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Abstract

To prevent data stealing, many websites use techniques to detect automated visi-
tors. Collectively, such techniques are called web bot detection. There are, generally
speaking, two types of such techniques: (1) fingerprinting techniques, and (2) behav-
ioral detection. Behavioral detection is an upcoming bot detection method which uses
different techniques than those considered in browser fingerprinting. While there have
been several studies into fingerprint-based detection of web bots, there has been com-
paratively little investigation of behavioral-based detection. In this thesis, we investi-
gate behavioral detection and its countermeasures. Moreover, we determine whether
this is simply an extension of browser fingerprinting or if its use extends beyond browser
fingerprinting.

The goal of this work is to expand the identification approach by Jonker et al. to
cover dynamic aspects of web bot detection, specifically: behavioral detection of web
bots. A key subgoal of this project is therefore to uncover when current real-world bot
detection methods deem evidence sufficient to classify a visitor as a bot.

We achieve this goal through the following contributions. We determine a list of
known methods for behavioral detection, based on literature and a practical investiga-
tion. Moreover, we design a method to determine whether a script is using behavioral
detection, given the detection methods we have found in our manual reverse analysis.
Besides that, we implement this approach in a static HTML scanner and scan the
homepages of the Tranco Top 10,000. Ultimately, we determine the false positive rate
of our scanner by manual analysis of a statistical significant number of scripts in each
category using random sampling.

First and foremost, bot detection scripts will be reverse-analyzed manually to ac-
quire code that is used for behavioral detection. Afterwards, this manual process will
be automated, utilizing the code snippets and its features which were found manually.
Processing and categorizing this data can then commence. Through analyzing the cat-
egorized data, conclusions can be drawn regarding which code is utilized for behavioral
detection of web bots.

It is important to note that we first need to test whether the approach taken in
this research is appropriate and applicable to behavioral detection the same way it is
applicable to fingerprinting techniques. Consequently, we need to find out why it is
more difficult to recognise behavioral detection than fingerprinting techniques.

We found that 17,203 out of the 17,862 scripts have between 0% and 20% chance
of containing behavioral-based detection. Thus, we can conclude with certainty that
17,203 scripts do not use behavioral-based detection if we disregard any false negatives.
290 scripts have between 20% and 40% chance of containing behavioral detection.
Meaning, 290 scripts possibly have some small form of behavioral-based detection, but
have such a low chance that we believe no behavioral detection will be present. 97
scripts are in a range where we simply do not know whether they carry out behavioral
detection until closer inspection as they do contain a limited amount of behavioral
detection methods. However, 69 scripts have a good chance of containing behavioral-
based detection since they contain multiple behavioral detection methods and the 23



scripts with the highest chance of containing behavioral detection certainly do contain
behavioral detection.

In this research we were able to gather significant results using a static scraping tool.
Thus, this research is the basis for further research investigating behavioral detection
using more advanced techniques such as machine learning with a neural network and
a dynamic scraping tool. In short, this research gives all of the ingredients that can
be used in machine learning as well as the properties that a dynamic scraper needs to
possess.
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Chapter 1

Introduction

There are various ways to automatically gather information from the web, such as web
spiders, scrapers, etc. In this study, we refer to such automated visitors of a web page
as web bots. Web bots are widely used to automatically gather information from the
web. Web bots can be used maliciously, stealing information, but they may also be
used benignly, such as using the information for research purposes. Web sites can try
to prevent malicious web bots from accessing their content. To this end, they must
first identify the visitor as a scraper. Jonker et al. [JKV19] investigated identifying
web bots based on subtle differences between their browser fingerprint and the browser
fingerprint of regular browsers. Browser fingerprinting focuses on static properties of
a web bot.

The goal of this research is to expand the identification approach by Jonker et
al. to cover dynamic aspects of web bot detection, specifically: behavioral detection
of web bots. Do note that while static differences between browser fingerprints can
prove the visitor is a web bot, differences in behavior can only provide circumstantial
evidence. Where identifying detection techniques based on browser fingerprinting is
deterministic (true/false), recognising behavioral detection is inherently probabilistic.
A key sub-goal of this project is therefore to uncover when current real-world bot
detection methods deem evidence sufficient to classify a visitor as a bot.

Most will know behavioral detection through the well-known and more-or-less ac-
cepted price tracking sites. However, the usage of behavioral detection has benign
uses such as research as well as nefarious uses such as content stealing. Therefore,
countermeasures ideally only affect bots. However, to acquire this we need to make
sure that the countermeasures can distinguish bots from humans.

There are two ways to make such a distinction. The first option is to find static
aspects that differ between bots and humans, called properties. The other option
is to find dynamic aspects that different between bots and humans, called behavior.
The differences which originate from static aspects. such as browser fingerprint, have
already been explored (see e.g. Jonker et al. [JKV19]). Dynamic aspects, such as
behavior, seem to be used in practise as well, but comparatively few studies have
looked into this.

Behavioral detection focuses on a web bots behavior, i.e., the way it interacts with
the visited web page. This may include measurements of

– mouse behavior, including mouse movement and mouse clicks;
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– typing behavior, including key presses;

– timing between subsequent requests;

– scrolling.

1.1 Objectives and research questions

The main goal of this project is to investigate how web sites currently employ behav-
ioral detection. Subsequently, we can derive what countermeasures should be designed
to prevent behavioral detection in practice.

The thesis should give all features necessary for machine learning so these can be
applied in the future. It is important to note that creating a classifier for this research
was possible, but was not used since we first need to identify whether it makes sense to
train a classifier. Besides that, it is difficult to acquire enough training data regarding
behavioral detection for machine learning to work to its full capacity.

The above-mentioned goals have two research topics that need to be addressed.
These are both contained in the overarching main research question:

How is behavioral detection currently being used on the internet?

The main research question is divided into the following sub-questions:

Sub-question 1: Which methods for behavioral detection exist?
Behavioral detection is a relatively new detection method for bots. Some research
has already been done on the different methods for behavioral detection. However,
the usage of these different methods is still unknown. Therefore we will be reverse-
analyzing scripts and doing a literature study to determine the different methods of
behavioral detection used in practise.

Sub-question 2: How can behavioral detection be recognised?
In the case of fingerprint-based detection, some properties are unique to a web bot.
Accessing these is thus only relevant for identifying a bot [JKV19]. However, in the
case of behavioral detection we cannot say the same. Methods employed in behavioral
detection may also be used for other purposes. For example, tracking mouse movement
may be used for behavioral detection, or to facilitate an online drawing program. Thus,
presence of a certain technique which can also be used for behavioral detection does not
necessarily imply the site is using behavioral detection. This sub-question addresses
this point: when is the use of techniques a clear indicator of behavioral detection? The
answer to this question shows us how to recognise behavioral detection.

Sub-question 3: How many sites are using behavioral detection?
This sub-question investigates the prevalence of behavioral detection. Consequently,
the answer to this question indicates how relevant behavioral detection is currently
when it comes to bot detection as a whole.

This thesis and its accompanying study will answer these research questions with
the following contributions:
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• We determine a list of known methods for behavioral detection, based on litera-
ture and a practical investigation.

– We establish a list of current behavioral detection methods used in practice,
based on methods found in literature combined with results from the reverse
analysis.

– We manually reverse engineer several known bot-detection scripts to analyze
their approach to behavioral detection.

• We design a method to determine if a script is using behavioral detection given
the discussed detection methods. Our approach is based on Vlot’s scoring ap-
proach [Vlo19]. Unlike Vlot’s fingerprint-based approach, behavioral detection
cannot be identified with 100% certainty. This necessitates a novel, probabilistic
approach to recognising behavioral detection.

• We implement this approach in a static HTML scanner and scan the home pages
of the Tranco1 Top 10,000 websites for behavioral detection, on which the scanner
found 17,862 scripts. Our scanner found 23 scripts with a score of 100%, 69 scripts
between 60–95%), 97 scripts between 40–60%, 290 scripts between 20%–40% and
17,203 scripts that did not use any known behavioral detection method (scoring
0%–20%).

• We determine the false positive rate of our scanner by manual analysis of a
statistical significant number of scripts in each category using random sampling.

1https://tranco-list.eu/
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Chapter 2

Related Work

Recent studies into web bot detection mainly focus on browser fingerprinting. There
are only a few recent studies regarding behavioral detection of web bots.

2.1 Bot detection

Bot detection is the overarching name for all different methods concerning the detection
of bots on the web. The research regarding bot detection gives insight in the way bot
detection takes place in general and serves as a base for further research.

According to Ji et al. bot detection can be categorized into only two categories,
host-based and network-based [JHZ+14]. Network-based bot detection monitors net-
work packets for signs of bots, while host-based detection monitors the objects and
processes of the system. In addition, Ji et al. theorize that behavior-based methods
are more practical and effective for single process bots, but become less effective when
detecting multi-process bots. Multi-process bots have two specific features. As op-
posed to a single process bot, they can separate command and control connections
from malicious behavior and they are able to assign malicious behavior to multiple
processes. We will not be making this distinction in our research.

Taking a closer look at the bot detection itself, Dolfing [Dol19] has done a study
on multiple papers discussing browser fingerprinting. He mentions that different terms
are used across these different papers and he wants to make sure the the reasoning
is aligned between the different findings. This study adds to the research regarding
browser fingerprinting by clearing up different studies and therefore making sure that
future research can focus better on the aspects they want to discuss. In our thesis,
we want to use this same approach regarding the behavioral detection methods. As
of right now there are multiple papers discussing one or more behavioral detection
method(s). However, a paper which contains a list of behavioral detection methods is
not available to our knowledge.

