
Bachelor Thesis
Computing Science

Radboud University

Closure Properties of Nominal
Languages under Substitutions

Author:
Menno Bartels
S1007797

First assessor:
dr. J.C. Rot

jrot@cs.ru.nl

Second assessor:
prof. dr. J.H. Geuvers
h.geuvers@cs.ru.nl

March 26, 2021

Abstract

Nominal sets are useful for computation over infinite input alphabets. We
will focus on nominal automata theory, which uses nominal sets. We in-
vestigate the closure properties of nominal set under so-called substitutions.
To do this we define theory for nominal sets, following Klin et al. (2014),
and give proofs for a closure result and a Myhill-Nerode style theorem. We
also give a counterexample which shows that being recognized by a nominal
DFA, is not closed under nominal substitutions.

Contents

1 Introduction 2

2 Automata theory 4
2.1 Deterministic finite automata 4
2.2 Derivative languages . 8
2.3 Homomorphisms and substitutions 11

3 Groups and nominal sets 16
3.1 Group theory and G-sets . 16
3.2 Orbits and equivariance . 18
3.3 Nominal sets . 20

4 Nominal automata theory 23
4.1 Nominal languages . 23
4.2 Nominal deterministic finite automata 26

5 Closure properties of nominal languages 30
5.1 Nominal substitutions . 30
5.2 Closure properties . 32

6 Related Work 34

7 Conclusions 35

8 Bibliography 36

1

Chapter 1

Introduction

In theoretical computing science, automata theory studies abstract compu-
tational machine [7, 8]. A computer program can be abstracted into a state
diagram, which represents the behaviour of the program. A state diagram
often consists of circles, depicting the states in which a program can be, and
arrows, which show on what input the program moves between states. Such
a state diagram is often called an automaton. In automata theory, we define
state diagrams in a formal way, so that we are able to formally reason about
them. It is also possible to investigate the behaviour of a computer program.
From the results of such investigations, it is (in some cases) possible to con-
struct an automaton that exactly describes the behaviour of the program.
This is known as automata learning, which can be seen as a research field
on its own [1, 6].

For computer programs, the state diagrams we want to make are not
always finite. Because of this we want to introduce structure, so that we
can still reason about infinite sets. This is where nominal sets come into
play [2]. With the properties of nominal sets, we are able to group elements
in such a way that each group can be distinguished in a similar way. If there
is a finite amount of these groups, we can then create state diagrams, using
these group. By making these groups, which will later be called orbit, we
have found a way to depict an infinite state diagram, in a finite way. We
will also see, that in some cases it is not possible to make a finite amount of
groups.

One of the big goals of this thesis is to understand nominal languages,
and investigate their behaviour when applying substitutions. To be able to
achieve this goal, we have to introduce theory and prove theorems. This
thesis combines pure mathematics with fundamental theoretical computing
science, which makes it quite theoretical. With this in mind, the theory is
presented in such a way that co-students, should be able to understand.

2

In this thesis we work out a proof of a Myhill-Nerode style theorem, for
regular and for nominal languages, which we found in the work of Klin et al.
[2]. Loc cit. we take the theorem that is given, and reformulate it into the
framework of this thesis. We also prove that nominal languages are closed
under substitution, and give a counterexample which shows that being rec-
ognized by a nominal deterministic automaton is not equivalent to having
orbit finite derivatives.

In Chapter 2 we will start by giving basic definitions and theorems about
regular languages and deterministic automata. Then, in Chapter 3 we will
introduce some group theory and we will define how substitutions on lan-
guages behave. Also we will define nominal sets, and show some proper-
ties that these sets have. In Chapter 4 we will combine our knowledge of
automata, group theory and nominal sets to introduce nominal automata.
Lastly, in Chapter 5 we will investigate how nominal automata behave when
we apply the earlier defined substitutions, and prove that nominal sets are
closed under substitutions.

3

Chapter 2

Automata theory

In this chapter we will give some definitions and basic theorems related to
automata theory. These include elementary definition, which we include,
to prevent ambiguity about notation. Similar definitions can be found in
textbooks such as [7] and [8].

2.1 Deterministic finite automata

Definition 2.1.1. A deterministic finite automaton (DFA) is a 5-tuple
M = (Q,Σ, δ, q0, F), where Q is the finite nonempty set of states, Σ is
the finite nonempty input alphabet, δ : Q×Σ −→ Q is the transition function,
q0 ∈ Q is the intitial state, and F ⊆ Q is the set of final states. The set of
final states is also sometimes called the set of accepting states.

Definition 2.1.2. A language is a subset L ⊆ Σ∗, where Σ is a finite
nonempty alphabet.

An automaton can recognize a language. This means that given word
w and a language L, the automaton can give the answer to the question
”is w a word that is in the language L?”. By applying the transition function
on a word we can check if the resulting state is a final state. If this is the
case, that means that w ∈ L. The transition function applied on a word is
of the form δ∗ : Q× Σ∗ −→ Q. By iterating δ on a word we get the function
δ∗. Suppose xw ∈ Σ∗ is a word, where we explicitly write the x in front of
w, then δ∗ is defined as:

δ∗(qi, xw) = δ∗(δ(qi, x), w)

and
δ∗(qi, λ) = qi

where x ∈ Σ and w ∈ Σ∗.

4

The class of languages that are recognized by DFA’s are called the regular
languages. A language that can not be recognized by a DFA is called a non-
regular language.

Definition 2.1.3. Let M = (Q,Σ, δ, q0, F) be a deterministic finite automa-
ton. For q ∈ Q, we define the language of state q as

L(q) = {w | δ∗(q, w) ∈ F}

where the the language of the machine M is equal to L(q0).

To give a better feel for what regular languages are, we will look at some
examples of regular languages, and also give the automaton that recognized
the language. We will also look at an example of a non-regular language.

Example 2.1.4. The empty language L = ∅ is a regular language. This
language is recognized by the automaton with only one state. This state is
the initial state.

A DFA that recognizes a regular language can be drawn as a state dia-
gram. This is done as follows: depict the states as circles, with state names
in them, denote the initial state with an in-going arrow, depict the final
state with a double circle, and display the behaviour of δ with arrows. We
will show an example of a state diagram in the next example.

Example 2.1.5. The language L = L(a+b+) are all the words of the form
uv, where u contains at least one a and no b’s, and v contains at least one b
and no a’s. The language L is regular because we can construct a DFA M
such that M recognizes L. A state diagram of M could look like this:

q0 q1 q2

q3

a b

ab

a b

a, b

5

We can now investigate the structure of M = (Q,Σ, δ, q0, F). The state
space is Q = {q0, q1.q2, q3}. We see that the alphabet is Σ = {a, b} since
this is also the alphabet of L. Then, δ is defined by the following table:

δ(qi, x) q0 q1 q2 q3

a q1 q1 q3 q3

b q3 q2 q2 q3

The initial state q0 is conveniently named q0, and the set of final states
F = {q2}. An example of a word that is in L is the word aab. This word is
in L since applying the transition function δ∗ gives:

δ∗(q0, aab) = δ∗(δ(q0, a), ab)

= δ∗(q1, ab)

= δ∗(δ(q1, a), b)

= δ∗(q1, b)

= δ∗(δ(q1, b), λ)

= δ∗(q2, λ)

= q2

Since q2 is a final state, we may conclude that the word aab is in the lan-
guage L. An example of a word that is not in L is the word abba, since
δ∗(q0, abba) = q3, which is not a final state

Example 2.1.6. Let Σ = {◦, •}. We now look at the language
L = {w | (|w|◦ = uneven) ∨ (|w|• = uneven)}. These are all the words
consisting of ◦’s and •’s, where the ammount of ◦’s is uneven, or the am-
mount of •’s is uneven, and not both. This language looks rather strange,
but is a valid regular language, since we can construct a DFA that recognizes
this language. This time we only give a state diagram. The state diagram
of the DFA M can look as follows:

6

κ0 κ1

κ3κ2

•

◦

◦

•

◦

••

◦

We see that it is fine to use arbitrary symbols as letters in the alphabet
of a language. An example of a word that is in L is “• • ◦ • ◦”. We also
remark that it is possible for an automaton to have multiple accepting states,
and that we can also give states arbitrary names, as M has as set states
Q = {κ0, κ1, κ2, κ3}.

