
Bachelor thesis
Computing Science

Radboud University

Implementation, Evaluation and
Comparison of Python Modules

implementing Morphological
Analysis and Generation

Author:
Tom Aarsen
s1027401

First supervisor:
prof. dr. ir. D. Hiemstra
djoerd.hiemstra@ru.nl

Second assessor:
prof. dr. M.A. Larson
m.larson@let.ru.nl

March 21, 2021

mailto:djoerd.hiemstra@ru.nl
mailto:m.larson@let.ru.nl

Abstract

The existing Lingua::EN::Inflexion Perl module implementing
morphological analysis and generation for British English has been ported
to Python and improved upon to create the new Inflexion Python
module. Our Inflexion allows the conversion of any noun, verb, or
adjective to a specific wordform, such as singular, plural, past, past
participle, or present participle. Both a qualitative and quantitative
evaluation procedure are introduced to evaluate this new module. The
qualitative evaluation procedure classifies predicted outputs of algorithms
like Inflexion to give details on the kind of errors that are made. On the
other hand, the quantitative evaluation procedure allows such algorithms
to be compared in terms of the accuracy of their predictions. These
evaluation procedures will be used to compare and contrast Inflexion to
eight competing Python modules with similar functionality. This results
in a recommendation of which module should be used for each type of
conversion, based on the characteristics of the input data that will be used
for the conversion. Inflexion outperforms all tested Python modules for
morphological analysis and generation of nouns and is very competitive for
morphological analysis and generation of verbs. Inflexion is open source,
and publicly available at https://github.com/tomaarsen/Inflexion.

https://github.com/tomaarsen/Inflexion

Contents

1 Introduction 4

2 Preliminaries 7

3 Lingua::EN::Inflexion 10
3.1 Wealth of functionality . 10
3.2 Adaptability, extendibility and upkeep 11
3.3 Reputation . 16
3.4 Bugs and limitations . 16

4 Inflexion 18
4.1 General changes . 20
4.2 Changes for verbs . 21
4.3 Changes for nouns . 24

5 Evaluation 27
5.1 Qualitative evaluation procedure 27
5.2 Quantitative evaluation procedure 31
5.3 Testing data . 32

5.3.1 Verbs . 32
5.3.2 Nouns . 34
5.3.3 Preprocessing . 35

5.4 Testing . 35

6 Existing Python modules 37
6.1 Functionality . 38
6.2 inflect . 39
6.3 Inflection . 40
6.4 Inflector . 41
6.5 LemmInflect . 41
6.6 NLTK . 42
6.7 Pattern . 43
6.8 PyInflect . 43
6.9 TextBlob . 44

1

7 Results 45
7.1 Nouns . 46

7.1.1 Accuracy of converting nouns to singular 46
7.1.2 Accuracy of converting nouns to plural 46

7.2 Verbs . 47
7.2.1 Accuracy of converting verbs to singular 47
7.2.2 Accuracy of converting verbs to plural 48
7.2.3 Accuracy of converting verbs to past 48
7.2.4 Accuracy of converting verbs to past participle 49
7.2.5 Accuracy of converting verbs to present participle . . 49

8 Discussion 50
8.1 Nouns . 50

8.1.1 Judgment of converting nouns to singular 50
8.1.2 Judgment of converting nouns to plural 52

8.2 Verbs . 53
8.2.1 Judgment of converting verbs to singular 53
8.2.2 Judgment of converting verbs to plural 54
8.2.3 Judgment of converting verbs to past 56
8.2.4 Judgment of converting verbs to past participle 57
8.2.5 Judgment of converting verbs to present participle . . 57

8.3 Our overall judgment . 58

9 Related work 60
9.1 Conway (1998) . 60
9.2 Minnen et al. (2000), Minnen et al. (2001) 61
9.3 Van den Bosch et al. (1999) 61
9.4 Heemskerk (1993) . 62
9.5 Bloch (1947) . 62

10 Conclusions 64

11 Future work 65
11.1 Future research . 65
11.2 Evaluation . 66
11.3 Inflexion . 69

A Qualitative evaluation results 73
A.1 Nouns . 73

A.1.1 Singular to singular 73
A.1.2 Plural to singular . 74
A.1.3 Uncountable to singular 75
A.1.4 Singular to plural . 76
A.1.5 Plural to plural . 77

