
Bachelor thesis
Computing Science

Radboud University

Generating Mutation Operators
for a Search-Based Model-Driven

Implementation of the
Next Release Problem

Author:
Niels van Harten (s1012159)
niels@vharten.com

First supervisor/assessor:
Dr D.G.F. Strüber (Daniel)

d.strueber@cs.ru.nl

Second assessor:
Dr N.H. Jansen (Nils)
n.jansen@cs.ru.nl

June 13, 2021

Abstract

Any company developing and maintaining software products faces the next
release problem (NRP). The NRP seeks to find the optimal subset of tasks to
include in the next release of a companies product, to minimize development
cost and maximize customer satisfaction. The NRP is an NP-hard, multi-
objective software engineering problem that we solve using search-based soft-
ware engineering (SBSE) techniques in an intuitive new way.

Within the field of SBSE, genetic algorithms (GA’s), mimicking the bi-
ological process of evolution, are often used to solve software engineering
problems. A GA improves an initial population of candidate solutions over
time using manipulation operators favoring reproduction of good over bad
solutions. However, it can be hard to come up with a representation for the
candidate solutions as well as an efficient mutation operator.

Therefore, we combine SBSE with model-driven engineering (MDE) to
represent candidate solutions as model instances and automatically generate
mutation operators using a notion of meta-learning. We extend an available
automated technique for generating efficient mutation operators to address
the peculiarities of the NRP and use it to generate mutation operators. We
subsequently combine these mutation operators with an available manual
mutation operator for the NRP and compare result quality and performance
to using only the manual mutation operator for both a single- and multi-
objective implementation of the NRP. In most cases our results when com-
bining the two are promising for both implementations showing improved
result quality as well as performance.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 The next release problem . 4
2.2 Model representation for the NRP 4
2.3 Model transformation . 6
2.4 FitnessStudio . 7

3 Single-Objective Implementation of the NRP 9
3.1 The NRP as a single-objective problem 9
3.2 Alterations made to FitnessStudio 10
3.3 Implementation . 10
3.4 Initialization . 10
3.5 Preliminary evaluation . 11

4 Multi-Objective Implementation of the NRP 15
4.1 Preliminaries . 15
4.2 Implementation . 16
4.3 Initialization . 16
4.4 Preliminary evaluation . 16

5 Related Work 20

6 Conclusions and Future Work 22

1

Chapter 1

Introduction

What is the optimal subset of tasks to include in the next release of a com-
panies product, to minimize development cost and maximize customer sat-
isfaction? This is the next release problem (NRP, [5]), an NP-hard, multi-
objective, software engineering problem that we will solve using search-based
software engineering (SBSE, [17]) techniques in an intuitive new way.

SBSE is a subfield of software engineering and seeks to reformulate prob-
lems like the NRP as search problems consisting of three ingredients:

1) A problem representation
2) A fitness function to optimize towards
3) A set of manipulation operators
SBSE subsequently seeks to solve those reformulated problems using

meta-heuristic techniques, in our case genetic algorithms. Genetic algo-
rithms (GA’s, [33]) mimic the biological process of evolution. They improve
an initial population of candidate solutions over time using manipulation
operators favoring reproduction of good over bad solutions. We use meta-
heuristics because the NRP is NP-hard and therefore cannot be solved using
exact optimization techniques for large scale problem instances [35].

To obtain the first ingredient of the reformulated problem, the problem
representation, we can combine SBSE with model-driven engineering (MDE,
[22]), which focuses on the use of precise models to support the development
process. MDE solutions - models - can function as problem representation on
which SBSE techniques can be applied directly. An advantage of using MDE
is that we do not need to create a problem representation from scratch. In
previous work, it has been shown that such a model-based problem encoding
can lead to solutions with good performance behavior [21].

Given the representation, we want to optimize an initial population to-
wards a fitness function, the second ingredient. We do this using the set of
manipulation operators, where different search techniques require different
operators. In our case, we use a genetic algorithm for which we first gener-
ate children from the population with a crossover operator. Next, we mutate

2

those children using a mutation operator. Lastly, we evaluate the generated
children resulting from our genetic algorithm by their customer satisfaction
and cost by giving them a fitness score for both objectives.

However, it can be hard to come up with an efficient mutation operator.
The developer has to rely on intuition, which may or may not be correct.
Even when correct, one likely misses ideas for better solutions. Therefore we
use FitnessStudio [29], a technique for generating efficient problem-tailored
mutation operators automatically based on a two-tier framework. An upper
tier optimization process tunes the mutation operator of the lower tier. The
framework has been implemented using a mono-objective genetic algorithm
and evaluated in a benchmark case of program refactoring where it showed
promising results. This research extends that work by implementing the
framework using a multi-objective genetic algorithm. Many software engi-
neering problems, including the NRP, are in fact complicated multi-objective
problems, which cannot be efficiently solved using single-objective solutions
[19].

We will solve the next release problem intuitively by using a model as
representation and combine generated mutation operators using FitnessStu-
dio with a manually defined mutation operator and compare it to solving the
problem using only the manually defined mutation operator. In particular,
our contributions are the following:

• A single-objective implementation of the NRP in which we make
two alterations to FitnessStudio and give a preliminary evaluation. We
present an evaluation showing that combining an available mutation
operator with our generated mutation operators significantly improves
result quality for large models and when using random initialization
performance is improved at the same time (Ch. 3).

• A multi-objective implementation of the NRP with a prelimi-
nary evaluation showing that combining an available mutation opera-
tor with our generated mutation operators in most cases significantly
improves performance while also improving result quality for the multi-
objective NRP (Ch. 4).

We provide the preliminaries needed for interpreting our results in Ch.
2. In Ch. 5 we survey related work.