Example 2.1.7. The language L = {anbn | n ∈ N} is a non-regular lan-
guage. For this language a finite automaton can not count the exact number
of a’s, such that they correspond to the number of b’s. Moreover, say we
have an automaton that recognizes all words anbn up until a certain n ∈ N,
then the word an+1bn+1 won’t be accepted, which is in the language L.

7

2.2 Derivative languages

We introduce the notion of derivative language. If L is a language, a deriva-
tive language Lw is a set of words such that if we append a word from Lw
to w we get a words that is in L itself.

Definition 2.2.1. Let L be a language over an alphabet Σ. The
w-derivative of L is Lw = {u | wu ∈ L}. The set Der(L) = {Lw | w ∈ Σ∗}
is the set of all derivatives of L.

Example 2.2.2. Take the language L = {a∗b∗c∗ | a, b, c ∈ Σ}, where Σ is a
finite alphabet. Let’s look at the derivatives of L.

• La = {v | av ∈ Σ} = {a∗b∗c∗ | a, b, c ∈ Σ} = L

• Lb = {v | bv ∈ Σ} = {b∗c∗ | b, c ∈ Σ} = Lbb = Lab

• Lc = {v | cv ∈ Σ} = {c∗ | c ∈ Σ} = Lcc = Lac = Lbc = Labc

• Lba = {v | bav ∈ Σ} = ∅ = Lcb = Lca = Lbaa = Lbab = Lbac

We see that by adding more letters to the derivative languages, we get a
derivative that we already have. For instance, we see that Lb is the same as
Lab, since the words v such that bv and abv are in L are exactly the same
words. From this we may conclude that have found all derivatives, and thus
we see that Der(L) = {La, Lb, Lc, ∅}.

The following lemma will connect the definition of a derivative language
to definition 2.1.3, which is the definition of state languages.

Lemma 2.2.3. Let L be a language that is recognized by a DFA
M = (Q,Σ, δ, q0, F). Let v ∈ Σ∗, then Lv = L(δ∗(q0, v)).

Proof. We write out the definition of Lv and see that the equality holds:

Lv = {w | vw ∈ L}
= {w | δ∗(q0, vw) ∈ F}
= {w | δ∗(δ∗(q0, v), w) ∈ F} = L(δ∗(q0, v))

Next we will see that we can also connect a word w being in a language
L, to λ being in the derivative language Lw regarding that word w.

Lemma 2.2.4. Let L be a language. Take w ∈ Σ∗, then w ∈ L if and only
if λ ∈ Lw.

Proof. We prove this by induction on the word w.

8

• Base case: w = λ

λ ∈ L ⇐⇒ λ ∈ Lλ = L

• Induction step: Assume that for word w ∈ Σ∗, w ∈ L ⇐⇒ λ ∈ Lw
holds (IH). Note that this holds for an arbitrary language L. Take
x ∈ Σ. Then for xw we have:

xw ∈ L ⇐⇒ w ∈ La = L

⇐⇒ λ ∈ (Lx)w (Induction hypothesis)

⇐⇒ λ ∈ Lxw

Now that we have introduced derivative languages, and we have seen
some connections between languages and their derivatives, we can now prove
a theorem that is somewhat more involved. The theorem gives us a new
way of determining if a language L can be recognized by a DFA. This is by
means of checking if Der(L) is a finite set. If this is the case, we can conclude
that L is a regular language. Moreover, we will see that this relation is an
equivalence, so the opposite will also hold.

Theorem 2.2.5. Let L be a language over some alphabet Σ. Then L is
recognized by a deterministic finite automaton if and only if Der(L) is finite.

Proof. Assume L is recognized by a deterministic finite automaton M . We
see that:

Der(L) = {Lw | w ∈ Σ∗}
= {L(δ∗(q0, w)) | w ∈ Σ∗} (lemma 2.2.3)

⊆ {L(q) | q ∈ Q}

Since Q is finite, there are finitely many state languages L(q). Since Der(L)
is a subset of these state languages, it has to be finite.
Now assume that Der(L) is finite. Consider the DFA M = (Q,Σ, δ, q0, F):

• Q = Der(L)

• Σ = the alphabet of L

• q0 = L

• F = {Li | λ ∈ Li}

• δ(Lw, x) = Lwx.

9

We now want to show that M recognizes the language L. This means that
we want to show that w ∈ L ⇐⇒ δ∗(q0, w) ∈ F . To do this we will first
show that δ∗(L,w) = Lw. This will be done by induction on the word w.

Base case: w = λ
δ∗(L, λ) = L = Lλ

Induction step: Assume for w ∈ Σ∗ that δ∗(L,w) = Lw holds (IH). Take
x ∈ Σ. Then for xw we have

δ∗(L, xw) = δ∗(δ(L, x), w)

= δ∗(Lx, w)

= (Lx)w (Induction hypothesis)

= Lxw

Now that we have seen that δ∗(L,w) = Lw we can derive the following:

w ∈ L ⇐⇒ λ ∈ Lw (lemma 2.2.4)

⇐⇒ λ ∈ δ∗(L,w) (Just shown)

⇐⇒ λ ∈ δ∗(q0, w)

⇐⇒ δ∗(q0, w) ∈ F

Example 2.2.6. We will now use the construction from theorem 2.2.5 to
create a deterministic finite automaton M = (Q,Σ, δ, q0, F) such that M
recognizes L from example 2.2.2. We start by setting the set of states Q =
Der(L). We have seen that La = L, hence initial state is La. Then we check
for which derivative languages it holds that λ ∈ Lw. The state corresponding
to those languages should final. We see that this is the case for La, Lb and
Lc. Lastly we define the transition function δ so that δ(Lw, x) = Lv if
Lwx = Lv. For example we see that δ(Lb, c) = Lc since Lbc = Lc. The state
diagram of the resulting automaton then looks like:

La Lb Lba

Lc

c
c

a, b

ab

b

c

a, b, ca

10

2.3 Homomorphisms and substitutions

We are interested in transforming languages, so that we can investigate clo-
sure properties. Take languages L1 and L2. Classical ways of transforming
languages are for example taking the complement L1, the union L1 ∪ L2 or
the intersection L1 ∩ L2. In the context of this thesis we are interested in
homomorphisms and substitutions between languages. We will define what
these are, and with these definitions we will show that regular languages are
closed under substitutions.