2

A.1.6 Uncountable to plural 78
A.2 Verbs . 79

A.2.1 Singular to singular 79
A.2.2 Plural to singular . 80
A.2.3 Past to singular . 80
A.2.4 Past participle to singular 81
A.2.5 Present participle to singular 82
A.2.6 Singular to plural . 82
A.2.7 Plural to plural . 83
A.2.8 Past to plural . 84
A.2.9 Past participle to plural 85
A.2.10 Present participle to plural 86
A.2.11 Singular to past . 87
A.2.12 Plural to past . 88
A.2.13 Past to past . 88
A.2.14 Past participle to past 89
A.2.15 Present participle to past 90
A.2.16 Singular to past participle 90
A.2.17 Plural to past participle 91
A.2.18 Past to past participle 92
A.2.19 Past participle to past participle 92
A.2.20 Present participle to past participle 93
A.2.21 Singular to present participle 94
A.2.22 Plural to present participle 94
A.2.23 Past to present participle 95
A.2.24 Past participle to present participle 96
A.2.25 Present participle to present participle 96

3

Chapter 1

Introduction

The English language has undergone drastic changes through its evolution
from Indo-European to West Germanic to the English as we know it [1].
Many changes have been introduced throughout its evolution, including
the reduction of inflections [1], causing the language to devolve into
a complicated collection of edge cases. As a result, programmatically
converting even the simplest words from e.g. singular to plural is difficult.

Differences in pluralisation depending on grammatical person,
number or gender and mountains of edge cases are notable factors in
making natural language inflection a challenging topic. The distinction
between multiple accepted variants only add to the challenge, e.g. modern
and classical plural:

• The modern plural of ‘penny’ is ‘pennies’, while the classical plural
is ‘pence’.

Due to this difficulty, complicated systems would need to be manually
developed for the simplest interfaces. Instead, counterintuitive language
is often used, e.g.:

• ‘Search results: 1’ as opposed to ‘1 search result.’

• ‘3 book(s) found!’ as opposed to ‘3 books found!’

• ‘Banana, stock: 3’ as opposed to ‘3 bananas in stock.’

Luckily, morphological analysis and generation algorithms are capable of
executing these conversions, and many have been implemented in Python
modules. This way, developers can use a simple interface for these difficult
conversions. However, these algorithms are far from sufficiently reliable.

For example, only 3 of the 8 previously released Python modules
discussed within this thesis are correctly able to determine that the plural
of the noun ‘politics’ is still ‘politics’.

However, this poor performance does not take away the usefulness

4

of these algorithms in natural language processing (NLP) fields. Fields
such as text summarization, machine translation and question answering
systems frequently have to convert words into different forms. This further
stresses the importance of morphological analysis and generation algorithms.

This thesis acts as a state of the art of such morphological analysis and
generation algorithms, and introduces a new module to compete with the
existing modules. The research question (RQ) for this thesis is:

RQ What is a (better) implementation of a morphological analysis
and generation algorithm of British English, validated through
evaluation?

With the following sub-questions:
RQ 1 What is a good procedure to evaluate the performance of

morphological analysis and generation algorithms for British
English?

RQ 2 What is our judgment on the evaluation of our morphological
analysis and generation algorithm of British English in comparison
to existing modules with similar functionality?

In order to answer these research questions, we have made the following
advancements:

• We have ported the Perl module Lingua::EN::Inflexion [2] by
Damian Conway to Python, where its functionality can be used
alongside Python’s breadth of Machine Learning and Natural
Language Processing modules. See Chapter 3: Lingua::EN::Inflexion
for information on this Perl module and for the reasoning about why
this module was chosen to expand upon.

• We have expanded this port of Lingua::EN::Inflexion to create
Inflexion, with the aim to further improve the performance of the
port. See Chapter 4: Inflexion for the changes made, and Chapter 7:
Results to see the performance gains. The highlights are:

– Large rework of verb conversions.
– Large improvements in collocation1 support, especially for verbs.
– Additions, removals and modifications of morphological analysis

and generation rules.
– Casing and whitespace between inputs and outputs is now

preserved, e.g.:
∗ ‘ Mother in Law’ to plural becomes ‘ Mothers in Law’.

– Fixes of bugs present in the Perl module Lingua::EN::Inflexion.

Our Inflexion Python module is open sourced and published at
https://github.com/tomaarsen/Inflexion.

1See Chapter 2: Preliminaries for a definition.