3

Chapter 2

Preliminaries

2.1 The next release problem

Any company developing and maintaining software products sold to a range
of diverse customers faces the next release problem (NRP, [5]). The NRP is
about determining what should be included in the next release of a company’s
products. The company is faced with customer demands for a wide range of
software enhancements where some enhancements will require (one or more)
prerequisite enhancements. Besides, some customers are more valuable to the
company than others so that the requirements of favoured customers will be
viewed as having more importance than those of less favoured customers. At
the same time, the different requirements will take widely differing amounts
of time and effort to meet.

The challenge for the company is to select a set of requirements that is
deliverable within their own budget and which meets the demands of their
(important) customers. Making an incorrect decision can prove a serious
mistake. Good customers can be lost if their requirements are not met; the
company itself may go over budget or even not deliver on time if costs are
not controlled.

2.2 Model representation for the NRP

Previous work found that MDE solutions can function as problem represen-
tation for the NRP directly, addressing the first key ingredient of SBSE [21].
A metamodel for this problem exists, provided as part of the MDEOptimiser
project [9] and created using the Eclipse Modeling Framework (EMF, [28]).
The EMF project is a modeling framework and code generation facility for
building tools and other applications based on a structured data model [1].

The MDEOptimiser metamodel for the NRP is shown in Fig 2.1. A model
instance consists of a number of solutions where a solution contains a subset
of the availableArtifacts called the selectedArtifacts. A software artifact

4

Figure 2.1: Metamodel of the NRP provided by MDEOptimiser.

has a cost, contributesTo a RequirementRealisation and it can be that
an artifact requires other artifacts (i.e. has dependencies). A requirement
realisation dependsOn one or more artifacts and can realise a requirement
that has one or more valuations assignedBy a customer.

The next release problem has two objectives. Given the above meta-
model, the first is to minimize the total cost for the selected artifacts in a
solution. The total cost is defined in the following way:

Cost =
∑

sa∈SA′

cost(sa)

Here, SA′ is the set of selectedArtifacts and cost(sa) is the cost for artifact
sa. The second objective is to maximize customer satisfaction by realising
requirements keeping in mind the value assigned to those requirements by
customers and the importance of those customers.

Satisfaction =
∑
c∈C

importance(c) · satisfaction(c)

In this formula, C is the set of customers, importance(c) is the importance
of customer c and satisfaction(c) is specified as:

satisfaction(c) =

∑
v∈MDV (c) value(v) · fulfillment(requirement(v))∑

v∈MDV (c) value(v)

5

MDV (c) is the set of all maximal valuations of direct requirements for cus-
tomer c. Direct requirements are those which do not depend on other require-
ments. value(v) is the value of valuation v and fulfillment(requirement(v))
calculates the highest degree to which the requirement of valuation v is ful-
filled by either 1) direct realisations or 2) a combination of dependency re-
quirements.

1) A requirement can be realised directly in one or more ways depending
on the available realisations for a given requirement. A requirementRealisation
is fulfilled if all softwareArtifacts the realisation depends on are in-
cluded in the solution as well as all their dependencies. If multiple
realisations are fulfilled, the one with the highest percentage is chosen.

2) A requirement can also be fulfilled by a combination of other require-
ments. In that case, the level of fulfillment is determined by the
weighted sum of the level of fulfillment of those dependencies.

Let us give the example from the MDEOptimiser implementation:
Requirement A depends on two Requirements B and C. The valuations
connecting A to B and C have the values v(B) = 2, v(C) = 4. The level of
fulfillments are fulfillment(B) = 0.8, fulfillment(C) = 0.5. The level of
fulfillment for A then is fulfillment(A) = (0.8 · 2+ 0.5 · 4)/6 = 0.6. In case
there is a direct realisation for A with a percentage of 0.8 the overall level of
fulfillment will be max(0.6, 0.8) = 0.8.

If all availableArtifacts are selected, the cost of the release as well as the
customer satisfaction will be maximum. The goal is to find a good trade-off
between maximizing customer satisfaction while minimizing the cost of all
selected software artifacts.

2.3 Model transformation

Using the above model representation in EMF, we need a way to transform
models while genetic algorithms rely on mutation and crossover of the so-
lution candidates, in our case models. We will transform models in two
ways.

First, using code in which the model elements can be seen as classes
and links between elements as attributes of those classes. The relevant class
structure can be automatically generated from the metamodel using EMF
and then supports solution manipulation using methods calls in the following
way:

nrp.getSolutions().get(0).getSelectedArtifacts().add(artifact);
artifact.getSolutions().add(nrp.getSolutions().get(0));

6

Figure 2.2: Henshin rules, part of the MDEOptimiser mutation operator.

The above code snippet first selects the first solution for nrp and adds
artifact to the selected artifacts. Then, it also adds a connection in the
other direction. It adds the first solution of nrp to the solutions of artifact.
We use this transformation method to apply crossover.

The second way to transform solution candidates is using a transforma-
tion language for EMF, called Henshin [4, 30]. Henshin is a rule-based model
transformation language based on algebraic graph transformations and con-
sisting of a tool set with editors and an interpreter engine. Using Henshin,
we can specify rules to apply an in-place model transformation. These rules
specify basic “match and apply” patterns. Fig. 2.2 shows two such muta-
tion operator rules from the MDEOptimiser implementation. The model
elements are represented by nodes and the links between model elements
by edges. Every node and edge has one of the actions «create», «delete»,
«preserve», «require» or «forbid».

Rule addSingleSa adds sa, a software artifact, to sol, a solution. How-
ever, the action «requires» secures that a dependency of artifact sa is in-
cluded in solution sol. Adding * to this action, «requires*», expands this
rule to require that all dependencies of artifact sa are included in solution
sol. Rule removeSingleSa removes artifact sa from solution sol. However,
given the action «forbid*», it forbids that any of the dependencies of artifact
sa are included in solution sol. We use this transformation method to apply
mutation. Noteworthy is that although it is quite easy to come up with
mutation rules that should improve the model quality at least in certain sit-
uations, it is hard to determine which set of mutation rules would be the
most efficient.