Definition 2.3.1. Let Σ and ∆ be two alphabets. Take a function
h : Σ −→ ∆∗. We extend this function to h] : Σ∗ −→ ∆∗ such that the
following property holds:

∀x, y ∈ Σ∗ [h](xy) = h](x)h](y)]

where h](x) = h(x) for x ∈ Σ. A function h] with this property is called
a homomorphism. Since h] is derived from h, we also say that h is a ho-
momorphism. We see that h] is now defined for words in Σ∗. Using the
property, we see that following holds for w ∈ Σ∗:

h](w) = h](a1a2. . .an) = h](a1)h
](a2). . .h

](an) = h(a1)h(a2). . .h(an).

Definition 2.3.2. Let Σ and ∆ be two alphabets. Take a function
s : Σ −→ P(∆∗). We extend this function to s] : Σ∗ −→ P(∆∗) such that
the following property holds:

∀x, y ∈ Σ∗ [s](xy) = s](x)s](y)]

where s](x) = s(x) for x ∈ Σ. If s](x) and s](y) are both sets, s](x)s](y)
contains all words vw such that v ∈ s](x) and w ∈ s](y). A function s] with
the above property is called a substitution. Since s] is derived from s, we
also say that s is a substitution. We see that s] is now defined for words in
Σ∗. Using the property, we see that following holds for w ∈ Σ∗:

s](w) = s](a1a2. . .an) = s](a1)s
](a2). . .s

](an) = s(a1)s(a2). . .s(an).

We note that a substitution s : Σ −→ P(∆∗) sends a letter x ∈ Σ to a
language L ⊆ ∆∗. Take a homomorphism h : Σ −→ ∆∗. Then the image h(x)
of a letter x ∈ Σ can be see as a singleton set, which is a subset of P(∆∗),
and thus a language. This means we could also define h : Σ −→ P(∆∗),
hence every homomorphism is also a substitution. This means that if we
prove a property for substitutions, then we also get that this property holds
for homomorphisms. We now give some examples of homomorphisms and
substitutions, and we show what the result is if we apply them to words.

11

Example 2.3.3. Let Σ = {a, b, c, d, . . . , x, y, z}, the Latin alphabet. Then
we define homorphism h : Σ −→ Σ∗ as h(a) = b, h(b) = c, . . . h(y) =
z, h(z) = a. This homomorphism shifts every letter one place, in the
alphabet Σ. If we look at the extension h] which is defined for words in Σ∗

we for instance get: h](nominal) = opnjobm.

Example 2.3.4. Let Σ = {a, b, c, d, . . . , x, y, z}, the Latin alphabet. Then
we define homorphism h : Σ −→ Σ∗ as h(α) = αα for α ∈ Σ. This homo-
morphism doubles every letter in a word. If we take the extension h] we for
instance get: h](automata) = aauuttoommaattaa.

Example 2.3.5. Let Σ = {a, b, c, d, . . . , x, y, z}, the Latin alphabet. Then
we define substitution s : Σ −→ P(Σ∗) as s(α) = Σ \ {α}, for α ∈ Σ. This
substitution sends a letter to the complement of that letter, regarding the
alphabet Σ. If we take the extension s] we for instance get:

s](deterministic) = s](d)s](e) . . . s](i)s](c)

= (Σ \ {d})(Σ \ {e}) . . . (Σ \ {i})(Σ \ {c})
= {w | w has no letters in common with

the word deterministic and |w| = 13}

Because regular languages can be recognized by DFA’s, we would like to
investigate if regularity is preserved under substitutions. This closure would
mean, that for a regular language, it’s image under a substitution is also a
regular language. The image then can also be recognized by a DFA.

Having this closure might come in handy when investigating if a language
is regular. One could define a substitution, and then look at the image of the
language to be investigated. If the image is regular, the original language
also has to be regular.

Definition 2.3.6. Let Σ and ∆ be finite alphabets. Let L ⊆ Σ∗. Let
s] : Σ∗ −→ P(∆∗) be a substitution derived from s. Then we define the
application of the substitution on a language as s](L) =

⋃
w∈L s

](w)

The following lemma and theorem can be found in [7]. Loc. cit. the
lemma and the theorem are put together in a single theorem. For clarity we
have split this theorem into a lemma and a theorem. Also in the work of
Shallit the parts that use induction could be more extensive, so we tried to
write out these part including base cases and induction hypotheses.

Lemma 2.3.7. Let Σ be a finite alphabet. Let L1, L2 ⊆ Σ∗. Let s] : Σ∗ −→
P(Σ∗) be an extension of a substitution s. Then the following hold:

(i) s](L1 ∪ L2) = s](L1) ∪ s](L2)

(ii) s](L1L2) = s](L1)s
](L2)

(iii) s](L∗) = s](L)∗

12

Proof. Part (i): We will prove the more general case, using an arbitrary
index set I with Li ⊆ Σ∗, that states that s](

⋃
i∈I Li) =

⋃
i∈I s

](Li). This
is the result we will use in the theorem to come.

s](
⋃
i∈I

Li) =
⋃

w∈
⋃

i∈I Li

s](w)

=
⋃
i∈I

⋃
w∈Li

s](w)

=
⋃
i∈I

s](Li)

Part (ii):

s](L1L2) =
⋃

w∈L1L2

s](w)

=
⋃

w1∈L1,w2∈L2

s](w1w2)

=
⋃

w1∈L1,w2∈L2

s](w1)s
](w2)

=

 ⋃
w1∈L1

s](w1)

 ⋃
w2∈L2

s](w2)

= s](L1)s

](L2)

Part (iii): This part we will proof by induction on n ∈ N.

Base case:
s](L0) = s]({λ}) = {λ} = s](L)0

Inductive step: Assume that s](Ln) = s](L)n holds (IH). We show that
s](Ln+1) = s](L)n+1.

s](Ln+1) = s](LnL)

= s](Ln)s](L) (Part (ii))

= s](L)ns](L) (Induction hypothesis)

= s](L)n+1

Now
s](L∗) = s](

⋃
i≥0 L

i)

=
⋃
i≥0 s

](Li) (Part (i))

= s](L)i (Just proven by induction)

= s](L)∗

13

Theorem 2.3.8. Regular languages are closed under substitutions.

Proof. Let L be a regular language, and let s] : Σ∗ −→ P(∆∗) be the extension
of substitution s. Since L is a regular language, we know that there exists
a regular expressions r so that L(r) = L. We will prove the theorem by
structural induction on the regular expression r.

Base case r = 0:
L(r) = ∅ and s](∅) = ∅, and thus s](∅) is regular.

Base case: r = 1:
L(r) = {λ} and s](λ) = {λ}, and thus s](λ) is regular.

Base case: r = a:
L(r) = a. Since s] sends a letter to a regular language by definition, s](a)
is regular.

Assume s](L(r1)) and s](L(r2)) are regular (IH).

Inductive step: r = r1 + r2:

s](L(r)) = s](L(r1 + r2))

= s](L(r1) ∪ L(r2))

= s](L(r1)) ∪ s](L(r2)) (lemma 2.3.7(i))

Now with use of the induction hypothesis we see that s](L(r)) is regular,
since the union of two regular languages is again a regular language.

Inductive step: r = r1r2:

s](L(r)) = s](L(r1r2))

= s](L(r1)L(r2))

= s](L(r1))s
](L(r2)) (lemma 2.3.7(ii))

Now with use of the induction hypothesis we see that s](L(r)) is regular,
since the concatenation of two regular languages is again a regular language.

Inductive step: r = r∗1:

s](L(r)) = s](L(r∗1))

= s](L(r1)
∗)

= s](L(r1))
∗ (lemma 2.3.7(iii))

Now with use of the induction hypothesis we see that s](L(r)) is regular,
since the Kleene star applied to a regular language, results in a regular

14

language. This completes the proof by structural induction on regular
expressions, and thus we may conlude that regular languages are closed
under substitutions.