Behavioral detection methods can have a major impact on scientific research by
limiting automating scraping of data even though it is used for benign purposes. En-
glehardt et al. [EN16] created OpenWPM, a web bot framework intended for scientific
studies into measuring online privacy. OpenWPM has several anti-bot-detection fea-
tures, that focus exclusively on behavioral detection. OpenWPM has been successful,
in that it has been used in over 50 studies to date.
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Using a scanner built on top of this OpenWPM framework, Jonker et al. [JKV19]
studied browser-fingerprinting-based bot detection. They manually analysed several
known bot-detection scripts and found they partially relied on browser fingerprinting.
They extrapolated from there and tested the browser fingerprints of several popular
web bot frameworks against the browser on which they are based. They found that
these frameworks introduce subtle differences in the browser fingerprint. In a study
of the Alexa Top 1 Million, they found that 12.7% of websites used some form of
browser-fingerprinting-based web bot detection.

Regarding detection and analysis, multiple studies have been conducted. Tan et
al. [TK02] have proposed navigational pattern analysis. This was a new approach to
bot detection, focusing on how the client navigates the site. It is an early form of
behavioral detection that can be executed fully server-side.

Besides that, Schwarz et al. [SLG19] have conducted a study on JavaScript Tem-
plate Attacks. These attacks are automated and detect differences between browser
engines based on their environment. The detection of these differences between the
browser engines applies to the browser fingerprinting to distinguish bots from humans.

2.2 Behavioral detection

Vlot investigated detection of web bots using browser fingerprinting [Vlo19]. He applies
the concept of fingerprinting surface to several web bots and finds, for each web bot,
several attributes in which their browser fingerprint is distinct from other browsers
within the same browser family. Based on these findings, he built a scanner to detect
whether websites were accessing these unique parts of the browser fingerprint. We will
adapt his approach to identifying fingerprint-based bot detection to be applicable to
behavioral detection.

The work of Bai et al. [BXZH14] focuses on bogus behavior in web crawler mea-
surement. Their analysis features looking at the behavior of web crawler measure-
ment. However, in this research they propose a model which focuses on the traffic of
the crawlers at the network gateway of a network operator. We are taking a differ-
ent approach with this research, by investigating behavioral detection, using pattern
matching instead of investigating the network traffic generated.

Most behavioral detection methods can be used by any company, whereas other ap-
proaches give a website-specific bot-detection countermeasure. One of these approaches
has been explored by Haidar et al. [HE17]. They proposed to use a site-specific classi-
fier to distinguish between humans and bots, based on the path traversal of the website.
They trained their classifier on input from genuine human visitors. In their subsequent
test, the classifier detected bots after these had, on average, visited 10 pages. This
approach may thus be valuable to websites seeking to prevent wholesale scraping of
their content, but is not useful against specific scrapers that only load a handful of
pages.

Iliou et al. have done research towards creating a framework to detect advanced
bots [IKT+19]. In this research they have assessed HTTP traffic and noticed that the
accuracy is high whenever the bots do not try and hide their identity. They consider
advanced web bots as web bots that present a browser fingerprint and possibly contain
human-like behavior. A research and framework such as the one investigated by Iliou
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et al. is built upon to try and detect these more advanced bots simulating human-like
behavior.
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Chapter 3

Methodology

This research will look into behavioral detection and how this amounts to bot detection
as a whole. First and foremost, bot detection scripts will be reverse-analyzed manually
to acquire code that is used for behavioral detection. Afterwards, this manual process
will be automated, utilizing the code found manually. Processing and categorizing this
data can then commence. Through analyzing the categorized data, conclusions can be
drawn regarding which code is utilized for detecting bots.

Whereas reverse-analysis has given insight into the way in which scripts and their
corresponding code are responsible for detection, this does not give information regard-
ing the behavior of such a script. Therefore, the next step in this research is performing
action-based analysis. Instead of analyzing the scripts, it is now time to start testing
these scripts in action. First of all, these scripts should be loaded and specific functions
should be called to check whether behavior of the user is tracked. Initially this can
and should be done locally to check the behavioral detection and responses to user
behavior which the scripts return. Afterwards, these same tests should be executed on
a web server and it should be investigated whether any of the behavior alters.

Whenever alternate behavior has been detected, this needs to be investigated fur-
ther and changes to testing might need to be implemented. If not, the behavioral
detection scripts perform the same both locally and on a web server. Since they work
the same, tests can and should be performed both locally and on the web server so
that consistency is maintained. Immediately upon receiving feedback from the behav-
ioral detection scripts, the main task becomes collecting this feedback and storing it
accordingly. After collecting a sufficient amount of data, it should be clear how the
bot detection scripts have determined that the user is a regular user and not a bot.

Along with behavioral detection regarding a regular user, it is now important to
repeat this same process and acquire information using a bot. This bot should trig-
ger the behavioral detection scripts and data collection should commence. After this
elongated process it is time to compare the collected data with the data collected on
a regular user.

The complicating factor is the fact that the technique of detecting bots can be ’per-
fect’, but the technique to detect the user of these ’perfect’ techniques cannot exclude
false positives. In short, it is difficult to distinguish between bot-detection and benign
use of behavioral detection techniques. As mentioned before, since countermeasures
can lead to websites masking their content, scraping studies can become unreliable.
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Therefore, scraping studies should detect whether web sites use detection techniques.
For fingerprint-based techniques there is already an approach. However, for behavioral-
detection based techniques there is no approach known to us. This is why we have
looked into creating an approach for behavioral-detection based techniques.
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Chapter 4

Known methods for behavioral
detection

This chapter serves to show the different behavioral detection methods and their coun-
termeasures discussed in literature. The methods and their accompanying brief expla-
nation are followed by the countermeasures. Besides that, the method and its counter-
measures are followed by papers in which the detection method is discussed. Lastly, the
method and countermeasure can be followed by a remark. The detection method, its
countermeasure, the corresponding paper and the usefulness of the detection method
are then also depicted in a table. Further explanation of the detection methods, its
countermeasures and code examples of all of the detection methods below can be found
in appendix B.

In Table 4.1, the overview of behavioral detection methods discussed in literature
has been depicted. The detection methods are listed from a low sophistication level to
a high sophistication level.

As shown in the table, each of the detection methods have been classified as either
client-side or server-side detectable.

The detection method ’rate limiting of the user requests’ can be done both client-
side and server-side. In the code snippet B.0.3 we can see an example of the client-side
detection method of rate limiting. Server-side rate limiting can be done by checking
the logs.

The detection method ’honeypot trap’ is done both server-side and client-side. This
method checks whether the invisible element has been accessed. Server-side this can
be found in the logs and client-side detection can trigger a response immediately after
the element has been accessed.

The ’Captcha/Recaptcha’ detection method is a client-side and server-side detec-
tion method. In this case a client-side verification of the Captcha/Recaptcha is not
sufficient. For example, in cases where a user runs the form without JavaScript en-
abled, the verification will keep running and will keep sending submissions to the server.
Therefore we need a server-side method which tests whether the Captcha/Recaptcha
was run and has been completed.

’Site traversal’ as a detection method is detected at the server-side. The server logs
show the navigational data of the users that access the website.

The ’mouse movement’ detection method requires both client-side and server-side
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processing. Capturing the mouse movement is done client-side. This data is then sent
from client-side to server-side for analysis.

Detection method Countermeasure Discussed by Detected at

Rate limiting of user requests Delays and random waits [BMV20, MD11] client or server

Honeypot trap Do not access invisible elements [SA18] client and server

Captcha/Recaptcha – Audio-version → speech-to-text [SA18, SKSP17, BMV20] client and server

– Crowdsourcing

Site traversal Human-like path traversal configuration a.o. [TCK09, SVA11] server

Mouse movement Random mouse movements [PB04, CGK+12] client and server

Table 4.1: Overview of behavioral detection methods discussed in literature

Below we briefly describe the detection measures listed in Table 4.1.

• Rate limiting: as the name suggests, the amount of requests in a certain time-
frame is limited.
Remarks: rate limiting can be done both client-side and server-side. We will
be focusing on client-side rate limiting.

• Honeypot trap: elements that cannot be accessed by a human user physically,
but can be accessed by a bot, trigger a response whenever they are accessed.
Remarks: with a honeypot trap, the trap itself is not considered a detection
method. The detection part is checking whether a bot accesses the trap. This
check is often done server-side and therefore we are unable to do anything with
this information. However, we are able to detect honeypot traps client-side and
therefore can circumvent the trap.

• CAPTCHA/ReCAPTCHA: whenever the CAPTCHA is solved, the system
acknowledges you are a human user and you are able to continue traversing the
website, otherwise you are blocked from the site.

• Site traversal: server-side logs contain data on the user navigation patterns of
a site.

• Mouse movement: distinguish between human-like mouse movements and bot-
like mouse movements.

How often do these methods occur in practise?

Testing how often these methods occur in practise, we have iterated over the 17,682
scripts resulting from collecting the scripts off of the homepages of the Tranco top
10,000.
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Method Amount of scripts Percentage of scripts

Rate limiting 252 1.4%

Honeypot trap 81 0.5%

CAPTCHA/reCAPTCHA 2099 11.9%

Site traversal 335 1.9%

Mouse movement 9902 56.0%

Table 4.2: Known methods occurrences

Checking for all of the methods above was done by going through the scripts line
by line and checking for methods and libraries known to be used when it comes to the
method in question.

The table below shows which methods, libraries, links or classes were used to check
whether the known behavioral detection method was present in the script.
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Detection method Typical keywords

Rate limiting bottleneck

express-brute

request-rate-limiter

smart-request-balancer

ratelimit

ratelimiter

Honeypot trap honeypot

spamtrap

norobot

nohuman

CAPTCHA/reCAPTCHA src=”https://www.google.com/recaptcha/api.js”

src=”https://www.google.com/recaptcha/api.js?. . .