2.4 FitnessStudio

FitnessStudio [29] is a two tier framework to generate efficient mutation
operators for search-based model-driven engineering problems. An overview
of this framework is given in Fig. 2.3. In this thesis, we extend the framework

7

Figure 2.3: An overview of the FitnessStudio framework.

to generate mutation operators for the NRP.
The lower tier of the framework makes use of a genetic algorithm to

optimize a set of solution candidates towards a fitness function. It requires
specification of a crossover operator, fitness function and possible problem
constraints, just like other search-based approaches. However, instead of
having to specify the mutation operators, these are generated by the upper
tier of the framework.

The upper tier is a search-based approach to generate efficient mutation
operators. An initial set of mutation operators is optimized so that running
the lower tier of the framework using that set of mutation operators results
in the best model, assessed by the lower tier fitness function. The upper tier
is generic, it does not need to be changed for different problems.

The original version of FitnessStudio was evaluated on a single-objective
case and because the lower tier of the framework made use of a single-
objective genetic algorithm, it could not be used for multi-objective prob-
lems. Therefore, we make the necessary modifications to use the multi-
objective GA NSGA-II instead. Besides, the original version assumed that
mutation operators are entirely generated from scratch, which does not allow
to benefit from initial manually crafted solutions. Furthermore, all higher-
order mutation rules are assumed to be equally useful, which we did not find
to be the case for the NRP in our exploratory experiments. We address these
two issues in Sec. 3.2.

8

Chapter 3

Single-Objective
Implementation of the NRP

3.1 The NRP as a single-objective problem

The next release problem has two objectives: maximizing customer satis-
faction and minimizing cost. However, we want to see whether generated
mutation operators using FitnessStudio can improve single-objective results
for the next release problem for two reasons. First, we can use FitnessStudio
without having to re-implement the lower tier of the framework. Second,
in some cases it can be useful to get a single result which is a good trade-
off between different objectives [3]. Therefore, we specify the NRP as a
single-objective optimization problem, combining the two objectives in the
following way:

Fit(s) = sat(s)
max_sat −

cost(s)
max_cost

Where max_sat and max_cost are the customer satisfaction and artifact
cost if all software artifacts are selected for the problem instance and sat(s)
and cost(s) are the satisfaction and cost of the selected artifacts of candidate
solution s. For calculating satisfaction and cost we use the implementation
from the MDEOptimiser project, adapted to address an implementation bug.

9

3.2 Alterations made to FitnessStudio

Combining the available and our generated mutation operator.

if (applyFixedRules)
// LowerTierRunner
if (Math.random() > 0.5)

mutateWithFixedRules(graph);
else

mutateWithGenRules(graph);
else

// UpperTierRunner
mutateWithGenRules(graph);

Figure 3.1: fixedXORgen.

There already exists a clever rule-based
mutation operator for the NRP provided
by MDEOptimiser [6]. So, instead of
ignoring that set, we combine it with
our generated mutation operators using
FitnessStudio with the aim of improving
performance. As can be seen in Fig 3.1,
each iteration the lower tier randomly se-
lects either the fixed ruleset or our gen-
erated ruleset with equal chance. This
technique leads to a configuration option
called fixedXORgen which we will compare against fixed: a configuration
option that only uses the available mutation operator.

Higher-order mutation rule weight. FitnessStudio applies all higher-
order mutation rules with a fixed chance. However, for the NRP, not ev-
ery higher-order mutation rule is equally useful. First, no node should be
added or deleted from the domain model. Subsequently, the mutation rule
createCrOrDelNodeWithContainmentEdge can best be given no weight.
Second, a rule that does not create or delete an edge between Solution and
Software Artifact will not change the fitness score. Testing showed that
increasing the weight of the mutation rule createCrOrDelEdge improved
performance. Therefore, we introduce a map in which the weight of each
higher-order mutation rule can be tuned individually.

3.3 Implementation

We implemented the next release problem as a single-objective problem using
FitnessStudio including the alterations discussed in Sec. 3.2, providing the
implementation at [31].

FitnessStudio uses a simple single-objective GA available at https://
github.com/lagodiuk/genetic-algorithm. For the NRP implementation,
we use single-point crossover with a probability of Pc = 0.9. This crossover
operator is frequently used as component of genetic algorithms to solve the
NRP [35, 15]. Each mutation rule is executed with a probability of Pm =
0.6.

3.4 Initialization

We experienced that there is not a single best way of performing initial-
ization for our implementation of the NRP. Therefore, we compared some

10

https://github.com/lagodiuk/genetic-algorithm
https://github.com/lagodiuk/genetic-algorithm

Empty Complete Random
Input NRP NRP NRP Time NRP NRP NRP Time NRP NRP NRP Time
model best median stdev median best median stdev median best median stdev median
A 0.407 0.353 0.022 00:12.1 0.457 0.446 0.013 00:10.0 0.454 0.439 0.017 00:11.4
B 0.408 0.347 0.020 00:39.9 0.526 0.504 0.013 00:35.3 0.589 0.554 0.023 00:38.4
C 0.311 0.279 0.012 01:04.0 0.379 0.357 0.012 00:47.8 0.508 0.461 0.025 00:59.2
D 0.418 0.399 0.007 01:26.3 0.314 0.276 0.010 01:04.3 0.434 0.403 0.019 01:20.9
E 0.198 0.145 0.015 02:11.9 0.218 0.207 0.007 01:48.6 0.272 0.226 0.023 02:15.0

Table 3.1: Results using the MDEOptimiser mutation operator, times de-
noted in mm:ss:x.

basic initialization techniques using the genetic algorithm and the available
MDEOptimiser mutation operator.

Empty solutions contain no software artifacts, complete solutions contain
all artifacts and for random solutions, each artifact has a 50% chance to be
included in the solution. We also explored populations using combinations
of the methods mentioned above as well as Extreme Solutions with Path
Relinking (EPR, [11]). However, these methods did not seem worth analysing
further.