15

Chapter 3

Groups and nominal sets

3.1 Group theory and G-sets

In mathematics and abstract algebra, the field of group theory studies so-
called groups. Groups are sets, equipped with a binary operator, that satisfy
axioms. A lot of other structures in abstract algebras, such as rings, fields
and vector spaces, can be interpreted as a group, with some extra axioms
and operators. A classic example of a group structure can be found in a
Rubik’s cube, where turning a side can be seen as a group element [3].

The main definitions are taken from the lecture notes for the course
“Groepentheorie” at Radboud University [4].

Definition 3.1.1. A group 〈G, ◦〉 is a set G together with an operation
◦ : G×G −→ G such that ◦ satisfies the following axioms:

(G1) Associativity : ∀π, σ, ϕ ∈ G [(π ◦ σ) ◦ ϕ = π ◦ (σ ◦ ϕ)]

(G2) Closure : ∀π, σ ∈ G [π ◦ σ ∈ G]

(G3) Identity : ∃ε ∈ G ∀π ∈ G [ε ◦ π = π = π ◦ ε]
(G4) Inverse : ∀π ∈ G ∃π−1 ∈ G [π ◦ π−1 = ε = π−1 ◦ π]

Proposition 3.1.2. The identity element of a group is unique.

Proof. Let G be a group. Let ε and δ both be identity elements of G. Then
we see with (G3) that: ε = ε ◦ δ = δ. And thus ε and δ are the same
element.

16

Proposition 3.1.3. The inverse element for a group element is unique.

Proof. Let G be a group. Let π ∈ G. Then assume that both σ and ϕ are
inverse elements for π. Then with help of the group axioms, we get:

ϕ = ϕ ◦ ε (G3)

= ϕ ◦ (π ◦ σ) (G4)

= (ϕ ◦ π) ◦ σ (G1)

= ε ◦ σ (G4)

= σ (G3)

Example 3.1.4. A simple example of group is for instance 〈Z,+〉. One can
prove that + is an associative operator. If we add two elements of Z, we
again get an element of Z. We have identity 0 and for every x ∈ Z there
exists −x ∈ Z so that x+ (−x) = 0.

An important example of a group is the permutation group [4] (chap-
ter 4). For a set X the permutation group of X is notated as Perm(X).
The permutation group of X consists of all possible permutations of X.
A permutation is a mapping σ that maps all elements of X to another ele-
ments of X. The reason these permutation groups are important, is because
we will use them when defining nominal sets.

Example 3.1.5. Take X = {1, 2, 3, 4}, then an element of the permutation
group of X could be σ = (2134). This element maps 2 to 1, 1 to 3, 3 to
4 and 4 to 2. This can also be written as σ(2) = 1, σ(1) = 3, σ(3) = 4
and σ(4) = 2. The permutation group Perm(X) consists of all possible
permutations σ one can make for X. Do note that some elements might
look different but are the same, i.e. (1234) and (3412) are the same element,
only shifted around.

Most often, elements of a group can be used to transform elements of a
set. Lets again look at the Rubik’s cube example. A turn of a side can be
seen as group element. We can apply this turn-element to a configuration
of a Rubik’s cube, to get a different configuration. The group element has
then acted on the set of all configurations.

Definition 3.1.6. Let X be an ordinary set, and let G be a group. A right
group action is a function · : X ×G −→ X such that the following properties
are satisfied:

(A1) ∀x ∈ X ∀π, σ ∈ G[x · (π ◦ σ) = (x · π) · σ]

(A2) ∀x ∈ X[x · ε = x]

The set X is called a G-set and we say that G acts on X, or that G is acting
on X.

17

Example 3.1.7. Take the set X = {a, b, c, . . ., x, y, z}. We will look at a
subset of Perm(X). Take G = {πi | 0 ≤ i ≤ 25} where πi shifts a letter i
places along the set X. The group action · : X ×G −→ X would then work
as follows: π0 · a = a, π1 · a = b, π2 · a = c, . . ., π24 · a = y, π25 · a = z
and π0 · b = b, π1 · b = c, π2 · b = d, . . ., π24 · b = z, π25 · b = a,
and so on for every element of X. We can see that G is a group. For
πi, πj ∈ G we have πi ◦ πj = πi+j mod 25 ∈ G. The neutral element of G is
π0. Associativity also holds because + is associative, and we see that unique
inverses exist since ∀i ∈ {0, . . ., 25}∃i ∈ {0, . . ., 25}[i + j = 0 mod 25]. We
can also see that · is a group action, since π0 indeed acts as an identity, and
∀x ∈ X∀πi, πj ∈ G[x · (πi ◦ πj) = x · πi+j mod 25 = (x · πi) · πj]

3.2 Orbits and equivariance

From now on, if we mention “a G-set X”, we implicitly assume that there
is a group G that acts on X. This means that for a G-set we can talk about
π ∈ G, or about a group-action π in general, without explicitly introducing
the group G .

Up until now we have only seen an example of a G-set that is finite. In
general, a G-set can also be infinite. For such a G-set, we would like to in-
troduce some more structure. The structure we are introducing are so-called
orbits.

Definition 3.2.1. Let X be a G-set. Take x ∈ X. The orbit of x is

x ·G = {x · π | π ∈ G} ⊆ X.

The G-set X is called orbit-finite if it has a finite amount of orbits, i.e. the
set

X ·G = {x ·G | x ∈ X}

is finite.

Example 3.2.2. The G-set X from example 3.1.7 is orbit finite. If we look
at the orbit of the letter a ∈ X we can see this is actually the whole set X:

a ·G = {a · πn | πn ∈ G} = {a · π0, a · π1, . . . , a · π25} = {a, b, . . . , z} = X.

Moreover, the orbit of any letter is the whole set. This means that all letters
are in the same orbit, or in other words, that X is a single-orbit set.

18

In the next example we will look at a product of two G-set, which is
a G-set itself. If we have G-set X, then X × X is also a G-set, because
the group axioms are preserved under Cartesian product. Take an element
(x, y) of X ×X. Then a group element π from the set G acts on (x, y) as
follows:

(x, y) · π = (x · π, y · π).

Example 3.2.3. We again take X = {a, b, c, . . . , x, y, z}. Then, we look at
the set X×X = {(α1, α2) | α1, α2 ∈ X}. The for the group acting on X×X
we take G = Perm(X). Now X ×X is a G-set and has two orbits. One is
the orbit of the element (a, a). Every element in this orbit has the property
that both elements are equal. Then the second orbit belongs to the and
element (a, b), where the two elements in the tuple are not the same. This
orbit consists of all the tuples in X ×X, for which the two elements are not
the same.

We now introduce the notion of equivariance. A G-set is equivariant if
the set is unchanged, after applying a group element on the set. Later in
this thesis we will define so-called nominal substitutions, which we want to
be equivariant. This will imply that for a substitution s it will hold that
s(x) · π = s(x · π).

Definition 3.2.4. Let X be a G-set. A set Y ⊆ X is called equivarant if
∀π ∈ G [Y · π = Y].

Proposition 3.2.5. Let X be a G-set. Let Y ⊆ X be an equivariant subset
of X. Then Y is a union of orbits.

