
Bachelor thesis
Computing Science

Radboud University

Coupled transformation of feature
models and domain models for

software product lines

Author:
Steven Maarse
s1010311

First supervisor/assessor:
Dr. Daniel Strüber

dstrueber@cs.ru.nl

Second assessor:
Dr. Cynthia Kop
c.kop@cs.ru.nl

March 26, 2021

Abstract

This thesis project is on marrying two research domains: graph transfor-
mations and software product lines. Graph transformations can already be
applied to software product lines. However, an algorithm that executes cou-
pled changes of the domain model and feature model by means of graph
transformations is missing. In this paper, we will discuss what changes will
be made to an existing algorithm, called Lifting, and how these will be ex-
pressed. The result will be a correct algorithm that solves the shortcomings
of the Lifting algorithm.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Software product lines . 4
2.2 Transformation rules . 6
2.3 Rule application . 7
2.4 Lifting . 8
2.5 Coupled changes of feature models and domain models 10
2.6 Knowledge gap . 11

3 Research 12
3.1 Rule representation . 13

3.1.1 Well-formedness condition 16
3.1.2 Assumption . 17
3.1.3 Validity of matches . 18

3.2 Algorithm . 18
3.2.1 New algorithm . 18
3.2.2 Lifting comparison . 19
3.2.3 Adding features . 20
3.2.4 Removing features . 21
3.2.5 Adding and removing constraints 22
3.2.6 Changing presence conditions 22

3.3 Correctness and complexity 22
3.3.1 Correctness . 22
3.3.2 Complexity . 24

3.4 Implementation . 24

4 Related Work 27

5 Conclusions 28

1

Chapter 1

Introduction

In this thesis, we will be discussing concepts at the intersection of graph
transformations and software product lines and extend this area.

Software product lines (SPLs) are collections of software assets com-
bined to allow many different products to be generated based on selected
features. Since within software development often very similar products are
desired and they share many common features, a software product line is
very efficient as it removes the need to re-implement features and to build
the desired product by hand for every customer.

Developing software product lines involves maintaining a representation
of the product line’s features (typically, using a feature model), and making
explicit how the features are related to software assets (e.g., domain mod-
els and code) [4]. For example, one type of domain model used to specify
the behavior of a software system are state machines. In a state machine,
many states of the system and possible transitions between these states
are defined, specifying the system’s behavior. As not all desired products
share the same features, many states and transitions will only be present in
some of the products, depending on the features associated with the prod-
uct. To make explicit how features are related to states and transitions, one
can annotate these elements with feature expressions, leading to a feature-
annotated state machine.

Many systems, including software systems, can be modeled as graphs.
Their systematic modification can then be described using graph transfor-
mations. Supported by a rich theory, graph transformations can be used
to support advanced software analysis, including conflict-and-dependency
analysis and model checking [1]. A graph transformation rule consists of
various parts, such as the Left Hand Side, Right Hand Side and Negative
Application Conditions are used to allow transformation rules to make any

2

changes to the system. The LHS and RHS together express a “find and
replace” pattern in the input graph, whereas NACs allow to further restrict
this pattern. We will use transformation rules to apply changes to a soft-
ware system that is modeled as a graph. For example, we can consider a
state machine as a graph that models the behavior of a software system. A
transformation rule could then be used to describe and apply a particular
refactoring of a state machine.

Transformation rules have some restrictions on the places of the input
graph they can be applied to. A place in the input graph at which we can
apply the given rule is called a match. As part of our background (Sect. 2),
we will revisit an existing definition of a rule application, show any condi-
tions that need to be satisfied to proceed, explain why this is necessary, and
explain how the application is performed.

Since the domain model of an SPL can be represented as a graph (with
feature annotations), we can apply transformation rules to them. We will
discuss how these transformation rules work and explain how an existing
algorithm called “Lifting” can apply these transformation rules to an SPL.
The Lifting algorithm is extremely important for applying transformation
rules to a large SPL that has many features, due to the combinatorial explo-
sion arising from the possibility to switch features on or off independently. In
the preliminaries, we will explain exactly how the Lifting algorithm works,
what an application of lifting looks like and why it is correct.

However, the Lifting algorithm is restricted in the type of changes it
supports for modifying a software product line. Specifically, it does not
allow to change the feature model by adding and removing features and
constraints. It cannot add a new feature to the domain and feature model,
nor can it remove an existing feature from the domain and feature model.
This presents an obstacle prohibiting a broader application to realistic trans-
formation scenarios. Therefore, we propose an algorithm that is designed to
perform coupled transformations of feature models and domain models. Fur-
thermore, we will discuss its correctness and complexity. This new algorithm
will extend the existing Lifting algorithm. We will discuss the complexity
and correctness of this new algorithm. Finally, a Python implementation of
the algorithm is presented.

3

Chapter 2

Preliminaries

This chapter revisits the necessary preliminaries for this work. First, we
introduce software product lines and their structure. Then, what transfor-
mation rules are and how these combine with software product lines. Finally,
we show and explain “lifting” which is an essential algorithm for transform-
ing software product lines, and the foundation of this thesis’s research.