5

https://github.com/tomaarsen/Inflexion

• We have developed a qualitative evaluation procedure for
morphological analysis and generation algorithms. It classifies test
results into 10 separate categories, useful for better evaluation and
comparison of algorithms. See Section 5.1: Qualitative evaluation
procedure for more information.

– We also introduce a secondary evaluation procedure in
Section 5.2: Quantitative evaluation procedure, which is
quantitative and focuses on accuracy between modules.

• We compared our direct port of Damian Conway’s Lingua::EN::Inflexion
and our own Inflexion to 8 other well-known Python modules. Each
of these 10 modules support a section of all morphological analysis
and generation functionality for the English language:

– inflect [3]
– Inflection [4]
– Inflector [5]
– LemmInflect [6]
– NLTK [7]
– Pattern [8]
– PyInflect [9]
– TextBlob [10]

These modules have been compared and contrasted with both of our
evaluation procedures using data from CELEX [11], a lexical database
by the Dutch Center for Lexical Information. See Chapter 6: Existing
Python modules for information on these modules and Chapter 8:
Discussion for a discussion regarding the performance of these
modules.

6

Chapter 2

Preliminaries

This chapter will introduce some terms that aid the understanding of the
remainder of this thesis.
Morphological analysis revolves around splitting a given word up into a root
and bound morphemes, which occur as parts of words [12]. Two types of
bound morphemes exist [13, 14]:

• Derivational morphemes
These morphemes change the semantic meaning of the given word, for
example:

– The word ‘unhappy’ consists of root ‘happy’ and derivational
morpheme ‘un-’, which has inverted the meaning of the root.

– The word ‘coexist’ consists of root ‘exist’ and derivational
morpheme ‘co-’, which has changed the meaning of the root.

Alternatively, derivational morphemes may change the part of speech
(POS) category of a word. Examples of such POS categories include
nouns, verbs, adjectives, articles, etc.

– The word ‘huggable’ has the adjective POS and consists of a
root ‘hug’ and derivational morpheme ‘-able’. The root ‘hug’
is a verb and when the derivational morpheme ‘-able’ is added,
the result becomes an adjective.

• Inflectional morphemes
For verbs, these morphemes modify the tense, aspect, mood, person
or number of a word. Similarly, for nouns, adjectives or pronouns
these morphemes modify the number, gender or case.
These modified categories are called grammatical features, for
example:

– The word ‘mice’ has root ‘mouse’ and number as plural.

– The word ‘theirs’ has root ‘mine’, number as plural, gender
as neuter and case as genitive (i.e. possessive).

7

– The word ‘are’ has root ‘be’ and either:
∗ tense as present, person as 2nd, number as singular, e.g. ‘you
are’.

∗ tense as present, number as plural, e.g. ‘we are’.

The root produced is a simple and irreducible morpheme, while these
inflectional morphemes change the form of a word. In linguistic
morphology, inflection is the process of word formation where a
word is modified to express the information from the grammatical
features. [13]

Morphological generation is the counterpart of morphological analysis. It
takes a lemma, POS and information on the type of inflection to be applied,
and generates the inflected word [15]. A lemma is a word in the canonical
form, that other related words are represented by. For English nouns, the
lemma is the singular, while for verbs it is the plural, e.g.:

• The lemma ‘go’ represents the inflected forms ‘go’, ‘goes’, ‘going’,
‘went’ and ‘gone’.

• The lemma ‘penny’ represents the inflected forms ‘penny’,
‘pennies’ and ‘pence’.

And as a result:
• With the lemma of ‘mine’, POS as noun, number as plural, gender

as neuter and case as genitive, morphological generation produces
‘theirs’.

Morhological analysis can be used as a preprocessing step before applying
a morphological generation algorithm. That way, rather than only allowing
roots to be converted to any wordform, every word can be converted. Such
an algorithm could be structured like so:

‘worked’ −−−→
MA

root = ‘work’

tense = ‘past’

... = ...

−−−→
MGx

‘aspect = continuous’

‘working’

Ideally such an algorithm works on both words and collocations [16].
Collocations are a series of words or terms that co-occur more often than
would be expected by chance, either separated by spaces or hyphens.

• When given the collocation ‘baby-sit’, the verb POS and number
as singular, morphological generation should only inflect the ‘sit’

portion of the collocation, resulting in ‘baby-sits’.

• With the collocation of ‘son of a gun’, the noun POS and number
as plural, the result of morphological generation should be ‘sons of

guns’.