Proof. Assume that Y is not a union of orbits. Then there has to be an
element y ∈ Y such that there is a π ∈ G for which y · π /∈ Y , because
otherwise the whole orbit y ·G would be in Y . But this gives a contradiction,
since then Y is not an equivariant set.

Remark 3.2.6. Let X be a G-set. Let Y ⊆ X be an orbit of X. Then
for y ∈ X we have Y = {y · π | π ∈ G} = y · G, and we see that Y is an
equivariant set.

Example 3.2.7. The G-set X from example 3.1.7 is equivariant. We need
X to be a subset of a G-set, so we take X ⊆ X. Then we see that
∀α ∈ X ∀π ∈ G[α · π ∈ X], and thus ∀π ∈ G[X · π = X]. We can also
see this since X itself is an orbit, and thus equivariant by remark 3.2.6.

Since functions, can also be regarded as sets of tuples, we can define
what an equivariant function is. From this we will see what it means for a
substitution to be equivariant, since it is a function.

19

Definition 3.2.8. Let X and Y be two G-sets. A function f : X −→ Y
is called an equivariant function if for any π ∈ G it holds that f(x · π) =
f(x) = f(x) · π.

Example 3.2.9. Take X = {a, b, c, . . ., x, y, z} and take the group G as
in example 3.1.7. An example of an equivariant function i : X −→ X, the
identity mapping. We see that for an arbitrary element α ∈ X,

f(α) · π = α · π = f(α · π).

Example 3.2.10. Take X = {a, b, c, . . ., x, y, z} and take the group G
as in example 3.1.7. An example of a function that is not equivariant is
g(α) = “the next letter in the alphabet”. Take π ∈ G such that π sends all
letters to the letter a. Then

g(b · π) = g(a) = b 6= a = c · π = g(b) · π.

3.3 Nominal sets

In the previous section we assumed that when we say “a G-set X”, we
implicitly assume that there is a group G that acts on X. From now on we
will make another assumption, namely that the group G is Perm(A), the
permutation group of the so-called atoms. The set of atoms A is the infinite
set of minimal elements. We will now introduce nominal sets. These sets
are useful when modeling computations over the atoms. To be able to define
nominal sets we first have to explain what it means for an element to be
supported.

Definition 3.3.1. Let X be a G-set. A set C ⊆ A supports an element
x ∈ X if ∀c ∈ C[c · π = c] =⇒ x · π = x.

First we remark that the set C does not need to be unique. We illustrate
this by the following example:

Example 3.3.2. Take the set of atoms A. Then take an element a ∈ A.
Then a is supported by the set {a}. But it is also supported by the set
{a, b}. In fact a is supported by any set C for which a ∈ C.

Now that we know what it means for an element to be supported, we
can define what a nominal set is.

Definition 3.3.3. Let X be a G-set. X is nominal is every x ∈ X is
supported by some finite support C.

Example 3.3.4. Take the set of atoms A. Then A itself is a nominal set,
since we have seen that every a ∈ A is supported by the set {a}.

20

Proposition 3.3.5. Let X be a nominal set. Then X∗ is a nominal set.

Proof. If we look at X∗ as:

X∗ =
⋃
n≥0

Xn

then an arbitrary element of this set is (x1, . . . , xn) and this element has
finite support {x1, . . . , xn}, so the set X∗ is nominal.

Example 3.3.6. Take the set of atoms A. Then power set of A, P(A) is
not a nominal set. Since A is an infinite set there are sets X ∈ P(A) that
are not finite, and not co-finite, the latter meaning that they don’t have a
finite complement. These sets have no finite support, hence P(A) is not a
nominal set. Since P(A) is not nominal, P(A∗) is also not nominal, with
similar reasoning.

The next two lemma’s of this subsection connect equivariant sets and
functions to things we have just seen, i.e. nominal sets and support. These
lemma’s play a key role in a theorem to come, where we want to prove
properties about nominal substitutions.

Lemma 3.3.7. An equivariant subset of a nominal set is a nominal set.

Proof. Let X be a nominal set. And let Y ⊆ X be an equivariant subset.
This means that we have

∀π ∈ G [Y · π = Y].

Since Y ⊆ X, we know that for every y ∈ Y , that it is also an element of X,
and since X is nominal we know that y then has a finite support C. This
means that

∀π ∈ G [∀c ∈ C [c · π = c] =⇒ y · π = y].

So Y is a nominal set.

Lemma 3.3.8. An equivariant function preserves support.

Proof. Let X and Y be two G-sets. Let f : X −→ Y be an equivariant
function. We need to prove for an element x ∈ X, that if x is supported
by a support C, then f(x) is also supported by C. Let C be a support for
x ∈ X. This means that

∀π ∈ G [∀c ∈ C [c · π = c] =⇒ x · π = x.

We want to show that C is also a support for f(x). This means that

∀π ∈ G [∀c ∈ C [c · π = c] =⇒ f(x) · π = f(x).

We now use that f is equivariant, and the fact that x · π = x, and see that

f(x) · π = f(x · π) = f(x).

We thus conclude that f preserves finite support.

21

The last definition in this section is the finitely supported power set.
The name does a pretty good job of explaining how it is defined. It is a
last piece of theory we need, to be able to give a nice definition of nominal
substitutions in the next section. This is because the domain and the range
have to be finitely supported power sets to make substitutions work.

Definition 3.3.9. Let X be a set. The finitely supported power set of X is

Pfs(X) = {Y ⊆ X | Y has finite support C}

Remark 3.3.10. Let X be a set. Then Pfs(X) is a nominal set, since all
of its elements are finitely supported by definition.

22

Chapter 4

Nominal automata theory

In the final chapter of this thesis we will investigate the behaviour of the
just defined nominal languages under nominal substitutions. These nominal
substitutions we will define in this chapter. Another thing we will look into
in this chapter are nominal deterministic orbit finite automata. This flavour
of automata is able to recognize nominal languages.

4.1 Nominal languages

Definition 4.1.1. Let X be an orbit finite nominal G-set. A nominal
language is an equivariant subset L ⊆ X∗. We say that X is the alphabet
of L, since words in L consist of elements from X.

Example 4.1.2. Take the language L = {awa | a ∈ A, w ∈ A∗}, where the
atoms A is the alphabet. We see that L ⊆ A∗. For L to be a nominal set,
we want L to be an equivariant set. This means the ∀π ∈ G[L · π = L]. If
we look at (awa) ·π = (a ·π)(a ·π)(a ·π), we see that if we take an arbitrary
group element π ∈ G, and an arbitrary word awa ∈ L, that (awa) · π ∈ L,
because a · π ∈ A, and w · π ∈ A∗. This means that L is equivariant, and
thus we can conclude that L is an nominal language.

In the definition of a nominal language L, it might seem strange we do
not require L to be a nominal set, a priori. If we take a closer look we
see that it actually follows the equivariance that the language L is indeed a
nominal set.

Proposition 4.1.3. Any nominal language is a nominal set.

Proof. Let L be a nominal language. This means that there is a nominal
set X such that L ⊆ X∗, and that L is a equivariant set. By definition we
know that X∗ is also a nominal set. Then from lemma 3.3.7 we get that
an equivariant subset of a nominal set is a nominal set itself, hence L is a
nominal set.

23

The above lemma shows us that we may apply theory that we have
developed for nominal sets, to nominal languages. This is because since
every nominal language is a nominal set.

For regular languages we have seen what a derivative language is. For
nominal languages this definition is basically the same. For good measure
we again give the definition, with slight alterations for the nominal setting.