2.1 Software product lines

Developing software product lines involves maintaining a representation of
the product line’s features (typically, using a feature model), and making
explicit how the features are related to software assets (e.g., domain mod-
els and code) [4]. For example, one type of domain model used to specify
the behavior of a software system are state machines. In a state machine,
many states of the system and possible transitions between these states
are defined, specifying the system’s behavior. As not all desired products
share the same features, many states and transitions will only be present
in some of the products, depending on the features associated with the
product. More specifically, these states and transitions have a presence con-
dition (PC). A PC is an expression in propositional logic over the product
line’s features, specifying the condition under which the annotated element
is present. When a product is created, these can be evaluated, and elements
whose PC evaluates to “false” are removed.

Definition 2.1.1 (Product line). A product line P con-
sists of the following parts:

(1) A feature model that consists of a set of features and
a propositional formula ΦP defined over these features to
specify the relationships between them.
(2) A domain model consisting of a set of model elements.

4

(3) A mapping from the feature model to the domain model
consisting of pairs 〈E, φE〉 mapping a domain model ele-
ment E to a propositional formula φE over features. The
formula φE is referred to as the presence condition of the
element E.

Figure 2.1: Washing Machine Controller Product Line: feature model and
domain model

Consider the following example. Figure 2.1 represents the SPL of a wash-
ing machine controller. In the domain model, the rounded boxes (nodes)
represent states and the edges between these boxes represent the state tran-
sitions. To capture the mapping of elements to products, some nodes and
edges, like the node “Drying” have a small rectangle with bold text that
shows the presence condition of the element. In this case, only products
that have the feature “Dry” will have the Drying state with the edges from
Washing to Drying and from Drying to UnLocking. In the feature model at
the top, a set of features F and feature constraints Φ are specified as well.
Feature constraints restrict the set of possible products; for example, the
constraint delay -> ¬ heat implies that no product exists that has both
features delay and heat.

5

2.2 Transformation rules

The second relevant area of background for this thesis are graph transfor-
mations. In graph transformations, one systematically describes changes to
a (graph-based representation of a) system by encoding them into graph
transformation rules ([2], explained shortly). Capturing changes as rules
enables formal reasoning about them. For example, one can use a static
analysis to automatically detect conflicts and dependencies between several
activities expressed as rules. [8]

To modify the behaviour of a software system, these graph transforma-
tion rules can be applied to the system. A transformation rule specifies
how a part of the system changes after application. Using a Left Hand Side
(LHS) it specifies what part of the graph is matched to the rule, based on
various constraints (for example, element types and attribute values). The
Right Hand Side (RHS) then shows which nodes and edges are are added,
preserved or removed.

To further restrict the circumstances under which a rule application is
possible, rules can be extended with application conditions. One example
use case for this is to avoid creating duplicate edges. In this case, negative
application conditions (NACs) can be used to check when a LHS is not a
valid matching site for the rule. If a NAC is successfully matched against
the matching site, the rule cannot be applied.

Since a software product line can be modeled as a graph with states and
state transitions as nodes and edges, one can apply transformation rules to
SPLs to modify the behavior of products from a software product line.

Definition 2.2.1 (Transformation rule). A transforma-
tion rule R is a tuple R = 〈{NAC}, LHS,RHS〉, where
LHS and RHS are the typed graphs called the left-hand
and the right-hand sides of the rule, respectively, and {NAC}
represents a (potentially empty) set of typed graphs called
the negative application conditions.

Two example rules have been defined as seen in Figure 2.2. In rule 1, the
incoming actions on a state x are folded into the state as an entry action.
If two incoming edges of a state x have an action defined, they are removed
from the edges and x will have the entry action a. The NAC specifies that
x cannot already have an entry action for the rule to be applicable.

6

Figure 2.2: A transformation rule that folds incoming actions

2.3 Rule application

L

m

��

I
leoo

d

��

ri // R

m′

��

(1) (2)

G D
goo h // H

Figure 2.3: Rule application by a double pushout (DPO)

Definition 2.3.1 (Rule application). Let a rule
p = 〈{NAC}, L,R〉 and a graph G with a total morphism
m : L→ G be given. A rule application from G to a graph
H, written G ⇒r,m H, is given by the diagram in Figure
2.3 where (1) and (2) are pushouts and I is the intersection
of L and R. We refer to G, m and H as a start graph, a
match, and a result graph, respectively.

The rule application in Figure 2.3 has L as the the LHS and R as the RHS.
Here, I is the overlap between L and R. These are all of the preserved ele-
ments during rule application.

