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Abstract

A riddle about measuring time by lighting a bunch of fuses gives rise to
computable functions that grow too fast for there to be a simple proof of
computability. By formalising the concept of the riddle we define the set of
fusible numbers F. Erickson et al. [7] have shown some interesting state-
ments that are derived from this set. We aim to bring part of these results
to a larger audience by elaborating on the proofs and definitions needed.
We show that F is well-ordered with order type at least €, and that their
density grows very fast. A recursively defined subset of F, the tame fusible
numbers leads to some of the facts about F just mentioned, and algorithm
M. Algorithm M is incredibly easy to implement, and is computable, but
by the construction of the tame fusible numbers we can show that Peano
arithmetic cannot prove it to be computable.



Chapter 1

Introduction

A fundamental part of computer science is concerned with the computability
of functions. We consider a function computable if some Turing machine
could be constructed that models the function and terminates on each given
input. If we want to prove a function to be computable, Peano Arithmetic
(PA) is an obvious first choice to use as a proof system due to its simplicity
and Turing completeness: Any computable function f can be expressed in
PA. The question then arises: Can PA also prove the computability of f7

It turns out: often, but not always. Despite its simplicity, PA is surprisingly
strong [2, 3]. Take for example the Ackermann function: It was designed as
a total, computable, yet not primitive recursive function [5] and is the clas-
sical example of how a simple looking function can still have a ridiculously
large complexity. And yet PA has no problem proving it to be computable.
However, we know that there must be statements that can be expressed but
not proven by PA, thanks to Godel [10]. And plenty of such statements
have been found already [8, 12, 14, 15, 16]. Though most examples can
already be expressed quite simply, the one found by Erickson et al. [7] is of
an incredibly simple form. They found that PA can express this function,
but not prove it to be computable:

M(z) : if ¢ < 0 return — z, else return M (z — M (z —1))/2

This function M is derived from the construction of the set of so-called
Fusible Numbers F, based on a riddle where we measure time by lighting
fuses. The set is formally introduced by Erickson et al. [7], specifically
because some true statements can be derived from it that can be expressed
in but not proven to be true by PA.We will be discussing their results about
M and those leading up to them to make them available to a larger audience.

Following are the main results that we will discuss, and an overview of how
this thesis is structured.



1.1 Results

The main point of this thesis is to provide a more intuitive explanation of the
results about algorithm M found by Erickson et al. [7]. We elaborate on the
existing proofs and definitions, add lemmas and examples where necessary,
and provide some necessary background knowledge.

The result about M is described in theorem 1.3, and theorems 1.1 and 1.2
are necessary for its proof.

Theorem 1.1 (Part of Erickson et al. [7] Theorem 1.1). The set F of fusible
numbers, when ordered by the usual order “<” on R, is well-ordered, with
order type at least €.

This shows us how the fusible numbers are related to ordinals, which will
help us with the result about PA. Erickson et al. [7] also show that the
order type is exactly 9. Though that is interesting for other results, it is
not strictly necessary to get to the result about M. The fact that F is
well-ordered means each of its elements has a successor that is also in F.
This also holds for every subset of F.

Theorem 1.2 (Erickson et al. [7] Theorem 1.2). The density of the fusible
numbers along the real line grows very fast: Let g(n) be the largest gap
between consecutive fusible numbers in FN[n,o0). Then g(n)™1 > F.,(n—17)
for all n > 8, where F, denotes the fast-growing hierarchy.

This shows a property of the fusible numbers that will help us find the final
result.

Theorem 1.3 (Erickson et al. [7] Theorem 1.3.3). Consider the algorithm
“M(z) : if x < 0 return —zx, else return M(x — M(x — 1))/2.” Then M
terminates on real inputs, although PA cannot prove the statement “M ter-
minates on all natural inputs.”

Theorem 1.3 is the final result about M. It confirms that even a com-
putable function as seemingly simple as this can not necessarily be proven
computable by PA.

1.2 Overview

e Chapter 2 contains the necessary background on ordinals and fast-
growing functions.

e Chapter 3 contains the definition of the set of fusible numbers F and
a proof of its well-orderedness, proving the first part of theorem 1.1.



e Chapter 4 introduces the tame fusible numbers F’. We derive M from
them and find the lower bound of the order type of F, which proves
the second part of 1.1 Here we also outline and clarify the proof of
Theorem 1.2 by Erickson et al. [7].

e Chapter 5 describes how Erickson et al. [7] find a fast-growing function
for Theorem 1.2, and clarifies how that leads to a proof.

e Chapter 6 gives some information on proving in PA and includes the
results about M as in Theorem 1.3.



Chapter 2

Ordinals

Ordinals, or ordinal numbers, say something about the size of a well-ordered
set. Say we have two ordered sets X and Y. We could simply compare them
by size, as we do with cardinality, but that does not always give us enough
information. For example, N and Q have the same cardinality (Rg), but
there is no order-preserving bijection between them so they have different
order types.

If X and Y are well-ordered, however, they must also be of the same order
type. This is where ordinals come in. Each well-ordered set has the same
order type as exactly one ordinal. As such, we use the ordinal as a name for
that order type.