Given the results from Table 3.1, we decided to include both complete and
random initialization in our further evaluation. Random initialization seems
to perform best for larger models and/or fewer iterations while complete
initialization seems to work best for small models and/or more iterations
and seems to have a smaller standard deviation than random initialization
as well as the smallest run time.

3.5 Preliminary evaluation

Just as Strüber, 2017 [29], we investigated the following two research ques-
tions to evaluate the efficiency of combining available mutation operators
with our generated mutation operators for the NRP: (RQ1) What is the
quality of the solutions produced by combining the available and

Input models A B C D E
Customers 5 25 50 75 100

Requirements 25 50 75 100 120
Artifacts 63 203 319 425 602

Table 3.2: Input models

generated mutation operators for the
NRP? (RQ2) How does combining the
available and generated mutation oper-
ators affect performance for the NRP?

Scenario. In our evaluation we use
five input models of varying size. Input
models A and B were obtained from the
MDEOptimiser project. We generated
input models C-E using the MDEOptimiser NRPModelGenerator. All mod-
els were preprocessed to address an implementation bug discovered during
work on this thesis. A brief description of these models is provided in Table
3.2.

11

To discuss the quality and performance of our technique that combines
the available and our generated mutation operators as described in Sec. 3.2,
we compare it to only using the available mutation operator. As metrics we
use the median and best result of each run as well as the median run time.

Set-up. We generate the mutation operator for each initialization method
using the smallest model A and reuse it for all models to limit overhead. All
the models used and output generated for our experiments are available at
[31].

Preparation: Generation of mutation operators. To create our own mu-
tation operators, we applied FitnessStudio to input model A two times.

The first time, we generated mutation operators using complete initial-
ization, configuring the upper tier to a population size of sixty and fifteen
iterations with each a timeout of ninety seconds, and the lower tier to a
population size of two and twenty iterations. We repeated the generation
ten times; the median run took 13:28 minutes. The best-performing mu-
tation operator produced by FitnessStudio contained five rules. One did
not create/delete any edges and as a result, applying that rule would not
change the candidate solution and its fitness score. One rule deleted two
selectedArtifacts edges and the other three rules deleted both two solutions
edges.

Next, we generated mutation operators using random initialization, con-
figuring the upper tier to a population size of sixty and fifteen iterations with
each a timeout of ninety seconds, and the lower tier to a population size of
ten and ten iterations. We repeated the generation ten times; the median
run took 10:08 minutes. The best-performing mutation operator produced
by FitnessStudio contained four rules. One did not create/delete any edges
and as a result, applying that rule would not change the candidate solution
and its fitness score. One rule deleted a selectedArtifacts and a solutions
edge and the remaining two rules deleted a single selectedArtifacts edge and
solutions edge respectively.

Benchmark measurement. We applied the genetic algorithm together
with the top-scoring generated mutation operator to models A-E. To study
the variability of the produced results, we repeated the experiment thirty
times, using a population size of forty and 120 iterations. All experiments
where performed on a Windows 10 system (Intel Core i7-8850H, 2.6 GHz;
32 GB of RAM, Java 1.8 with 2 GB maximum memory size).

Results. Table 3.3, Table 3.4 and Fig. 3.2 show the results of our
experiments.

12

RQ1: Result quality. For complete initialization, combining our gen-
erated mutation operator with the MDEOptimiser mutation operator im-
proved the result quality for all five models. For random initialization, com-
bining the two mutation operators improved the result quality for the larger
three models significantly. For model A, result quality was slightly better
using the combination of the two. But for model B result quality was slightly
better using only the MDEOptimiser mutation operator. It seems that using
our technique result quality improves most for larger models and/or fewer
iterations.

MDEOptimiser (fixed) Combi (fixedXORgen)
Input NRP NRP Time NRP NRP Time
model best median median best median median

A 0.457 0.446 00:10.0 0.457 0.457 00:08.2
B 0.526 0.504 00:35.3 0.582 0.556 00:40.7
C 0.379 0.357 00:47.8 0.459 0.435 00:43.3
D 0.314 0.276 01:04.3 0.427 0.405 01:35.8
E 0.218 0.207 01:48.6 0.357 0.336 02:25.1

Table 3.3: Results using complete initialization, times denoted as mm:ss:x.

MDEOptimiser (fixed) Combi (fixedXORgen)
Input NRP NRP Time NRP NRP Time
model best median median best median median

A 0.454 0.439 00:11.4 0.461 0.440 00:08.6
B 0.589 0.554 00:38.4 0.602 0.540 00:30.0
C 0.508 0.461 00:59.2 0.539 0.491 00:46.4
D 0.434 0.403 01:20.9 0.473 0.443 01:06.8
E 0.272 0.226 02:15.0 0.330 0.290 01:39.1

Table 3.4: Results using random initialization, times denoted as mm:ss:x.

RQ2: Performance. Using random initialization, the median run time
significantly decreased in all cases when using our technique of combining
the two mutation operators. Using complete initialization, our technique
decreased run time for models A and C while the run time significantly
increased for the other three models. The generated mutation operator for
random initialization seems to be more efficient than the one for complete
initialization.

We suspect that the performance of generated mutation operators can be
guided by limiting the difference between the run time of the first iteration
and the timeout for the upper tier of FitnessStudio. Because a long run time
for execution of an iteration of the upper tier of the framework seems to
indicate a longer run time for the resulting mutation operator.

Limitations and Threats to Validity. We see one main limitation of
our technique. Generating the mutation operator using the upper tier of the

13

Figure 3.2: Model B, sixteenth best run over time.

framework takes time and is required before execution of the lower tier that
actually finds solutions. The impact of this initial overhead depends on how
often the lower tier is ran using the same generated mutation operator.

The major threat to external validity of our results is the limited scope
of our experiments. We examined one benchmark case using five models of
which the smallest two are provided by MDEOptimiser and the larger three
are generated by the same model generator, also provided by MDEOptimiser.
In real word cases it might not be that a mutation operator generated using
a small model would be able to be used efficiently and effectively for larger
models. Besides, we combined the fitness functions in a specific way to create
a single-objective implementation. Using a different fitness function, results
could be different. However, the technique is also evaluated for another,
single-objective, benchmark case showing promising results [29].