A graph rule is applied along a match m of its left-hand side to a given
graph G. The application of a graph rule consists of two steps: First, all
graph elements in m(L − l(I)) are deleted. Nodes to be deleted may have
adjacent edges which have not been matched, so the rule application may
produce dangling edges. Therefore, all matches m have to satisfy the gluing
condition: If a node n ∈ m(L) is to be deleted by the rule application,
it has to delete all adjacent edges as well. If the gluing condition does
not apply, the rule cannot be applied to this particular graph. Afterwards,

7

unique copies of R − r(I) are added. This behavior can be characterized
by a formal construction knows as a double-pushout [5]. A pushout is a
construction that abstractly captures the idea of merging two objects based
on a common subobject. In case of rule applications, the sub-diagrams (1)
and (2) of Figure 2.3 are both pushouts, together forming a double-pushout.
Given a rule and a match, the resulting rule application is unique [5].

2.4 Lifting

A graph transformation rule can easily be applied to a single product, but
when there are many possible features that a product can have, it becomes
infeasible to apply a transformation rule to all products of an SPL. This is
for the effort required to enumerate all possible products, which grows expo-
nentially with the number of features. Lifting [11] is an algorithm designed
to apply a graph transformation rule on an SPL to modify it such that the
products derived from the SPL will be equal to the products resulting from
applying the transformation rule to each product individually. The Lifting
algorithm relies on SAT solving, an NP-complete problem for which existing
efficient solvers are available, scaling to millions of variables (features) [6].
If a formula is satisfiable, we can say that the formula is SAT. SAT solving
means to compute the satisfiability of a formula.

The Lifting algorithm in Figure 2.4 assumes the rule has already been
used to find matching sites, which has brought forward a single matching site
in the input. The matching site can be any part of the domain model that
fulfills the constraints from the LHS; presence conditions are not yet con-
sidered at this point. At line 3, for every matching site the algorithm starts
by checking if ΦP ∧Φapply is SAT. A negative answer allows for skipping the
transformation if there is not a single product for which all required elements
on the LHS are present and for which none of the NACs apply within the
SPL. If at least one NAC applies for a product, the product derived from
the SPL will remain unchanged. Every element that is added according to
the matching site, will be added to the domain model in lines 4 - 5 and the
PC will be set to Φapply at line 6 to only affect the products the rule has
matched on. Next, starting at line 8, in the for-loop, all elements that are
removed will be removed just by changing the PC to include that Φapply

must also not be satisfied for it to be present in the product at line 9. Only
if no products remain with the element present, checked using SAT at line
10, it will be completely removed from the domain model at line 11.

8

Data: Product line P with constraint ΦP , rule R, matching site
K = 〈N̄ , C,D〉 in the domain model of P

Result: Transformed product line P ′

1 P ′ = P

2 Φapply = ¬
∨
{φandN |N ∈ N̄} ∧ φandC ∧ φandD

3 if ΦP ∧ Φapply is SAT then
4 for a ∈ Ar do
5 add a to domain model of P ′

6 φ′a = Φapply

7 end
8 for d ∈ D do
9 φ′d = φd ∧ ¬Φapply

10 if ΦP ∧ φ′d is not SAT then
11 remove d from domain model of P ′

12 end

13 end

14 end
15 return P ′

Figure 2.4: Algorithm to apply a lifted graph transformation rule.

The rule defined in Figure 2.2 can all be applied to a software product
line using the Lifting algorithm. For example, by lifting Rule 1 applying it
to the SPL as defined in Figure 2.1 so that the incoming actions on the edges
to the UnLocking state are folded into the state itself as an entry action.
This results in a domain model seen in Figure 2.5.

9

Figure 2.5: Domain model resulting from applying Rule 1 in Figure 2.2 to
the SPL in Figure 2.1

In the paper that describes the Lifting algorithm [11], the correctness
criteria of the Lifting algorithm are discussed, formalized and defined as seen
in Definition 2.4.1. This specifies that the products derived from a product
line transformed with the lifted transformation rule, should be the same as
if the transformation rule was applied separately to each product. In this
definition, both sets of products should be equivalent rather than equal. The
paper also shows that the Lifting algorithm satisfies the correctness criteria
defined in Definition 2.4.1.

Definition 2.4.1 (Lifting correctness criteria). Let a rule
R and a product line P be given. R↑ is a correct lifting

of R iff (1) for all rule applications P
R↑
==⇒ P ′, Conf(P ′)

= Conf(P), and (2) for all configurations ρ in Conf(P),

M
R
=⇒M ′, where M is derived from P , and M ′ is derived

from P ′ under ρ.

2.5 Coupled changes of feature models and do-
main models

To develop a software product line, both the feature and domain models
must be updated. This is necessary to turn any product line into any other

10

product line. Product lines can be extended by adding new features or re-
moving deprecated features. These changes lead to products being created
or removed. To allow for these changes, coupled changes of the feature and
domain model are required.

An earlier work [14] explored the possibility to express and execute cou-
pled changes of the domain model and feature model by means of graph
transformations. This work proposed a formal construction of product line
pushouts, which can be used for supporting these changes. The formal con-
struction is designed to have lifting as a special case, in which the change of
the feature model is empty. Yet, this earlier work does not yet provide an
efficient algorithm for performing the changes enabled by the formal con-
struction. The main performance bottleneck is a certain check that considers
all products of the input product line individually, which, for the reasons
discussed earlier, is prohibitively expensive for large product lines.

