class 1 certificate, one can
be sure that the sender in the From field is the actual sender of the
mail.

2. Class 2 certificates. These can be compared to organization-validated
certificates in TLS. Although, in theory, human involvement in these
certificates would be better, it is not required. Both class 1 and class 2
certificates can be obtained automatically, and neither verifies a com-
pany’s validity or purpose.

Although it seems like S/MIME certificates can solve the phishing problem,
they cannot. S/MIME guarantees the e-mail sender’s authenticity, but we
still have the same problem; if the legitimate company is trustworthybank.com,
and the e-mail is sent by trustworthy-bank.com, many people think the
mail is legitimate. S/MIME does not protect against this.

3.4 Certificate problems

Certificates are helpful, and they are used everywhere. However, there are
also a few big problems with certificates. In this subsection, we will give
an overview of the advantages and the problems that certificates have. We
will also take a look at the problems with implementing extended validation
level certificates into S/MIME.

23

3.4.1 Advantages

1. The most obvious advantage is the purpose of certificates: that it
facilitates secure communication. Public key certificates enable a se-
cure solution to communication. Asymmetric cryptography, together
with certificates, enables confidentiality, integrity and authenticity
over communication.

2. Certificates are simple, require no configuration from individual users,
and they are cheap.

3.4.2 Disadvantages

1. There are huge risks involved with certificates. If a certificate au-
thority is compromised, attackers can trick people into thinking they
are talking to a certain party, whereas they are actually talking to
(for example) the attackers. A notable example is the attack in 2011
on DigiNotar, a Dutch digital certificate authority [FI12]. In this at-
tack, attackers compromised the CA and issued fake certificates for
*.google.com. There are signs that these certificates have been used
in Iran to create a man-in-the-middle attack for Gmail.

2. Maintaining a certificate authority is a lot of work. Security protocols
constantly have to be updated, and a potential attack is devastating.

3. Certificate authorities cause a single-point-of-failure. In the DigiNotar
attack, all major web browsers and operating systems had to blacklist
all certificates signed by DigiNotar, which caused a lot of Dutch com-
panies to suddenly have invalid certificates. If a CA is compromised,
there is no sound system in place that offers additional protection.
This is precisely why a CA compromise is terrible for the internet, and
this structural issue is partially responsible for the problems caused by
the DigiNotar CA compromise.

3.4.3 Extended Validation Certificates

Extended Validation (EV) certificates from TLS could solve the problem of
phishing. If we add a similar certificate level to S/MIME, we could make
sure that only companies like banks and governments could get these cer-
tificates. Mail service providers could then add an EV check and reject any
financial e-mails if they were not signed with EV certificates.

This solution sounds good, but it has a problem. EV certificates are not as
good as they might seem. There is much criticism on EV certificates. For
instance, Caroll [Com17] realized that there were no name collision checks
in the EV certificate registration process. He illustrated this by buying an

24

EV certificate for a company that already bought their EV certificate. He
obtained a legitimate certificate, showing his website as being the website
of a company that he did not own. Furthermore attackers have used the
identities of other companies to get EV certificates. These would then trick
users into believing a website was legitimate. Another example is the cre-
ation of an EV certificate for a company called ‘Verified Identity’ by security
researcher Burton in 2017 [Com17]. Web browsers would then show ‘Verified
Identity’ next to the lock icon in the browser search bar.

It is important to note that, theoretically, a measure such as EV certifi-
cates would be a good solution, under the assumption that CAs make no
mistakes. However, CAs make mistakes, and no one holds them accountable.

Because of these (and other) reasons, companies like Mozilla, Google, Mi-
crosoft, and Apple decided to stop giving additional visual signs for EV
certificates since they did not help. We are left with a system where cer-
tificate authorities earn a lot of money over certificates that do not provide
additional authenticity, with most people not even noticing it anymore. It
would not be wise to copy this failed system to S/MIME.

25

Chapter 4

Requirements and goals

As we have seen, many measures are already in place to protect people
against phishing attacks. One of the most implemented techniques is S/MIME.
This protocol does provide message origin authenticity and integrity, but it
still fails to protect people against phishing attacks. This is partially due to
it not being easy to implement and maintain, and in most e-mail clients, it
requires significant efforts from the user to enable.

Moreover, even if everyone were to use S/MIME without problems, it would
still not prevent phishing attacks. Most phishing attacks do not originate
from a company’s domain but rather from a fake look-a-like domain. For
example, the trustworthy company would be named trustworthybank.com,
and the impersonated fake company trustworthy-bank.com. There is not
much that can be done about this with S/MIME (or any existing protocol,
for that matter) since the attackers are the fake domain’s legitimate owners.

The main goal that we need to achieve is deploying a system that prevents
spam e-mails from ever being displayed to the end-user. In this chapter,
we will list the requirements that our proposal needs. We will discuss the
functional and non-functional requirements. We will also take a look at the
system’s security, particularly the trust model, attacker model, and security
goals.

4.1 Functional requirements

1. Each domain should either be trusted or not, and e-mail clients should
be able to filter e-mails on whether their sender is trusted.

2. End users should be able to report phishing e-mails from a trusted
domain to the organization that trusted the domain. This way, the
organization responsible for trusting the domain can check the domain,
and if necessary, stop trusting it.

26

3. The system should be secure. It should not be possible to send an e-
mail from a domain that is not trusted and have it displayed as being
trusted.

4. The spam report system should be secure. It should not be possible
to send a report of an e-mail that was never actually sent by a given
domain.

4.2 Non-functional requirements

1. No single organization should be responsible for the determination of
which domains are trusted.

2. The responsibility of a domain’s trustworthiness should be with an or-
ganization that has a very high interest in keeping the trustworthiness
of each domain high. They should attempt to prevent phishing from
domains they trust at all costs.

3. The system should allow for gradual deployment. It should also inter-
operate with the existing infrastructure. It is infeasible to expect that
everyone in the world can deploy a system at once.

4.3 Security

4.3.1 Trust model

The trust model of our proposal is greatly based on the companies that will
trust domains. If any of these companies fail to do their job, people might
receive ‘trusted’ e-mails, which might have a counterproductive effect. For
example, say an e-mail user was to receive a trusted phishing e-mail. Usu-
ally, they might have spotted that the e-mail was not trustworthy, but since
this mail is ‘trusted’, they might think it is okay. These companies must do
their job correctly.

Of course, as we have seen with existing CAs, mistakes are made. Because
of this, it is impossible to create a flawless system. This is precisely why the
mail reporting system is required: this system allows trusting companies to
fix their mistakes before the attack gets out of control.

4.3.2 Attacker model

For the attacker model, we will assume an active man-in-the-middle attacker.
The attacker can locate itself between two MTAs, or between an MUA
and MTA. This attacker can read and modify any traffic. The attacker is

27

unable to break digital signing algorithms that are considered secure at the
beginning of 2021.

4.3.3 Security goals

The security goals of our proposal are:

1. An MTA or MUA receiving an e-mail should be able to verify its trust
status. This means that the MTA/MUA can check that a message
has a valid trust status and may therefore conclude with reasonable
certainty that the mail is not a phishing e-mail.

2. Guaranteeing the integrity of the trust status of the e-mail. It should
be impossible to alter the status without the receiving side noticing
this. Confidentiality is not relevant for this thesis.

28

Chapter 5

Proposal

In this chapter, we propose CEPP: Certificate-based E-mail Phishing Pre-
vention. CEPP is a solution to the problem described, conforming to the
functional and non-functional requirements of Chapter 4.

5.1 Certificates

In CEPP, a certificate will be attached to each e-mail by the e-mail sender.
The certificate is similar to the one used in TLS. In TLS, the certificate
proves the ownership of a public key. In CEPP, the purpose of the certifi-
cate is for the recipient to be able to verify that the e-mail was sent by an
organization that it trusts. For this purpose, a list of new organizations
(similar to root CAs) must be established and added to the e-mail client
(MUA) or transfer agent (MTA) software. We will call these organizations
‘Mail Authorities (MAs)’. The difference between CAs and MAs is explained
in Section 5.2. These MAs sign certificates for domains used to send e-mails.

Upon receiving an e-mail, the recipient will check the certificate by retriev-
ing the MA’s public key and verifying that the expected MA indeed signed
the certificate. After the signature is verified, the recipient has to check all
certificate fields. The most important field is the domain field, indicating
what domain the certificate can be used on. More information on the vali-
dation procedure is available in Chapter 6.

Now, there is one more essential step that we must not forget. If an at-
tacker spoofs the e-mail address and adds a valid CEPP certificate for that
e-mail address, the recipient will trust the e-mail. There are two approaches
we can take to counter this attack:

1. Enforce the use of DKIM (using DMARC, explained in Section 2.4.1).

2. Add functionality to CEPP that does the same as DKIM, so we do

29

not have to enforce DKIM.

We have opted for option 1 in our proposal. Option 2 would just be double
work, and DMARC is already a popular and widely implemented technique.
Therefore, before verifying the CEPP certificate, the recipient must first val-
idate the DMARC. If and only if DMARC uses DKIM and it is successfully
validated, the CEPP validation may occur. If the DMARC validation is
unsuccessful, the e-mail can not be trusted.

5.2 The certificate authorities

5.2.1 Problem with existing CAs

Initially, it might seem like we can just use the existing CAs to solve this
problem. Unfortunately, it is not that easy. The purpose of CAs in TLS is
to prove to the client that someone is the owner of a public key. For higher-
level certificates, it also proves that the domain belongs to an existing and
valid organization. In CEPP, however, a different function is expected from
the MA: They must verify that the company they issue a certificate for does
not use that certificate to send phishing e-mails (or any other form of mali-
cious e-mail).

This is not an easy thing to do, and therefore not something that we can
expect from existing CAs. The role of MAs is changed from showing that
some entity is who they claim to be (which is what existing CAs do), to
trusting the entity to be legitimate, e.g., not sending malicious content to
the end-user.