14

Chapter 4

Multi-Objective
Implementation of the NRP

4.1 Preliminaries

A multi-objective optimization problem most likely does not have a single
best solution. In that case there will always be a trade-off between the
different objectives. Therefore, as multi-objective solution, a set of solutions
that are not dominated by any other solution is often used. A solution is
dominates another if:

1) for at least one objective, the value of the fitness function is the better
for the dominating than the dominated solution and

2) for all other objectives, the fitness function value is not worse.
A solution is Pareto optimal if it is not dominated by any solution in the
solution space and can only be improved for an objective by worsening at
least one other [23]. The set of all Pareto optimal solutions is called the
Pareto optimal set. However, in practice, the so-called best-known Pareto
front is used that consists of all non-dominated solutions that were found
when searching. This is because evaluating and comparing the entire solution
space is normally impossible. Otherwise, one could use random search and
would not need to use genetic algorithms.

To compare the quality of two Pareto fronts for the same model, we will
use the hypervolume (HV) and spread measure. Hypervolume is a widely
used volume-based quality indicator and evaluates the optimizer outcome
by simultaneously taking into account the proximity of the points to a given
reference Pareto front, diversity, and spread [25]. And, even though the
hypervolume measure takes spread into account, we also include spread as
separate indicator. The hypervolume measure can be similar for two Pareto
fronts where the first has a narrow spread with close proximity to the re-
al/reference Pareto front and the second has a large spread but is further
away from the reference Pareto front.

15

4.2 Implementation

We implemented the next release problem as a multi-objective problem us-
ing FitnessStudio including the alterations discussed in Section 3.2. We
re-implemented the lower tier to use the multi-objective genetic algorithm
NSGA-II [12] as implemented by the JMetal framework [14]. Our imple-
mentation is available at [31]. We replaced the original fitness evaluation for
the upper tier with a fitness evaluation based on the hypervolume relative
to the reference Pareto front. We obtained this reference front by executing
the lower tier with a great number of evaluations and a large population,
see Sec. 4.4. For the NRP implementation, we use single-point crossover as
crossover operator with a probability of Pc = 0.9 and execute each mutation
rule with a probability of Pm = 0.6.

4.3 Initialization

Like the single-objective implementation, the initialization method has a
significant impact on the results of the multi-objective implementation. Be-
cause of that, we use different initialization methods for evaluation.

Empty solutions contain no software artifacts, complete solutions con-
tain all artifacts, an extremes solution consists of alternating empty and
complete solutions, for random solutions each artifact has a 50% chance to
be included in the solution and rand+x solutions consist of one empty, one
complete solution and for the remainder of random solutions.

4.4 Preliminary evaluation

Just as for the single-objective implementation, we investigated the following
two research questions to evaluate the efficiency of combining available mu-
tation operators with our generated mutation operators for the NRP: (RQ1)
What is the quality of the solutions produced by combining the available and
generated mutation operators for the NRP? (RQ2) How does combining the
available and generated mutation operators affect performance for the NRP?

Scenario. In our evaluation we use the same five input models as for
the single objective implementation. A brief description of these models can
be found in Table 3.2.

To discuss the quality and performance of our technique that combines
the available and our generated mutation operators as described in section
3.2, we compare it to only using either the available mutation operator or
our generated mutation operators using FitnessStudio. As metrics we use
the mean hypervolume relative to the reference Pareto front, lower is better,
together with its standard deviation, the mean spread, lower is better, and
its standard deviation and the mean run time and its standard deviation.

16

Set-up. All the models used and output generated for our experiments
are available at [31].

Initialization Time
method Median
Complete 23:12.7
Empty 06:00.3
Extremes 08:12.7
Random 07:30.6
Rand+x 10:02.9

Table 4.1: Median run
time generation mutation
operator in mm:ss:x.

Preparation: Generation of mutation opera-
tors. For each initialization method, we applied
FitnessStudio to input model A, configuring the
upper tier to a population size of sixty and fifteen
iterations with each a timeout of 180 seconds, and
the lower tier to a population size of eight and a
maximum of two hundred evaluations. We re-
peated the generation five times; the median run
time for each initialization method can be found
in Table 4.1.

While testing, we experienced that using the
ruleset produced by extremes initialization out-
performed rand + x initialization when running
the lower tier using rand+x initialization. There-
fore, we ignore the rand+ x ruleset and use the
extremes ruleset instead for evaluation using rand + x initialization. We
suspect that the extremes mutation operator is of higher quality while the
random element when generating that ruleset is smaller than for the rand+x
ruleset.

Reference Pareto front. We compare all results to a reference Pareto
front for each model. These are created using lower tier execution with the
available mutation operator and rand+x as initialization method. We ran it
once for each model using a population size of two hundred and a maximum
of 150,000 evaluations.

Benchmark measurement. For each initialization method, we applied the
genetic algorithm together with the top-scoring generated mutation operator
for that initialization method to models A-E. Except rand+ x for which we
used the extremes mutation operator. To study the variability of the pro-
duced results, we repeated the experiment thirty times, using a population
size of forty and a maximum of 5000 evaluations. All experiments where
performed on a Windows 10 system (Intel Core i7-8850H, 2.6 GHz; 32 GB
of RAM, Java 1.8 with 2 GB maximum memory size).
Results. Tables 4.2, 4.3 and 4.4 and Fig. 4.1 show the results of our exper-
iments.