This enables us to differentiate between different types of infinities, in par-
ticular different countable ones.

2.1 Formal Definition

We follow Jech [13] for the formal definitions. Ordinal numbers are defined
as sets containing all ordinals smaller than them, and they are well-ordered
by €. It holds for ordinal « and 8

a< fifand only if « € fand a ={f: 8 < a} (2.1)

The finite ordinals are related to the natural numbers N.

For example the ordinal 0 is defined by the empty set ) (we write 0 = 0).
And 1= {0} = {{}}(= {0}), so by (1) 0<1. Another example: 3 = {0,1,2}
so 1<3

We differentiate between two types of ordinals: the successor and limit



ordinals.

Definition 2.1 (successor ordinal). An ordinal « is a successor ordinal if
it is the successor of another ordinal. In other words, o = 8 + 1, where (3
can be any ordinal.

Definition 2.2 (limit ordinal). An ordinal « is a limit ordinal if it is not a
successor ordinal.

To illustrate this difference, look at the natural numbers. All nonzero natural
numbers are successor ordinals, as for each nonzero n € N we can find an
m € N such that m+ 1 =n.

As implied, 0 is not a successor ordinal, so it is a limit ordinal. This follows
the definition, as the ordinals are limited by zero: there is no ordinal smaller
than 0, so it cannot be the successor of any ordinal.

A more interesting limit ordinal is w:

Definition 2.3 (w). The least nonzero limit ordinal is w. This is defined
by the set of all natural numbers.

To be clear, following this definition, w + 1 is a successor limit.
Definition 2.4 (7,). Given n > 0, 7, is defined by
=1
Tnpl =w™"

Definition 2.5 (). ¢ = limy 00 Tp-

2.2 Basic Arithmetic

Again we follow Jech [13]. In the previous section we have made use of the
addition of ordinals. However it is important to note that this and other
arithmetical functions differ from those in regular arithmetic. Following are
a few definitions, and a brief discussion of the implied differences after that:

Definition 2.6 (Addition). For all ordinal numbers o
(i) a+0=aq,

(i) a+ (B+1) = (a+B)+1, for all 3,
(ili) a4+ B = limeg(a + &) for all limits 8 > 0

Definition 2.7 (Multiplication). For all ordinal numbers «



(i) -0=0,
(ii) - (B+1)=a- B+ «, for all g,
(ili) a- B = lim¢g(a- &) for all limits 3 > 0

Definition 2.8 (Exponentiation). For all ordinal numbers «

(i) a® =1,
(ii) ot =af - q, for all g,
(ili) o+ B =limg,5(a +§) for all limits 5> 0

In regular arithmetic, addition and multiplication are commutative. Note
that here they are not. If the second argument is a limit larger than the
first argument, then by (iii), we drop the first argument. Take for example
I +w=lime,(1+&) =w # w+ 1. If the first argument is also a limit,
but still smaller than the second, the same happens: w + w? = w?, but if
the first argument is larger than the first then addition and multiplication
work as normal. Note for another example that (w?+1)4+w = w? +w+1 #
WH1l+ w=w?+w.

2.3 Cantor Normal Form and g

Every ordinal a can be written uniquely in the so-called Cantor Normal
Form as follows
a:wal .n1+...+waknk

where k£ > 0, ny,...,n; nonzero natural numbers, and «; ...ay ordinals.

There exist ordinals suqh that in this normal form o = w®. The smallest
such ordinal is g = w®”

2.4 Natural sum and product ¢, ®

Addition and multiplication on ordinals is not commutative. See for example
the ordinals « = w+1and B = w?. Then a+f = w+ 1 +w? = w? #
w?4w+1 = B+a. In most cases this is wanted behavior, but it also gives the
addition and multiplication of unknown ordinals a degree of unpredictability.
Using the Cantor normal form we can construct operations & and ® that
are commutative and associative. We follow the definition from Erickson et
al. [7]. Let o = w® 4 -+ w® and = wP +--- 4w’ be two ordinals in
Cantor normal form with m,n >0 and oy > --- > o, and 1 > -+ > Bi.



e Natural sum @
Oé@ﬁ:w% _|_,.,+w7n+m’

where 1, ..., Yntm are ai, ..., Qn, B1,.- ., Bm sorted in nonincreasing
order.

e Natural product ®
a®p= @ Wi ®P;

i\j
2.5 Canonical descent

For a limit ordinal o < g¢ the canonical sequence [a], is a sequence con-
verging to a when n goes to infinity, and is defined as follows: For limit
B < w**! and ordinal v let

W+ Bln = W + [Bln (2.2)
W], =win (2.3
(W], = w (only if ~ is a limit) (2.4)

For successor ordinals we define [« + 1], = «a.

With these we know how to write each element of a canonical sequence.
Take for example

(and [w¥27), = W@ 26 + wtin).

Definition 2.9 (Canonical descent). A canonical descent is a descending
sequence of canonical sequences: a; > ag > -+ > a in which ;11 = [a4]n,-
So each «; after the first one is the n;-th element of the canonical sequence
of the previous one.