5.2.2 Mail Authorities

In CEPP, we propose that several MAs (for example, one per country), get
to issue certificates that can be used to send e-mails. An MA should only
issue a certificate once they trust that company to not use the certificate
for sending malicious e-mails. For this purpose, we recommend MAs charge
companies for signing their domains. It is also recommended to check the
legitimacy of the company with a company register. For example, in the
Netherlands, the ‘Kamer van Koophandel (KVK)’ maintains the company
register. A company is only valid once they register with the KVK. A
measure like this ensures that a company is valid and prevents attackers
from quickly registering many domains and using them to send malicious
e-mails.

30

5.3 Certificate levels

For CEPP, we specify three different certificate levels. The purpose of this
is to allow e-mail clients to distinguish between the trustworthiness of e-
mail senders. We need to be careful that we do not make the same mistake
that was made in TLS for the extended validation (EV) certificates (Section
3.4.3). We propose the following three certificate levels:

5.3.1 Level 1: No certificate

Although it is debatable whether this should be a level at all, the first level
is simply having no certificate. If no certificate is sent along with the e-
mail, this is the level we default to. We propose that e-mail clients (by
default) reject e-mails that do not have a certificate. This might turn out to
be infeasible, especially in the beginning. Therefore, some sort of warning
indicator would also be good. Although total rejection would be ideal, it
might not be possible in the long run.

5.3.2 Level 2: Basic certificate

A basic certificate is the primary certificate level, intended for use by most
companies. These certificates are issued by an MA, as mentioned in Section
5.2.2. The certificate proves that the mail sender can be trusted. Although
CEPP will drastically decrease the number of phishing attacks, we still rec-
ommend a spam filter for e-mail clients. Legitimate companies still send
many spam e-mails, and it would be weird for an MA to remove the trust
of a company because of an e-mail that could be categorized as (harmless)
spam. CEPP is aimed at stopping phishing attacks and not necessarily
harmless spam.

5.3.3 Level 3: Extended certificate

An extended certificate is an additional certificate level intended for use by
companies that relay critical information to clients, and therefore usually
are impersonated by attackers. Companies include (but are not limited to)
banks, authorities, hospitals, and in general, any company that works with
much money or has very personal information about the client. The advan-
tage of having a level 3 certificate might be an additional visual indicator
for the client. Also, spam protection in e-mail clients could ignore e-mails
with level 3 certificates.

The use of this certificate level must be restricted to only companies that
need it. Otherwise, the same problems as in TLS EV certificates occur
(Section 3.4.3).

31

5.4 Removing company trust

In CEPP, the MA that issued the certificate is responsible for the e-mails
of the company. In an ideal world, mail CAs and MAs would only issue
certificates for companies that are legitimate. However, we do not live in an
ideal world, and humans make many mistakes. Therefore, a system should
be in place to report malicious e-mails from trusted sources so that the MA
can take action. In this section, we propose a basis for this spam reporting
system. If an MA repeatedly fails to remove the trust of illegitimate com-
panies, the MA can no longer be trusted, and their public key should be
removed from the CEPP software.

5.4.1 Reporting spam

Every modern e-mail client has a system for reporting spam. Right now,
these systems do not have a functionality besides training some spam classi-
fier. In CEPP, we suggest that when a user reports spam, a message is sent
to the responsible MA. This message will contain all information required
for the MA to make a decision. A specification for both the construction
and the validation of a spam report will be in Chapter 6.

An important side note with these spam reports is their security. As men-
tioned in the functional requirements, it should not be possible to generate
and send a spam report of an e-mail that was never actually sent. Further-
more, it should also not be possible for an e-mail sender to modify the e-mail
data so that generating valid spam reports becomes impossible. For exam-
ple, it should not be possible to change the CEPP header in a way that
it is still valid, but generating a spam report becomes impossible. These
security notes need to be taken into account while constructing a concrete
specification of CEPP.

5.4.2 Remarks

There is a significant disadvantage to these spam reports that has to be
noted. The privacy of the person that reported the e-mail could be violated.
For example, say someone (possibly accidentally) reports an e-mail that
contains sensitive or personal information. The MA that received the report
then also receives this information. In CEPP, we assume that MAs treat
possibly sensitive information with care, but that might not be the best
solution. Furthermore, MTAs are also able to see the content of a spam
report. This could be prevented by using public key cryptography to encrypt
a spam report’s content, but this method is not 100% foolproof: MTAs would
still be able to see the number of spam reports, as well as their destinations.
Further research should be done to create a proper solution to this problem.

32

Chapter 6

Specification

In this chapter, we will establish a specification of CEPP. In Section 6.1, we
will give more detailed information about digital signatures in the context
of CEPP. In section 6.2, 6.3, we will provide a specification for certificate
generation and validation, respectively. In section 6.4 and 6.5, we will pro-
vide a specification for spam report generation and validation, respectively.
In Section 6.6, we will provide a detailed explanation as to where each of
these steps is conducted.

6.1 Digital Signatures

We will first give a more specific explanation of digital signatures and exactly
how they are used in CEPP. As explained in Section 3.1, a digital signature
is used to verify the authenticity of digital messages. In CEPP, we will
use these signatures to show that an MA trusts a company. By appending
a certificate (which consists of data, and a signature of that data) to an
e-mail, we know that the issuer of that certificate trusts the data subject.

6.1.1 Signature scheme

A signature scheme consists of a signing function and a verification func-
tion. In the context of CEPP, the first step is for the MA to generate a
public/private key pair. Then, they publish the public key (for example, via
their website) and keep the private key secure.

Signing a certificate

The signing function takes the following parameters.

• The message that is being signed,

• The private key of the MA.

33

Since the length of an input message is arbitrary, we typically first use a
hash function on the message.

The signing function takes the hashed message and the private key and
uses asymmetric cryptography to create the signature from this input.

Verifying a certificate

The verification of a certificate takes the following parameters.

• The message that is being validated,

• The signature of that message,

• The public key of the MA.

As with signing the certificate, we again use a hash function to hash the
message that is being validated.

The verification function then uses asymmetric cryptography to verify that
the signature is correct, using the hashed message, public key, and signature.
The verification function returns either true or false, indicating whether
the signature was correct.

6.2 Certificate generation

In CEPP, we will use two separate headers to add the certificate to the e-
mail. Firstly, we will add a header containing all relevant certificate data.
Secondly, we will add a header containing the signature of this certificate
data.

6.2.1 Certificate data

The CEPP certificate data header uses CEPP-Data as header key. The header
value is a string with all parameters. The parameters that are required in a
CEPP certificate are listed in Table 6.1.

34

Type Key Value description

Version v The certificate version that is used, de-
fault is 1.

Serial number s The certificate serial number, used by
MAs to track certificates.

Algorithm a The signature algorithm that is used.

Issuer i The full name of the MA that issued
this certificate.

Minimum validity date nb The date before which the certificate is
not yet valid.

Maximum validity date na The date after which the certificate is
not valid anymore.

Subject domain d The domain of the sender of the e-mail.

Certificate level l The certificate level (as described in
Section 5.3).

Table 6.1: CEPP certificate data parameters

Parameter format

Each parameter has a certain format that it has to follow. After using this
format, the parameter is then converted to a string. The format for each of
the parameters is as follows:

• Version: The version is a non-negative number, and in the current
version, it should always be 1.

• Serial number: The serial number is a number that is greater than
0. The number is generated randomly and must be unique: it should
not be used in other certificates.

• Algorithm: The algorithm is the name of the used signature algo-
rithm. Supported algorithms are listed in Section 6.1.2.

• Issuer: The issuer is the full name of the MA that issued the certifi-
cate.

• Minimum and maximum validity date: The minimum and maxi-
mum validity dates are formatted with the UTCTime format, which is
also used in X.509 certificates [Coo08, Section 4.1.2.5.1]. This means
that the time format is YYMMDDHHMMSSZ. This time format has to be
expressed in Greenwich Mean Time. If the YY field is greater than or
equal to 50, then the actual year is 19YY. If YY is less than 50, the
actual year is 20YY.

35

• Subject domain: The exact domain of the certificate subject (the
e-mail sender).

• Certificate level: Level ‘2’ represents a basic certificate, and ‘3’ rep-
resents an extended certificate (as explained in Section 5.3).

Note that all fields are mandatory; a certificate is rejected if any fields are
malformed or left out.

Combining parameters

All parameters are then subsequently combined into a single string, in the
following format:

[Key]=[Value]; [Key]=[Value]; ...; [Key]=[Value].

The data string is then added to the e-mail headers, with CEPP-Data as
header key.

6.2.2 Certificate signature

The CEPP certificate signature header uses CEPP-Signature as header key.
The header value is the signature of the entire certificate data string. The
signing uses the MA’s private key and specified signature algorithm:

CeppSignature = Asign,P rK(CeppData),

where A is the specified signature algorithm, and PrK the private key of
the MA. The signature is then converted to a string (if it was not already)
using binary to hex conversion and added to the e-mail headers.

Supported signature algorithms

All supported signature public key algorithms are listed in Table 6.2. We
have chosen algorithms that are considered secure at the beginning of 2021.

36

Algorithm State Comments

RSA Not recommended Key length should be at least 2048
bits. Because of this, RSA is not rec-
ommended.

DSA Not recommended DSA is supported, but ECDSA is
preferred, since ECDSA achieves an
equal level of security with shorter
keys.

ECDSA Supported Required curve: secp256k1

EDDSA Supported Required curve: Curve25519 (also
known as Ed25519)

Table 6.2: List of signature public key algorithms that CEPP supports.

The following hashing algorithms are supported for CEPP signature al-
gorithms. We have chosen algorithms that are considered secure at the
beginning of 2021.