RQ1: Result quality. For model B, see Fig. 4.1 and Table 4.2, com-
bining the MDEOptimiser mutation operator with our generated mutation
operator results for four out of five initialization methods in an improved hy-
pervolume and in four out of five cases in an improved spread. The extremes
initialization method results in a slightly worse hypervolume and the rand+x
initialization method in a marginally worse spread. However, in both cases,
the other quality measure is slightly improved. So, the result quality for
model B is improved in three out of five cases and results are similar for

17

(a) empty and complete (b) random and rand+ x

Figure 4.1: Model B, Pareto fronts of fifteenth best run.

the other two. Using random initialization, see Table 4.3, the result quality
when combining the generated mutation operator and the available one is
worse for model A. For all larger models, combining the two mutation opera-
tors results in an improved result quality. From Fig. 4.1(b), it seems like our
generated mutation operator mostly improves the quality for solution sets
having a smaller artifact cost. Using rand+ x initialization, see Table, 4.4,
the result quality when using the combination of the generated and available
mutation operator is improved for models A, C and D, is very similar for
model B and is worse for model E. It could be that it cannot be expected
that mutation operators generated for an initial population containing both
extremes perform similarly for different models.

MDEOptimiser (fixed) Combi (fixedXORgen) FitnessStudio (gen)
Initialization HV Spread Runtime HV Spread Runtime HV Spread Runtime

Complete 0.6967
(0.0414)

0.9358
(0.0314)

00:21.951
(00:00.546)

0.1853
(0.019)

0.4311
(0.0536)

00:20.488
(00:00.398)

0.2011
(0.0195)

0.4386
(0.0389)

00:14.095
(00:00.364)

Empty 0.4125
(0.073)

0.7319
(0.058)

00:32.047
(00:00.718)

0.3926
(0.0271)

0.705
(0.0329)

00:21.658
(00:00.428)

0.4109
(0.035)

0.714
(0.0489)

00:11.999
(00:00.257)

Extremes 0.2278
(0.0161)

0.468
(0.0424)

00:27.213
(00:00.315)

0.231
(0.0215)

0.4649
(0.0493)

00:21.131
(00:01.417)

0.2366
(0.0127)

0.4769
(0.0445)

00:11.731
(00:00.291)

Rand+x 0.222
(0.0193)

0.4697
(0.04)

00:29.022
(00:00.339)

0.2102
(0.0179)

0.4708
(0.0428)

00:20.806
(00:00.401)

0.2066
(0.0248)

0.4814
(0.0433)

00:12.904
(00:00.311)

Random 0.267
(0.0267)

0.7146
(0.0737)

00:28.057
(00:00.399)

0.178
(0.0255)

0.5283
(0.0488)

00:23.433
(00:02.271)

0.2887
(0.0388)

0.6752
(0.046)

00:11.356
(00:00.314)

Table 4.2: Results for model B (mean, (stdev)), times denoted as mm:ss.xxx.

18

Input MDEOptimiser (fixed) Combi (fixedXORgen)
model HV Spread Runtime HV Spread Runtime

A 0.0911
(0.0198)

0.5795
(0.0824)

00:08.817
(00:00.335)

0.1293
(0.0425)

0.6642
(0.059)

00:07.284
(00:00.486)

B 0.267
(0.0267)

0.7146
(0.0737)

00:28.057
(00:00.399)

0.178
(0.0255)

0.5283
(0.0488)

00:23.433
(00:02.271)

C 0.3512
(0.024)

0.8471
(0.0479)

00:45.160
(00:00.830)

0.2622
(0.0249)

0.7381
(0.0584)

00:33.351
(00:01.130)

D 0.3985
(0.0209)

0.8714
(0.0494)

01:01.851
(00:01.004)

0.3351
(0.0257)

0.844
(0.045)

00:46.192
(00:01.139)

E 0.4778
(0.0207)

0.9129
(0.0303)

01:34.769
(00:01.455)

0.4672
(0.0226)

0.9028
(0.0324)

01:08.612
(00:01.396)

Table 4.3: random results (mean, (stdev)), times denoted as mm:ss:xxx.

Input MDEOptimiser (fixed) Combi (fixedXORgen)
model HV Spread Runtime HV Spread Runtime

A 0.103
(0.0134)

0.5079
(0.0559)

00:08.986
(00:00.363)

0.0704
(0.0116)

0.501
(0.0544)

00:06.342
(00:00.282)

B 0.222
(0.0193)

0.4697
(0.04)

00:29.022
(00:00.339)

0.2102
(0.0179)

0.4708
(0.0428)

00:20.806
(00:00.401)

C 0.2629
(0.0163)

0.4205
(0.0341)

00:45.694
(00:00.529)

0.2304
(0.021)

0.4297
(0.0387)

00:31.953
(00:00.505)

D 0.2415
(0.0131)

0.4439
(0.0278)

01:03.647
(00:01.143)

0.2283
(0.0126)

0.4314
(0.037)

00:43.879
(00:00.487)

E 0.3073
(0.0151)

0.3698
(0.047)

01:34.197
(00:01.501)

0.3277
(0.0178)

0.3819
(0.0574)

01:06.508
(00:01.770)

Table 4.4: rand+ x results (mean, (stdev)), times denoted as mm:ss:xxx.

RQ2: Performance. The run time decreased significantly for all tested
models and initialization methods when combining our generated mutation
operators with the one from MDEOptimiser. As a result, we could run
NSGA-II with more evaluations for the same run time when combining our
generated mutation operator with the available one. These results show
that our technique can be used to improve performance relative to current
mutation operators without sacrificing result quality.

Limitations and Threats to Validity. Like the single-objective im-
plementation, the main limitation of our technique is that generating the
mutation operator using the upper tier of the framework takes time and is
required before execution of the lower tier that actually finds solutions. The
impact of this initial overhead depends on how often the lower tier is ran
using the same generated mutation operator.

The major threat to external validity of our results is the limited scope
of our experiments. We examined one benchmark case using five models of
which A and B were provided by and C-E generated by the model generator
from MDEOptimiser. In real word cases it might not be that a mutation
operator generated using a small model would be able to be used efficiently
and effectively for larger models.