2.6 Knowledge gap

None of the works considered so far allows someone to efficiently transform
whole software product lines with all involved artifacts: The Lifting algo-
rithm introduced in Sect. 2.4 only supports changes of the domain model.
The Lifting algorithm assumes that the feature model of the SPL is con-
stant. As the algorithm does not manage changes in the feature model, a
feature in an SPL cannot be removed using the Lifting algorithm nor can
a feature be added to an SPL. A new feature that adds a new state would
need the state to have the presence condition of the new feature. The Lifting
algorithm only changes the products for which existing features match and
it cannot create new products.

The construction of product line pushouts from Sect. 2.5 relies on check-
ing certain conditions for all products of the product line, and thus, requires
an explicit enumeration of products. To use software product lines in a real
setting, we need an algorithm to apply graph transformation rules to soft-
ware product lines without enumerating all products.

A new algorithm must be able to apply transformation rules that affects
the domain model as well as the feature model, changing both in a consistent
way.

11

Chapter 3

Research

In this thesis, we develop an algorithm that generalizes and improves upon
the Lifting algorithm [11] by supporting coupled changes of the feature
model, the domain model, and the presence conditions.

To support these changes, we need a suitable representation of rules. We
will define a notion of an augmented transformation rule and show exam-
ples of transformation rules that make use of the support for the coupled
changes in the new algorithm. These transformation rules have a new well-
formedness condition and a few assumptions made by the algorithm.

Next, we will explain how the algorithm manages to support the appli-
cation of these transformation rules, and we define the algorithm itself. We
will discuss its correctness and complexity.

Finally, we present a Python implementation of the new algorithm in an
isolated environment.

12

3.1 Rule representation

Figure 3.1: Transformation rule that removes a Cancel feature from the
domain model and the feature model of a software product line

We need a rule representation that allows the user to specify coupled
changes of the feature and the domain model. Conventional rules (Def.
2.2.1) are not suitable for this purpose, since they only address changes of
the domain model. To also support changes of the feature model and its
mapping to the domain model, we introduce augmented rules. For example,
the rule 7 in Figure 3.1 is an augmented rule that defines how a feature
Cancel is removed where both the domain model and the feature model are
changed.

The following definition supports the specification of augmented rules
by defining the LHS and the RHS as software product lines. As a product
line, the LHS and the RHS can include a feature model with features F and
an extra set of constraints Φ. With these, a transformation rule can specify
changes made to the feature model.

Definition 3.1.1 (Augmented transformation rule). An
augmented transformation ruleR is a tuple R = 〈{NAC},
LHS,RHS〉, where LHS and RHS are the software prod-
uct lines called the left-hand and the right-hand sides of
the rule, respectively, and {NAC} represents a (poten-
tially empty) set of software product lines called the nega-
tive application conditions.

13

Figure 3.2: Transformation rule for adding the feature Beep to a software
product line

Figure 3.3: Washing Machine Controller Product Line after application of
Rule 3 in Figure 3.2

14

Rule 3 in Figure 3.2 shows the proposed rule for adding a new feature
Beep to a software product line [14]. Features can be added together with
new nodes and edges for the domain model. In the rule, these nodes and
edges can have a presence condition that differentiates the set of products
with the new feature from the set of products without the new feature. Here,
the unrounded boxes, show that the Beeping node, along with its connecting
edges, should only be present in the products with the Beep feature, whereas
the Logging node along with its connecting edges, should only be present in
products without the Beep feature. Note that the feature model changes in
the same transformation. The feature Beep is added to the feature model,
and a condition in Φ is added that represents the dependency of the new
feature, on a base feature from the input product line. After application of
this rule to the SPL in Figure 2.1, the resulting SPL should be equivalent
to the SPL in Figure 3.3.

Figure 3.4: Transformation rule for removing the Beeping node and edges

Rule 4 in Figure 3.4 is the start for the transformation rules needed to
reverse adding the Beep feature after application of rule 3 in Figure 3.2. It
removes the Beeping node and the edges that connect to it from the software
product line, by removing them from the products that have them.

15

Figure 3.5: Transformation rule for removing the Logging node and edges

Rule 5 in Figure 3.5 is the second step needed to reverse adding the Beep
feature after application of rule 3 in Figure 3.2. It is very similar to rule
4 in Figure 3.4. However, it removes the Logging node and the edges that
connect to it, rather than the Beeping node and its edges.

Figure 3.6: Transformation rule to restore the edge from Washing to Un-
Locking and finally remove the Beep feature

After application of rules 4 and 5, the feature Beep can be removed, and
the edge from Washing to UnLocking can be restored as defined by rule 6
in Figure 3.6.

3.1.1 Well-formedness condition

The augmented transformation rule has an important condition that needs
to be satisfied for the transformation rule to be well-formed:

A transformation rule cannot have any features in the PCs on the RHS
that are removed by the rule, or not present in the software product line.