These n; are the descent parameters of the sequence.

For each pair of ordinals < o < g9 we can find a (the shortest) canonical
descent from « to 5. If the descent parameter of such a descent are at most
k then we can write a —; 8. Note that this k£ is just an upper limit, not
necessarily the least upper limit.

Lemma 2.10 (Erickson et al. [7] Lemma 3.1). Let o, < eo be limit
ordinals satisying [a], < B < a. Then [B]1 > [a], and [B]2 > [a] + 1.



This means in particular that if [o], < 8 < «, then every canonical descent
from £ to 0 must contain [as,.

2.6 Fast-growing hierarchies

A fast-growing hierarchy are functions F,, (where « is an ordinal) that grow
very fast. It holds that for ordinals S > «, Fj3 grows much faster than F,.
It grows so much faster, that no matter how many times in a row we apply
F,, F will at some point overtake it: For every k, Fjg(n) will at some point

overtake F\") (n). It’s defined as follows:

fg(n) n+1

fas1(n) = f{(n)
fa(n) = fialn (n) if « is a limit.

The exact definition of a fast-growing hierarchy depends on how we define
[a], [3], which is why generally we don’t talk about ‘the fast-growing hier-
archy’. When we do, most often the Wainer hierarchy is meant.

Definition 2.11 (Wainer hierarchy, F,). The fast-growing hierarchy that
has all & < g¢ and [a],, as we defined it is called the Wainer hierarchy and
we will write Fy, for a function in this hierarchy.

Definition 2.12 (Hardy hierarchy, H,). The Hardy hierarchy is not a fast-
growing hierarchy by the earlier definition, but it is related to it for o < gp.
It is defined as follows [11]

Ho(n) =n
HOH—I = Ha(n + 1)
Hy(n) = Higy, (n) if a is a limit.
For all a < €p, the Wainer and Hardy hierarchies are related by Fy(n) =

He(n). [3] This means the Hardy hierarchy grows significantly slower than
the Wainer hierarchy.

Definition 2.13. F. (n) = F;, (n). Note that for every a < eg, for high
enough n, F.,(n) > Fy(n).

Lemma 2.14 (Erickson et al. [7] Lemma 3.5.). H, (2) > F;,(n —2) for
every n > 3.



Chapter 3

Fusible numbers F and their
well-orderedness

3.1 Definition of F

The fusible numbers are based on a riddle that uses fuses to measure time.
Say we have an unlimited supply of fuses. We know they each burn for
exactly one hour, but not uniformly, so we cannot tell how much time has
passed by simply measuring how much of the fuse has burnt up. How do we
measure 45 minutes with two of these fuses?

Well, lighting one fuse at both ends simultaneously means that it will burn
up in 30 minutes. So if we light three of the four ends of two fuses at the
same time then one fuse will burn up after 30 minutes, and the other still
has exactly half an hour left. If at that exact moment we light the last end,
that remaining half hour will be halved. So the last fuse burns another 15
minutes, and in total the two fuses will have burned 45 minutes.

We could use this method to measure many other amounts of time by burn-
ing a number of fuses. The set of fusible numbers F € Q, introduced by
Erickson et al. [7], is based on this idea. To properly define it we need a
function ‘fuse’

r~y=(x+y+1)/2 forz,yeR.

If |y — 2| < 1 then = ~ y is the time at which a fuse burns up if its ends are
lit at times x and y.

F is then defined recursively:

e 0 F.
e Forz,ye Fand |y—z| <lalsox~yeF.



3.2 Proof of well-orderedness

Recall the definition of well-orderedness:

Definition 3.1. A set S is well-ordered is each nonempty subset of S has
a smallest element.

First a few observations:
Observation 3.2. a ~b="b~ a.

Observation 3.3. Va > b : a ~ ¢ > b~ c. (Together with Observation
3.2 clearly alsoVa >b : c~a>c~b.)

Observation 3.4. (a+c) ~b=(a~b)+ 5.
Observation 3.5. f r ~y=zand y —2x <1—2¢ then z —y > €.

Observation 3.6 (Erickson et al. [7] Observation 2.1). Suppose < y with
ly —x| <1,and let z =z ~ y. Thenm+%§z<x—|—1andy<z.

Lemma 3.7 (Erickson et al. [7] Lemma 2.2). Suppose z € F, and let
0 <m < 1. Then there exists a fusible number in the window I = (z + 1 —
2m,z + 1 —m).

Proof. We show V¥n : z+1—27" € F by induction over n:

n=0:z4+1—-1=z¢€F
n>0 : Z+1—2_”=(z+1—2_("_1))wze]:

and clearly for some n it holds that z4+1—27" € I. ]

Lemma 3.8 (Erickson et al. [7] Lemma 2.3). The set F, ordered by the
usual order “<” of real numbers, is well-ordered, meaning every nonempty
subset of F has a smallest element.