Definition 4.1.4. Let X be an orbit finite nominal G-set. Let L ⊆ X∗ be a
nominal set. Let w ∈ X∗. The nominal w-derivative of L is
Lw = {v | wv ∈ L}. The set Der(L) = {Lw | w ∈ X∗} is the set of all
nominal derivatives that we can deduce from L.

We will not always explicitly say that a set Lw is a nominal w-derivative,
but just a w-derivative. From the setting one can deduct if a w-derivative is
nominal or not. All the words in Lw are now also an element of X∗, which
means that group elements π ∈ G now also can act on u ∈ Lw.

Definition 4.1.5. Let X be a nominal orbit finite G-set. Let L ⊆ X∗ be a
nominal language. Then we define Lw · π = {u | wu ∈ L} · π

Lemma 4.1.6. If we have a nominal language L, then for Lw ∈ Der(L)
and π ∈ G :

Lw · π = Lw·π.

Proof.

Lw · π = {u | wu ∈ L} · π
= {u · π | wu · π ∈ L · π}
= {u · π | (w · π)(u · π) ∈ L} (L is equivariant)

= {v | (w · π)v ∈ L} (u · π = v ∈ L)

= Lw·π

Example 4.1.7. Take the language L from example 4.1.2. If we then fix
an element a ∈ A , examples of derivatives are La = {wa |, w ∈ A∗},
Laba = {λ}. By the previous lemma we can also see group actions on these
derivative languages. Say we have a group action π that changes the fixed
element a into b ∈ A and vice versa. Then applying the group action the
the derivative examples gives La · π = La·π = Lb = {wb | w ∈ A∗}, and
Laba · π = L(aba)·π = Lbab = {λ}. We see that in some cases that the
derivative language also changes according to the group action, and in some
cases it does not. This gives some reason to investigate the behaviour of the
set Der(L).

24

We will now prove some properties about the set Der(L). In the next
subsection we will construct automata where we use derivative languages as
states. We want that the set of states is a nominal set. This is what we will
now prove for Der(L).

Lemma 4.1.8. Let X be a nominal orbit finite G-set. Let L ⊆ X∗ be a
nominal language. Then Der(L) ⊆ Pfs(X∗).

Proof. Let L be a nominal language. We have seen that for a nominal
language L, by lemma 4.1.6 we have Lw · π = Lw·π. Take Lw ∈ Der(L), and
write w = x1x2. . .xn, where xi ∈ X. Then we look at C = {x1, x2, . . . , xn}.
Then we see that because C support every letter of w, it is a support for w.
This means that

∀π ∈ G[∀c ∈ C[c · π = c] =⇒ w · π = w].

Now we can derive that for an arbitrary Lw ∈ Der(L) we have

∀π ∈ G[∀c ∈ C[c · π = c] =⇒ Lw · π = Lw·π = Lw].

Thus we see that every Lw is finitely supported by the C we proposed, hence
Der(L) ⊆ Pfs(X∗).

Lemma 4.1.9. Let X be a orbit finite nominal G-set. Let L ⊆ X∗ be a
nominal language, then Der(L) is a nominal set.

Proof. From lemma 4.1.6 we know that Der(L) is an equivariant set. Then
from lemma 4.1.8 we know that Der(L) ⊆ Pfs(X∗), and from remark 3.3.10
we know that Pfs(X∗) is a nominal set. We may then conclude from
lemma 3.3.7, that Der(L) is a nominal set, because it is an equivariant
subset of a nominal set.

Example 4.1.10. Take the language L from example 4.1.2. We have seen
that L is a nominal language. So from the above lemma it has to hold that
Der(L) is a nominal set. This also means that Der(L) is orbit finite. These
orbits are represented by the derivatives Lλ, La and Laa.

25

4.2 Nominal deterministic finite automata

We will now define a class of automata that can compute over nominal sets.
These automata can not recognize nominal languages L in general, but only
if the set Der(L) is orbit finite. We will achieve this result by proving that
given an nominal DFA that recognized a language L, the set Der(L) is orbit
finite. Then conversely, asssuming that for a language L the set Der(L) is
orbit finite, that we can construct a proper nominal DFA that recognizes L.
Let’s first start by defining what a nominal DFA is.

Definition 4.2.1. A nominal deterministic finite automaton or nominal
DFA is an automaton M = (Q,Σ, δ, q0, F) where the set of states Q is an
orbit finite nominal set, the alphabet Σ is an orbit finite nominal set, the
transition function δ is an equivariant function, and the initial state q0 and
the set of final states F is an equivariant subset of Q.

Definition 4.2.2. Let M = (Q,Σ, δ, q0, F) be a nominal DFA. For every
state q ∈ Q we define L(q) = {w | δ∗(q, w) ∈ F} as the state language of q.

We introduce a construction called the syntactical automaton. This is the
construction we will use to prove one side of the earlier suggested theorem.
We will show that if we assume that the set Der(L) is orbit finite, that this
construction gives us a proper nominal DFA as defined above. Note that
the syntactical automaton is similar to the automaton that was constructed
in theorem 2.2.5. We chose to explicitly define it here, because using this
construction is more involved in the nominal setting.

Definition 4.2.3. Let X be an orbit finite nominal G-set. Let L ⊆ X∗ be
an nominal language. We define the syntactical automaton ML as:

Q = Der(L)

Σ = X

δ(Lw, x) = Lwx

q0 = L

F = {Lw | w ∈ L}

Example 4.2.4. For the language L = {awa | a ∈ A,w ∈ A∗}, as was
described in example 4.1.2, we can now also construct the syntactical au-
tomata. We will first give the state diagram of this automata, in such a way
that all the state are displayed. This is one way of displaying ML:

26

L

La

Lb

Lc

...

Laa

Lbb

Lcc

...

a

b

c

. . .

a

6= a

b

6= b

6= a a

b6= b

6= c c

c

6= c

. . .

. . .

.

The first state is the initial state, which by definition is L. Then for each
element x ∈ A the there is a transition from L to Lx. There are infinitely
many states, since A is infinite. This is represented but the dots at the
bottom, as we can not list infinitely many states. Then for every state Lx
we have an accepting state Lxx, which we enter if the element x has been
processed a second time. If we process elements that are not equal to x,
we stay in the state Lx. From the accepting state Lxx it is fine we process
more x’s, but if we process something that is not x, then we go back to the
previous state Lx. This notation of the state diagram is not very useful if
we want to describe the whole automata.

A solution for this is to only give the states that represent the orbits of
Der(L). In the above state diagram we can see that after one element has
been processed, the rest of the diagram is basically the same. Since Q is a
G-set, we can also draw the state diagram of ML as follows:

L La Laa
a

a

6= a

6= a a

27

This state diagram collapses all the states that are in the same orbit into
single states, and by means of group actions, all of the states in the original
automata can be obtained. This state diagram also gives a visualisation of
the orbits of Der(L). Each state in the collapsed state diagram represents an
orbit. Since we are interested in drawing automata for nominal languages,
for which it holds that Der(L) is orbit finite, this is a nice way of depicting
the state diagram.

Lemma 4.2.5. The syntactical automata ML recognizes the language L.

Proof. For a word w ∈ L we have that δ∗(q0, w) = δ∗(L,w) = Lw ∈ F by
definition of the automata. This means for exactly the words w that are in
L, δ∗(q0, w) ends up in a final state, hence every exactly L recognized by
ML.