19

Chapter 5

Related Work

The next release problem is studied in a multitude of papers. The dif-
ferent approaches can be distinguished in terms of whether they represent
the problem using vector encoding or using a model, like our technique.

Using vector encoding, multiple solutions exist. Most research uses meta-
heuristics to solve the NRP. These meta-heuristics include GA’s like NSGA-
II [15, 35] and MOCell [15], and (hybrid) ant colony optimization [20, 13].
Besides meta-heuristics, more exact techniques like Integer Linear Program-
ming (ILP) are to a lesser extend also used to solve the NRP. [32] found
that a modern ILP solver can solve large single-objective and small multi-
objective instances very quickly. However, it takes several hours for larger
multi-objective instances.

For model representation, we are aware of two solutions for the NRP. The
first uses models in combination with NSGA-II but without an automatic
generated mutation operator and with a different model to represent the NRP
[10]. The second [8] is the closest related to our research and does generate
mutation operators. However, instead of meta-learning to generate mutation
operators, the technique requires the user to specify the sub-metamodel for
which mutation operators should be generated. An evaluation that com-
pares the result quality and efficiency using these two techniques would be
interesting.

Mutation generation. Our work expands the original single-objective
version of the FitnessStudio framework [29] that generates mutation op-
erators for MDE using meta-learning to an implementation for the multi-
objective next release problem. Apart from this technique, we distinguish
two other techniques to create mutation operators for search-based model-
driven engineering. Firstly, the technique used in the paper discussed in
the previous paragraph by Burdusel et al. [8]. They generalise earlier work
[7] where for a single case study, initial ideas for generating atomic muta-
tions were explored. It also builds on the work in [2] and [26], which uses
atomic mutations as well for automating the mutation operator. Secondly,

20

Wodel [16] can be used to create mutation operators. Wodel is a domain-
specific language and tool for model-based mutation that is independent of
the domain meta-model. It can aid in the creation of mutation operators
but still requires the user to specify the mutation rules. Beyond generat-
ing mutation operators, another research direction is on analysing generated
operators [24], to check whether these operators contribute to improving
the consistency of solutions or at least do not introduce new violations of
well-formedness constraints.

Outside of MDE, mutation generation is also a subject of research. Self-
adaptive mutation [27] adapts the mutation probability during execution of
the genetic algorithm. Besides, the generation of mutation operators is stud-
ied in [34] and [18]. The first uses Register Machines to explore a constrained
design space for mutation operators and the second genetic programming to
generate mutation operators. Both use meta-learning to create the mutation
operator.

21

Chapter 6

Conclusions and Future Work

The goal of this research is to explore whether generated rule-based mutation
operators can be used to for solving multi-objective problems using model
representation. We combined our generated mutation operators with an
available mutation operator for the next release problem and compared result
quality and performance to using only the available mutation operator for
both a single- and multi-objective implementation of the NRP. Our results
are promising for both implementations showing improved result quality as
well as performance in most cases. Our research also shows the impact
different initialization methods have on the results.

In our research we encountered three possible directions for future work.
First, the timeout parameter when generating mutation operators might
have an influence on the efficiency of the generated mutation operator (Sec.
3.5). Limiting timeout further might increase efficiency of our technique.
As second direction for future work one could investigate how initialization
methods can best be chosen when using our technique. Because our research
shows that the used initialization method can have a significant influence on
results both when generating mutation operators as well as applying them.
Finally, it would be interesting to directly compare result quality and per-
formance of our technique to using atomic mutation operators [8].

Besides our directions, the three directions for future work on FitnessStu-
dio mentioned by Strüber, 2017 [29], still apply. These are optimizing the
the higher-order mutation; applying the principles of the technique for the
generation of cross-over operators; and application to a broader variety of
use-cases.

22

Bibliography

[1] Eclipse Modeling Framework (EMF). https://www.eclipse.org/
modeling/emf/. [Online; accessed 2021-06].

[2] Faisal Haji M Alhwikem, Richard Freeman Paige, Louis Matthew Rose,
and Robert David Alexander. A systematic approach for designing mu-
tation operators for mde languages. 2016.

[3] Vahid Alizadeh, Houcem Fehri, and Marouane Kessentini. Less is
more: From multi-objective to mono-objective refactoring via devel-
oper’s knowledge extraction. In 2019 19th International Working Con-
ference on Source Code Analysis and Manipulation (SCAM), pages 181–
192. IEEE, 2019.

[4] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause,
and Gabriele Taentzer. Henshin: advanced concepts and tools for in-
place emf model transformations. In International Conference on Model
Driven Engineering Languages and Systems, pages 121–135. Springer,
2010.

[5] Anthony J. Bagnall, Victor J. Rayward-Smith, and Ian MWhittley. The
next release problem. Information and software technology, 43(14):883–
890, 2001.

[6] Alex Burdusel and Steffen Zschaler. Next Release Problem -
MDEOptimiser. https://mde-optimiser.github.io/case-studies/
nrp/, 2017. [Online; accessed 2021-06].

[7] Alexandru Burdusel and Steffen Zschaler. Towards automatic gen-
eration of evolution rules for model-driven optimisation. In Pre-
Proceedings of the 8th International Workshop on Graph Computation
Models (GCM’17), 2018.

[8] Alexandru Burdusel, Steffen Zschaler, and Stefan John. Automatic gen-
eration of atomic consistency preserving search operators for search-
based model engineering. In 2019 ACM/IEEE 22nd International Con-
ference on Model Driven Engineering Languages and Systems (MOD-
ELS), pages 106–116. IEEE, 2019.

23

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://mde-optimiser.github.io/case-studies/nrp/
https://mde-optimiser.github.io/case-studies/nrp/

[9] Alexandru Burdusel, Steffen Zschaler, and Daniel Strüber. Mdeopti-
miser: A search based model engineering tool. In Proceedings of the
21st ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems: Companion Proceedings, pages 12–16, 2018.