. . . onload=onloadCallback&render=explicit”

class=”g-recaptcha”

CAPTCHA

reCAPTCHA

Site traversal sessionStorage

clickstream

Mouse movement mousemove

onmousemove

mouseoverlistener

DOMMousescroll

Table 4.3: List to check for known detection method

Important is to realize that when it comes to rate limiting there are methods such
as await , but these cannot be checked using our analysis tool as this would return
too many false positives since this is also often used outside rate limiting. With the
honeypot trap, the same effect as the methods in the table can be realized by using
absolute positioning outside of the scope of a human visitor. However, we cannot
make the conclusion that absolute positioning outside of the canvas is automatically a
honeypot trap.
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Chapter 5

Reverse analysis of bot detection
scripts

In chapter 4 we have seen which behavioral detection methods were documented in
various papers. In this chapter we will focus on identifying which methods are present
in various scripts. An approach to the reverse analysis will be discussed with its
accompanying methods to identify the known behavioral detection. Lastly, the results
of the reverse analysis will be documented and discussed.

5.1 Approach to reverse analysis

The initial step to our research is gaining access to data regarding behavioral detec-
tion. This part of the research is based on the data collected by Jonker et al. where
bot detection scripts were obtained by using a scanner built on top of the OpenWPM
web measurement framework [JKV19]. To study behavioral detection methods and
especially how behavioral detection methods are implemented, were the initial focus.
Through reverse-analysis of the scripts, insight was gained regarding this implementa-
tion.

During the data study, there were some problems which needed to be accounted for.
Namely, methods were used to make analysis of the files more difficult. The process of
analysing a file starts with de-minification of the code to make it more readable. Then
beautification of the code is performed. The beautification tries to change the variable
names back to the original names and makes sure the code layout is restored. After
this is done, the manual investigation can commence.

An example of the de-minification and beautification process is shown below.
1 track : f unc t i on ( t , n ) {n . t a r g e t=t , e . i f rameTracker . h a n d l e r s L i s t . push (n) , e ( t ) .

bind (” mouseover ” ,{ handler : n} , e . i f rameTracker . mouseoverListener ) . bind (”
mouseout ” ,{ handler : n} , e . i f rameTracker . mouseoutListener ) }

Code snippet 5.1: Original code
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1 track : f unc t i on ( t , n ) {
2 n . t a r g e t = t , e . i f rameTracker . h a n d l e r s L i s t . push (n) , e ( t ) . bind (”

mouseover ” , {
3 handler : n
4 } , e . i f rameTracker . mouseoverListener ) . bind (” mouseout ” , {
5 handler : n
6 } , e . i f rameTracker . mouseoutListener )
7 }

Code snippet 5.2: After de-minification process

1 track : f unc t i on ( source , opt ions ) {
2 /∗∗ @type { ! Object} ∗/
3 opt ions . t a r g e t = source ;
4 $ . i f rameTracker . h a n d l e r s L i s t . push ( opt ions ) ;
5 $ ( source ) . bind (” mouseover ” , {
6 handler : opt ions
7 } , $ . i f rameTracker . mouseoverListener ) . bind (” mouseout ” , {
8 handler : opt ions
9 } , $ . i f rameTracker . mouseoutListener ) ;

10 }

Code snippet 5.3: After beautification process

Then, a manual analysis was done on the de-minified and beautified code. The
results of the manual analysis showed that certain methods such as tracking mouse
movement were not only used for behavioral detection, but also used for regular website
operations. Thus, reinforcing the idea of possible false positives. These false positives
were largely present as almost all scripts would have these methods applied.

During the manual reverse analysis we found that for a lot of behavioral detection
scripts, API calls were being made. Since we do a static reverse analysis we ignore
those API calls and focus on the methods we find in the source code. However, if
further research commences regarding this topic this is worth to look into further. For
example, finding out which behavioral detection method is present in one of the scripts
and tracing this method through the API call with dynamic sink and source tracing.

The amount of bot detection scripts in the current database which were subject
to the automated detection script was 19,393. The way in which these scripts were
gathered structure-wise should be no problem for the data parsing which is done by
the automated script. To make sure any updates on the database do not interfere
with the automatic script, the database structure should be maintained. Since all bot
detection scripts are distributed across more than 9000 folders, scripts are first stored
in one directory. Then, the automatic script is able to iterate over the bot detection
scripts and categorize the patterns in directories according to the behavioral detection
methods table below.

5.2 Identifying known behavioral detection

The re-identification of known behavioral detection in this research was done in two
ways. The usage of pattern matching has been used to compare event types and meth-
ods that attach events to specific elements for behavioral detection. The other form
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of re-identification was done by methods that we will call ”re-identification patterns”.
Whereas the pattern matching can lead to false positives, the re-identification patterns
are used to take away these false positives. By checking the patterns used by compa-
nies that we know use behavioral detection against the patterns that might contain
behavioral detection, we are able to confirm whether the patterns that we found to be
possible behavioral detection are indeed behavioral detection.

In regards to the minification and obfuscation of code, we have not ran into prob-
lems. As we can see in code snippet 5.1, the code that is related to behavioral detection
stays intact and has not been obfuscated. Therefore we do not need a de-obfuscation
method when it comes to checking for behavioral detection patterns.

5.3 Results

In the reverse analysis 19,393 known bot detection scripts have been analysed. In the
reverse analysis we have encountered the behavioral detection methods in table 5.1.
These behavioral detection methods have unique properties which we can use to classify
them. First of all, a lot of behavioral detection methods we have encountered can be
categorised as ’event types’. An event in Java is triggered whenever a change in the
graphical user interface occurs, making it perfect for behavioral detection. This can
be used, for example, to check whether certain buttons are interacted with.

Besides the event types, we also came across methods which attach events to specific
element (e.g. addEventListener). We categorise these methods as ’event-element-
connections’. For each touch event type an event handler has to be registered. These
touch events are mostly keyboard and mouse usage. Meaning, these patterns will most
likely occur more frequently and can also frequently occur whenever no behavioral
detection method is present.

Furthermore, there are unique patterns which identify a script or a host. These
patterns highlight the typical style of a script and we can use these patterns to detect
previously known and unknown scripts by re-identification. These ’re-identification
patterns’ are used to check for strings and URLs which are linked to third parties
known for behavioral detection. Meaning, whenever a match is found, the script most
likely has behavioral detection present.
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Category Keyword

Event type Mouse mousemove

onmousemove

mouseOverListener

mousewheel

DOMMouseScroll

Keyboard keydown

Event–element connection trackEvent

addEventListener

addBehaviorkey

Re-identification patterns distil

perimeterx

adscore

datadome

perfdrive

Table 5.1: Behavioral detection categories

Detection method Pattern # Matches

Mouse movement mousemove 4676

onmousemove 1344

mouseOverListener 126

Scrolling mousewheel 1882

DOMMouseScroll 1436

Keyboard keydown 4726

Event trackers trackEvent 2523

addEventListener 6754

addBehaviorkey 611

Table 5.2: Behavioral detection method occurrences

Besides the different patterns found above which can be classified under the same
category as the detection patterns in table 4.1, there were also occurrences of new
patterns for behavioral detection such as a code inclusion by Distil Networks. Distil
Networks is known for its bot detection and its machine learning algorithms used for
behavioral detection1.

1https://www.imperva.com/
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Whenever we take a closer look at the scripts we can see the methods work in
practise. The most occurring methods ’mousemove’, ’keydown’ and ’mousewheel’ are
more often than not used to simply detect the movements of the user and adapt the
buttons or content of the web page accordingly (cf. 5). The other methods which
are less used, such as the ’mouseOverListener’, are mostly used in the context of
behavioral-based detection. Whenever we take a look at the full scripts using these
code inclusions we can see that a full user report is built, based on the behavioral
analysis.

As mentioned before, the most occurring code inclusions are more often than
not used to detect movement of the user, unrelated to behavioral-based detection.
Whenever these code inclusions are picked up however, they are treated as possible
behavioral-based detection. In the grand scheme, this can lead to false positives by
which effects the scoring mechanism with the relatively high amount of matches. For a
more accurate representation of the numbers, an extra step to eliminate false positives
should be taken. A next step towards reaching an even more accurate depiction of
the amount of behavioral-based detection being done, is to use more specific regular
expressions to eliminate the benign use of these code inclusions.
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Chapter 6

Automatically recognising
behavioral detection

We have chosen to research behavioral detection methods we have found both in the
manual reverse analysis and in literature. Since we have not seen new methods in our
research we can not be certain of the behavioral characteristics that are bound by the
unknown behavioral detection methods. Therefore, at this stage we have deliberately
chosen to not look for and investigate these unknown behavioral detection methods
further, but instead focus on what we have found in the reverse manual analysis and
the literature.

What can we detect and what do we choose for?

In this research we do not focus on finding behavioral detection patterns that we have
not seen, in either literature or the manual reverse analysis. We have decided to shift
our focus away from this, since we can not be certain of the characteristics of the
behavioral detection pattern when we have not found it in the reverse manual analysis
or in the literature. Therefore we are not sure of what we should look for and detection
is therefore not feasible.

Table 4.1 gives the detection methods we have found in literature and table 5.1
shows the behavioral detection methods we have found in the manual reverse analysis
and are used for automatically identifying behavioral detection.