Proof. Say F is not well-ordered. Then there is a non-empty set G of non-
empty subsets of F without a least element. Each g € G contains at least
one infinite descending sequence. We name the set of all such sequences S.
Since F has a least element we know that each s € S converges to a limit
ls =lims € R.

{ls | s € S} has a least element . Either the set does not contain an infinite
descending sequence and the least element is obvious, or it does contain an
infinite descending sequence T'. Consider the latter case. Call the elements
of T t;. Note that these elements are not necessarily in F. However by

10



construction we can find for each t; a sequence p; € S such that p; converges
to ti.

We construct a set Go = (91, 92,93,...) C F in which g; € p;. Since the
limit ¢; exists, we can find for € = 1 some 97 such that Vi > §1]t1 — p1i| < 1
where p;; is the 7' element of p;. Now take g, = D16, -

Similarly we find for ¢ = % a dy such that Vi > dalta — poi| < % Take
92 = P25, -

And generally, from p,, we find for ¢ = % a dp, such that Vi > 0, |t —ppi| < %
Take g, = Dps,, -

By construction Gy is a subset of F that converges to lp. We can form a
sequence Sy = (zp, 21, 22, . .. ) consisting of the elements of (if necessary, a
subset of) Gp.

Still under the assumption that F is not well-ordered, we have now found
an element [y that is strictly less than all elements of all infinite descending
sequences in F, and we have found an infinite descending sequence Sy =
(20, 21, 22, . . . ) that converges to this .

Since all the z; are in F we can write z; = x; ~ y; with z; < y;. Now we
can assume without loss of generality that {z;} is strictly ascending, strictly
descending, or constant.

By existence of x; ~ y; we know that |z; — y;| < 1. Then by Observation
3.6 it follows that z; + % <z <z + 1

Say {x;} is strictly descending. Take ¢ = %. Then it holds for certain § that
zs — € = lp. But then z5 < 25 — % < z5 —e = lp. Then {z;} would be an
infinite descending sequence in F with an element smaller that ly. So {z;}
cannot be descending.

So {x;} must be strictly ascending or constant. Then by Observation 3.3
{yi} must be strictly descending. We use this to find a sequence in F that
contains an element smaller than [.

By definition of {z;} and {y;} and because {x;} is strictly ascending or
constant it holds that y; > x; > z1. Also, since {y;} is strictly descending,
Viy; < yi1.

It follows that Vilz; — yi| = y; — 21 < y1 — x1 and by existence of z;
also y3 — x1 < 1. So in particular it holds that Vi|x; — y;| < 1 and thus

{yi} = {x1 ~ y;} exists.

11



We show that {y;} contains an element smaller than ly. Take
e =y — limy; (3.1)

Note that limy; exists since {y;} is descending and is limited by 0 by con-
struction of F.

Note that
38 ' > 8y — limy <§ (3.2)
35 . vn” > 5" Zpr — lg < % (3.3)

Take § = & + 6”. Now we find that

Ys — x5 S Ys — X1 (3.4)
=ys—y1— (1 — 1) (3.5)
<ys—y1+1 (3.6)
= (ys —limy;) — (y1 — limy;) +1 (3.7)

2e
<1l-—— 3.8
- (3.9

(3.4) holds since {z;} is not decreasing, (3.6) holds since x; ~ z9 exists,
(3.8) holds by (3.2) and (3.3).

So, by Observation 3.5,

€
25 — Ys > § (3'9)
It follows that
15
Ys <2 — 5 (3.10)
<l (3.11)

(3.10) holds by (3.9), (3.11) holds by (3.3).

Then it must hold that the limit of {y;} is also smaller than ly, which
contradicts the definition of ly. 4

So our assumption was untrue, and thus F is indeed well-ordered. O

So, F is well-ordered, which proves the first part of Theorem 1.1.

12



Chapter 4

Tame fusible numbers F’

The tame fusible numbers F’ form a subset of F that has more of a defined
structure to it. We use it to prove the lower bound part of Theorem 1.1,
and to give a derivation for M. In the next chapter we also use it to find a
proof for Theorem 1.2.

4.1 Definition of F’

The set of tame fusible numbers F’ is defined in such a way that we could
prove with transfinite induction that it is well-defined. In other words, we
define it by transfinite recursion. We will define F}, where « is an ordinal
number such that |J F,, = F'.

Define F'o = {1 — 27" |n € N} as a base case.

/g = Usen Fa, With 8 = lim; o a; (so there is an infinite sequence of «;
that converges to limit ordinal 3). This forms the limit step in our recursion.

Now all we need is the successor step. We define F,, ;. Note that o+ 1 is
always a successor ordinal, but « can still be both.

We look at the supremum of F,, and we name it sup(F,). We are allowed
to do this since Voo € Ord F), C F so we know that it is well-ordered
(because we already know F is) and thus we can take a supremum. Let
xq = sup(F,) — 1. We show that this z, is really an element of F/ in
Corollary 4.4.