16

Without this rule, elements in the domain model might only be present in
products with a feature that is not in the SPL’s feature model. This would
result in the output of an invalid SPL.

3.1.2 Assumption

Some transformation rules might be considered well-formed, but are either
not supported by our algorithm or should not be applied to some product
lines. There is one important assumption made of a rule:

The union of all presence conditions on the LHS must be satisfiable.
The new algorithm is based on the Lifting algorithm, and cannot modify
the SPL if this does not hold, which is not the desired effect. An example
of a rule not fulfilling this condition is Rule 2 in Figure 3.7. This is because
no products exist such that R and ¬R holds for their features. Allowing
changes to the feature and domain model such as those specified by Rule 2
are desirable, but out of scope for this thesis.

Figure 3.7: A transformation rule to extract actions to states

17

3.1.3 Validity of matches

A transformation rule can only remove a feature from the feature model, if
and only if the following conditions hold:

1. All uses of the feature in a constraint within the feature model are
removed by the rule application as well.

2. All uses of the feature in a presence condition within the domain model
are removed by the rule application as well.

Each feature, except for the root feature has a dependency on another
feature. Because this is encoded as a constraint in Φ, always at least one con-
straint has to be removed when a feature is removed. These two constraints
form a “removal-condition”. Without this condition, a transformation rule
can remove a feature frem from the feature model, while an element in the
domain model still has frem as the presence condition, which is now nonexis-
tent. Because of this, sometimes multiple transformation rules are required
to remove features from the feature model.

3.2 Algorithm

Our algorithm for coupled changes extends the Lifting algorithm introduced
in Section 2.4. Lifting is an algorithm for applying transformation rules to
software product lines, focusing on changes of the domain model. As the
Lifting algorithm is not geared to support changes of the feature model,
changes have to be made to the algorithm to be able to add and remove
features, and to deal with changes of elements’ presence conditions. This
section discusses the supported types of changes and defines the final algo-
rithm. Since the new algorithm is an extension of the Lifting algorithm,
from now on, we will call it the Extended Lifting algorithm.

The Extended Lifting algorithm assumes an augmented transformation
rule as input as defined in 3.1.1. To allow a non-augmented rule to be
applied, the LHS and the RHS of the rule must be turned into product
lines, by adding empty feature models to both.

3.2.1 New algorithm

Figure 3.8 shows the pseudo code of the new algorithm, that is used to apply
the augmented transformation rules to product lines.

18

Data: Product line P with constraint ΦP , a valid augmented rule
R, matching site K = 〈N̄ , C,D〉 in the domain model of P

Result: Transformed product line P ′

1 P ′ = P

2 Φapply = ¬
∨
{φandN |N ∈ N̄} ∧ φandC ∧ φandD

3 if ΦP ∧ Φapply is SAT then
4 add features and constraints from the feature model on the RHS

that are absent in the feature model on the LHS to the feature
model of the P ′

5 remove features and constraints from the feature model of P ′

which are present in the feature model on the LHS, but absent
in the feature model on the RHS.

6 for a ∈ Ar do
7 add a to domain model of P ′

8 if PCR
a is not empty then

9 φ′a = PCR
a ∧ Φapply

10 else
11 φ′a = Φapply

12 end

13 end
14 for c ∈ C do
15 if PCR

c is not empty then
16 φ′c = φ′c ∧ PCR

c

17 end

18 end
19 for d ∈ D do
20 φ′d = φd ∧ ¬Φapply

21 if ΦP ∧ φ′d is not SAT then
22 remove d from domain model of P ′

23 end

24 end

25 end
26 return P ′

Figure 3.8: The new Extended Lifting algorithm

3.2.2 Lifting comparison

The Extended Lifting algorithm is very similar to the Lifting algorithm,
but there are a few key changes to allow for coupled transformation of do-
main and feature models. Φapply is calculated in line 2 and the conjunction
ΦP ∧Φapply is checked for satisfiability in line 3, the same as with the Lifting
algorithm.

19

Line 4 and 5 are new, and the only lines that can change the feature
model of the product line. Line 4 handles the creation of new features and
constraints by comparing the feature models of LHS and the RHS in the rule.
In the augmented transformation rule, the LHS and the RHS are defined as
product lines, which is necessary to define the feature models. When a new
feature is added, a constraint is added to show the dependency of the new
feature on a base feature. This base feature is mapped to a feature in the
feature model and this mapping is part of the matching site.

The for-loop in line 6 - 13 manages added elements to the domain model.
The Lifting algorithm loops through the elements to be added, and adds
them to the domain model on the next line, and sets the presence condition
φ′a to Φapply. The Extended Lifting algorithm does the same in lines 7 and
11. However, the rule can specify a presence condition for the new element
to constrain it to products with specific features. On line 8 it checks if any
PC is specified in the rule by checking if it is not empty. In the case it is
not, the new PC will be set to the conjunction of the PC specified by the
rule, and φapply.