[10] Frank R Burton, Richard F Paige, Louis M Rose, Dimitrios S Kolovos,
Simon Poulding, and Simon Smith. Solving acquisition problems using
model-driven engineering. In European Conference on Modelling Foun-
dations and Applications, pages 428–443. Springer, 2012.

[11] Thiago Gomes Nepomuceno Da Silva, Leonardo Sampaio Rocha, and
José Everardo Bessa Maia. An effective method for mogas initialization
to solve the multi-objective next release problem. In Mexican Inter-
national Conference on Artificial Intelligence, pages 25–37. Springer,
2014.

[12] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyari-
van. A fast elitist non-dominated sorting genetic algorithm for multi-
objective optimization: Nsga-ii. In International conference on parallel
problem solving from nature, pages 849–858. Springer, 2000.

[13] José Del Sagrado, Isabel María Del Águila, and Francisco Javier Orel-
lana. Ant colony optimization for the next release problem: A compar-
ative study. In 2nd International Symposium on Search Based Software
Engineering, pages 67–76. IEEE, 2010.

[14] Juan J Durillo and Antonio J Nebro. jmetal: A java framework
for multi-objective optimization. Advances in Engineering Software,
42(10):760–771, 2011.

[15] Juan J Durillo, Yuanyuan Zhang, Enrique Alba, Mark Harman, and
Antonio J Nebro. A study of the bi-objective next release problem.
Empirical Software Engineering, 16(1):29–60, 2011.

[16] Pablo Gómez-Abajo, Esther Guerra, Juan de Lara, and Mercedes G
Merayo. A tool for domain-independent model mutation. Science of
Computer Programming, 163:85–92, 2018.

[17] Mark Harman and Bryan F Jones. Search-based software engineering.
Information and software Technology, 43(14):833–839, 2001.

[18] Libin Hong, John H Drake, John R Woodward, and Ender Özcan. A
hyper-heuristic approach to automated generation of mutation opera-
tors for evolutionary programming. Applied Soft Computing, 62:162–
175, 2018.

24

[19] Hisao Ishibuchi, Yusuke Nojima, and Tsutomu Doi. Comparison be-
tween single-objective and multi-objective genetic algorithms: Perfor-
mance comparison and performance measures. In 2006 IEEE Inter-
national Conference on Evolutionary Computation, pages 1143–1150.
IEEE, 2006.

[20] He Jiang, Jingyuan Zhang, Jifeng Xuan, Zhilei Ren, and Yan Hu. A
hybrid aco algorithm for the next release problem. In The 2nd Inter-
national Conference on Software Engineering and Data Mining, pages
166–171. IEEE, 2010.

[21] Stefan John, Alexandru Burdusel, Robert Bill, Daniel Struber, Gabriele
Taentzer, Steffen Zschaler, and Manuel Wimmer. Searching for optimal
models: Comparing two encoding approaches. In 12th International
Conference on Model Transformations ICMT 2019, pages 1–22, 2019.

[22] Stuart Kent. Model driven engineering. In International conference on
integrated formal methods, pages 286–298. Springer, 2002.

[23] Abdullah Konak, David W Coit, and Alice E Smith. Multi-objective op-
timization using genetic algorithms: A tutorial. Reliability engineering
& system safety, 91(9):992–1007, 2006.

[24] Jens Kosiol, Daniel Strüber, Gabriele Taentzer, and Steffen Zschaler.
Graph consistency as a graduated property. In International Conference
on Graph Transformation, pages 239–256. Springer, 2020.

[25] Miqing Li and Xin Yao. Quality evaluation of solution sets in multi-
objective optimisation: A survey. ACM Computing Surveys (CSUR),
52(2):1–38, 2019.

[26] JGM Mengerink, Alexander Serebrenik, Ramon RH Schiffelers, and
MGJ Van Den Brand. A complete operator library for dsl evolution
specification. In 2016 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 144–154. IEEE, 2016.

[27] Daniel Smullen, Jonathan Gillett, Joseph Heron, and Shahryar Rah-
namayan. Genetic algorithm with self-adaptive mutation controlled by
chromosome similarity. In 2014 IEEE Congress on Evolutionary Com-
putation (CEC), pages 504–511. IEEE, 2014.

[28] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

[29] Daniel Strüber. Generating efficient mutation operators for search-based
model-driven engineering. In International Conference on Theory and
Practice of Model Transformations, pages 121–137. Springer, 2017.

25

[30] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner,
Timo Kehrer, Manuel Ohrndorf, and Matthias Tichy. Henshin: A
usability-focused framework for emf model transformation development.
In ICGT’17: International Conference on Graph Transformation, pages
196–208. Springer, Cham, 2017.

[31] Niels van Harten. Fitnessstudio applied on the next release problem.
https://doi.org/10.6084/m9.figshare.14774448, 2021.

[32] Nadarajen Veerapen, Gabriela Ochoa, Mark Harman, and Edmund K
Burke. An integer linear programming approach to the single and bi-
objective next release problem. Information and Software Technology,
65:1–13, 2015.

[33] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing,
4(2):65–85, 1994.

[34] John R Woodward and Jerry Swan. The automatic generation of muta-
tion operators for genetic algorithms. In Proceedings of the 14th annual
conference companion on Genetic and evolutionary computation, pages
67–74, 2012.

[35] Yuanyuan Zhang, Mark Harman, and S Afshin Mansouri. The multi-
objective next release problem. In Proceedings of the 9th annual confer-
ence on Genetic and evolutionary computation, pages 1129–1137, 2007.

26

https://doi.org/10.6084/m9.figshare.14774448

	Introduction
	Preliminaries
	The next release problem
	Model representation for the NRP
	Model transformation
	FitnessStudio

	Single-Objective Implementation of the NRP
	The NRP as a single-objective problem
	Alterations made to FitnessStudio
	Implementation
	Initialization
	Preliminary evaluation

	Multi-Objective Implementation of the NRP
	Preliminaries
	Implementation
	Initialization
	Preliminary evaluation

	Related Work
	Conclusions and Future Work