There exists a successor of x, in F,, or otherwise z, itself should have
been the supremum. Call this successor y,. The gap between these two is

Mo = Ya — La-

13



We look at an interval the size of this gap, but at the very end of F,,, and
we call it I, 0. To be precise,

Ino=FoN[za+1—m,zqa+1)=F,N[ya+1—2m,yo+1—m)

We define
Ia,n+1 = {ya ~z | zc Ia,n}

Note that Vz € I : 2 ~ Yq > 2o + 1. So, for i > 1, all elements of I, ; are
outside the range of F,.

We see that Vn if z € [ya +1- %—T,ya—i—l — 2%) theny, ~ z € [ya+ 1-— ;%,yajtl — Qn%)
From this it follows that the I, ; are distinct, and that (J,~; Ia,n C [Ta +
Lya + 1)' -

Now to finish this definition step:

1= Fa U U Ion

n>1

This concludes the (final) successor step of our recursion and we can define
the tame fusible numbers:

F=1 7
acOrd

We show that our assumption that z, = sup(F,) — 1 € F/, for all o indeed
holds in Corollary 4.4. First follow a few lemmas that we need for that
conclusion.

Lemma 4.1. Yo € Ord : if for every infinite and strictly increasing sequence
{a;} € Fl, with limit b < sup(F},) it holds that b € F,,, then it follows that
xq =sup(F,) — 1€ F.

Proof. By transfinite induction on «.

1. Base case, let a = 0: sup(F)) —1 =0 and 0 € F so the base case is
finished.
2. Successor case, let « = v+ 1:

sup(]:&H) —1=-sup .7-",; U U Inn| —1

n>1
= {sup (lan) [n =1} —1
= lim sup (Jon) — 1
n—oo

=Yat+1-1=yq

14



and we know that y, € ]-",’y C ffy +1, which concludes this step of our
proof.

«
that for each of these 7;, =, € F,. We know that limz,, = z,.
Since z, < sup(F},) it then follows by the premise of this Lemma that
To € F,.

3. Limit case, let o = lim; 00 vt F = Ujen .7-"42,. By induction it holds

Lemma 4.2. Vo € Ord : sup(F,,) € F/ 1.

Proof. By transfinite induction over a. Given our current induction hypoth-
esis we make some observations:

VB < a:yg=xg41 (4.1)
VieF,: (f<zy) > 3IBe0rd: f=s3NB<a (4.2)

1. Base case, let « = 0: sup(F)) =1=13~ 3 =yo~ 5 € F.

2. Successor case, let a =+ 1: We know that sup(F. ) = 2,41+ 1=

Tyt ~ (Tygp1 =M1 +1) = 2ypo ~ (Tyg1 ~ (2y+1)) = Yy ~ (yy ~
(2 +1).

By induction we know x- + 1 = sup(F}) € F. ;. It is the left point
of I,1,80 Zyp1 —Mmyp1 + 1 =yy ~ (vy+1) € L,0 C ]-',’YH. Then from
the definition of 1,11, we know that xy11 —m,41 +1€ L,410.
From this it follows that indeed

Sup(]‘—;.u) = Yyg1 ~ (Typ1 —myq1 +1) € ‘F’/Y+1

which completes this step of our proof.

3. Limit case, let a be a limit ordinal: We know that sup F, = yo ~ (zo—
mq+1). By induction we know that =4,y € F,,. From Lemma 4.2 in
the work of Erickson et al. [7] it follows that then also x, —mq € F,.
By (4.2) we can then find some ordinal 8 < o such that xg = o —ma.
Since x5 < x4, induction now tells us that zo —mq +1 = sup(f/é) €

541 C Fo. Knowing this, it’s clear that then

sup(Fh) = Ta + 1 =ya ~ (o — ma + 1) € Flyy
which completes this final step of our proof.

O]

Lemma 4.3. Va € Ord, for every infinite and strictly increasing sequence
{a;} € Fl, with limit b < sup(F),) it holds that b € F],

15



Proof. By transfinite induction over «.

1. Base case: F| has only one such sequence. Its limit is 1 £ sup(F}), so
we are done.

2. Limit case: Let a = lim{~;}. Then as F, = |JF,, , we are done if for
some ¢ it holds that b € ]:'/w which holds by induction.

3. Successor case: Let @ = v + 1. Then there are three cases that can

hold:

(a) b <sup(F;). Then by induction b € F, C F/ .
(b) b= sup(F;). Then by Lemma 4.2 it holds that b € . ;.
(¢) b>sup(F;). Here we have two cases:

i.

ii.

dn > 1 for which b = sup(Z,,,).

Since Vk, [ : sup(Igr+1) = yg ~ sup(Igy), it follows by
induction on n that sup(l,,) € Iy nt1.
So indeed b € F ;.

dn > 0 for which b > sup(/,,,) and b < sup(Iy n41)-

Then there is some sequence {a;} € I 41 with lim; .o a; =
b. Recall I 41 ={yy ~ 2| z € I,,}. Then we can find a
sequence {z;} such that for all 7 it holds that a; = yy ~ z;.
It holds that b = lim; ;o a; = Yy, ~ lim;_,+ 2;. By induction
on n we know that lim; ;oo z; € I,,. (If instead it were
sup(ly,n) & Iyn then b = yy ~ sup(ly,) = sup(Ly,nt1), SO
we would be in case 3.a.i.)