Deletion of elements is handled in the for-loop on lines 19 - 24 and is
identical to the Lifting algorithm.

The Extended Lifting algorithm supports the specification of a presence
condition to preserved elements to modify the domain model, similar to the
PCs an augmented transformation rule can define for added elements. Lines
14 - 17 handle these changes. Any preserved element c for which a PCR

c is
defined in the rule, the PC is constrained to only the products that satisfy
the original PC, as well as PCR

c .

We will now discuss how the algorithm supports several scenarios of
coupled changes: adding features, removing features, and changing presence
conditions.

3.2.3 Adding features

When a new feature Fnew is added, the transformation rule can specify which
nodes and edges are present in the set of the products with the Fnew, and
which in the set of products without feature Fnew. Of course, a new node or
edge can be added to both as well. This is defined by the presence condition
in the rule. Their PC will become the conjunction of Φapply and the PC,
rather than Φapply, provided that the PC is not empty. In this case the PC
is updated on line 9.

20

When the PC in the rule is empty for a new node or edge, they are added
to all products that match Φapply in on line 11. The PCs can include any
of the features in F on the RHS of the transformation rule. If an PC in the
rule includes a feature that is not in F on the RHS, the transformation rule
is invalid.

Finally, the feature model is changed according to the transformation
rule. Any features in the RHS that are not in the LHS are added to the
feature model, and the same is done for the elements in Φ. The Base feature
as used in Rule 3 in Figure 3.2 is matched to a base feature.

3.2.4 Removing features

A transformation rule can specify that a feature Frem has to be removed by
having Frem in F in the domain model on the LHS, but not on the RHS.
Any features in the feature model on the LHS that are not in the feature
model on the RHS, have to be removed from the feature model of the SPL.
For example, rule 7 in Figure 3.1 removes the Cancel feature. It deletes the
edge from the Waiting state to the UnLocking state and also removes the
Cancel feature from the feature model as this is present in feature model on
the LHS, but absent in the feature model on the RHS.

Preparing the domain model

Due to our assumptions (Section 3.1.2), a given rule might not be applicable
to an input product line right away. In such cases, it might still be possible
to prepare the input product line to make the rule applicable. Specifically,
feature Frem can only be removed if the SPL is “Frem removal ready”, which
is a condition to be checked for a particular match (comparable to the “dan-
gling condition” during the application of a normal graph transformation
rule), also referred to as the “removal-condition”. This is the case if none of
the nodes and edges have the feature Frem in their PC. In other words, the
set of products with the feature is equal to the set of products without the
feature. Any transformation rule that specifies that feature Frem has to be
removed that is matched against an SPL of which the domain model is not
“Frem removal ready”, cannot be applied.

A number of transformation rules might be necessary to make sure the
domain model is Frem removal ready. Figure 3.3 shows the washing machine
controller model resulting from adding the Beep feature described in Rule 3
in Figure 3.2. If we want to undo the transformation, we will need to remove
the Beep feature. The first steps to make the domain model Beep removal
ready, would be to remove the Beeping and Logging states, along with their

21

edges, since their PCs are Beep and ¬Beep respectively. This is done by
applying the transformation rules 4 and 5 from Figure 3.4 and Figure 3.5
respectively. Now, the resulting SPL is Beep removal ready.

Remark: It is not possible to remove both the Beeping and Logging
states using a single transformation rule, because the LHS cannot possibly
have any valid matches, as not a single product could satisfy the PCs Beep
and ¬Beep at the same time.

Since the SPL is is now Beep removal ready, we need one more transfor-
mation rule that adds the edge from the Washing node to the UnLocking
node which was removed using Rule 3 in Figure 3.2. This final transforma-
tion rule is described in Figure 3.6

3.2.5 Adding and removing constraints

The feature model of a product line contains a set of constraints Φ over
the features that a product can have. The LHS and the RHS in an aug-
mented transformation rule can have a feature model, which includes these
constraints as well. Deletion and addition of constraints can be specified by
having each constraint exclusively in the feature model on one side of the
rule. However, since these changes don’t concern the domain model at all,
the concept of “feature removal ready” does not apply.

3.2.6 Changing presence conditions

As explained in Sect. 3.2.2, the domain model of a product line can be mod-
ified by specifying a presence condition for preserved elements. As the new
PC for such an element is the conjunction of its old PC, and the PC specified
by the rule, the products in which the element is present is restricted. In
Figure 3.8 on line 15, the algorithm checks if such a PC is specified by the
rule. In the case that it is not, the PC of the preserved element is updated
on line 16. This can be used to introduce a new feature that adds elements
to products that used to be in all products.

3.3 Correctness and complexity

3.3.1 Correctness

With the new transformation rules, the number of products can change,
which means that we will need to handle the correctness differently from
the Lifting algorithm’s correctness criteria in Figure 2.4.1.