Challenges and limitations

Automatic detection comes with its challenges. We are only able to perform client-side
detection and no server-side detection. Besides that, when we do perform client-side
detection, we can miss certain behavioral detection methods and misclassify others.
We are able to miss certain behavioral detection methods since we can only identify
detection methods we have encountered in the manual analysis or in literature. Besides
that, we are able to misclassify certain methods as behavioral detection whenever we
perform client-side detection.
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Data acquisition

Acquiring data in this study means the collection of scripts containing behavioral de-
tection methods. The most efficient way of acquiring this data is through an automated
tool. This tool should be able to traverse the homepage of a web page and return the
static scripts.

In this research area there are multiple tools that can be used [MSD+20]. There
are HTTP clients such as wget, headless browsers such as PhantomJS and automated
user browsers such as OpenWPM [Goß20].

At first, we tried using the automated user browser OpenWPM to measure the be-
havioral detection on the web. Regarding resource consumption, OpenWPM relatively
uses a lot of resources compared to the other two classes of tools mentioned. However,
the completeness of the OpenWPM tool with respect to scripts downloaded is a lot
higher than the HTTP clients. The completeness is higher because the automated user
browsers is dynamic whereas HTTP clients only find the static scripts. One major dis-
advantage the automated user browser OpenWPM has over the headless browsers and
HTTP clients is the complexity of using the tool. Before using OpenWPM, the differ-
ent commands and code snippets which can be found on the wiki of the tool need to be
understood. Then, separate commands need to be programmed which are in line with
the framework that is set up, to generate the results you are looking for. After running
into issues locally and being able to fix them, these issues were unable to be resolved
when running OpenWPM on a server. Websites which were reachable would give a
404 error (page not found) or a 403 error (forbidden) on multiple occasions. Since it
would cost too much energy and time to fix this and results were more important, we
decided not to use OpenWPM. OpenWPM is not trivially deployable.

We then decided to look into using headless browsers (e.g. PhantomJS) or a HTTP
client (e.g. wget). Simplicity-wise, HTTP clients are easier in use. Using a headless
browser for the first time requires some learning process, whereas using the HTTP
client wget can be used immediately.

Moreover, the resource consumption of the HTTP client wget is lower than the
headless browsers. Therefore we have opted to use the HTTP client wget for our
research.

Design decisions

Scraping techniques and other bot-related activities on websites have evolved over the
years. Many websites have implemented countermeasures against bots being able to
circumvent their detection methods. One of the initial techniques to try and counter
bots is the usage of obfuscation. Obfuscation is the task of deliberately changing the
source code in such a way that it is difficult to read and understand. However, in
the manual reverse analysis we have seen that obfuscation techniques do not effect the
outcomes of our research as they do not effect the behavioral detection part of the
scripts.

Another problem with the evaluation of the scripts is the fact that the vast ma-
jority of the scripts is minified. Minification can be seen as a type of obfuscation as
some variables will be renamed and empty spaces are removed. The main purpose of
minification however, is the reduction of the file size. The JavaScript beautifier atom-
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beatify, which is a package within the atom IDE was used to make sure the scripts had
their spacing restored.

After this process, we can start looking at the content of the scripts and investigate
whether behavioral detection is being used. The scripts are statically analysed for be-
havioral detection patterns. The process of checking for behavioral detection patterns
is done as described in section 6.2.

Moreover, the choice was made for static analysis instead of dynamic analysis.
Whereas dynamic analysis has the advantage being certain that the code found is ac-
tually being executed and used, it has a major problem for this research. Namely, the
code that is not being used at the time of analysis will not be picked up and analysed
even though it is actually being used by the website. For this reason we have chosen
for static analysis.

In the manual reverse-analysis we have found that some scripts are inconsistent
with their usage of capital letters. Therefore we have made sure that every line in
the script was converted to lowercase and matches the lowercase terms we used for
analyzing whether the script contains behavioral-based detection methods.

1 l i n e = f . r e a d l i n e ( ) . lower ( )

Code snippet 6.1: Lowercase conversion

Analyzing the files there were some problems at first. Due to obfuscations in en-
coding used by the scripts we needed to use codecs with the ’utf-8’ encoding and we
ignore the errors thrown. We ignore the errors instead of trying to solve them since it
was found with manual analysis that these errors thrown were not of interest for the
research (e.g. differently encoded search strings on the websites).

1 f = codecs . open ( os . path . j o i n ( subdir , f i l e ) , ’ r ’ ,
2 encoding =’ utf −8 ’ , e r r o r s =’ ignore ’ )

Code snippet 6.2: Using utf-8 encoding

Whenever analyzing the files, we came across another problem with the implemen-
tation. Whenever we would search for re-identification patterns we would generate a
lot of false positives. For example, code inclusions such as .distilled would come up
as being a part of the re-identification pattern Distil. Therefore, we needed to use
regular expressions to limit the search for re-identification patterns to the exact term
we gave the script instead of simply looping through the code inclusions we stamped
as being behavioral-detection based and disregarding which extensions were added to
the functions.

The re-identification pattern now looked like this:

1 i f re . s earch ( r ”\b{}\b ” . format ( de t e c t o r ) , l i n e ) :

Code snippet 6.3: Re-identification pattern regular expression
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6.1 Recognising behavioral detection

To better recognise behavioral detection we have made use of both known methods
found in literature and the manual reverse analysis. These results of these methods
were then combined and used in an automatic tool, analysing the potential behavioral
detection scripts from the top 10,000 Tranco list. We will find methods that we have
encountered in either of these studies. However, other behavioral detection outside of
the behavioral detection found in of the methods described above will not be picked
up by our tool.

Creating our own analysis strategy, it’s important to note that behavioral detection
is done in a couple of ways as mentioned above and therefore it is important to have
multiple detection categories. We have split up the detection in the following detection
categories:

1. Event types
In the manual analysis we have found multiple code inclusions in the form of
event types, which have been traced back to behavioral detection (cf. 5). These
code inclusion can indicate behavioral detection being in place, but can also lead
to false positives.

2. Event-element connections
Event-element connections are methods that attach events to specific elements.
In the reverse-analysis we have seen that a particular subset of these events have
been largely present in the behavioral detection scripts.

3. Re-identification patterns
A re-identification pattern is a pattern which comes from a specific web-bot
detector. For example, a company such as Distil Networks is known for its web-
bot detection based on machine learning. The re-identification patterns are used
for validating the identification of a behavioral detection script. Whenever a
re-identification pattern is found, it is a certainty that behavioral detection is
present.

6.2 A scoring mechanism for identifying behavioral de-
tection

We re-use the concept of Vlot to determine a score based on the appearance of patterns
(static check) [Vlo19]. However, the specific patterns used, the weights of the patterns
and the aggregation are original.

To categorize the results we have made use of a scoring algorithm. A score is given
to each of the scripts, based on the scoring mechanism we will explain below. If the
accumulated score of a script goes above the threshold mentioned in this same section,
the script will be labeled as a behavioral detection script.

After looking at the automated reverse-analysis and verifying the results with the
manual reverse-analysis we came up with the following scoring mechanism. Instead of
using arbitrary scores we have chosen to normalize the scores and use percentages to
better depict the chance of behavioral detection being present. Based on the reverse
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analysis we have determined a threshold which the combined detection categories need
to exceed for the script to be classified as being a behavioral detection script.

Since the methods that attach events to specific elements have a high chance of
being included when it comes to scripts not containing behavioral detection, the score
of the event types is higher than the event-element connections (20%) at 50% for
the mouse event types and 30% for the keyboard event types. The choices for these
percentages are based on the amount of occurrences in the different scripts and the
outcomes of score calculations after several test runs.

After several test runs and analysis of the results we have seen that the tool is
accurate but still has some flaws. A scoring mechanism will always be flawed, but
using the normalization we have made its accuracy more precise.

Event Types Methods that attach Re-identification

events to specific elements patterns

Code Inclusion mousemove trackEvent distil

onmousemove addEventListener perimeterx

mouseOverListener addBehaviorKey adscore

mousewheel datadome

DOMMouseScroll perfdrive

keydown

Threshold Mouse 20 20 1

Keyboard 10

Score Mouse +50% +25% 100%

Keyboard +30%

Table 6.1: Scoring mechanism

It is important to note that adding the score to the total score will only happen
after the threshold is met or exceeded. These thresholds were determined based on
the manual and automatic reverse analysis results.

Based on what we have seen in the reverse analysis we have decided to split up
the scoring mechanism results into 5 separate categories. The first category consists of
scripts which have no indications of behavioral detection. A score 0%-20% indicates
the threshold was not met for any of the categories in table 6.1. The next category has
some indications of behavioral detection in the form of keyboard event types. These
event types, not in combination with other methods, are in our opinion not enough to
classify a script as having behavioral detection. Category 3 contains the scripts we are
uncertain about. These scripts have some indications of behavioral detection, but do
not have any supporting methods. However, category 4 scripts do have multiple indica-
tions of behavioral detection being present. These scripts contain enough mouse event
types to surpass the threshold and are accompanied by multiple event-element connec-
tions, keyboard event types or both. The category with the score of 100% represents
the scripts of which we know for sure that they contain behavioral detection. These
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scripts contain known patterns (re-identification patterns) from companies known to
use behavioral detection. This categorical scoring system has been depicted below.