Then indeed b € I, 11 C F,.

Corollary 4.4. Va € Ord : zo =sup F,, — 1 € F/.

Proof. This logically follows from Lemma 4.1 and Lemma 4.3. O

4.2 Algorithm M

In this section we take a closer look at algorithm M from Theorem 1.3. We
show how it is derived from the construction of 7’ by expressing it in terms of
TAMESUCC(r), which gives the smallest tame fusible number strictly larger
than . We use this to show that M (r) terminates on all rational numbers.
Both these algorithms are shown in Figure 4.1.

Lemma 4.5. Procedure TAMESUCC(r) terminates for every input r € Q.
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Algorithm 4 Finds min(F' N (r,00)) Algorithm 5 Computes TAMESUCC(r) — 7

procedure TAMESUCC(r) procedure M(r)
if » <0 then if » <0 then
return 0 return —r
x <~TAMESUCC(r — 1) return M(r — M(r —1))/2
5: y < TAMESUCC(2r — 2 — 1)

return r ~y

Figure 4.1: Algorithms TAMESuUCC and M [7]

Proof. For r < 0 this is clear, so consider r > 0.

Let z = TAMESucC(r — 1). Then by induction this is defined, and = has
the value of some tame fusible number.

Let y = TAMESUCC(2r —x — 1). Since always x > r — 1 this also terminates
by induction, and y has the value of some tame fusible number.

Then for some r the procedure returns x ~ ¥, so since x and y are defined,
this must terminate. O

Lemma 4.6. Procedure M (r) gives output TAMESUCC(r)—r for every input

r € Q.

Proof. If r < 0 then M(r) = —r =0 —r = TAMESUCC(r) — r.
We continue with » > 0 by induction on 7.

Let 7 = 0: Then M(0) = M(_]\;j(_l)) = M(Q_l) = 3 = TaMESUCC(0) — 0.

Let » > 0:
Our induction hypothesis (IH) is Vk,k < r — M (k) = TAMESucc(k) — k.
For readability we write TAMESuUCCc(r) as T'(r). We see that

2M(r)=M(r— M(r —1))

Bt — @r— 1)~ (r— 1))

=MQ2r—-T(r—-1)-1)

(IE)T(%—T(T— HD-1)—-2r—-T(r-1)-1)

=Tr—1)+T2r—-T(r—-1)—1)+1-2r
So indeed

M(r):T(T_1)+T(2T_T2(r_l)_1)+1_2TZT(r)—r.

By Lemma 4.5 this equality also means that M terminates for all input in

Q. O
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Erickson et al. [7] talk about M terminating on real inputs. However in
terms of computability the notion of terminating on all real numbers does
not make much sense. More on this in section 6.2.

4.3 Lower bound

We show that g is a lower bound for the order type of F by showing that
it is exactly the order type of F'.

Lemma 4.7 (Erickson et al. [7] Lemma 4.1). Given z € F', let « = ord(F'N
[0,2)) and let B = ord(F' N[0,z + 1)). Then 8 = w'T*. (Hence, for = > 1
we have f = w®.)

ord(F' N[0, 2)) is the amount of tame fusible numbers up until z, not in-
cluding z.

Lemma 4.8. for every positive integer n we have ord(F' N[0,n)) > 7,, and
ord(F") = g

Proof. By induction on n. Let n = 1. ord(l) = w > 7. Now for the
induction step, assume ord(k) > 7, holds. Then it follows that ord(k+1) =
witordB) > 147 > ™ = 7.1, which concludes our induction step. It
follows that the statement holds for all positive integers n.

Then clearly as n goes to infinity ord(F’' N [0,7n)) nears F' and 7, goes to
€0, so clearly ord(F’) = &p. O

Since F' is a (strict) subset of F, we have ¢y as a lower bound for the order
type of F, proving the lower bound part of Theorem 1.1.
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Chapter 5

Finding a fast-growing
function

In this section we will outline how Erickson et al. [7] find a fast-growing
function to use for the final results on M, and clarify steps in their proof
of Theorem 1.2 that follows from it. A large part of their proof consists
of arithmetic, which would be redundant to repeat, so we will focus on the
conclusions they draw..

5.1 Derivation of d from F’

To build fast-growing function d from F’, we will need some functions that
describe properties of F':

e ord'(z) =1+ ord(F' NJ[0,2)) for 2 € F'. This can be read as the size
of the tame fusible numbers up until z. The ‘1+’ makes sure that we
get ord(0) = 1. Note that for z > 1 the ‘1+’ does not have any effect
as in those cases ord(F' N[0, 2)) > w.

For example: ord’(1) = 1+ord(F'N[0,1)) = 14w = w. ord' (2) = w2
and ord’ (%) = w?

Some examples where z < 1: ord’ (3) = 1+ ord (F'N[0,3)) = 2.
Since § is excluded, the only (tame) fusible number in this interval is
0. ord (2) =1+ord (F N [0,2)) =3.

o fus’(a) for 0 < a < g¢ is the unique tame fusible number z € F’ such
that ord’(z) = a.