22

The Lifting algorithm can only apply transformation rules without changes
to the feature model, and without explicit changes to presence conditions.
The Extended Lifting algorithm can apply all of these transformation rules
as well, which makes these a special case. With these constraints on the
transformation rules, line 4 - 5 in the Extended Lifting algorithm in Figure
3.8, as well as lines 14 - 17 will not make any changes to P ′, because the
feature model is constant, and because PCR

c is always empty for all ele-
ments c ∈ C. Because PCR

a is always empty as well (no explicit presence
conditions are allowed), the if-statement on line 8 will always lead to the
second case on line 11. For these cases, the algorithm is clearly the same as
the Lifting algorithm in Figure 2.4 and should therefore also be correct.

When a transformation rule modifies the feature model, products can be
created and/or removed. The products that are preserved should change as
described by the transformation rule. If a product that is preserved satisfies
ΦP ∧Φapply, it should have all the elements added in Ar as executed in lines
6 - 13 in the Extended Lifting algorithm. Any elements c ∈ C for which
PCR

c is not empty, should be removed, as executed in lines 14 - 18 in the
Extended Lifting algorithm, if and only if PCR

c does not hold according to
the configuration of the product. Finally, the product should also not have
any of the elements d ∈ D. The Extended Lifting algorithm removes these
in lines 19 - 24 just as the Lifting algorithm does.

When products are created, a new feature must be introduced, as it is
not possible to create new products without any new features. Any new
products are the same as the products without the new feature in the origi-
nal SPL, with a few changes made to them according to the transformation
rule. The rule can specify to add elements only present in the products with
the new feature. These elements have to be present in the resulting products
with the new feature that satisfy the presence condition as defined in the
rule for the element along with Φapply. These products can still have some
elements specifically removed as well, defined by the transformation rule as
the elements d ∈ D. Just as how preserved products can have elements
c removed specifically by defining PCR

c on the RHS of the transformation
rule, this is also possible for newly created products. Any elements c for
which PCR

c is not empty are removed from the product if the product does
not satisfy φ′c ∧ PCR

c .

Finally, products can be completely removed, if one of the features that
it has is removed from the feature model of the SPL. In the Extended Lifting
algorithm, the products with the removed feature and the products without
it must be identical before it is removed. This is called “feature removal
ready” and thus the domain model of the SPL will not show any changes
when a feature is removed. Note that a feature can be removed within the

23

last transformation rule that makes the SPL feature removal ready as no
references to the feature can be present in presence conditions in the do-
main model after application of the rule.

The products from the rule and the matching site are unified and there-
fore the presence condition of a preserved element will be the conjunction
of both the PC in the matching site, and the rule. This is supported by an
existing framework based on category theory [14]. The resulting conjunction
φ′c ∧ PCR

c can be seen in line 16 in Figure 3.8.

3.3.2 Complexity

The Extended Lifting algorithm, just like the Lifting algorithm, uses a SAT
solver. Solving a SAT problem is NP-complete. The number of variables
used for SAT solving depend on how many elements are matched on the LHS
of the rule, and the variables used in their presence conditions, as well as
the number of elements and variables in the presence conditions of the NACs.

The changes to the feature model are very minimal as in general, only
one feature or constraint is add or removed. Line 4 and 5 of the Extended
Lifting algorithm in Figure 3.8 are linear in the number of added and re-
moved features and constraints.

Since the if-statements and the updates to presence conditions, or the
domain model are constant, the main contributors to the complexity are
the for-loops at lines 6, 14 and 19. These are all linear in the number of
elements added, preserved, and deleted respectively. The algorithm does not
have any nested loops, and all elements besides the SAT solving are linear
in time complexity, which means that the complexity is mainly affected by
SAT solving, and is not any higher than that of the Lifting algorithm. While
solving a SAT problem is NP-complete, the complexity scales up nicely as
state-of-the-art SAT solvers can handle a million of variables and several
millions of constraints efficiently [10]. This is more than sufficient for even
very large software product lines. In the literature, the largest software
product lines reported on so far include 15,000 features [7].

3.4 Implementation

To help show what the algorithm might look like in practice, we created an
implementation in Python. In this implementation, the algorithm is used to
apply transformation rules in an isolated environment. The code contains
three tests, each in a separate file:

24

1. The Adding Beep Feature test, which contains Rule 3 as seen in Figure
3.2.

2. The Removing Beep Feature test has a collection of rules to remove
the Beep feature from the product line in Figure 3.3. These are Rule
4 (Figure 3.4), Rule 5 (Figure 3.5) and Rule 6 (Figure 3.6).

3. The Removing Cancel Feature test, which contains Rule 6 from Figure
3.1 that removes the Cancel feature from a product line.

The Python code is split into several files dedicated to different tasks.
All files are included in an online appendix [9].

Figure 3.9 shows how the implementation applies rule 3 from Figure 3.2
to a software product line. When performing a test, it shows the initial
product line first, and for each rule applied afterwards, it shows the changes
made to the product line, and the intermediate/final product line.

The implementation is dependant on the “Sympy” library for performing
satisfiability tests, as well as displaying expressions.