8

• With the collocation ‘mother in law’, the noun POS and number as
plural, the result of morphological generation should be ‘mothers in

law’.
All of these examples, and many more, differ from merely applying the
algorithm on each word individually and then adding the words back
together. It is clear that a good morphological analysis and generation
algorithm ought to work on collocations too.

9

Chapter 3

Lingua::EN::Inflexion

The Perl module Lingua::EN::Inflexion [2] by Damian Conway
implements a morphological analysis and generation algorithm, allowing
the conversion between many wordforms.
It acts as the foundation for our Python module Inflexion that will
be introduced within this thesis. From now on, Inflexion will be
used to refer to our Python module, which was newly developed by us.
Lingua::EN::Inflexion will be used to refer to Damian Conway’s Perl
module.

The most important reasons that Lingua::EN::Inflexion was
chosen as the basis for Inflexion are:

• Wealth of functionality

• Adaptability, extendibility and upkeep

• Reputation

The remainder of this chapter includes elaboration on these reasons,
followed by an overview of the bugs and limitations we found in
Lingua::EN::Inflexion.

3.1 Wealth of functionality

Lingua::EN::Inflexion has constricted itself to the following functionality,
providing functions for each wordform1:

• Verbs, detecting and converting to the following wordforms:

1Lingua::EN::Inflexion supports more functionality such as converting a number to
cardinal or ordinal form. However, these are not relevant to morphological generation, so
this functionality is not mentioned.

10

− singular e.g.‘he flies’

− plural e.g.‘we fly’

− past e.g.‘we flew’

− present participle e.g.‘he was flying’

− past participle e.g.‘we have flown’

• Nouns, detecting and converting to the following wordforms:
− singular e.g.‘brother’
− plural e.g.‘brothers’
− classical plural e.g.‘brethren’

• Adjectives, detecting and converting to the following wordforms:
− singular e.g.‘my’
− plural e.g.‘our’

The functions singular and plural allow the grammatical person to
be included as a parameter. These functions influence the grammatical
number too. Similarly, past affects the grammatical tense, and present

participle and past participle affect the grammatical aspect.
The large number of grammatical features that are modified by these
functions allows for these five common wordforms to be generated.

In addition, the support for a classical plural is a rare bonus,
which is neatly implemented in the morphological analysis and generation
rule files. Support for adjective conversion is useful, but not a particularly
difficult challenge, as only a fixed number of adjectives differ between
singular and plural.
Because adjectives can thus be perfectly converted using a small lookup
table, adjective conversions are not tested within this thesis.

3.2 Adaptability, extendibility and upkeep

This section gives readers insight in the structure of the morphological
analysis and generation rules that are used within Lingua::EN::Inflexion.
This information may be useful in understanding the changes that our
Inflexion makes on top of Damian Conway’s Lingua::EN::Inflexion,
as described in Chapter 4: Inflexion.

In constrast to the other currently existing modules that will be
covered within this thesis, Lingua::EN::Inflexion is the one module that
can be modified and kept up to date by users without any knowledge of
programming. The flexibility offered by this implementation is attractive.
It allows for easy upkeep, updating and customisation for specific tasks,
such as inflecting strictly according to British or American English.

11

This all is due to how Lingua::EN::Inflexion generates its inflection
rules from easily readable text files that follow a specific format, that can
be edited by anyone with a text editor. Each of the three supported POS
(noun, verb and adjective) have their own file with their own format.

One of these files is ‘nouns.lei’, which supports many types of
rules required for rule-based inflection:

• For uninflected (e.g. tennis) or irregularly inflected nouns there
must be rules directly from a singular word to a plural word.
This way these rules have priority over regular inflectional rules
like appending an ‘s’ when converting a noun from singular to plural.

The uninflected or irregularly inflected nouns have the following
syntax in the format:

– ‘singular => (modern) plural’, e.g.
‘tooth => teeth’.

Note that all of these rules go both ways. The example states that the
plural of ‘tooth’ is ‘teeth’, and also that the singular of ‘teeth’

is ‘tooth’.

• For singular nouns with multiple inflections there must be rules with
multiple plurals. These will have the following syntax in the format,
for example:

– ‘singular => modern plural | classical plural’, e.g.
‘brother => brothers | brethren’

Like before, this also states that the singular of ‘brethren’ is
‘brother’.
The addition of a classical form by adding a part of a rule after a ‘|’

is allowed for all rules.