For example: fus'(w) = 1, because ord(1) = w.

e m(a) = fus’(a+1)—fus’(a). From the definition of fus’ we can interpret
this as the distance between the fusible number corresponding to a and
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its successor. This is almost exactly what algorithm M does, with the
only difference being their domain and image.

With these we have a definition for d:

() = ~logy m(a) = log;

You may wonder what the use is of having this function d rather than just
looking at m. There are two main reasons for this. The first is that taking
the log simplifies the calculations because due to the nature of F’, m deals
a lot with powers of two. The second is that m, which gives the size of the
gaps between tame fusible numbers, shrinks rapidly rather than grows. To
get to a fast-growing function we would have to take the inverse at some
point. Doing it now reduces a lot of overhead as we can already relate it to
some fast-growing hierarchy in intermediate proofs.

5.2 Growth rate of the density of 7 on R

In this section we will find out the growth rate of d and how that translates
to a property about F’. We mostly rely on the proofs given by Erickson et
al. [7].

5.2.1 Growth rate of d

Lemma 5.1 (Erickson et al. [7] Lemma 4.9). Define

fa(n) = d<wwwﬁ+wan>.

Then fgo(n) > Ha(n) for all B

Corollary 5.2 (Erickson et al. [7] Corollary 4.10). For every n > 8 we have
d(tp) > Feo(n— 7).

Erickson et al. [7] show this by the following equation, of which we will
clarify the steps in Lemma 5.3 and Corollaries 5.4 and 5.5:

d(7n) = d(w™) = dW") = for, 5(2) = Hr

n—>5

(2) Z Ff:‘o(n - 7)-

Lemma 5.3. w™ 1 > w? for~y = w‘”a, 0 = Tp—42.

Proof. Let a1 = 7,—1 and 8 = [1,—1]x with z > 2. Note that J is the first
step in some canonical descent from 7,1 to 0.
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We see that [a1]2 < 8 < aq, so either [ag]e = 5 or by Lemma 2.10 it follows
that every canonical descent from [ contains [a]so.

Then there is some B2 = [ag]; with [ > 2 in the canonical descent of 5. Then
[aa]a < P2 < ag. Again it follows that either [az]e = 2 or every canonical
descent from [y contains [ag)s.

It follows that 7,1 > [as]o = [[Th_1]2]2 = 7. Then clearly wi»-1 > w?. O

Corollary 5.4. d(w") = fo+, 5(2).

Proof.

@ = () - (( T”_5)2>=d<rn12>=d<w> a
> H

Corollary 5.5. fo, 5(2) > Hr,_,(2) > Foy(n — 7).

Proof. The first inequality follows by Lemma 5.1, the second by Lemma
2.14. O

Corollary 5.2 confirms that d grows quickly on inputs of the form 7,, but

that is all we need. Next we will see how this leads to the proof for Theorem
1.2.

5.2.2 A function for the density of 7 on R

We are looking for a function g(n) that can show us how the density of
the fusible numbers increases. Recall the function as in the formulation of
Theorem 1.2,

Let g(n) be the largest gap between consecutive
fusible numbers in F N [n,0), for n € N.

We will derive ¢'(n) from d that is similar to g(n) except it considers the
tame fusible numbers. Then from results about ¢’ we will draw a conclusion
about g.

Lemma 5.6 (Erickson et al. [7] Lemma 4.12). If o > 7, then d(a) > d(7,).

Corollary 5.7. If a > 7, then m(a) < m(7,).

Proof. By Lemma 5.6 and the definition of d. O

Observation 5.8. The least element of a set F' N [n,00) is n = fus'(7,).
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Corollary 5.9. The size of the largest gap in F' N [n,00) is
sup ({m(B) | B = 1}) = m(7).

Proof. This follows by Observation 5.8 and Corollary 5.7. O

Lemma 5.10. Let g’'(n) be defined on all n € N as the largest gap between
consecutive tame fusible numbers in F' N [n,00). Then ¢'(n) = m(r,) and
for everyn > 8,¢'(n)"1 > F.,(n — 7).

Proof. ¢'(n) = m(r,) holds by definition of ¢’ and Corollary 5.9.

As for the second part: We see that

1 1 1
! -1
g(n = = > log <>:d7'n.
W ) " = g )
Then by Corollary 5.2: for every n > 8, ¢’(n)™! > F.,(n — 7). O

Since F' C F clearly (F' N [n,00)) C (F N [n,00)) and thus g(n) < ¢'(n)
because we cannot get a larger gap by only adding elements.

In conclusion, g(n)~! > ¢'(n)~! > F.,(n — 7), proving Theorem 1.2.

22



Chapter 6

M in Peano Aritmetic (PA)

6.1 What is PA?

Peano Arithmetic (PA) is a list of axioms in the language of logic, with a
few added symbols:

e A constant symbol named ‘zero’: 0
e A relation symbol called ‘equality’: =
e The unary successor function symbol S

e Two binary function symbols + and -

The axioms define how these symbols interact. If we interpret the symbol 0
as the natural number 0 then we can interpret S0 as the natural number 1,
550 as 2, §550 as 3, and so on. The Peano axioms model basic arithmetic
over all of N.