Lemma 4.2.6. Let X be an orbit finite nominal G-set. Let L ⊆ X∗ be
an nominal language such that Der(L) is orbit finite. Then the syntactical
automaton ML is a nominal automaton.

Proof. Assume that X is an orbit finite nominal G-set. Assume L ⊆ X∗ is
a nominal language such that Der(L) is orbit finite. We will now check that
all the components of ML are in line with definition 4.2.1.

• Q = Der(L) should be an orbit finite nominal set. By lemma 4.1.9 we
know that it is nominal, and by assumption it is orbit finite.

• Σ = X should be an orbit finite nominal set. This holds, by assump-
tion.

• δ(Lw, x) = Lwx should be an equivariant function. This means that
δ(Lw, x) · π = δ(Lw · π, x · π) should hold. We see that this is indeed
the case, by writing out δ(Lw, x) · π, and by using that Lw·π = Lw · π
(lemma 4.1.6):

δ(Lw, a)·π = Lwa·π = L(wa)·π = L(w·π)(a·π) = δ(Lw·π, a·π) = δ(Lw·π, a·π).

• I = L should be should be an equivariant subset of Q = Der(L). Since
L is a nominal language is is defined as an equivariant subset of X∗,
hence L is equivariant. It is also a subset of Der(L), since we can write
L = Lε, the derivative of the empty word ε.

• F = {Lw | w ∈ L} should be an equivariant subset of Q = Der(L).
We know that L is equivariant. This means that for every π ∈ G and
for every w ∈ L we have that w ·π ∈ L. From this we can deduce that
the set {Lw | w ∈ L} is equivariant by writing out {Lw | w ∈ L} · π
and again using that Lw·π = Lw · π (lemma 4.1.6):

{Lw | w ∈ L}·π = {Lw·π | w·π ∈ L} = {Lw·π | w·π ∈ L} = {Lv | v ∈ L}.

28

We recall lemma 2.2.3, which states that Lw = δ∗(q0, w), for a regular
language L, and machine M that recognizes L. This lemma also holds in the
nominal case, since that proof only makes use of the definition of a derivative
language, which is basically unchanged in the nominal setting.

We now have all the pieces to put together the theorem we mentioned
at the beginning of this section. We will prove that for a nominal language
L there is an equivalence between Der(L) being orbit finite, and L being
recognized by a nominal DFA.

Theorem 4.2.7. Let L be a nominal language. Then L is recognized by a
nominal deterministic finite automaton if and only if Der(L) is orbit finite.

Proof. First, assume that L is recognized by a nominal deterministic finite
automaton M = (Q,Σ, δ, q0, F). Then we have that

Der(L) = {Lw | w ∈ Σ∗}
= {{w | vw ∈ L} | w ∈ Σ∗}
= {{w | δ∗(q0, vw) ∈ F} | w ∈ Σ∗}
= {{w | δ∗(δ∗(q0, v), w) ∈ F} | w ∈ Σ∗}
= {L(δ∗(q0, v) | w ∈ Σ∗}
⊆ {L(q) | q ∈ Q}

By definition of a nominal DFA we know the the set of stated Q is
orbit finite. From this we conclude that there are orbit finitely many state
languages L(q), and thus the set {L(q) | q ∈ Q} is orbit finite. Then we have
seen in lemma 4.1.6 that Der(L) is an equivariat set. Now we can conclude
from proposition 3.2.5 that Der(L) is a union of orbits, which come from
the set {L(q) | q ∈ Q}, hence Der(L) is orbit finite.

Conversely, assume that L is a nominal language such that Der(L) is
orbit finite. The from lemma 4.2.6 we can immediately conclude that there
is a nominal automaton that recognizes L, namely, the syntactical automata
ML.

29

Chapter 5

Closure properties of
nominal languages

Now that we have introduced nominal languages and nominal DFA’s, we
are going to look into their closure properties under substitutions. If we
take a nominal language, and apply a substitution, will the result still be a
nominal language? And if we assume that a nominal language is recognized
by a nominal DFA, will the image of a substitution then still be recognized
by a nominal DFA? To be able to answer such questions we first have to
define what homomorphisms and substitutions are, in the nominal setting.

5.1 Nominal substitutions

Definition 5.1.1. Let A and B be orbit finite nominal G-sets. Take an
equivariant function h : A −→ B∗. We extend this function to h] : A∗ −→ B∗

such that the following property holds:

∀a, b ∈ A∗ [h](ab) = h](a)h](b)]

where h](x) = h(x) for x ∈ A. A function h] with this property is called a
nominal homomorphism. Since h] is derived from h, we also say that h is
a nominal homomorphism. We see that h] is now defined for words in A∗.
Using the property, we see that following holds for w ∈ A∗:

h](w) = h](a1a2. . .an) = h](a1)h
](a2). . .h

](an) = h(a1)h(a2). . .h(an).

We remind ourselves what it means for a function f to be equivariant.
This means that f(x · π) = f(x) = f(x) · π, for every π ∈ G. This would
mean that for a function to be equivariant, we need that the image f(x) of
an element x, and x itself have to be supported by the same support C. In
other words, the function needs to preserve support.

30

Example 5.1.2. Take the sets A = B = A, the atoms. We define a ho-
momorfism h : A −→ A∗ by h : a 7→ an for a ∈ A and n ∈ N. This is an
equivariant function, since the support C = a is a support for both a and
h(a). From this definition of h we get h] : A∗ −→ A∗, where if we write for
w ∈ A∗ that w = a1a2. . .ak then h] : w 7→ an1

1 a
n2
2 . . .a

nk
k for ni ∈ N. Here

again, if C supports w, it also supports h](w), since the same atoms occur
in both.

Definition 5.1.3. Let A and B be orbit finite nominal G-sets. Take
an equivariant function s : A −→ Pfs(B∗). We extend this function to
s] : A∗ −→ Pfs(B∗) such that the following property holds:

∀a, b ∈ A∗ [s](ab) = s](a)s](b)]

where s](x) = s(x) for x ∈ A. If s](a) and s](b) are both sets, s](a)s](b)
contains all words vw such that v ∈ s](a) and w ∈ s](b). A function s] with
the above property is called a nominal homomorphism. Since s] is derived
from s, we also say that s is a nominal substitution. We see that s] is now
defined for words in A∗. Using the property, we see that following holds for
w ∈ A∗:

s](w) = s](a1a2. . .an) = s](a1)s
](a2). . .s

](an) = s(a1)s(a2). . .s(an).

Example 5.1.4. Take the sets A = B = A, the atoms. We then define the
substitution s : A −→ P(A∗) as s : a 7→ A∗\{a}. We note that a and s(a) have
the same support C = {a}. With the extension, we get s] : A∗ −→ Pfs(A∗),
such that for a word w = a1a2. . .ak ∈ A∗, we get s] : w 7→ A∗ \ {a1a2. . .ak}.

A nominal substitution s is an equivariant function by definition, but for
an extension, this is not immediately clear. The following lemma shows us
that an extension of a nominal substitution is also equivariant.

Lemma 5.1.5. Let s] : A∗ −→ Pfs(B∗) be a nominal substitution derived
from s. Then s] is equivariant, i.e. s](w) · π = s](w · π).