• For singular nouns ending in a specific suffix there must be rules that
replace its suffix by a new suffix, producing a plural. It is required
that there is at least one character before this suffix. These will have
the following syntax in the format:

– ‘-singular suffix => -plural suffix’, e.g.
‘-s => -ses’

As such, this rule will match ‘lens’ and convert it to ‘lenses’, and
match ‘virus’ to convert it to ‘viruses’, but will not match ‘s’

because there is no character before the suffix.

This ‘-’ must be present as the first character on both the
singular form and the plural form(s) of the noun for the rule to be a
suffix-rule. Otherwise, the rule is simply about inflection of a noun
with a dash in it, such as ‘break-away’ → ‘break-aways’.

12

• Alternatively, the format for singular nouns ending in some phrase,
such that there does not need to be any characters before this phrase
have the following syntax in the format:

– ‘*singular => plural’, e.g.
‘*child => children’

So, this rule will match ‘grandchild’, ‘brainchild’ and also
‘child’.

Like with the ‘-’ suffix, this rule that matches any characters in
place of the ‘*’ only works if the ‘*’ is the first character.

• For convenience, it is helpful to have constructions for merging similar
rules:

– ‘-ao => -aos’
– ‘-eo => -eos’
– ‘-io => -ios’
– ‘-oo => -oos’
– ‘-uo => -uos’

These can be merged into the following construction:

– ‘-[aeiou]o => -[aeiou]os’

For this rule, the brackets indicate that exactly one of the enclosed
characters must be in that position. The content of the brackets must
be identical on both the singular and plural side.

On a similar note, the following notation can be used to
indicate that the rule matches as long as no enclosed character is in
that position.

– ‘-[^ns]sis => -[^ns]ses’

• Recall that these rules are used both for converting between wordforms
and for detecting whether a word is of a specific wordform. Some rules
are useful for transforming between plural and singular or vice versa,
but do not work to indicate whether a given noun is in a specific form.
Two rules in particular fit this description:

– ‘-s => -ses’
– ‘- => -s’

These need to exist as the most general, last-attempt rules, but
cannot be used to determine plurality. For example, ‘-s’ is not
a good indicator for whether a noun is plural. ‘virus’, ‘bass’,
‘cyclops’, ‘genius’, etc. are all singular, despite ending in ‘-s’.

So, we need a tag to show that a rule should not be used for
the purpose of identifying whether a word is of a particular form:

13

– ‘<nonindicative> - => -s’

So, ‘book’ may match this rule from singular to plural, converting it
to ‘books’, but the rule ‘-’ (which matches any non-empty word)
will not be used to identify whether a word is singular, as it would
consider all non-empty words to be singular.

• In order to inflect nouns that require sub-nouns to be inflected, some
abbreviations need to be introduced:

(PREP) Matches any preposition.
E.g. ‘over’, ‘on’, ‘in’, ‘out’, etc.

(SING) Matches any word.
This word is deemed to be a singular noun.

(PL) Matches any word.
Corresponds to the plural form of the singular noun from
(SING).

* Matches any number of characters (including 0).

With these abbreviations in place, rules for inflecting nouns
that require sub-nouns can be written:

– ‘(PREP) it => (PREP) them’
– ‘son-of-a-(SING) => sons-of-(PL)’
– ‘(SING)-(PREP)-* => (PL)-(PREP)-*’ (e.g. ‘mother-in-law’)

Whenever an abbreviation is used on one side of the ‘=>’, a
corresponding abbreviation must be used on the other side too.

Any line not containing a rule following one of the above formats (i.e.
any line not including a ‘=>’) is treated as a comment. Similarly, every
character after the ‘#’ mark is treated as a comment. Furthermore, all
occasions of multiple spaces are trimmed to just one space when the
algorithm reads the format.
This way, the rule file format allows for using spaces for formatting
purposes, blank lines, lines with documentation, and comments after
specific rules. As a result, the format feels user-friendly and lax.

As is noticeable in the example rules, some rules will overlap. For
example, the word ‘kiss’ matches rules for ‘-ss’, ‘-s’ and ‘-’. In such
cases, the first rule has priority.

Lastly, all rules containing ‘-’ that do not signify a suffix rule
(e.g. ‘break-away’) will also match when there is a space in place of the
dash.
This is implemented by the algorithm, which parses the format of the rules
file, and generates an executable program with the desired morphological
generation functions described in Section 3.1: Wealth of functionality.