• SHA 224

• SHA 256

• SHA 384

• SHA 512

• SHAKE128

• SHAKE256

Algorithms are combined into a string in the following way:

[PUBLIC KEY ALGORITHM]_WITH_[HASH ALGORITHM]

Each hash/public key algorithm combination is supported. This means that
there is a total of 3 × 10 = 30 supported signature algorithms in CEPP.

6.2.3 Example

We will demonstrate how the construction of a certificate takes place:

1. The first step is to create an MA, together with a public/private key-
pair (as explained in Section 6.1). This is required, since otherwise we
would not be able to create a certificate. The name of our test MA is
‘Test Certificate Authority’. We use ECDSA, and obtain the following
keypair:

37

Public:

049a55a04ad8538e460dc175bb027859d32eb88208b8ecb5ac2d16afaf19079af

008db4d349cd1098bc758796c40b4fb2b75da3557d4887c77ece7af759f2a7143,

Private:

4f77a087f11c319df6842928e92c1a3941d4d94386a0209a777d81bca6461f6d.

2. The second step is determining all required parameters. In this step,
we actually start creating a certificate.

v : 1

s : 12345 (this is usually randomly generated)

a : ECDSA WITH SHA 256

i : Test Certificate Authority

nb : 210101000000Z (January 1st, 2021, 00:00h)

na : 210107000000Z (January 7th, 2021, 00:00h)

d : student.ru.nl

l : 2

(see Table 6.1).

3. We then convert all parameters to a single string. This results in:
v=1; s=12345; a=ECDSA WITH SHA 256; i=Test Certificate Authority;

nb=210101000000Z; na=210107000000Z; d=student.ru.nl; l=2.

4. Then, we compute the signature:

CEPP-Signature = ECDSA WITH SHA 256sign,4f7...f6d(‘v=1; ...; l=2’)

=

304502210093d5a3c8453ab43d66b9c0eaef0d18cf6bf18

826e044b6b7ba8de1e79933b43602207fa964e12505d74c

29302dd88fdb2e8981473a3c5816b8def109f037762ce156.

5. The final step is adding the two CEPP headers to the e-mail. The
following headers are added:

CEPP-Data: v=1; ...; l=2,

CEPP-Signature: 304...156.

38

6.3 Certificate validation

The validation of certificates is a bit easier and consists of three steps.

1. Validating the DMARC.

2. Validating the CEPP signature.

3. Validating the CEPP data.

In this section, we will explain each of these steps. We will also give an
example CEPP certificate validation.

6.3.1 Validating the DMARC

As mentioned in Section 5.1, we need to enforce the use of DKIM using
DMARC. If we do not do this, an attacker can spoof an e-mail address and
attach a valid CEPP certificate for that domain to the mail. Therefore,
before a CEPP certificate can be validated, DKIM must be used. If the
DMARC policy is absent or specifies that DKIM is not used, the CEPP
certificate is considered invalid.

6.3.2 Validating the CEPP signature

After the DMARC is validated, we can continue to validate the CEPP sig-
nature. This is easily done using the public key of the MA that signed the
certificate:

CertificateValid = Averify,PK(CeppData,CeppSignature),

where A is the specified signature algorithm, PK the public key of the MA,
CeppData the value of the CEPP-Data header and CeppSignature the value
of the CEPP-Signature header. The certificate signature is valid if and only
if the certificate validation result (CertificateValid) is true.

6.3.3 Validating the CEPP data

After the CEPP signature is validated, the last step is to validate the actual
CEPP data. This step consists of checking all CEPP data fields. For CEPP
version 1, validating the data consists of the following checks:

1. Checking that the not before (nb) date field is before the current date,

2. Checking that the not after (na) date field is after the current date,

3. Checking that the e-mail sender (d) is equal to the actual sender of
the e-mail.

If and only if all of these checks are successful, the CEPP certificate is valid.

39

6.3.4 Example

We will demonstrate how the validation of a CEPP certificate takes place.
We will use the data obtained in the previous example (Section 6.2.3).

1. The first step is to validate the DMARC. If it was valid (if it used
DKIM and the DKIM was valid), we continue to the next step.

2. The next step is the validation of the CEPP signature:

CertificateValid = Averify,049...143(‘v=1; ...; l=2’, 304...156) = true.

3. Now, since the certificate signature was valid, we need to check the
certificate data. We assume the current date is February 1st, 2021,
00:00h, and that the e-mail was sent by the student.ru.nl domain.

• The version is 1.

• The not before date is before the current date.

• The not after date is after the current date.

• The certificate subject domain is equal to the e-mail sender do-
main.

Since all checks passed, the certificate is valid.

6.4 Spam report generation

As mentioned in Section 5.4, CAs (and MAs) can occasionally make mis-
takes. We might also have a company that was initially trustworthy but
is no longer. For these cases, e-mail spam reports exist. By reporting an
e-mail, a client can indicate to an MA that an e-mail sender might not (or
no longer) be trustworthy. The MA can then decide to stop giving out cer-
tificates for that company.

The generation of spam reports is trivial. We have looked at the follow-
ing two options:

• Create a new application-level protocol for the indication of malicious
e-mail.

• Use e-mail to send a spam report to a MA.

In CEPP, we have opted for the latter. Creating, managing, and describing
a new protocol is a lot of work, but it is mostly unnecessary since e-mail
already meets all of our requirements.

40

6.4.1 Overview

The construction of a spam report consists of the following steps:

1. Construct a new e-mail.

2. Set the target of this e-mail equal to the spam report e-mail of the
MA that issued the certificate for the malicious e-mail.

3. Set the body of this e-mail equal to the raw content of the malicious
e-mail. This includes all headers, attachments and the e-mail body.

4. Add DMARC (and DKIM) headers to the e-mail.

5. Send the e-mail.

After following each of these steps, the MA receives an e-mail containing
the exact e-mail and can choose to act based on the contents.

There are a few important points we need to take into consideration. Note
that for this approach to work, each MA has to publish a working e-mail
address that is used for reporting malicious e-mails. This can easily be done
together with the publication of their public key. It is also essential that
the MA actually checks the incoming spam reports and does not just ignore
them. Furthermore, note that adding the DMARC and DKIM headers is
essential. If we do not do this, it is possible to spoof the source e-mail ad-
dress, which means someone would be able to generate hundreds of e-mail
reports without the MA being able to ignore duplicate reports.

6.5 Spam report validation

The validation of a spam report is also trivial and consists of the following
steps:

1. Validate the DMARC of the received spam report e-mail. More specifi-
cally, the e-mail should have DKIM enabled, and the certificate should
be valid. This step is required to make sure that a spam report e-mail
sender address has not been spoofed.

2. Do a full CEPP certificate validation on the body of the received re-
port. The body contains the raw source of the reported e-mail. This
validation consists of validating the DMARC, CEPP signature and
CEPP data (see Section 6.3). This step is required to ensure that
the actual spam report is a legitimate e-mail, not an e-mail that was
constructed to look like a malicious e-mail.

If both of these steps are successfully completed, the e-mail report is valid.
It is up to the MA to take further action.

41

6.5.1 Report filtering

It is highly recommended to filter e-mail reports. The most obvious filter is
treating reports of a level 2 (basic) certificate as more probable than a re-
port of a level 3 (extended) certificate. It is also helpful to ignore (or count)
duplicate spam reports. If, for some reason, someone decides to report the
same e-mail multiple times, an MA would not want to spend more time than
necessary on those reports. Therefore, filtering out, grouping, and counting
reports can be very beneficial.

Techniques can also be used to check the contents of the e-mail. Think
about spam filters ((Bayesian) classifiers) and URL/DNS blacklists. These
techniques can be used to decrease the amount of human labour that MAs
have to do.

6.6 CEPP usage locations

The generation and validation of CEPP certificates and spam reports happen
at different locations. Some of the steps in the CEPP protocol can be
executed at multiple locations. In this section, we will give the locations at
which each CEPP step can take place.

Certificate generation

The generation of CEPP certificates happens at the responsible MA. They
then deliver these certificates to their customers (domain owners).

Attaching a certificate to an e-mail is done by an (outbound) MTA. They
have the CEPP certificate, and they attach it to all outgoing e-mails. The
MUAs do not have this information since they often do not own the domain
they are using. For example, popular e-mail providers (not clients!) like
Outlook and Gmail provide e-mail addresses for users. Since these users do
not own the outlook or gmail domains, they would be unable to request a
certificate from an MA. For this reason, MTAs always attach the certificates
to the e-mails.

Certificate validation

The certificate validation can take place at two locations. The (inbound)
MTA and the receiving MUA can validate the CEPP certificate. If an MTA
validates the certificate, they can communicate to the MUA that an e-mail
is trusted. An MUA can also validate the CEPP certificate and then display
the result to the end-user.

42

Spam report generation

The generation of spam reports can, once again, take place at two locations.
Either the MUA or MTA can do this. Especially in browser-based e-mail
clients, it could be logical that the MTA is responsible for sending spam
reports. However, for standalone MUAs like Mozilla Thunderbird, spam
report generation and sending occur at the MUA.

Spam report validation

The validation of spam reports only ever happens at the responsible MA.
MTAs should not look at the contents of a spam report. As mentioned in
Section 5.4.2, this is also part of a problem; MTAs can see which e-mails are
being reported.

43

Chapter 7

Proof of concept

To illustrate CEPP’s functionality, we have created a proof of concept. We
did this by creating an add-on for the e-mail client Thunderbird. In this
chapter, we will explain what the add-on does (Section 7.1) and discuss an
example (Section 7.2).

7.1 The CEPP addon

Mozilla’s Thunderbird e-mail client offers functionality to create add-ons.
These add-ons are developed in Javascript and can directly interact with
many Thunderbird parts through their API. An overview of the code and
the actual code of the most important parts can be found in Appendix A.