# indications detected Estimation Score

1. No indications Not present 0%–20%

2. Low number of indications Probably not 20%–40%

3. Mid number of indications Uncertain 40%–60%

4. High number of indications Likely 60%–95%

5. Re-identification pattern found Certain 100%

Table 6.2: Estimation and scoring of behavioral detection

The files are analysed line by line to check for code inclusions of the terms in
table 6.1. These code inclusions are checked for, by using regular expression. The
following code snippets shows some examples of what the script was able to detect:

1 loadDataDomeScript ( ) {
2 var e=document . createElement (” s c r i p t ”) ; e . type=”text / j a v a s c r i p t c r i p t ”
3 }(window , document , ” s c r i p t ” , ” https : // j s . datadome . co/ tags . j s ”
4 }

Code Snippet 6.4: Detection pattern: Re-identification pattern (datadome)

1 func t i on ( ) {
2 h(” Di s t i lFP2Sta r t ”) ; var t=new s ; t . i n t e r r o g a t e ( func t i on ( t ) {h(”

DistilFP2End ”)
3 }

Code Snippet 6.5: Detection pattern: Re-identification pattern (distil)

1 ve r i f i edCaptcha : ! 1 , fa i l edToVer i fyCaptcha : ! 1 , fa i ledToDecodeBase64 : ! 1 ,
errorMessage :””}

2 ,n . env=”pub l i c ” ,n . serviceName=”per imeterx ”

Code Snippet 6.6: Detection pattern: Re-identification pattern (perimeterx)

1 document . addEventListener ( ’ touchstar t ’ , t ouc h s t a r t L i s t en e r ,
eventL i s t ene r sOpt ions )

2 document . addEventListener ( ’ mouseover ’ , mouseoverListener ,
eventL i s t ene r sOpt ions )

Code Snippet 6.7: Detection patterns: Mouse event (mouseoverListener) and Event-
element connection (addEventListener)

Since we know from our research that the re-identification patterns such as the
ones above all use behavioral detection these scripts will score 100%. However code
snippet 6.7 shows 3 pattern matches. As we know, these can be false positives as
the EventListeners and mouseOverListener can also be used for other purposes on the
website. Consequently, we would need to analyze the entire script to see whether these
categories surpass the threshold.
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Chapter 7

Identifying behavioral detection
in the wild

This chapter serves to explain the methodology behind the case study as proposed by
us, the researchers. The methodology is created to investigate behavioral detection
methods on the internet and its existing countermeasures. The methodology has been
inspired by the methodology from the thesis of Gabry Vlot [Vlo19]. Similar to the thesis
of Gabry Vlot we will start with a gathering phase where the scripts will be collected for
manual reverse analysis. Subsequently, the manual analysis will take place, a literature
study will be done and thereafter the reverse analysis will be automated. Afterwards,
behavioral detection will be measured on the web using the insights we have gained
from the reverse analysis and the literature study. This poses the question whether
we find behavioral detection by scripts we have not encountered before. If so, do these
scripts indeed detect bots by their behavior?

7.1 Methodology

We visit the homepages of the top 10,000 websites from the Tranco top 1 million. The
running scripts are extracted and downloaded. The extraction process was done using
wget and is explained in the data acquisition paragraph of chapter 6. After the data
acquisition the scripts are checked for behavioral detection.
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7.1.1 Setup

Initially, we have split up the detection methods, where it is important to note that
its scoring mechanism is prone to false positives as mentioned in Section 7.1.3.

Pattern recognition is a common technique to figure out whether someone or some-
thing is out of place. For example, in airports, screening supervisors will have score
sheets and use security camera footage to evaluate whether someone’s behavior is
deemed as suspicious behavior.1 This course of action has now been transferred over
into bot detection, which is where the name behavioral detection comes from. Similar
to the screening of people in airports, our bot detection scripts have a threshold and
whenever this threshold is exceeded, the behavior of the bot is classified as suspicious.
From the results of the case study we can conclude that the patterns mentioned in
Section 6.1 are sophisticated enough to check whether scripts use behavioral-based
detection.

We have decided to split the behavioral detection methods up into categories. All
three of these categories have been established through results from the manual reverse
analysis and the literature study. One of these categories is event types and contains
Java event types that have been linked to behavioral detection in either the literature
study or in the reverse analysis.

Besides that, these methods often have other methods which attach these events
to specific elements. These methods that attach events to specific elements have a
separate category which can further confirm the suspicions created by the first category.

Furthermore, re-identification patterns are used to confirm the suspicions of behav-
ioral detection being present. Through reverse-analysis we found that re-identification
patterns are the best indication of behavioral detection being present. Even though
re-identification patterns are still able to be false positives (e.g. inclusions of these re-
identification patterns in comments), it is more than likely that behavioral detection
is being used whenever these re-identification patterns are included. Moreover, it is
also possible that these re-identification patterns are found when no other methods
relating to behavioral detection have been found. In this case, behavioral detection is

1https://www.asi-mag.com/behaviour-detection-demystified-glimpse-tsas-capability/
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most likely done server-side and our tool is unable to analyze the code for behavioral
detection event types. Therefore we have decided that these re-identification patterns
always return a 100% score, meaning the script has behavioral detection whenever one
of these patterns is encountered.

Running a script locally

To better understand the workings of behavioral detection scripts, it is necessary to
study their behavior. Running one of these scripts locally is the first step into under-
standing its behavior regarding the recording and storing of data. However, studying
these scripts more carefully suggests that almost all scripts make use of API calls.
These get in the way of running these scripts locally. Therefore, we have set up a
proxy which negates the problem of getting timeouts.

Besides having to set up a proxy, some scripts are scrambled to make sure they are
as unrecognizable as possible. We take a look at one of the many scripts which is labeled
”Tocca.min00.js”. The min00 suggests we are dealing with minified javascript. Using
a JavaScript beautifier we are able to undo the minification and make the JavaScript
readable. Now, trying to run the script gives us multiple errors. Syntax errors, variable
definition errors and callback errors. For this particular script we were able to keep
the functionality of the script intact whilst at the same time being able to both fix all
of the errors above as well as generate output.

For example, we decided to take a look at the mouse movements and mouse presses.
Whenever the mouse button is pressed, we would see the following alert:

Figure 7.1: Mouse click alert

Both pointerdown and mousedown indicate that the mouse button was pressed and
a ’touchstart’ event is started to track what happens right after the mouse button is
pressed. After pressing the mouse button we moved the mouse whilst still holding the
left mouse button.

Figure 7.2: Mouse dragging alert
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As we can see in the figure above, the pointer and the mouse are being moved, but
the event is called ’touchmove’, meaning we are still holding the left mouse button.
In short, the ’touchstart’ event has recorded the fact that we are still holding the left
mouse button and dragging the mouse across the screen. However, when it comes to
behavioral detection this information is useless by itself. To create a full user profile
and to check whether any inhuman movements are done with the mouse, we need
both timestamps and pointer coordinates. Respectively, this is what is being recorded.
Further results regarding the local script analysis can be found in appendix C.

Whilst running a script locally it became clear how the recording and storing of
attributes was done. Using this information in combination with the reverse analysis
and the literature study we were able to come to the conclusion that full user profiles
are built. This data is stored on a web server and the website owner or a third party is
able to look at the user profiles and possibly contains an AI generated threat level. As
we were able to see in figure C.1, timestamps are used also. We were able to find that
these timestamps are not only used to check which action was taken by the user at
which time, but that this plays a big part in behavioral-detection as well. Namely, time
tamps are used for rate limiting and analyzing how often and how rapid requests are
made to the server. All of the alerts shown in section 7.1.1, will be combined to form
a user profile and possibly a threat level. Whenever the threat level is above a certain
threshold, these user agents can be flagged for closer monitoring, given a CAPTCHA
to solve to make sure they are in fact not bots or they can be denied access entirely
by placing the user agent on a blacklist.

7.1.2 Results

Whenever measuring the degree of behavioral detection on a website we take a look
at the code inclusions of the different patterns mentioned in section 5.
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Detection method Found method Example

1 2 3 4

Event type Mouse x x x www.verizonmedia.com— 2.6e5a4b21.chunk.js

x x www.mobile.de — app.js

x x x www.kapwing.com— ffmpeg-core.js

x x www.flashscore.com— core 2 1841000000.js

Keyboard x x x www.telstra.com.au — latest.min.js

x x x www.umbc.edu — swiper.js

x x x www.microchip.com — kendo.min.js

x x x www.jnu.edu.cn — iscroll.js

x x x www.pepperdine.edu — main.bundle.js

5 6 7

Event-element connection x www.redlink.com.ar — raptor.min.js

x x www.flinders.edu.au — at.js

x x www.astm.org — addtl.js

x x www.www.mturk.com — s code.js

8 9

Re-identification patterns x www.whitepages.com — dstl-wp.js

x www.www.streetinsider.com — dstlstrtins.js

x www.walmart.com — main.4fb314cb.chunk.js

x www.skyscanner.com — main.66eba5ab.js

x www.oprah.com — dstl-oprh.js

Methods:

1. mousemove/onmousemove
2. mouseOverListener
3. mousewheel/DOMMouseScroll

4. keydown
5. addEventListener
6. trackEvent

7. addBehaviorKey
8. distil
9. perimeterx

Table 7.1: Several sites per behavioral detection method

In table 7.1 we see that scripts contain certain methods that are classified by us
as scripts potentially containing behavioral detection methods. However, these scripts
first need to exceed a certain threshold to be classified as being a behavioral detection
script.

In the table below we can see how many occurrences of each of the methods is nec-
essary to be recognised as possible behavioral detection on its own. Mouse movement
and keyboard event types have a lower threshold than event-element connections since
the event-element connections on their own are no indication of behavioral detection.
Once they are used in combination with the other methods it becomes a vital part of
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information processing in the behavioral detection. The re-identification patterns do
not have a threshold to surpass since the presence of this pattern means that behavioral
detection is present.

Detection method Threshold

Event type Mouse 10

Keyboard 10

Event-element connection 20

Re-identification patterns 0

Table 7.2: Amount of websites per detection method

Threshold Scripts in range Scripts in

range (amount) range (%)

0-20% 17203 97.29

20-40% 290 1.62

40-60% 97 0.54

60-95% 69 0.39

100% 23 0.13

Table 7.3: Measurement of behavioral-based detection

The table above depicts that for most of the scripts we can conclude for certain
that no behavioral detection is present. For only 23 of 17,862 scripts we can conclude
that we are in fact 100% certain they carry out behavioral detection.