14

The format for verbs as used in ‘verbs.lei’ is very similar, but
rather than using this noun format:

• ‘singular => plural | classical plural’

e.g.‘*brother => brothers | brethren’

‘verbs.lei’ has the following format:
• ‘singular plural preterite present participle past participle’

e.g.‘flies fly flew flying flown’

Similarly, ‘adjectives.lei’ is implemented with the following line format
• ‘singular => plural’

e.g.‘my => our’

Note that these rulesets are also used for morphological analysis, i.e. for
detecting wordforms. With other words, the rule ‘*child => children’

states the following facts:

• A noun ending in ‘child’ that is converted to plural will have ‘child’
replaced with ‘children’. (Morphological Generation)

• A noun ending in ‘children’ that is converted to singular will have
‘children’ replaced with ‘child’. (Morphological Generation)

• A noun ending in ‘child’ is deemed singular. (Morphological
Analysis)

• A noun ending in ‘children’ is deemed plural. (Morphological
Analysis)

• Lastly, because there is no specific rule for the classical plural, it copies
the rule for regular plural:

– A noun ending in ‘child’ that is converted to classical plural
will have ‘child’ replaced with ‘children’. (Morphological
Generation)

Because this ruleset largely revolves around general rules rather than very
specific outliers, Lingua::EN::Inflexion very easily extends for unknown
words. Even words that do not exist will often be converted like one would
expect.
This is where such a rule-based system is guaranteed to outperform the
competing method of a lookup table. With a lookup table, words that
match one of the entries in the table exactly will be converted according
to the table. This system works well for common words, but requires
immensely many rows if accuracy of any word is important. As a result,
solely using a lookup table is no longer state of the art.

Note that although Lingua::EN::Inflexion is designed with
British English inflection rules in mind, American English conversions are

15

generally also possible. For example, if a user asks it to generate the plural
of the American English noun ‘color’, it will still correctly generate
‘colors’. This is a consequence of how the inflectional rules between
American and British English are very similar. If you input American
English, the output is likely going to be American English too. The same
holds for British English.

In conclusion, any user can easily modify an inflection rule through
these files, rather than having to delve deep into code to do so, which is a
refreshing change of pace.

The technical implementation details of Lingua::EN::Inflexion

will not be discussed within this thesis. Interested readers are advised to
look at the Perl Module page at https://metacpan.org/pod/Lingua::

EN::Inflexion for more information.

3.3 Reputation

Damian Conway, the author of Lingua::EN::Inflexion, also wrote the
predecessor Lingua::EN::Inflect [17]. According to Conway himself,
Lingua::EN::Inflexion has a cleaner and more convenient interface, with
many more features, and is much better tested [17].

However, the predecessor Lingua::EN::Inflect is what many of
the often recommended Python modules such as inflect [3], Pattern [8]
and TextBlob [10] are based on. This inspires hope that our Inflexion

module based on the seemingly superior module Lingua::EN::Inflexion

from Damian Conway can outperform the often recommended Python
modules.

3.4 Bugs and limitations

Though Conway mentions there are no outstanding bugs, he recognises that
the complexity of the English language goes beyond what can reasonably be
coded. During our process of porting Lingua::EN::Inflexion from Perl
to Python, we discovered several undiscovered bugs and fixed them in the
conversion from this direct port to the modified Inflexion:

• Classical plural of nouns ending in ‘’s’ (like in ‘Tom’s’) where the
phrase before has capitalisation will cause the following two warnings,
and then return only ‘’s’.

– Use of uninitialized value $plural in pattern match

(m//) at Nouns.pm line 7969.

16

https://metacpan.org/pod/Lingua::EN::Inflexion
https://metacpan.org/pod/Lingua::EN::Inflexion

– Use of uninitialized value $plural in concatenation

(.) or string at Nouns.pm line 7969.

– e.g. ‘One’s’, ‘ one’s’ or ‘ONE’S’.

• The several forms of the verb ‘to be’ are not converted to the correct
person if they contain capitalisation, when converting to singular.

– e.g. ‘AM’, ‘Are’ or ‘Is’.

• The plurals of several noun collocations will be given a hyphen when
they should not be.

– e.g. the plural of ‘court martial’ is considered
‘court-martials’.

• The order of inflection rules are applied strictly in order, causing some
shorter rules to be applied before longer ones.

– e.g. The verb ‘shear’ matches ‘*hear’ before matching
‘*shear’. As a result, the past of ‘shear’ is considered
‘sheard’ instead of ‘shorn’.