7.1.1 The basic functionality

The CEPP add-on allows for a demonstration of how CEPP works. It
contains three major parts:

1. Functionality to add a CEPP certificate to an e-mail that is being sent.

2. Functionality to display, for incoming e-mails, whether they are valid
according to the CEPP specification.

3. Functionality to report incoming e-mails.

If CEPP becomes a standard, part 2 and 3 of this add-on can (after some
alterations) be used. Part 1 would never be used in the software of an MUA
since (as explained in Section 6.6) MTAs add the CEPP certificate to the
e-mail. Concretely, this means that part 1 is only conducted to suit the
proof of concept.

44

7.1.2 Development assumptions

While developing this add-on, we have taken some measures to make the
process easier. After all, the add-on is a proof of concept and not a full
implementation. We have taken the following measures to make the devel-
opment process easier:

• In the add-on, we do not check the DMARC of an e-mail. We as-
sume that the DMARC check (as described in Section 6.2.1) passed
successfully.

• In the add-on, we only offer ECDSA with SHA256 signatures. Al-
though multiple public key and hashing algorithm combinations are
supported in CEPP, we have only implemented the ECDSA WITH SHA 256

option.

• In the add-on, we have hard-coded the (only) MA information into a
Javascript file. Usually, the public MA information would be stored
securely by the responsible application.

After using these simplifications, we have successfully created a proof of
concept of the CEPP protocol, as given in Appendix A.

7.2 Usage showcase

In this section, we will give an overview of all visual elements in the Thun-
derbird add-on.

7.2.1 Generating a certificate

In the Thunderbird e-mail compose window, one can click the ‘CEPP’ but-
ton. This will create a small popup that is displayed in Figure 7.1. In our
proof of concept, we have hard-coded a single MA: the ‘RU Certificate Au-
thority’. In Figure 7.1, we can see that this MA is selected. Furthermore,
we can see all relevant encryption details in the ‘Issuer Encryption Details’
field.

7.2.2 Adding a certificate

After all the certificate generation popup settings have been set, one can
add the certificate to the e-mail headers by clicking the ‘Attach Certificate’
button. This button will check all input data, and if all data is valid, it will
add the certificate to the e-mail. This is displayed in Figure 7.2.

45

Figure 7.1: Popup window for generating a CEPP certificate

Figure 7.2: Popup window after the CEPP certificate is added to the e-mail
headers

7.2.3 Validating a certificate

Now, when receiving an e-mail, the add-on will display whether the e-mail is
trusted or not. We have created two example e-mails, only one of which had
a valid CEPP certificate attached. The valid e-mail is displayed in Figure
7.3, and the invalid e-mail is displayed in figure 7.4.

7.2.4 Reporting an e-mail

Lastly, in the Thunderbird mail display screen, we have added the spam
report button. This button is displayed in Figure 7.5. After this button is
clicked, a new mail screen will be opened that already contains all informa-
tion. The client only has to hit ‘send’ to send the e-mail to the responsible
MA.

46

Figure 7.3: Addon visualisation for an e-mail that had a valid CEPP cer-
tificate attached to it

Figure 7.4: Addon visualisation for an e-mail that did not have a CEPP
certificate attached to it

Figure 7.5: Addon button for reporting a possibly malicious e-mail

47

Chapter 8

Discussion

In this chapter, we will look at the functional and non-functional require-
ments mentioned in Chapter 4. Furthermore, we will list the advantages
and disadvantages of CEPP.

8.1 Evaluation of functional requirements

1. CEPP guarantees that each domain is either trusted or not, through
the use of MAs. If the client trusts an MA and that MA trusts a
particular domain, then the client can also trust that domain. By
validating the CEPP certificate, e-mail clients can determine whether
they can trust an e-mail or not.

2. Using the e-mail reporting system, e-mail users can let the responsible
MA know when one of their trusted domains sends malicious e-mail.
MAs can then decide to take action.

3. CEPP is secure, assuming that the underlying cryptographic protocols
are secure. If the protocol is followed correctly, it is not possible to send
an e-mail from a domain that is not trusted and have it displayed as
being trusted. Note that for this to work, DMARC (and in particular;
DKIM) are required: the client needs to trust the public keys that are
published in the domain’s DNS.

4. The spam report system is also secure (assuming that the underlying
cryptographic protocols are secure). It is not possible to send a report
of an e-mail that was never sent.

8.2 Evaluation of non-functional requirements

1. Since CEPP uses multiple MAs, there is no single organization respon-
sible for determining which domains are trusted.

48

2. Since an MA wants to stay trusted by e-mail clients, its main purpose
will always be to only trust domains that are trustworthy.

3. CEPP allows for gradual deployment. E-mail clients can add visual
indicators for CEPP e-mails. In the long run, it would be better to
only accept e-mails that have a valid CEPP certificate, but this is
infeasible in the beginning.

8.3 Overview of advantages and disadvantages

In this section, we will provide an overview of all advantages and disadvan-
tages. It is useful to mention that the CEPP protocol is a protocol that is
executed at the ‘Communication level’ of preventing phishing attacks (Sec-
tion 2.4.1).

8.3.1 Advantages

• CEPP can greatly reduce the number of phishing e-mails (and ma-
licious e-mails in general). We will always have companies that are
trusted by MAs mistakenly, but that is why the spam report system
is introduced.

• Theoretically, CEPP can also be applied to other areas than just e-
mail. In general, CEPP is just a proposal where MAs are also required
to check what their clients use the certificates for. This same principle
can also be applied to (for example) websites.

8.3.2 Disadvantages

• The current e-mail report system is not very privacy-friendly. MAs can
read the full content of reported e-mails, and this is not very ideal. It
is necessary, though, since otherwise, MAs cannot determine whether
an e-mail is malicious.

• CEPP is unable to stop all malicious e-mail. However, we do not
think it is possible to create a system that stops all malicious e-mail.
At one point or another, a human always has to decide whether an
e-mail is malicious or not. Even if a computer decides this (through,
for example, a Bayesian classifier), a human always has to configure
how the computer decides which e-mail is malicious. Since humans
make mistakes, and many tricks exist to bypass spam filters, we do
not think it is possible to create a system that always works perfectly.
CEPP comes pretty close to an ideal system.

49

• CEPP is unable to stop certain types of phishing attacks. For example,
attacks where the attacker gets control over someone’s e-mail account
can not be stopped by CEPP.

50

Chapter 9

Conclusion

We have seen that phishing is a huge problem in today’s society. It causes
many people to lose money or leak passwords. With CEPP, we have provided
a general proposal that can prevent a lot of these attacks. We have given
a proof of concept implementation that proves CEPP’s functionality. This
implementation, in the form of a Thunderbird add-on, shows that CEPP
works.

9.1 Future research

A problem with the current approach is that responsible MAs can see each
spam report’s content. This has a significant impact on the privacy of the
person who reports the e-mail. Furthermore, MTAs can see which e-mails
are being reported by clients. Research can be done to alter the current
approach to prevent these problems.

We have provided a ‘proof of concept’ add-on but no full implementation
yet. It is possible to write both MUA and MTA software (possibly in the
form of a GitHub pull request) that add CEPP support to major e-mail
clients and MTA’s.

Lastly, it might also be worth checking possible integrations of CEPP into
already existing protocols. For example, protocols like SMTPsec [Ste20] or
S/MIME can significantly benefit from a CEPP integration. S/MIME, in
particular, is already used, so integration might be easier there. Research
can be done to check these possibilities.

51

Bibliography

[All07] E. Allman. DomainKeys Identified Mail (DKIM) Signa-
tures. RFC 4871, IETF, 5 2007.

[APW20] APWG. Phishing Activity Trend Report Q2 2020. 27 Au-
gust 2020. https://docs.apwg.org/reports/apwg trend

s report q2 2020.pdf.

[BESH07] Mohamad Badra, Samer El-Sawda, and Ibrahim Hajjeh.
Phishing Attacks and Solutions. In Proceedings of the
3rd International Conference on Mobile Multimedia Com-
munications, MobiMedia ’07, Brussels, BEL, 2007. ICST
(Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[Coc13] Dean Coclin. What Are the Different Types of SSL Certifi-
cates? Certificate Authority Security Counsil, Aug 2013.

[Com17] Bleeping Computer. Extended Validation EV Certificates
Abused To Create Insanely Believable Phishing Sites. De-
cember 12, 2017. https://www.bleepingcomputer.com/n

ews/security/extended-validation-ev-certificates

-abused-to-create-insanely-believable-phishing-s

ites/.

[Coo08] D. Cooper. Internet X.509 Public Key Infrastructure Cer-
tificate and Certificate Revocation List (CRL) Profile. RFC
5280, IETF, 5 2008.

[Dic20] Dictionary.com. Certificate. Certificate.com, Retrieved De-
cember 8, 2020. https://www.dictionary.com/browse/

certificate.

[DNS20] DNSBL.info. What is a DNSBL. Retrieved 15 November
2020.

[DTH06] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why
Phishing Works. In Proceedings of the SIGCHI Conference

52

https://docs.apwg.org/reports/apwg_trends_report_q2_2020.pdf
https://docs.apwg.org/reports/apwg_trends_report_q2_2020.pdf
https://www.bleepingcomputer.com/news/security/extended-validation-ev-certificates-abused-to-create-insanely-believable-phishing-sites/
https://www.bleepingcomputer.com/news/security/extended-validation-ev-certificates-abused-to-create-insanely-believable-phishing-sites/
https://www.bleepingcomputer.com/news/security/extended-validation-ev-certificates-abused-to-create-insanely-believable-phishing-sites/
https://www.bleepingcomputer.com/news/security/extended-validation-ev-certificates-abused-to-create-insanely-believable-phishing-sites/
https://www.dictionary.com/browse/certificate
https://www.dictionary.com/browse/certificate

on Human Factors in Computing Systems, CHI ’06, page
581–590, New York, NY, USA, 2006. Association for Com-
puting Machinery.

[Ero05] P. Eronen. Pre-Shared Key Ciphersuites for Transport
Layer Security (TLS). RFC 4279, IETF, 12 2005.