7.1.3 Validation

The validation of the findings is important to justify the outcomes presented. To
justify the outcome of the wget measurement and our accompanying conclusion it is
important to manually look at some of the scripts in question and check whether the
tool did not return a false positive.

False positives in this case means that there are scripts labeled as behavioral de-
tection, which do carry out behavioral detection. The way to validate these scripts
and reduce the false positive rate is by manual validation and random sampling.

False negatives in our research are the scripts which are not labeled as behavioral
detection scripts, but in reality do carry out behavioral detection. Besides that, the
behavioral-based detection script was analyzed for correctness. This correctness was
both validated by manual reverse-analysis to confirm the results as well as change
variables and compare the results to the expected output.

In the first phase of the research we have taken a look at scripts previously found
in a bot detection research [JKV19]. Reverse-analyzing these files and using its data
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means that we can be certain that the input we use for the script is bot-detection and
has a chance of being behavioral-based detection.

The fact that we cannot be certain whether behavioral-based detection is present,
comes from the fact that detecting whether detection is done is simply hard to verify.
For example, mouse movement can be used to track and sketch a data profile for
examination regarding behavioral-based detection. On the other hand, these mouse
movements might as well be used for another purpose, such as checking the most
popular areas of a website.

This problem can lead to false positives, by falsely identifying benign usage of these
code inclusions as use for behavioral-based detection. For this reason, percentages were
used to have a chance-based scoring system regarding the scripts of the websites we
have analyzed. The higher the percentage, the more likely behavioral-based detection
is present . Other measures have been taken to try and minimize the false positives
such as using regular expressions to minimize the false identification of re-identification
patterns as well as using reverse-analysis on the results to remove certain patterns we
have used in past iterations.

False positives are the main issue that we came across. However, we still have
to keep in mind that false negatives are a possibility. Missing certain behavioral-
based detection which is present, but is not picked up by our script. To mitigate
this issue, we have done multiple sample tests of the results and manually analyzed
these scripts for behavioral-based detection. Obviously, we are unable to analyze all
of these scripts by hand and automated scripts might still miss some behavioral-based
detection. However, since we do not have the resources to manually analyze all of
these scripts, a manual reverse-analysis of the scripts analyzed by the script was our
best alternative.

Category Population Proportion Sample size FP FP%

0-20% 17203 97.29 41 2 5%

20-40% 290 1.62 23 2 9%

40-60% 97 0.54 8 0 0%

60-95% 69 0.39 6 0 0%

100% 23 0.13 2 0 0%

Table 7.4: Amount of false positives

The amount of false positives was calculated through random sampling over the
population of 17,862 scripts. Meaning to calculate the necessary sample size for a
statistically significant result for simple random sampling we have to take account the
proportion as well. The minimum number of necessary samples to meet the desired
statistical constraints were calculated using scientific a scientific calculator as well as
an online tool. On the website of this same tool is explained how this calculation works
in practise2.

After calculating the minimum sample size requirements with a confidence level of

2https://www.abs.gov.au/websitedbs/d3310114.nsf/home/sample+size+calculator
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95%, the corresponding amount of scripts were randomly selected from the different
categories. These scripts were then manually reverse analyzed with the conclusion
whether they should be in their current category. We found that the scripts ranging
from 40% up until 100% were all in the correct category. However, we found that
2 scripts in the 20%–40% category should be in the 40%–60% category as it is very
unclear whether behavioral detection is present. Moreover, 2 scripts from the first
category (0%–20%) can actually be placed in the second category (20%–40%) since
there are some very limited behavioral detection methods and we still do not believe
behavioral detection is present.
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Chapter 8

Conclusions and Future work

The aim of this research is to investigate how behavioral detection works in practise.
Besides that, the key subgoal is to uncover when current real-world bot detection
methods deem evidence sufficient to classify a visitor as a bot.

8.1 Conclusions

By conducting the research explained in the methodology we have answered the re-
search questions below:

Sub-question 1: Which methods for behavioral detection exist?
We started with identifying which behavioral detection methods were discussed in
literature. The results are depicted in the table below:

Detection method Countermeasure Discussed by Detected at

Rate limiting of user requests Delays and random waits [BMV20, MD11] client or server

Honeypot trap Do not access invisible elements [SA18] client and server

Captcha/Recaptcha – Audio-version → speech-to-text [SA18, SKSP17, BMV20] client and server

– Crowdsourcing

Site traversal Human-like path traversal configuration a.o. [TCK09, SVA11] server

Mouse movement Random mouse movements [PB04, CGK+12] client and server

Table 8.1: Overview of behavioral detection methods discussed in literature

Subsequently, we performed a manual reverse analysis of the behavioral-based de-
tection scripts for other existing behavioral detection methods. We were able to catego-
rize the behavioral detection methods in the categories: Event type with sub-sections
Mouse and Keyboard, Event-element connection and Re-identification patterns as can
be seen in the table below:
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Category Method

Event type Mouse mousemove

onmousemove

mouseOverListener

mousewheel

DOMMouseScroll

Keyboard keydown

Event–element connection trackEvent

addEventListener

addBehaviorkey

Re-identification patterns distil

perimeterx

adscore

datadome

perfdrive

Table 8.2: Behavioral detection categories

Sub-question 2: How can behavioral detection be recognised?
Up until now, a strategy to detect behavioral-based scripts has not been publicly
published. In [Vlo19] Vlot has used a method for detecting scripts which detects bot
detection scripts. This method was used to get an understanding of how to go about
detecting bot-detection scripts. Besides that, the scripts we used were specifically
created to analyze the scripts for behavioral-based detection.

Creating our own strategy, it’s important to note that behavioral detection is done
in a couple of ways and therefore it is important to have multiple detection categories.
We have split up the detection in the following detection categories:

1. Event types
In the manual analysis we have found multiple code inclusions in the form of
event types, which have been traced back to behavioral detection (cf. 5). These
code inclusion can indicate behavioral detection being in place, but can also lead
to false positives.

2. Methods that attach events to specific elements
Methods that attach events to specific elements are indirectly linked to behavioral
detection. In the reverse-analysis we have seen that a particular subset of these
events have been largely present in the behavioral detection scripts.

3. Re-identification patterns
A re-identification pattern is a pattern which comes from a specific web-bot
detector. For example, a company such as Distil Networks is known for its web-
bot detection based on machine learning. The re-identification patterns are used

36



for validating the identification of a behavioral detection script. Whenever a
re-identification pattern is found, it is a certainty that behavioral detection is
present.

One of the biggest challenges with identifying behavioral detection is trying to
distinguish between programs that only use behavioral detection features and scripts
that are created with the intent of behavioral detection. For example, drawing pro-
grams need to track mouse movement and uses its corresponding methods which attach
events to specific elements. However, in our manual analysis of the scripts and draw-
ing programs such as www.draw.io we found out that most of these drawing programs
use multiple JavaScript files to track movement of the objects, the mouse or keyboard
presses. From the manual reverse analysis we were able to conclude that in behav-
ioral detection scripts, these methods were always present in relatively large amounts.
Therefore, we are often able to distinguish the benign use of behavioral detection
features in scripts from the scripts which are created with the intent of behavioral
detection by the amount of behavioral detection features the script contains.

To classify the scripts as behavioral detection scripts we need to make use of a
scoring-algorithm. Even though scoring mechanisms are flawed there is no perfect
way to determine whether detection is being done. We are able to detect whether the
mouse movement is detected and stored, but whether the mouse movements are then
evaluated with behavioral-based detection is hard to detect. Therefore there are no
obvious yes or no answers when it comes to checking whether a script uses behavioral-
based detection. Instead of using arbitrary numbers, we normalize the results and have
done multiple test runs adapting the scoring mechanism so that the scripts are now
analyzed and a chance of behavioral-based detection is calculated and checked against
a threshold. This has led us to the following scoring categories:

Estimation # indications detected Score

1. Not present no indications 0%–20%

2. Probably not low number of indications 20%–40%

3. Uncertain mid number of indications 40%–60%

4. Likely high number of indications 60%–95%

5. Certain re-identification pattern found 100%

Table 8.3: Estimation and scoring of behavioral detection

Sub-question 3: How many sites are using behavioral detection?
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Category Population Proportion Sample size FP FP%

0-20% 17203 97.29 41 2 5%

20-40% 290 1.62 23 2 9%

40-60% 97 0.54 8 0 0%

60-95% 69 0.39 6 0 0%

100% 23 0.13 2 0 0%

Table 8.4: Amount of false positives

We can conclude from this table that 17,203 out of the 17.862 scripts have between
0% and 20% chance of containing behavioral-based detection.

Thus, we can conclude with certainty that 17,203 scripts do not use behavioral-
based detection if we disregard any false negatives. 290 scripts have between 20%
and 40% chance of containing behavioral detection. Meaning, 290 scripts possibly
have some small form of behavioral-based detection, but have such a low chance that
we believe no behavioral detection will be present. 97 scripts are in a range where we
simply do not know whether they carry out behavioral detection until closer inspection
as they do contain a limited amount of behavioral detection methods. However, 69
scripts have a good chance of containing behavioral-based detection since they contain
multiple behavioral detection methods and the 23 scripts with the highest chance of
containing behavioral detection certainly do contain behavioral detection.

There is a very limited amount of false positives in the population which was
concluded through simple random sampling. However, the sample size taken was the
minimum and using a larger sample size might alter the results slightly. Since of the
limited time to conduct this research we were unable to use bigger sample sizes, but
wanted to make sure that the results were statistically significant. We used a confidence
level of 95%.