– e.g. The noun collocation ‘walk of life’ matches ‘*life’

before matching ‘(SING)-(PREP)-* => (PL)-(PREP)-*’.
So, the plural of ‘walk of life’ is considered ‘walk of

lives’ instead of ‘walks of life’.

We have fixed all of these bugs and several less significant ones in the creation
of Inflexion, after which many changes with the intent of improvements
were implemented. Both the direct port of Lingua::EN::Inflexion and
Inflexion will be evaluated against other existing Python modules using
the evaluation procedure described in Section 5.1: Qualitative evaluation
procedure. See Appendix A: Qualitative evaluation results for the results of
the evaluation.
The changes that converted the Python port of Lingua::EN::Inflexion

into Inflexion will be described next.

17

Chapter 4

Inflexion

The aim of our efforts was to port the existing Perl module
Lingua::EN::Inflexion to Python and expand upon it in an
attempt to improve it. Porting it to Python should allow a wider
audience to enjoy the work. For context, approximately 70% of all GitHub
repositories tagged as Natural Language Processing (‘NLP’) are written in
Python, as compared to less than 1% for Perl [18].

Beyond merely creating a port to Python, we made changes to
this Lingua::EN::Inflexion Python port to create our own open-sourced
module Inflexion. These changes can be classified by the following
categories:

• General changes.

• Changes for nouns.

• Changes for verbs.

The technical implementation details of our module1 Inflexion are not
discussed, as they mainly overlap with Lingua::EN::Inflexion. Instead,
the changes relative to Lingua::EN::Inflexion are described.

The changes described in this chapter were devised in the following
ways:

1. Some changes were inspired by existing research. In particular,
morphological generators (and analysers) were used, such as morphg

and morpha [15, 19] from Section 9.2: Minnen et al. (2000), Minnen
et al. (2001).

Furthermore, the paper of Bloch [20] entitled “English Verb
Inflection” from Section 9.5: Bloch (1947) was useful in providing

1Readers interested in the precise implementation of Inflexion may look at https:

//github.com/tomaarsen/Inflexion for source code.

18

https://github.com/tomaarsen/Inflexion
https://github.com/tomaarsen/Inflexion

information on inflectional rules and a list of irregular verbs.

Lastly, several other existing modules mentioned in Chapter 6:
Existing Python modules were analysed to see if they contained rules
that could be adapted into Inflexion.

We had high hopes that existing rulesets from previous research or
modules would prove useful, but we ended up not adapting much
from them.

2. Other changes were based on careful and thorough inspection
of the morphological analysis and generation rules from
Lingua::EN::Inflexion. This includes investigating whether certain
rules have unintended consequences, e.g. change 7 for Section 4.3:
Changes for nouns:

• The ‘*louse => lice’ rule designed for ‘louse’ and
‘headlouse’ also unintentionally states that the singular of
‘blouse’ is ‘blice’.

Many small issues were found and removed by studying the
consequences of rules starting with ‘-’ and ‘*’.

3. We also passed testing data from Section 5.3: Testing data (without
the known correct results) through both our Inflexion and another
one of the eight modules tested in this thesis. Whenever the predicted
outputs between Inflexion and the other module differed, we
manually determined whether this was an error on Inflexion’s side.
If so, we marked it down as a potential issue to overcome.

Note that our goal was not to discover edge cases of single
words, but find inflectional patterns such as the rule we discovered in
change 8 for Section 4.3: Changes for nouns:

• ‘-[aeo]use => -[aeo]uses’

Naturally, this method does not find issues that exist in both tested
modules. To combat this downside, each of the eight other modules
was used as the secondary tested module.
The majority of all changes were based on errors found through this
method.

4. Lastly, the qualitative evaluation introduced in this thesis in
Section 5.1: Qualitative evaluation procedure was applied on
Inflexion with all data from Section 5.3: Testing data. This resulted
in precise information for which kinds of words Inflexion performed
poorly, e.g.:

19

• The direct port of Lingua::EN::Inflexion had 269 cases out of
830 reported errors where the output of the conversion from plural
to singular noun should have ended in ‘e’, but the predicted
output ended in ‘is’ instead.

This helped identify that the rule ‘-[^ns]sis => | -[^ns]ses’ has
an undesirable downside. This rule states that the classical plural of
a word matching ‘-[^ns]sis’ has the form ‘-[^ns]ses’. However,
it consequently also states that the singular of a noun matching
‘-[^ns]ses’ matches ‘-[^ns]sis’.
As a result, the singular of elementary plural nouns such as ‘houses’
was deemed ‘housis’.