[FI12] Fox-IT. Black Tulip Report of the investigation into the
DigiNotar Certificate Authority breach. 13 August 2012.
https://github.com/juliocesarfort/public-pentest

ing-reports/raw/master/Fox-IT/Fox-IT - DigiNotar

.pdf.

[For20] Force.com. Microsoft Included CA Certificate List. Re-
trieved December 8, 2020. https://ccadb-public.secur

e.force.com/microsoft/IncludedCACertificateRepor

tForMSFT.

[Gel11] R. Gellens. Message Submission for Mail. RFC 6409, IETF,
11 2011.

[HvdHS08] Andrew Harding, Timothy W. van der Horst, and Kent E.
Seamons. Wireless Authentication Using Remote Pass-
words. In Proceedings of the First ACM Conference on
Wireless Network Security, WiSec ’08, page 24–29, New
York, NY, USA, 2008. Association for Computing Machin-
ery.

[Iye20] Rishi Iyengar. Twitter accounts of Joe Biden, Barack
Obama, Elon Musk, Bill Gates, and others apparently
hacked. CNN Business, July 15, 2020. https://editio

n.cnn.com/2020/07/15/tech/twitter-hack-elon-musk

-bill-gates/index.html.

[JJJM07] Tom N. Jagatic, Nathaniel A. Johnson, Markus Jakobsson,
and Filippo Menczer. Social Phishing. Commun. ACM,
50(10):94–100, October 2007.

[Jou15] Stu Jouwerman. Spear Phishing Attack Makes $17.2 Million
In Three Days. KnowBe4, 7 February 2015. https://blog
.knowbe4.com/spear-phishing-attack-makes-17.2-mi

llion-in-three-days.

[KNL20] Bhargav Kuchipudi, Ravi Teja Nannapaneni, and Qi Liao.
Adversarial Machine Learning for Spam Filters. In Proceed-
ings of the 15th International Conference on Availability,
Reliability and Security, ARES ’20, New York, NY, USA,
2020. Association for Computing Machinery.

53

https://github.com/juliocesarfort/public-pentesting-reports/raw/master/Fox-IT/Fox-IT_-_DigiNotar.pdf
https://github.com/juliocesarfort/public-pentesting-reports/raw/master/Fox-IT/Fox-IT_-_DigiNotar.pdf
https://github.com/juliocesarfort/public-pentesting-reports/raw/master/Fox-IT/Fox-IT_-_DigiNotar.pdf
https://ccadb-public.secure.force.com/microsoft/IncludedCACertificateReportForMSFT
https://ccadb-public.secure.force.com/microsoft/IncludedCACertificateReportForMSFT
https://ccadb-public.secure.force.com/microsoft/IncludedCACertificateReportForMSFT
https://edition.cnn.com/2020/07/15/tech/twitter-hack-elon-musk-bill-gates/index.html
https://edition.cnn.com/2020/07/15/tech/twitter-hack-elon-musk-bill-gates/index.html
https://edition.cnn.com/2020/07/15/tech/twitter-hack-elon-musk-bill-gates/index.html
https://blog.knowbe4.com/spear-phishing-attack-makes-17.2-million-in-three-days
https://blog.knowbe4.com/spear-phishing-attack-makes-17.2-million-in-three-days
https://blog.knowbe4.com/spear-phishing-attack-makes-17.2-million-in-three-days

[LS07] Changwei Liu and Sid Stamm. Fighting Unicode-
Obfuscated Spam. In Proceedings of the Anti-Phishing
Working Groups 2nd Annual ECrime Researchers Summit,
eCrime ’07, page 45–59, New York, NY, USA, 2007. Asso-
ciation for Computing Machinery.

[MMDCL09] Jose Marcio Martins Da Cruz and John Levine. URL fil-
tering. Anti-Spam Research Group, May 2009. https:

//wiki.asrg.sp.am/wiki/URL filtering.

[Moz20] Mozilla. Mozilla Included CA Certificate List. Retrieved
December 8, 2020. https://wiki.mozilla.org/CA/Incl

uded Certificates.

[Mun15] Phil Muncaster. Email Scam Netted $17m From Single
Firm. InfoSecurity, 9 February 2015. https://www.in

fosecurity-magazine.com/news/email-scam-netted-1

7-million-from/.

[Ram10] Zulfikar Ramzan. Phishing Attacks and Countermeasures.
In Handbook of Information and Communcation Security,
pages 433–448. Springer, 2010.

[Res18] E. Rescorla. The Transport Layer Security (TLS) Protocol
Versoin 1.3. RFC 8446, IETF, 8 2018.

[Ste20] Steven Wallis de Vries. Designing a simple and secure de-
livery protocol: SMTPsec. Radboud University, June 28,
2020.

[SY19] Alex Sumner and Xiaohong Yuan. Mitigating Phishing
Attacks: An Overview. In Proceedings of the 2019 ACM
Southeast Conference, ACM SE ’19, page 72–77, New York,
NY, USA, 2019. Association for Computing Machinery.

[Sym19] Symantec. Internet Security Threat Report. volume 24.
February 2019. https://docs.broadcom.com/doc/istr

-24-2019-en.

[Tay07] D. Taylor. Using the Secure Remote Password (SRP) Pro-
tocol for TLS Authentication. RFC 5054, IETF, 11 2007.

[Tho04] B. Thorson. How Spammers Bypass E-mail Security. EE
Times, 19 July 2004. https://www.eetimes.com/how-sp

ammers-bypass-e-mail-security/#.

[Ver20] Verizon. Data Breach Investigations Report. 2020. https:
//enterprise.verizon.com/resources/reports/2020-

data-breach-investigations-report.pdf.

54

https://wiki.asrg.sp.am/wiki/URL_filtering
https://wiki.asrg.sp.am/wiki/URL_filtering
https://wiki.mozilla.org/CA/Included_Certificates
https://wiki.mozilla.org/CA/Included_Certificates
https://www.infosecurity-magazine.com/news/email-scam-netted-17-million-from/
https://www.infosecurity-magazine.com/news/email-scam-netted-17-million-from/
https://www.infosecurity-magazine.com/news/email-scam-netted-17-million-from/
https://docs.broadcom.com/doc/istr-24-2019-en
https://docs.broadcom.com/doc/istr-24-2019-en
https://www.eetimes.com/how-spammers-bypass-e-mail-security/#
https://www.eetimes.com/how-spammers-bypass-e-mail-security/#
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf

[WAB16] Adam Wright, Skye Aaron, and David W. Bates. The
Big Phish: Cyberattacks Against U.S. Healthcare Systems.
Journal of General Internal Medicine, 31(10):1115–1118,
Oct 2016.

[YMWBYM16] K. Young-McLear, G. Wyman, J. Benin, and Y. Young-
Mclear. A White Hat Approach to Identifying Gaps Be-
tween Cybersecurity Education and Training: A Social En-
gineering Case Study. In Advances in Human Factors in
Cybersecurity, pages 229–237. Springer, 2016.

55

Appendix A

Thunderbird addon code

A.1 Project structure

The project structure of the Thunderbird addon is displayed here.

| background.html

| compose_popup.html

| manifest.json

|

\---scripts

+---api

| +---compose_message_headers

| | implementation.js

| | schema.json

| |

| \---elliptic

| elliptic.js

|

+---cepp

| | certificate.js

| | compose.js

| | display.js

| |

| \---mail_display_injections

| default.js

| mail_invalid_incorrect.js

| mail_invalid_no_header.js

| mail_valid.js

|

\---data

ca_private_keys.js

trusted_ca_public_keys.js

56

The manifest.json is the home file for each Thunderbird Addon. It con-
tains all general information, like the addon name, ID, version, and more.
Furthermore, this file contains functionality for adding buttons, using per-
missions and adding experiment APIs.

The compose popup.html file is the HTML file displayed when the CEPP
button in the Thunderbird e-mail compose window is clicked. It contains
all required fields for adding a certificate to an e-mail.

The background.html file is loaded immediately when the addon is loaded.
It links to a few Javascript files that, together, create permanent background
functionality.

The scripts folder contains all Javascript files that the addon uses. It
is split into three parts:

A.1.1 The ‘API’ part

This part contains Javascript files that we did not write but are used as an
API. The API consists of the compose message headers API, which allows
us to add custom headers to an e-mail, and the elliptic API, which enables
us to do elliptic curve cryptography.

A.1.2 The ‘cepp’ part

This part contains the main CEPP functionality. The certificate.js

file contains all required functionality for generating and validating CEPP
certificates. The compose.js file is used by the compose popup.html file,
and allows us to create and add certificates. The display.js file is ran
from the background.html file, and contains functionality for validating the
correctness of a CEPP certificate. It visualises this through e-mail injections,
all of which are in the mail display injections folder.

A.1.3 The ‘data’ part

This part contains all (hard-coded) mail CA data. The ca private keys.js

file contains all private mail CA data. It contains the private keys of the
mail CA signatures.

The trusted ca public keys.js file contains all public mail CA data. Usu-
ally, this data would be in MUA’s or MTA’s that want to verify CEPP
certificates. It contains the public keys of the mail CA signatures.

57

A.2 Code files

In this section, we will go on to list the most important files. All files can
also be found on GitHub:

https://github.com/MeItsLars/CEPP/

The files that we will be showing here (in this order) are:

• background.html,

• compose popup.html,

• manifest.json,

• certificate.js,

• compose.js,

• display.js,

• ca private keys.js,

• trusted ca public keys.js.