Proof. Let s] : A∗ −→ Pfs(B∗) be a nominal substitution derived from s. By
writing out s](w) · π we get:

s](w) · π = s](a1a2. . .an) · π (Write out w)

= (s(a1)s(a2). . .s(an)) · π (Definition of s])

= (s(a1) · π)(s(a2) · π). . .(s(an) · π) (Application of π)

= s(a1 · π)s(a2 · π). . .s(an · π) (Equivariance of s)

= s]((a1 · π)(a2 · π). . .(an · π)) (Definition of s])

= s]((a1a2. . .an) · π) (Application of π)

= s](w · π) (Write back w)

31

Corollary 5.1.6. Let s] : A∗ −→ Pfs(B∗) be the extension of a substitution
s. Then s] preserves support.

Proof. From lemma 3.3.8 we know that equivariant functions preserve sup-
port. In lemma 5.1.5 we have seen that s] is an equivariant function, hence
it preserves support.

5.2 Closure properties

We have introduced nominal languages. We have introduced nominal sub-
stitutions. This means that we can now finally investigate the question:
”Are nominal languages closed under nominal subtitutions?”. We will see
in the following theorem that this is the case!

Theorem 5.2.1. Nominal sets are closed under substitution.

Proof. Let A and B be orbit finite nominal G-sets. Let L be a nominal
language, such that L ⊆ A∗. Let s] : A∗ −→ Pfs(B∗) be a substitution.
Then we want to prove that s](L) is a nominal language, which means that
s](L) is an equivariant subset of B∗. This means that

∀π ∈ G[s](L) · π = s](L)].

We write out:

s](L) · π = (
⋃
w∈L s

](w)) · π
= (

⋃
w∈L s

](w) · π)

= (
⋃
w∈L s

](w · π) (lemma 5.1.5 : equivariance of s])

= (
⋃
v∈L s

](v) (L is equivariant, so w · π ∈ L)

= s](L) (Indexing over v also gives L)

We conclude that s](L) is an equivariant subset of B∗, and thus it is a
nominal language.

The above theorem yields a nice result. With theorem 4.2.7 (L recog-
nized by a nominal DFA iff Der(L) is orbit finite), we would like to prove
that if L is recognized by a nominal DFA, that the image s](L) is also rec-
ognized by a nominal DFA. It turns out that this is not the case, as we can
give a counterexample which shows the opposite.

32

Example 5.2.2. Take the language L = {aa | a ∈ A}, This is a nominal
language, since every element aa ∈ L is supported by C = {a}. Also Der(L)
is orbit finite, it has the orbits represented by L, La, and Laa. From theo-
rem 4.2.7 we can conclude that L is recognized by a nominal DFA. Then take
the substitution s(a) = {wav | w, v ∈ A∗, a does not occur in v, w}. We
then look at the image of L under the extension of this substitution s](L) =
{wavau | w, v, u ∈ A∗, a ∈ A} = {w | some atom exactly occurs twice}.
This language can not be recognized by a nominal DFA, since it has orbit
infinitely many derivatives. This is shown by the following derivatives which
all have a separate orbit:

s](L)a = {vau | w, v ∈ A∗, a does not occur in v, u}

s](L)ab = {vau | w, v ∈ A∗, a does not occur in v, u} ∪

{vbu | w, v ∈ A∗, b does not occur in v, u} = s](L)ba

s](L)abc = {vau | w, v ∈ A∗, a does not occur in v, u} ∪

{vbu | w, v ∈ A∗, b does not occur in v, u} ∪

{vcu | w, v ∈ A∗, c does not occur in v, u} = s](L)cba = s](L)bac = ...

...

We see that for instance, there are no words of the from the set
{vbu | w, v ∈ A∗, b does not occur in v, u} in s](L)a. This means that
s](L)ab 6= s](L)a. In a similar way, all of these derivatives can be proven
in-equal. Since a group action does not change the amount of atoms in a
word, all these derivatives are in separate orbits. Now, since A is infinite,
the set Der(s](L)) is orbit infinite. By theorem 4.2.7 we then get that s](L)
is not recognized by a nominal DFA.

33

Chapter 6

Related Work

A big inspiration for the theory in this thesis was that of Bojańczyk et al
[2]. In Bojańczyk’s paper, the order in which lemma’s are proven differs
from our work, and some definition have different notation and names. This
shows that the work we have given has been worked out without explicitly
copying Bojańczyk’s work. We also work out some theorems in more detail,
and omit less steps in proofs, which makes this thesis a nice contribution.

Then there is work of Moerman et al [5]. In this paper Moerman looks
into different classes of languages, which are distinguished by properties of
their derivatives. For one of these classes, the residual languages, a learning
algorithm is described. Moerman’s paper was the main inspiration for this
thesis, since it discussed the nominal languages, and made us wonder about
their closure properties. The main point of Moerman’s paper is not to inves-
tigate nominal languages, and does not explicitly discuss closure properties
of nominal languages. To that point, this thesis gives a nice piece of back-
ground information for such work.

34

Chapter 7

Conclusions

In this thesis, the closure properties of nominal languages under substitu-
tions have been explored. A big part of this was defining the proper theory
to be able to properly discuss nominal languages. First we defined some
basic notions in automata theory. We then gave a proof for a Myhill-Nerode
style theorem, regarding the construction of an automaton with derivative
languages. We took Shallit’s [7] proof, altered it into a separate lemma and
theorem, and added some details about induction that were skipped in the
original proof. Then we defined some group theory, involving orbits and
equivariance[4]. From these notions we defined nominal sets[2].

For nominal sets we have shown that the Myhill-Nerode style theorem
also holds. We studied the work of Bojańczyk et al. [2], from this work we
took some theorems which we proved in our own framework. We proved that
nominal language are recognized by a nominal deterministic finite automata
if and only if the set of all of its derivatives is orbit finite. We also proved
that nominal languages are indeed closed under substitutions. When trying
to combine the Myhill-Nerode theorem, and the closure property we found
a counter example, which showed that being recognized by a nominal DFA,
is not closed under nominal substitutions. This final counter-example is a
negative result, but that does not matter for the over-all result of this thesis.
Along the way a lot of nice theory has been discussed, and nice theorems
have been proven. Next to that, the result that being recognized by a nomi-
nal DFA is not preserved by nominal substitutions, is a nice result regardless.

For future work we could look into closure properties under substitutions
for other classes of languages, for example the so-called residual languages
[5]. To be able to define such languages, the field of lattice theory has to
be used. This is another field in mathematics which studies certain types
of orderings, called lattices. This is a very interesting direction to continue
this research, but did not fit the time constraints of this thesis.

35

Bibliography

[1] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87 – 106, 1987.

[2] Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata theory
in nominal sets. Log. Methods Comput. Sci., 10(3), 2014.

[3] Janet Chen. Group theory and the Rubik’s cube. 2004.

[4] Ben Moonen Hendrik Lenstra Jr., Frans Oort. Groepentheorie. lecture
notes. Radboud Universiteit, NL, 2014.

[5] Joshua Moerman and Matteo Sammartino. Residual nominal automata.
In Igor Konnov and Laura Kovács, editors, 31st International Conference
on Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna,
Austria (Virtual Conference), volume 171 of LIPIcs, pages 44:1–44:21.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[6] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin,
and Micha l Szynwelski. Learning nominal automata. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, page 613–625, New York, NY, USA, 2017. As-
sociation for Computing Machinery.

[7] Jeffrey Shallit. A Second Course in Formal Languages and Automata
Theory. Cambridge University Press, USA, 1 edition, 2008.

[8] Thomas A. Sudkamp. Languages and Machines: An Introduction to the
Theory of Computer Science. Addison-Wesley Longman Publishing Co.,
Inc., USA, 1997.

36