25

Figure 3.9: Screenshot of the implementation applying rule 3: AddBeepFea-
ture as defined in Figure 3.2

26

Chapter 4

Related Work

As discussed in chapter 1 and 2, existing work has researched graphs [2],
what they can be used for [8], how they can be transformed, and how this
applies to software product lines [14, 4, 1, 3]. The Lifting algorithm [11]
can apply transformation rules to software product lines. What is missing,
and what this paper focuses on, is the application of transformation rules
on software product lines without constant feature models. An earlier work
has thoroughly explored this possibility on a theoretical level [14], which
is necessary to apply software product lines in a real setting. This work
introduces a notion of product-line pushouts and uses it to formally define
the semantics of the rule applications that affect both the feature model and
the domain model. Product-line pushouts can be seen as a rule application
algorithm, but they require a certain check to be performed to all products
individually, which is infeasible for large product lines. Since application
of rules that apply coupled transformation of feature and domain model,
without enumeration of all products could not be done before, there is no
algorithm to compare our algorithm against.

Another work extends the Lifting algorithm in a different direction, to-
wards supporting transformation rules with variability in them [12], using a
variability representation from another work [13]. However, like the Lifting
algorithm itself, this work does not support changes of the product line’s
feature model.

27

Chapter 5

Conclusions

The Extended Lifting algorithm as seen in Figure 3.8 for applying transfor-
mation rules to software product lines is able to apply all the transformation
rules with a constant feature model, just as the Lifting algorithm does. On
top of that, it allows for changes in the feature model to allow features to
be added to or removed from the feature model.

This algorithm is the first to be able to apply these transformation rules
to software product lines to allow software product lines to be changed into
any other software product line without requiring an explicit enumeration
of all products.

We have reasoned about the correctness of the Extended Lifting algo-
rithm and explained why the new algorithm does not have a larger time
complexity than the Lifting algorithm, that it is based on.

Finally, a simple Python implementation demonstrates how the Ex-
tended Lifting algorithm can be used in practice.

28

Bibliography

[1] S Apel, D Batory, C Kästner, and G Saake. Feature-oriented software
product lines: Concepts and implementation, 2013, 308 pages. URL
http://www. springer. com/computer/swe/book/978-3-642-37520-0.

[2] Luciano Baresi and Reiko Heckel. Tutorial introduction to graph trans-
formation: A software engineering perspective. In Andrea Corradini,
Hartmut Ehrig, Hans Jörg Kreowski, and Grzegorz Rozenberg, edi-
tors, Graph Transformation, pages 402–429, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[3] Marsha Chechik, Michalis Famelis, Rick Salay, and Daniel Strüber. Per-
spectives of model transformation reuse. In International Conference
on Integrated Formal Methods, pages 28–44. Springer, 2016.

[4] Krzysztof Czarnecki and Micha l Antkiewicz. Mapping features to mod-
els: A template approach based on superimposed variants. In Robert
Glück and Michael Lowry, editors, Generative Programming and Com-
ponent Engineering, pages 422–437, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[5] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Monographs in The-
oretical Computer Science. An EATCS Series. Springer, 2006.

[6] Carla P Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman.
Satisfiability solvers. Foundations of Artificial Intelligence, 3:89–134,
2008.

[7] Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke,
and Ina Schaefer. Is there a mismatch between real-world feature mod-
els and product-line research? In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages 291–302, 2017.

[8] Leen Lambers, Daniel Strüber, Gabriele Taentzer, Kristopher Born,
and Jevgenij Huebert. Multi-granular conflict and dependency analysis
in software engineering based on graph transformation. In ICSE’18:

29

IEEE/ACM International Conference on Software Engineering, pages
716–727. ACM, 2018.

[9] Steven Maarse. Online appendix for this thesis. https://figshare.

com/articles/software/Implementation_code/14318282/1, Mar
2021.

[10] Sven Peldszus, Daniel Strüber, and Jan Jürjens. Model-based secu-
rity analysis of feature-oriented software product lines. In GPCE 2018:
International Conference on Generative Programming: Concepts & Ex-
perience, pages 93–106. ACM, 2018.

[11] R. Salay, M. Famelis, J. Rubin, A. Di Sandro, and M. Chechik. Lifting
model transformations to product lines. In Proceedings of the 36th
International Conference on Software Engineering (ICSE), pages 117–
128, 2014.

[12] Daniel Strüber, Sven Peldszus, and Jan Jürjens. Taming multi-
variability of software product line transformations. In FASE, pages
337–355, 2018.

[13] Daniel Strüber, Julia Rubin, Thorsten Arendt, Marsha Chechik,
Gabriele Taentzer, and Jennifer Plöger. Variability-based model trans-
formation: formal foundation and application. FAC’18: Formal Aspects
of Computing, 30(1):133–162, 2018.

[14] G. Taentzer, R. Salay, D. Strüber, and M. Chechik. Transformations
of software product lines: A generalizing framework based on category
theory. In 2017 ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS), pages 101–
111, 2017.

30