58

https://github.com/MeItsLars/CEPP/

A.2.1 background.html

1 <html lang="en">
2 <head>
3 <meta charset="utf -8">
4 <script src="scripts/data/trusted_ca_public_keys.js"></

script>
5 <script src="scripts/api/elliptic/elliptic.js"></ script>
6 <script src="scripts/cepp/certificate.js"></ script>
7 <script type="module" src="scripts/cepp/display.js"></ script

>
8 </head>
9 <body>

10 </body>
11 </html>

59

A.2.2 compose popup.html

1 < !DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="utf -8">
5 <t i t l e>Add CEPP c e r t i f i c a t e</ t i t l e>
6 </head>
7 <body>
8 <table style="width:100%">
9 <tr>

10 <td><label for="serialNumber">S e r i a l Number</
label></td>

11 <td><input id="serialNumber" type="text"></td>
12 </ tr>
13 <tr>
14 <td><label for="issuer">I s s u e r</ label></td>
15 <td>
16 <select id="issuer"></ select>
17 </td>
18 </ tr>
19 <tr>
20 <td><label for="issuerEncryptionDetails">I s s u e r

Encryption De ta i l s :</ label></td>
21 <td>−<

/td>
22 </ tr>
23 <tr>
24 <td>Va l i d i t y Period</td>
25 </ tr>
26 <tr>
27 <td><label for="notBeforeDate">&emsp ; Not Before :

</ label><label for="notBeforeTime"></ label></
td>

28 <td><input id="notBeforeDate" type="date"><input
id="notBeforeTime" type="time"></td>

29 </ tr>
30 <tr>
31 <td><label for="notAfterDate">&emsp ; Not After :</

label><label for="notAfterTime"></ label></td>
32 <td><input id="notAfterDate" type="date"><input

id="notAfterTime" type="time"></td>
33 </ tr>
34 <tr>
35 <td><label for="subjectDomain">Subject Domain</

label></td>
36 <td><input id="subjectDomain" type="text"></td>
37 </ tr>
38 <tr>
39 <td><button id="attachCertificateButton" type="

button">Attach C e r t i f i c a t e</button></td>
40 <td></

td>
41 </ tr>

60

42 </table>
43 <script src="scripts/data/ca_private_keys.js"></ script>
44 <script src="scripts/api/elliptic/elliptic.js"></ script>
45 <script src="scripts/cepp/certificate.js"></ script>
46 <script type="module" src="scripts/cepp/compose.js"></

script>
47 </body>
48 </html>

61

A.2.3 manifest.json

1 {
2 "manifest_version" : 2 ,
3 "name" : "CEPP" ,
4 "description" : "An example proof of concept addon for

preventing phishing attacks via e-mail." ,
5 "version" : "1.0" ,
6 "author" : "Lars Jeurissen" ,
7 "applications" : {
8 "gecko" : {
9 "id" : "cepp@cs.ru.nl" ,

10 "strict_min_version" : "78.0"

11 }
12 } ,
13 "compose_action" : {
14 "default_title" : "CEPP" ,
15 "default_popup" : "compose -popup.html"

16 } ,
17 "message_display_action" : {
18 "default_title" : "Report Mail As Spam"

19 } ,
20 "background" : {
21 "page" : "background.html"

22 } ,
23 "permissions" : [
24 "messagesRead" ,
25 "messagesModify" ,
26 "compose" ,
27 "tabs" ,
28 "accountsRead"

29] ,
30 "experiment_apis" : {
31 "composeMessageHeaders" : {
32 "schema" : "scripts/api/compose_message_headers/schema.json

" ,
33 "parent" : {
34 "scopes" : [
35 "addon_parent"

36] ,
37 "paths" : [
38 [
39 "composeMessageHeaders"

40]
41] ,
42 "script" : "scripts/api/compose_message_headers/

implementation.js"

43 }
44 }
45 }
46 }

62

A.2.4 certificate.js

1 const EC = requ i r e (’elliptic’) . ec ;
2
3 /**

4 * Generates a certificate signature from given certificate data

.

5 * @param {Object} certificateData The certificate data object

6 * @returns {null|String} The signature if the

certificate data was valid , null otherwise

7 */

8 function g en e r a t eCe r t i f i c a t e S i g n a t u r e (c e r t i f i c a t eDa t a) {
9 // Choose which implementation to take based on the

certificate algorithm

10 switch (c e r t i f i c a t eDa t a . a) {
11 case ’ecdsa’ :
12 return generateECDSACert i f i cateSignature (

c e r t i f i c a t eDa t a) ;
13 d e f au l t :
14 return null ;
15 }
16 }
17
18 /**

19 * Generates an ECDSA signature given certificate data.

20 * @param {Object} certificateData

21 * @returns {String} The signature

22 */

23 function generateECDSACert i f i cateSignature (c e r t i f i c a t eDa t a) {
24 const parameters = caPrivateKeys [c e r t i f i c a t eDa t a . i] .

parameters ;
25
26 // Initialize a new ECDSA instance from the parameters

27 const ec = new EC(parameters . curve) ;
28
29 // Parse the ECDSA key from the parameters

30 const key = ec . keyFromPrivate (parameters ["private -key"] , ’

hex’) ;
31
32 // Sign the input with the key and return the result

33 return key . s i gn (c r e a t eCe r t i f i c a t eDa t aS t r i n g (c e r t i f i c a t eDa t a)
) . toDER(’hex’) ;

34 }
35
36 /**

37 * Verifies a CEPP signature given its data and signature

headers.

38 * @param {String} certificateDataString The content of the CEPP

-Data header

39 * @param {String} signature The content of the CEPP

-Signature header

40 * @returns {boolean} True if the signature

was valid , false otherwise

41 */

63

42 function v e r i f yC e r t i f i c a t e S i g n a t u r e (c e r t i f i c a t eDa t aS t r i n g ,
s i gna tu r e) {

43 // Parse and check the certificate data

44 const c e r t i f i c a t eDa t a = pa r s eCe r t i f i c a t eDa taS t r i n g (
c e r t i f i c a t eDa t a S t r i n g) ;

45 i f (c e r t i f i c a t eDa t a == null) return fa lse ;
46
47 switch (c e r t i f i c a t eDa t a . a) {
48 case ’ecdsa’ :
49 return ver i fyECDSACert i f i cate (c e r t i f i c a t eDa t a ,

c e r t i f i c a t eDa t aS t r i n g , s i gna tu r e) ;
50 d e f au l t :
51 return fa lse ;
52 }
53 }
54
55 /**

56 * Verifies an ECDSA CEPP signature given its data and signature

headers

57 * @param {Object} certificateData The parsed certificate

data object

58 * @param {String} certificateDataString The content of the CEPP

-Data header

59 * @param {String} signature The content of the CEPP

-Signature header

60 * @returns {boolean} True if the signature

was valid , false otherwise

61 */

62 function ver i fyECDSACert i f i cate (c e r t i f i c a t eDa t a ,
c e r t i f i c a t eDa t aS t r i n g , s i gna tu r e) {

63 // We use a try-catch to make sure that , if the certificate

signature was forged , the output is still ’false’

64 try {
65 // Check that the given certificate authority is trusted

66 const caData = t r u s t e d c a pub l i c k e y s [c e r t i f i c a t eDa t a . i
] ;

67 i f (caData == null) return fa lse ;
68 const parameters = caData . parameters ;
69
70 // Initialize a new ECDSA instance from the parameters

71 const ec = new EC(parameters . curve) ;
72
73 // Parse the ECDSA key from the parameters

74 const key = ec . keyFromPublic (parameters ["public -key"] , ’

hex’) ;
75
76 // Verify and return the result

77 return key . v e r i f y (c e r t i f i c a t eDa t aS t r i n g , s i gna tu r e) ;
78 } catch (e r r) {
79 conso l e . e r r o r (e r r) ;
80 return fa lse ;
81 }
82 }
83

64

84 /**

85 * Creates a certificate data string given a certificate data

object

86 * @param {Object} certificateData The certificate data object

87 * @returns {string} The formatted certificate

data string

88 */

89 function c r e a t eCe r t i f i c a t eDa t aS t r i n g (c e r t i f i c a t eDa t a) {
90 return ‘ v=${ c e r t i f i c a t eDa t a . v } ; s=${ c e r t i f i c a t eDa t a . s } ; a=${

c e r t i f i c a t eDa t a . a } ; i=${ c e r t i f i c a t eDa t a . i } ; ‘ +
91 ‘ nb=${ c e r t i f i c a t eDa t a . nb } ; na=${ c e r t i f i c a t eDa t a . na } ; d=

${ c e r t i f i c a t eDa t a . d } ; l=${ c e r t i f i c a t eDa t a . l } ‘ ;
92 }
93
94 // An array holding the expected order of certificate data

parameters

95 const expectedOrder = [’v’ , ’s’ , ’a’ , ’i’ , ’nb’ , ’na’ , ’d’ , ’l’

] ;
96
97 /**

98 * Secure method for parsing a CEPP data header and returning an

object containing all CEPP details.

99 * If the header was malformed , this function will return null.