8.2 Future work

As expected, the research area we explore with this research is a largely unexplored
information-rich area. We have adapted Vlot’s score-based approach for detecting
fingerprint bot detectors to detect incidents of behavioral detection on the web. As we
have mentioned before, any score-based approach is flawed. Therefore further research
could be done on creating another system that is fit to analyse scripts for behavioral-
based detection or bot-detection in general.

Even though we have explored and described countermeasures against the behav-
ioral detection methods we found, there will be more development regarding these
countermeasures. It will be interesting to see whether more countermeasures will be
developed which have a big impact on this research-area.

Moreover, the script we use to analyze the potential behavioral detection scripts
can be improved in accuracy. An even bigger pool of behavioral detection methods
and patterns can lead to more accuracy of the tool. As mentioned by Vlot in [Vlo19]
introducing anti-patterns can also improve the accuracy of the tool in question.
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We make use of static analysis using wget. Results using dynamic analysis with a
more sophisticated scraping tool will possibly yield more significant results. Besides
that, this research has laid the foundation of ingredients necessary for machine learn-
ing on scripts to detect behavioral detection in scripts and classify them accordingly.
Further research using these more advanced techniques is the appropriate and logical
next step to take regarding research in this area.

Since we have conducted this research on the homepages of the top 10,000 websites
in the Tranco top 1 Million there is still a lot of room for further research sample-wise.
It will be interesting to see whether a larger sample pool will alter the results. The
top 10,000 websites contain many bigger websites which might contain more or less
behavioral-based detection than the websites further down the list.
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Appendix A

Implementation details

A.1 Implementation of wget

We design and adapt a way to measure incidents of behavioral detection on the web.
Ultimately, the choice was made to use wget.

We want to make sure we only accept JavaScript as these scripts are written in
JavaScript. To do this, wget has the flag -A which is then followed by js to ensure we
only accept JavaScript.

wget -A js

The next step is to make sure that wget is invoked with the top 10,000 websites
in the tranco top 1 million1. To do this we first create a .txt file containing the top
10,000 websites of the tranco 1 million. Then, using the -i flag in wget we can specify
this .txt file as the input file and it will iterate over the websites.

wget -A js -i websites.txt

By running multiple tests it became clear that trying to connect to a website
multiple times was never successful and takes up a lot of time. Therefore the choice
was made to only give wget 1 try per IP listed for the website at hand. Besides that,
it also became clear that the download was blocked on some occasions even though we
would only visit the homepage. Therefore we turned off robots.txt, which needs the -e
flag to be turned off. Moreover, it became clear the some files would be downloaded
multiple times, meaning it would take up resources unnecessarily. Therefore we added
the flag –no-clobber which makes sure that whenever a file is downloaded in the same
directory it will be clobbered or overwritten upon repeated download. It is important
to realise that we create a directory for each web page visited and therefore do not
delete the same files if they are ran on different web pages.

wget --no-clobber --tries=1 -e robots=off -A js

-i websites.txt

As mentioned before we are only visiting the homepage. To ensure this, we disallow
retrieval of links of the hierarchy above the directory of the homepage. Which means

1https://tranco-list.eu/
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the ascent to a parent directory is not allowed whenever possible. This is done by
using the -np parameter. In combination with the –page-requisites parameter, wget is
prompted to download all the files which are needed to display the web page.

wget --no-clobber --tries=1 -e robots=off -np

--page-requisites -A js -i websites.txt

To make sure we do not get blocked from visiting websites we change our user
agent to a common chrome user agent. Furthermore, recursive download can overload
remote servers which is why we don’t use recursive downloading. Otherwise, adminis-
trators might ban a user from accessing the website. using –random-wait we delay the
downloading of files to not alarm admins.

wget --user-agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebkit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110

Safari/537.36" --random-wait --no-clobber --tries=1

-e robots=off -np --page-requisites -A js -i websites.txt

Wget was ran on a 1 Intel Xeon CPU Virtual Private Server with 100GB storage
and 1GB memory. The operating system of the server was Ubuntu 20.04.

To connect to the Virtual Private Server we used ssh and we connected using the
command:

ssh username@server_ip

After running wget and having the results stored on our Virtual Private Server we
transferred the files to our local machines for manual analysis.

sudo scp -r username@server_ip:/home/username

/home/local/Documents/Thesis

A.2 Behavioral detection script

This script was created with the intent to iterate over each of the files downloaded
using the tool mentioned above. In this section we will refer to this script as the
Iterator file. The implementation of this script is explained in A.2.3.

The script is created to do the following:

1. create a log file for all patterns found (section A.2.1)

2. create files with the different the scripts that surpass the different thresholds
(section A.2.2)

A.2.1 Log file

The log file created shows all different behavioral detection patterns found and in which
file they are found. This file is created with the intent of validation as well as to gain
more insight in the amount of occurrences for each of the patterns.
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A.2.2 Threshold files

The threshold files show us the files which surpass the threshold as mentioned in
section 6.2. Every line in the file starts with a percentage and is followed by the file
belonging to the chance of behavioral detection being present.

A.2.3 Iterator file

The first step in the implementation was to specify the directory which contains the files
which need to be analysed. In our case this is the rootdir file, where client 21042 1
is the name given to us by the server hosting company. Afterwards, we create the
three files mentioned above to store our results. The outfile in this case is the log file
mentioned above.

rootdir = ’/home/thatmitch/Documents/scrape/client_21042_1’

outfile = ’/home/thatmitch/Documents/scrape/output.txt’

To store the amount of occurrences for each of the different patterns we then cre-
ated the variables ’id var’, ’mouseeventtype var’, ’keyboardeventtype var’ and ’even-
telement var’. To make sure we know how far our analyzer is into the process we
also use the variable ’analyzer’ and to calculate the chance of behavioral detection
being present we use the variable ’chance’. Now we can start iterating over all of the
files in the rootdir. For each of the files we increase our analyzer variable to see the
progress. Analyzing the files resulted in encountering some problems at first. Due to
obfuscations in encoding used by the scripts we needed to use codecs with the ’utf-8’
encoding and we ignore the errors thrown. We ignore the errors instead of trying to
solve them since it was found with manual analysis that these errors thrown were not
influential on the results of the research (e.g. differently encoded search strings on the
websites). We have opted to use a [try, except, finally] block to make sure the script
has no problems reading the files and otherwise throws an error. To mitigate problems
with the files we use the [finally] block to close the file after it is analysed.

Each file is analysed line by line using the function

.readline()

It was also found in the manual analysis that websites have different capitalisation for
the bot detection patterns and therefore we have opted to make everything lowercase
by using the function

.lower()

This leads to the following framework:
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1 f o r root , d i r s , f i l e s in os . walk ( r o o t d i r ) :
2 f o r f i l e in f i l e s :
3 ana lyze r += 1
4 f = codecs . open ( os . path . j o i n ( subdir , f i l e ) , ’ r ’ ,
5 encoding =’ utf −8 ’ , e r r o r s =’ ignore ’ )
6
7 try :
8 l i n e = f . r e a d l i n e ( ) . lower ( )
9 whi l e l i n e :

10 . . .
11 l i n e = f . r e a d l i n e ( ) . lower ( )
12
13 f i n a l l y :
14 f . c l o s e ( )

Code Snippet A.1: Framework

For each line we iterate, we check for the different patterns. Whenever one of these
patterns is detected, the variable corresponding to this pattern is increased by 1. Be-
sides that, the log file will now contain a line which states which pattern was found in
the corresponding file with its filename following the pattern. This code is located on
the dots of the section of code above.

1 f o r idpa t t e rn in i d p a t t e r n s :
2 i f r e . s earch ( r ”\b{}\b ” . format ( idpa t t e rn ) , l i n e ) :
3 i d v a r += 100
4 out . wr i t e ( i dpa t t e rn + ” found in ” + os . path . j o i n ( root , f i l e )
5
6 f o r mouseeventtype in mouseeventtypes :
7 i f mouseeventtype in l i n e :
8 mouseeventtype var += 1
9 out . wr i t e ( mouseeventtype + ” found in ” + os . path . j o i n ( root , f i l e

)
10
11 f o r keyboardeventtype in keyboardeventtypes :
12 i f keyboardeventtype in l i n e :
13 keyboardeventtype var += 1
14 out . wr i t e ( keyboardeventtype + ” found in ” + os . path . j o i n ( root ,

f i l e )
15
16 f o r evente lement in evente lements :
17 i f evente lement in l i n e :
18 evente l ement var += 1
19 out . wr i t e ( evente lement + ” found in ” + os . path . j o i n ( root , f i l e )

Code Snippet A.2: Pattern detection

We then write the scores to the different threshold files. Afterwards, the variables
in the form of integers are now checked for occurrences. For each occurrence of the re-
identification pattern (id var > 0), the chance of the file containing behavioral detection
becomes 100%. The other patterns each have their own percentage based on the reverse
analysis. Then, the total chance of behavioral detection being present is checked
against a threshold and whenever this threshold is met or exceeded, the filename will
be written to the threshold file with its corresponding chance. Then, all variables are
set to 0 and the process is repeated for the other files.
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1
2 i f 0 <= e n d r e s u l t < 20 :
3 webs i te0 = True
4 i f 20 <= e n d r e s u l t < 40 :
5 webs i te20 = True
6
7 . . .
8
9 f o r d i r in d i r s :

10 i f webs i te0 :
11 i f os . path . j o i n ( root , d i r ) not in w e b s i t e l i s t 0 :
12 r e s = os . path . j o i n ( root , d i r ) . p a r t i t i o n ( ’ . com ’ ) [ 0 ]
13 w e b s i t e l i s t . append ( r e s )
14
15 . . .