We follow Benthem et al. [1] for our definitions of the axioms.

The axioms for PA are:

1. Vo =(0 = Sz) (0 is not a successor)
2. VaVy (Sx =Sy - x=y) (S is injective)
3. Vex+0=x
VaVy x + Sy = S(x +y) (definition of +)
4. Ve z-0=0
VaVy - Sy=x-y+ax (definition of -)
5. ([0/x]eo AVz(p — [Sx/x]9)) — YV ¢  (induction)

In axiom 5, for a term ¢ and a variable z, [t/x]¢ stands for the logical formula
© in which every free occurence of x is substituted by t.
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6.2 Statements in PA

Any statement in PA is called a PA-theorem, because by definition they can
be derived from the axioms of PA. This specifically means that PA being
able to express a statement or for PA to prove it are the same thing.

PA is known to be Turing complete: Any function that can be computed
by a Turing machine can be expressed in PA. By the Church-Turing thesis
that means any computable function can be expressed by PA.

Coding bigger sets

PA describes natural numbers, so any set larger than that needs some kind
of coding before PA can say anything about it. On a countable set we can
use Godel numbering for that. Take for example the set of rationals Q, then
the Godel number for its elements is defined as follows:

Definition 6.1 (Downey and Hirschfieldt [6]). Let » € Q \ {0} and write
r= (—15)§ with p,q € N in lowest terms and 6 = 0 or 1. Then define the

Godel number of r, denoted by #(r), as 20354, Let the Godel number of 0
be 0.

This gives an injection from Q to N, and for any number in its image we
can find the corresponding rational by prime factorisation.

A coding such as this is possible on any countable set. By coding the
elements of a domain to N, we enable PA to express it.

This specifically means that the function M on Q can be expressed in PA,
and is therefore computable.

However we cannot properly code R to N: There are only countably many
finite sequences of natural numbers. Because R is uncountable, coding each
real as a list of natural numbers would mean at least some of those lists
would have to be infinite. Let us entertain for a second that this is a valid
coding. Then for some total function f(r) on R, we could construct a Turing
machine T that given any r € R as input would give f(r) in a finite number
of steps. Now consider that we give T an input r that we had to code with
an infinite sequence of natural numbers. Then even just reading the input
would take an infinite amount of steps. (And if we somehow truncate the
input while reading, there is no meaningful difference to limiting the input
to the unique truncations, which would be a countable set).
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Limits of induction

The set of fusible numbers is countable, and at least ¢y big. Any obvious
proof over the whole set would therefore require induction over ordinals up
until (at least) 9. It would be tempting to try to use such a proof in PA,
but we cannot do that.

Gentzen has shown that with induction over ordinals up to €y, PA can
be proven consistent [9]. We know that PA is consistent [4], and that a
consistent formal system cannot prove its own consistency [10]. So, there
are things that can be proven with induction over ordinals up to g9 that
cannot be proven by PA. The implication of this is that finding a proof that
uses this type of induction tells us nothing about provability in PA.

6.3 The computability of M is unprovable in PA

In the previous section we have seen that M is computable. This raises
the question whether PA can also prove that to be true? Is the statement
“M is computable” computable?

Theorem 6.2 (Erickson et al. [7] Theorem 6.1, Buchholz and Wainer [3]).
Let T be a Turing machine that computes a function g : N — N, terminating
on every input. Suppose that PA can prove the statement “T terminates on
every input.” Then g cannot grow too fast: There exist a < g9 and ng € N
such that g(n) < Fy(n) for every n > ny.

We show that by Theorem 6.2, M cannot be proven computable by PA.
Corollary 6.3. Given n € N, M(n) = m(ry,).

Proof. This is clear by the definitions of M and m together with Observation
5.8. O

Lemma 6.4. PA cannot prove the statement “for every n € N, algorithm
M(n) terminates.”

Proof. Let A be a Turing machine that, given n, outputs ﬁ Clearly if
PA can prove that M terminates, then it can prove that A terminates as
well.

By Lemma 5.10 and Observation 6.3, M(n) = m(7,) = ¢'(n), and thus for

every n > 8, ﬁn) > Fy,(n — 7). Then by Theorem 6.2 PA cannot prove A

computable.
Then PA also cannot prove M computable. O

This proves Theorem 1.3.
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Conclusion

We have seen how a mathematical riddle points us to a computable function
M that is incredibly simple to implement, but very difficult to prove com-
putable. We wanted to know whether the statement “M is computable” is
itself computable. To figure this out we went looking for such a proof in
PA, as any computable function can be expressed in this proof system. We
defined the set of fusible numbers, constructed the tame fusible numbers,
and figured out how M is derived from that. In this last step we found
how ridiculously fast the density of the fusible numbers grows. Earlier work
by Buchholz and Wainer then lead us to the conclusion that M cannot be
proven computable by PA.
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