100 * @param {String} input The content of the CEPP -Data header

101 * @returns {Object} An object containing the parsed string

if parsing succeeded , or null if parsing failed

102 */

103 function pa r s eCe r t i f i c a t eDa taS t r i n g (input) {
104 // Split the parameters

105 const args = input . s p l i t (’;’) ;
106 l e t i = 0 ;
107 // Check that the parameter count is exactly the expected

amount of parameters

108 i f (args . l ength !== expectedOrder . l ength) return null ;
109
110 const r e s u l t = {} ;
111
112 // Loop through all expected parameters , and add them to the

result

113 f o r (const expectedKey o f expectedOrder) {
114 const arg = args [i ++];
115 const argParts = arg . s p l i t (’=’) ;
116 // If the formatting was not a=b or the key was not

equal to the expected key, fail

117 i f (argParts . l ength !== 2 | | argParts [0] . tr im () !==
expectedKey) return null ;

118 r e s u l t [expectedKey] = argParts [1] ;
119 }
120
121 return r e s u l t ;
122 }

65

A.2.5 compose.js

1 // Retrieving all elements by their id’s:

2 const ser ia lNumber = document . getElementById (’serialNumber’) ;
3 const i s s u e r = document . getElementById (’issuer’) ;
4 const i s s u e rEnc ryp t i onDe ta i l s = document . getElementById (’

issuerEncryptionDetails’) ;
5 const notBeforeDate = document . getElementById (’notBeforeDate’) ;
6 const notBeforeTime = document . getElementById (’notBeforeTime’) ;
7 const notAfterDate = document . getElementById (’notAfterDate’) ;
8 const notAfterTime = document . getElementById (’notAfterTime’) ;
9 const subjectDomain = document . getElementById (’subjectDomain’) ;

10 const a t t a chCe r t i f i c a t eBut ton = document . getElementById (’
attachCertificateButton’) ;

11 const a t t a c hCe r t i f i c a t eRe s u l t = document . getElementById (’
attachCertificateResult’) ;

12
13 // Setting a random Serial Number:

14 ser ia lNumber . va lue = Math . f l o o r (Math . random () ∗ 10E15) ;
15
16 // Setting a default Issuer & set details:

17 f o r (const key in caPrivateKeys) {
18 i s s u e r . opt i ons [i s s u e r . opt ions . l ength] = new Option (key) ;
19 }
20 update I s sue rEncrypt i onDeta i l s () ;
21 i s s u e r . addEventListener ("change" , () =>

update I s sue rEncrypt i onDeta i l s ()) ;
22
23 function update I s sue rEncrypt i onDeta i l s () {
24 i s su e rEnc ryp t i onDe ta i l s . textContent = JSON. s t r i n g i f y (

caPrivateKeys [i s s u e r . va lue]) ;
25 }
26
27 // Setting an example Validity Period:

28 const date = new Date () ;
29 date . setDate (date . getDate () − 1) ;
30 notBeforeDate . va lue = date . toISOStr ing () . s l i c e (0 , 10) ;
31 notBeforeTime . va lue = date . toISOStr ing () . s l i c e (11 , 16)
32 date . setDate (date . getDate () + 8) ;
33 notAfterDate . va lue = date . toISOStr ing () . s l i c e (0 , 10) ;
34 notAfterTime . va lue = date . toISOStr ing () . s l i c e (11 , 16)
35
36 // Setting the current Subject Domain:

37 getCurrentEmailAddress () . then (address => {
38 i f (address == null) return ;
39 subjectDomain . va lue = address . s p l i t (’@’) [1] ;
40 }) ;
41
42 // Add a button for attaching the certificate:

43 a t t a chCe r t i f i c a t eBut ton . addEventListener ("click" , () => {
44 // Initialize values

45 const su c c e s s = ’#52ff4c’ ;
46 const f a i l u r e = ’#ff4c4c’ ;
47

66

48 // Util function to check element validity

49 const checkVa l id i ty = element => {
50 const va l i d = element . va lue . l ength > 0 ;
51 element . s t y l e . borderColor = va l i d ? su c c e s s : f a i l u r e ;
52 return va l i d ;
53 } ;
54
55 // Check that all input fields are correct

56 const ser ia lNumberVal id = ! isNaN (ser ia lNumber . va lue) &&
serialNumber . va lue . l ength > 0 ;

57 ser ia lNumber . s t y l e . borderColor = ser ia lNumberVal id ? su c c e s s
: f a i l u r e ;

58 // The issuer is always correct (Since it’s a choose box)

59 i s s u e r . s t y l e . borderColor = suc c e s s ;
60 // Check validity for all remaining default elements

61 const notBeforeDateVal id = checkVa l id i ty (notBeforeDate) ;
62 const notBeforeTimeValid = checkVa l id i ty (notBeforeTime) ;
63 const notAfterDateVal id = checkVa l id i ty (notAfterDate) ;
64 const notAfterTimeValid = checkVa l id i ty (notAfterTime) ;
65 const subjectDomainValid = checkVa l id i ty (subjectDomain) ;
66 // Check whether all of them were correctly entered

67 const a l l S u c c e s s = ser ia lNumberVal id && notBeforeDateVal id
&& notBeforeTimeValid

68 && notAfterDateVal id && notAfterTimeValid &&
subjectDomainValid ;

69
70 // If all were correctly entered , add the certificate to the

mail.

71 // Send a message containing info whether input was correct.

72 i f (a l l S u c c e s s) {
73 getCurrentTabId () . then (tabId => {
74 i f (tabId == null) return ;
75
76 const c e r t i f i c a t eDa t a = {
77 ’v’ : ’1’ ,
78 ’s’ : ser ia lNumber . value ,
79 ’a’ : caPrivateKeys [i s s u e r . va lue] . a lgor ithm ,
80 ’i’ : i s s u e r . value ,
81 ’nb’ : notBeforeDate . va lue . r e p l a c eA l l (’-’ , ’’) .

s ub s t r i ng (2) +
82 notBeforeTime . va lue . r e p l a c eA l l (’:’ , ’’) + ’

00Z’ ,
83 ’na’ : notAfterDate . va lue . r e p l a c eA l l (’-’ , ’’) .

s ub s t r i ng (2) +
84 notAfterTime . va lue . r e p l a c eA l l (’:’ , ’’) + ’00

Z’ ,
85 ’d’ : subjectDomain . value ,
86 ’l’ : ’2’

87 }
88
89 // Add the certificate headers to the e-mail headers

90 messenger . composeMessageHeaders . addComposeHeader (
tabId , ’CEPP -Data’ ,

91 c r e a t eCe r t i f i c a t eDa t aS t r i n g (c e r t i f i c a t eDa t a)) ;

67

92 messenger . composeMessageHeaders . addComposeHeader (
tabId , ’CEPP -Signature’ ,

93 g en e r a t eCe r t i f i c a t e S i g n a t u r e (c e r t i f i c a t eDa t a)) ;
94
95 a t t a c hCe r t i f i c a t eRe s u l t . innerText = ’Certificate

added to e-mail!’ ;
96 }) ;
97 } else {
98 a t t a c hCe r t i f i c a t eRe s u l t . innerText = ’Failed to add

certificate.’ ;
99 }

100 }) ;
101
102 /**

103 * Returns a promise that delivers the currently opened

ThunderBird tab ID, or null of no such tab is available

104 * @returns {Promise <Number|Null >} A promise that delivers the

ID of the tab that is currently opened by Thunderbird

105 */

106 function getCurrentTabId () {
107 return new Promise (r e s o l v e => {
108 // Retrieve the current tab

109 messenger . tabs . query ({ a c t i v e : true , currentWindow : true
}) . then (tabs => {

110 // If we failed to get the current tab for some

reason , return null

111 i f (tabs . l ength === 0) {
112 r e s o l v e (null) ;
113 return ;
114 }
115 const tab = tabs [0] ;
116 r e s o l v e (tab . id) ;
117 }) ;
118 }) ;
119 }
120
121 /**

122 * Returns a promise containing the e-mail address that is

displayed in the currently opened Thunderbird compose tab

123 * If no tab is available , or the tab is not a compose tab, this

function returns null

124 * @returns {Promise <String|Null >} The e-mail address that is

displayed in the opened Thunderbird compose tab

125 */

126 function getCurrentEmailAddress () {
127 return new Promise (r e s o l v e => {
128 // Retrieve the current tab

129 getCurrentTabId () . then (tabId => {
130 i f (tabId == null) {
131 r e s o l v e (null) ;
132 return ;
133 }
134
135 // Retrieve the compose details from the current tab

68

136 messenger . compose . getComposeDetai ls (tabId) . then (
d e t a i l s => {

137 // Retrieve the ID of the currently used account

138 const id = d e t a i l s . i d e n t i t y I d ;
139 // Loop through all user acounts to find the

account with the id

140 messenger . accounts . l i s t () . then (accounts => {
141 accounts . forEach (account => {
142 account . i d e n t i t i e s . forEach (i d e n t i t y => {
143 i f (i d e n t i t y . id === id) {
144 r e s o l v e (account . name) ;
145 }
146 }) ;
147 }) ;
148 r e s o l v e (null) ;
149 }) ;
150 }) ;
151 }) ;
152 }) ;
153 }

69

A.2.6 display.js

1 /**

2 * Given a unique e-mail ID, returns a promise that delivers the

parsed CEPP header , or null if the header was

3 * not available or invalid.

4 * @param {Number} messageId The ID of the e-mail that

we want to get the CEPP header from

5 * @returns {Promise <Object|Number >} A promise containing the

parsed CEPP data , or null

6 */

7 function getCEPPData (messageId) {
8 return new Promise ((r e s o l v e , r e j e c t) => {
9 messenger . messages . g e tFu l l (messageId) . then (messagePart

=> {
10 messenger . messages . get (messageId) . then (messageHeader

=> {
11 const ceppData = messagePart . headers [’cepp -data’

] ;
12 const ceppSignature = messagePart . headers [’cepp -

signature’] ;
13
14 i f (! (ceppData && ceppSignature && ceppData .

l ength === 1 && ceppSignature . l ength === 1))
{

15 // No CEPP signature available

16 r e j e c t (−1) ;
17 return ;
18 }
19
20 const c e r t i f i c a t eDa t a =

pa r s eCe r t i f i c a t eDa taS t r i n g (ceppData [0]) ;
21 i f (c e r t i f i c a t eDa t a == null) {
22 // Invalid certificate data

23 r e j e c t (−2) ;
24 return ;
25 }
26
27 i f (! v e r i f yC e r t i f i c a t eDa t a (c e r t i f i c a t eDa t a ,

messageHeader . author)) {
28 // Invalid CEPP certificate data

29 r e j e c t (−2) ;
30 return ;
31 }
32
33 i f (! v e r i f yC e r t i f i c a t e S i g n a t u r e (ceppData [0] ,

ceppSignature [0])) {
34 // Invalid CEPP certificate

35 r e j e c t (−2) ;
36 return ;
37 }
38
39 // If all checks passed , the mail is CEPP

protected

70

40 r e s o l v e (c e r t i f i c a t eDa t a) ;
41 }) ;
42 }) ;
43 }) ;
44 }
45
46 // We add an event listener that checks when a new message

display tab is opened in Thunderbird.