Code Snippet A.3: Behavioral detection chance calculation
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Appendix B

Methods and countermeasures
discussed in literature

This appendix serves to give a more detailed explanation and code examples regarding
the behavioral detection methods and their countermeasures discussed in literature.
The detection method is followed by a code example, showing the detection method
in practise. Then, the papers in which the detection method is discussed are shown.
Below that, a description of the detection method is given, explaining how the detec-
tion method is used for behavioral detection. Lastly, the countermeasures are briefly
mentioned and then their implementation and usage are discussed in detail.

B.0.1 Mouse movement

1 func t i on mouse pos i t ion ( ) {
2 var e = window . event ;
3 var posX = e . c l i en tX ;
4 var posY = e . c l i en tY ;
5 document . Form1 . posx . va lue = posX ;
6 document . Form1 . posy . va lue = posY ;
7 var t = setTimeout ( mouse pos i t ion , 1 00 ) ;
8 }

Code Snippet B.1: Mouse movement

Discussed by (a.o.): [PB04] and [CGK+12].

Description: Keeping track of mouse movement is a simple trick to keep track of
the users’ interaction with the mouse. If the mouse moves linearly, does not move at
all, or movements which conform to a pattern, this will be picked up by the behavioral
detection tool.

Countermeasure: Random mouse movements (e.g. the simplex noise algorithm).
Whereas completely random algorithms will give this result:
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The random algorithm in combination with the simplex noise algorithm will give us:

The random algorithm only looks at one of the parameters. In this case, it only looks
at the x-axis and will completely randomize the y-axis. However, we need to make sure
that both the x-axis and y-axis are taken into account to make sure the mouse does not
move linearly, nor erratically. This means the randomness of the algorithm is kept, but
instead it is limited to within certain boundaries. This is to smoothen out the curve as
can be seen in the second image. The noise script is loaded and used on every single
frame to simulate the mouse movement. An important feature of this countermeasure
is the fact that both the randomness and speed can be adjusted. Therefore it will be
hard for machine learning to pick up on mouse patterns.

B.0.2 CAPTCHA/ReCAPTCHA

1 <s c r i p t s r c =’ https : //www. goog le . com/ recaptcha / api . j s ’></ s c r i p t >
2 <div c l a s s =”g−recaptcha ” data−s i t e k e y=”Your s i t e key goes here”></div

>

Code Snippet B.2: Recaptcha

Discussed by (a.o.): [SA18], [KWS+10], [SKSP17] and [BMV20].

Description: reCAPTCHA and CAPTCHA work on the same principles. They
both use images which then need to be either written out (whenever the reCAPTCHA
image is a word) or they need to be selected according to a certain category (e.g. select
all cars or select all traffic lights). Whenever the word is typed correctly or the images
selected are in line with the solution, the system acknowledges you are a human user
and you are able to continue traversing the website. However when you are unable
to solve the CAPTCHA, this will lead to the CAPTCHA being retriggered until you
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have convinced the system you are indeed a human user. Otherwise content will be
blocked.

Countermeasure: Since CAPTCHA and reCAPTCHA have been around for quite
some time now, people have started developing countermeasures against this anti-
bot measure. Crowdsourcing can be used to solve the CAPTCHA’s for the bot. By
outsourcing the process of solving the CAPTCHA to a distributed human workforce
who can solve this CAPTCHA virtually, a bot will be able to circumvent the verification
step.

For example, 2Captcha and Puppeteer can be used to automatically try and solve
the CAPTCHA’s being thrown1. Working with two API endpoints, where the first
request made, retrieves the data which is needed to solve the CAPTCHA and then
gives us the request ID. Whenever we come across a CAPTCHA which contains an
image, the image will be converted to base64. Then, requests will be made to the API
endpoint, polling until a solution is ready to be used. Visually, this works as follows:

Figure B.1: 2CAPTCHA request

Figure B.2: 2CAPTCHA response

1https://medium.com/@jsoverson/bypassing-captchas-with-headless-chrome-93f294518337
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With reCAPTCHA this works the same, except for the fact that you need the
sitekey instead of the request ID. Conveniently, this can be found on the <div> of the
reCAPTCHA, even if the iframe has not loaded.

Besides this form of countering the reCAPTCHA, unCAPTCHA is a service to
solve reCAPTCHA, which has been around for quite some time now2. unCAPTCHA
works on the fact that reCAPTCHA has an audio-mode, created for visually impaired
people. The audio is downloaded by unCAPTCHA, dissected into multiple audio
segments which are all uploaded to multiple speech-to-text services. Using a weighted
vote, the reCAPTCHA is then filled in and solved with currently over 90% accuracy.

Figure B.3: unCAPTCHA process

2http://uncaptcha.cs.umd.edu/
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B.0.3 Rate limiting of user requests

1 import ∗ as db from ” ./ db ” ;
2
3 func t i on update ({ tokenCount , timestamp } , { i n t e r v a l , bucketCapacity } ,

now) {
4 const i n c r e a s e = Math . f l o o r ( ( now − timestamp ) / i n t e r v a l ) ;
5 const newTokenCount = Math . min ( tokenCount + inc r ea s e , bucketCapacity ) ;
6 const newTimestamp =
7 newTokenCount < bucketCapacity ? timestamp + i n t e r v a l ∗ i n c r e a s e :

now ;
8 re turn { tokenCount : newTokenCount , timestamp : newTimestamp } ;
9 }

10
11 func t i on take ( o ldState , opt ions , now) {
12 const { tokenCount , timestamp } = oldSta t e
13 ? update ( o ldState , opt ions , now)
14 : { tokenCount : opt ions . bucketCapacity , timestamp : now } ;
15 i f ( tokenCount > 0 && now >= timestamp ) {
16 // i f the re i s a token a v a i l a b l e and the timestamp i s in the past
17 // take the token and l eave the timestamp un−changed
18 return { tokenCount : tokenCount − 1 , timestamp } ;
19 }
20 // update the timestamp to a time when a token w i l l be a v a i l a b l e ,

l e a v i n g
21 // the token count at 0
22 return { tokenCount , timestamp : timestamp + opt ions . i n t e r v a l } ;
23 }
24
25 export d e f a u l t async func t i on takeToken ( key , opt ions ) {
26 const now = Date . now ( ) ;
27 const o ldSta te = await db . getRateLimitState ( key ) ;
28 const newState = take ( o ldState , opt ions , now) ;
29 // N.B. rep laceRateL imi tState should throw i f cur rent s t a t e
30 // doesn ’ t match o ldSta t e to avoid concurrent token usage
31 await db . r ep laceRateL imi tState ( key , newState , o ldSta t e ) ;
32 i f ( newState . timestamp − now > 0) {
33 await new Promise ( r => setTimeout ( r , newState . timestamp − now) ) ;
34 }
35 }

Code Snippet B.3: Rate limiting

This code example was taken from Gitconnected3, since the code found in the manual
analysis was too cluttered and obfuscated for the purpose of showing the limitation of
user requests.

Discussed by (a.o.): [BMV20] and [MD11].

Description: Rate limiting is a common strategy used to limit the traffic on a web-
site. As the name suggests, the amount of requests in a certain timeframe is limited.

3https://levelup.gitconnected.com/rate-limiting-a0783293026a
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It puts a limit on how often someone can repeat an action within a certain time-
frame – for instance, trying to log in to an account. Rate limiting can help stop certain
kinds of malicious bot activity. It can also reduce strain on web servers. However, rate
limiting is not a complete solution for managing bot activity.

Countermeasure: Adding delays to make sure the increased load of the server is
unnoticeable whenever it is closely monitored. Besides that make sure the delays have
random waits in between the requests so that it is even less suspicious.

B.0.4 Honeypot trap (e.g. display:none accessed)

1 CSS
2 . dispnon { d i s p l ay : none}
3
4 HTML
5 <input c l a s s=”dispnon ” name=”f i e ld name ” type=”text”>

Code Snippet B.4: Honeypot trap

Discussed by (a.o.): [SA18].

Description: A honeypot trap is designed to lure bots into revealing the fact that
they are not human users. Human users will not be able to see and access these
elements physically. However, these elements can be seen by a bot and if the bot is
not configured to circumvent honeypot traps, they will reveal themselves.

Countermeasure: The only way to counter honeypot traps is to configure the bots
in such a way that they do not access invisible elements or elements that are out of
bounds.

B.0.5 Site traversal

Discussed by (a.o.): [TCK09] and [SVA11].

Description: server-side logs contain data on the user navigation patterns of a site.
This clickstream data can be analysed and irregularities between how a human user
would likely traverse the website and the user in question can lead to a user being
flagged as a potential bot. However, this is not a simple task as the amount of logs is
immense. Besides that, the logs are all very detailed, which makes it hard to identify
the logs which contain the data of the site traversal.

Countermeasure: A human-like path traversal configuration needs to be used in
order for the bot not to stand out during the analysis of the site traversal. This can
be done by for example taking human site traversal cases as a training set and using
machine learning to make sure the bot displays human-like site traversal instead of
irregularly jumping all of the place.
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Appendix C

Local script analysis

Figure C.1: Time-stamp alert

Figure C.2: First mouse position alert

Figure C.3: Second mouse position alert

53



In the images above, we have drawn arrows as to where the pointer was located at the
moment of the alert, since it was invisible on the screenshots taken. We can see the
coordinates change according to the position of the pointer. Besides the time tamps
and the position of the cursor, the click stream data is also being monitored. Meaning,
any object that is clicked on is being recorded. In the images below we can clearly
see how the alert shows us both clicking on a DIV element and a HTML element
respectively.

Figure C.4: Clicking 〈div〉 element alert

Figure C.5: Clicking 〈html〉 element alert
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