47 // When this happens , this listener will attempt to retrieve the

CEPP data and display the validity.

48 messenger . messageDisplay . onMessageDisplayed . addLis tener ((tab ,
message) => {

49 getCEPPData (message . id) . then (r e s u l t => {
50 showMessageResult (tab . id , 0) ;
51 } , e r r o r => {
52 showMessageResult (tab . id , e r r o r) ;
53 }) ;
54 }) ;
55
56 /**

57 * Given a Thunderbird tab and a CEPP header validity code ,

injects a script into the given tab that alters the

58 * looks of that tab to indicate the trustworthiness

59 * @param {Object} tab The Thunderbird tab

60 * @param {Number} validCode The CEPP header validity code

61 */

62 function showMessageResult (tab , val idCode) {
63 messenger . tabs . ex e cu t eSc r i p t (tab . id , { f i l e : ’scripts/cepp/

mail_display_injections/default.js’ }) ;
64
65 // Set a file path based on the validity code

66 l e t f i l ePa t h ;
67 switch (val idCode) {
68 case 0 :
69 f i l ePa t h = ’scripts/cepp/mail_display_injections/

mail_valid.js’ ;
70 break ;
71 case −1:
72 f i l ePa t h = ’scripts/cepp/mail_display_injections/

mail_invalid_no_header.js’ ;
73 break ;
74 case −2:
75 f i l ePa t h = ’scripts/cepp/mail_display_injections/

mail_invalid_incorrect.js’ ;
76 break ;
77 }
78
79 // Inject the file into the tab

80 messenger . tabs . ex e cu t eSc r i p t (tab . id , { f i l e : f i l ePa t h }) ;
81 }
82
83 /**

84 * Given a certificate data object and a sender domain ,

validates the certificate data (not signature)

71

85 * @param {Object} certificateData The CEPP certificate data

object

86 * @param {String} domain The sender of the e-mail

87 * @returns {boolean} True if the certificate data

was valid , false otherwise

88 */

89 function v e r i f yC e r t i f i c a t eDa t a (c e r t i f i c a t eDa t a , domain) {
90 // Create a string for the current date

91 const date = new Date () ;
92 const dateSt r ing = date . getFul lYear () . t oS t r i ng () . sub s t r i ng

(2)
93 + (’0’ + (date . getMonth () . t oS t r i ng () + 1)) . s l i c e (−2)
94 + (’0’ + date . getDay () . t oS t r i ng ()) . s l i c e (−2)
95 + (’0’ + date . getHours () . t oS t r i ng ()) . s l i c e (−2)
96 + (’0’ + date . getMinutes () . t oS t r i ng ()) . s l i c e (−2)
97 + (’0’ + date . getSeconds () . t oS t r i ng ()) . s l i c e (−2)
98 + ’Z’ ;
99

100 // Check certificate version and serial number:

101 i f (c e r t i f i c a t eDa t a . v !== ’1’ | | isNaN (c e r t i f i c a t eDa t a . s)) {
102 return fa lse ;
103 }
104
105 // Check the date correctness of the certificate

106 i f (! checkDates (c e r t i f i c a t eDa t a . nb , dateStr ing ,
c e r t i f i c a t eDa t a . na)) {

107 return fa lse ;
108 }
109
110 // Check the domain and sender correctness

111 const domainParts = domain . s p l i t (’@’) ;
112 i f (domainParts . l ength !== 2) return fa lse ;
113
114 l e t mailDomain = domainParts [1] ;
115 i f (domainParts [1] . endsWith (’>’) && domainParts [1] . l ength >

1) {
116 mailDomain = domainParts [1] . s ub s t r i ng (0 , domainParts [1] .

l ength − 1) ;
117 }
118 return c e r t i f i c a t eDa t a . d === mailDomain ;
119 }
120
121 /**

122 * Given three CEPP -formatted date strings , checks if the first

date is before the second date , and the second date

123 * before the third

124 * @param {String} before The ’before’ date

125 * @param {String} current The ’current’ date

126 * @param {String} after The ’after’ date

127 * @returns {boolean} True if ’before <= current <= after’,

false otherwise

128 */

129 function checkDates (be fore , current , a f t e r) {
130 // Check that the before and after date strings are

72

formatted correctly.

131 // We don’t need to check the current date string , since we

can be sure that that string is already correct.

132 i f (be f o r e . l ength !== 13 | | a f t e r . l ength !== 13 | |
133 isNaN (be f o r e . sub s t r i ng (0 , 12)) | | isNaN (a f t e r . s ub s t r i ng

(0 , 12))) {
134 return fa lse ;
135 }
136
137 // Validate and return

138 return par s e In t (be f o r e . sub s t r i ng (0 , 12)) < par s e In t (cur rent .
sub s t r i ng (0 , 12))

139 | | par s e In t (a f t e r . s ub s t r i ng (0 , 12)) > par s e In t (cur rent .
sub s t r i ng (0 , 12)) ;

140 }
141
142 /**

143 * Opens an e-mail compose window with a copy of the e-mail that

is currently being watched , with the purpose

144 * of reporting a spam e-mail

145 */

146 async function onSpamReportButtonClicked () {
147 // Get the current tab

148 messenger . tabs . query ({ a c t i v e : true , currentWindow : true }) .
then (tabs => {

149 i f (tabs . l ength !== 1) return ;
150 const tab = tabs [0] ;
151
152 // Get the currently displayed message

153 messenger . messageDisplay . getDisplayedMessage (tab . id) .
then (messageHeader => {

154 // Get the CEPP data of the currently displayed

message

155 getCEPPData (messageHeader . id) . then (c e r t i f i c a t eDa t a
=> {

156 // If the CEPP data was correct , retrieve the

responsible CA’s spam e-mail

157 const caData = t r u s t e d c a pub l i c k e y s [
c e r t i f i c a t eDa t a . i] ;

158 i f (caData == null) return ;
159 const spamMail = caData [’spam’] ;
160
161 // Retrieve the raw e-mail content of the

currently watched e-mail

162 messenger . messages . getRaw(messageHeader . id) . then
(messageStr ing => {

163 // Construct a new e-mail (the spam report)

164 messenger . compose . beginNew ({
165 to : spamMail ,
166 sub j e c t : ’Spam Report for trusted source

.’ ,
167 body : messageStr ing
168 }) ;
169 }) ;

73

170 } , e r r o r => {
171 // Do nothing

172 }) ;
173 }) ;
174 }) ;
175 }
176
177 // Add a spam report button listener to the message display

178 messenger . messageDisplayAction . onCl icked . addLis tener (
onSpamReportButtonClicked) ;

74

A.2.7 ca private keys.js

1 caPrivateKeys = {
2 ’RU Certificate Authority’ : {
3 ’algorithm’ : ’ecdsa’ ,
4 ’parameters’ : {
5 ’curve’ : ’secp256k1’ ,
6 ’private -key’ : ’4f77a087f11c319df6842928e92c1a39’ +
7 ’41d4d94386a0209a777d81bca6461f6d’

8 }
9 }

10 }

75

A.2.8 trusted ca public keys.js

1 const t r u s t e d c a pub l i c k e y s = {
2 ’RU Certificate Authority’ : {
3 ’spam’ : ’spam@ca.ru.nl’ ,
4 ’algorithm’ : ’ecdsa’ ,
5 ’parameters’ : {
6 ’curve’ : ’secp256k1’ ,
7 ’public -key’ : ’049a55a04ad8538e460dc175bb02785’ +
8 ’9d32eb88208b8ecb5ac2d16afaf1907’ +
9 ’9af008db4d349cd1098bc758796c40b’ +

10 ’4fb2b75da3557d4887c77ece7af759f2a7143’

11 }
12 }
13 }

76

	Introduction
	What is phishing?
	The impact of phishing attacks
	Types of phishing
	Attempts to prevent phishing
	Goal
	Proposal and outline

	Preliminaries: E-mail and phishing
	Basic e-mail terminology
	Why phishing attacks are so effective
	Trustworthy sources
	Money
	Speed

	Types of phishing attacks
	Mass e-mails
	Spear phishing
	Whaling
	Business e-mail compromise
	Clone phishing

	Techniques to stop phishing attacks
	Communication level
	Target level
	User level

	Preliminaries: Certificates
	Asymmetric cryptography
	Public key certificates
	Certificate chains

	Certificate validation levels
	TLS
	S/MIME

	Certificate problems
	Advantages
	Disadvantages
	Extended Validation Certificates

	Requirements and goals
	Functional requirements
	Non-functional requirements
	Security
	Trust model
	Attacker model
	Security goals

	Proposal
	Certificates
	The certificate authorities
	Problem with existing CAs
	Mail Authorities

	Certificate levels
	Level 1: No certificate
	Level 2: Basic certificate
	Level 3: Extended certificate

	Removing company trust
	Reporting spam
	Remarks

	Specification
	Digital Signatures
	Signature scheme

	Certificate generation
	Certificate data
	Certificate signature
	Example

	Certificate validation
	Validating the DMARC
	Validating the CEPP signature
	Validating the CEPP data
	Example

	Spam report generation
	Overview

	Spam report validation
	Report filtering

	CEPP usage locations

	Proof of concept
	The CEPP addon
	The basic functionality
	Development assumptions

	Usage showcase
	Generating a certificate
	Adding a certificate
	Validating a certificate
	Reporting an e-mail

	Discussion
	Evaluation of functional requirements
	Evaluation of non-functional requirements
	Overview of advantages and disadvantages
	Advantages
	Disadvantages

	Conclusion
	Future research

	Thunderbird addon code
	Project structure
	The `API' part
	The `cepp' part
	The `data' part

	Code files
	background.html
	compose_popup.html
	manifest.json
	certificate.js
	compose.js
	display.js
	ca_private_keys.js
	trusted_ca_public_keys.js