The fix for this was proposed as change 8 in Section 4.3:
Changes for nouns.

Note that the last two methods were only used to introduce large and
general changes, and never to add rules specifically for single words that
fail. There is an argument to be made that all discovered failing words
should be added to the ruleset, so the final product is more often correct
(at the cost of execution time). However, it would invalidate the test
results from Chapter 7: Results and Appendix A: Qualitative evaluation
results, as we would be overfitting on the CELEX lexicon.
As a result, this was not done.

The source code of our Python port of Lingua::EN::Inflexion,
as well as the new Inflexion described in this thesis can be found on
https://github.com/tomaarsen/Inflexion. As of the time of writing,
the master branch holds the Inflexion source code, while the original

branch stores the direct Python port of Lingua::EN::Inflexion.

4.1 General changes

1. Ensure that rules cannot be empty.
The files generated by Lingua::EN::Inflexion have the following
rules, among others:

• ‘ => ’
• ‘ => could’

In our Inflexion, changes were made so that these empty or otherwise
nonsensical rules do not occur.

2. Many performance changes were implemented, such as:

• Reducing the number of checks required for finding out whether
a word is known to be of a certain form.

20

https://github.com/tomaarsen/Inflexion

• Preventing calling is plural twice with the same parameters
when calling to plural.

• Merging several regular expressions into one.

• If an intensive function has already been called with the regular
form of a word, only call it again with the lowercase of that word
if it wasn’t lowercase to begin with.

3. Added custom casing in addition to Title case, UPPER case and lower
case.

• Any output that is only the letter ‘I’ is always capitalised.

• Any output starting with ‘mc’ is converted to ‘Mc’ plus the title
case of the following word, e.g. ‘McInnes’.

4. Preservation of unusual whitespace before, after and between words.

• For example, the plural of the noun collocation
‘ walk of life’ is ‘ walks of life’.

4.2 Changes for verbs

1. Ensure that rules containing ‘*’ need to match at least two characters
in place of the ‘*’ as opposed to just one. This helps with the following
cases, among others:

• ‘shear’ no longer matches ‘*hear’.

• ‘blend’ no longer matches ‘*lend’.

• ‘blight’ no longer matches ‘*light’.

• ‘stake’ no longer matches ‘*take’.

2. Verb collocation support is implemented. Every time a verb is
converted to a particular form in Inflexion, the following steps
occur:

(a) Get the subterm of the input:
• Split the input into words by splitting on whitespace.

• Split the first word into subwords by splitting on hyphens.

• The last subword of the first word is the subterm.

(b) Split off a prefix from the subterm, if one exists. Sample prefixes
are ‘trans’, ‘inter’, ‘under’, ‘over’, ‘out’, ‘mis’, ‘un’,
‘in’, ‘re’ and more.

(c) Convert the remaining term to the desired form instead of the
full input.

(d) Then re-add the subwords split off in the previous two steps.

Getting the first word of the input will ensure that this word receives
the inflection, which is the desired behaviour:

21

• ‘work out’→ ‘working out’

• ‘go through with’→ ‘going through with’

• ‘look forward to’→ ‘looking forward to’

Getting the last subword of the first word will ensure this section
of a hyphenated input receives the inflection, which is the desired
behaviour:

• ‘blow-dry’→ ‘blow-drying’

• ‘over-eat’→ ‘over-eating’

• ‘baby-sit him’→ ‘baby-sitting him’

Splitting off the prefix and converting the remainder allows uncommon
irregular verbs to be converted according to the irregular rules of a
more common subverb:

• past of ‘uphold’→ ‘up’ + past of ‘hold’→
‘upheld’

• past of ‘foresee’→ ‘fore’ + past of ‘see’→
‘foresaw’

• past of ‘rewrite’→ ‘re’ + past of ‘write’→
‘rewrote’

3. Improved consonant duplication as used in converting to past, past
participle and present participle. These rules are used as preprocessing
before adding ‘ed’ for past and past participle and ‘ing’ for present
participle:

• Words ending in ‘fer’ are always converted to ‘ferr’.
– ‘prefer’→ ‘preferred’

• Words ending in ‘c’ always converted to ‘ck’.
– ‘mimic’→ ‘mimicking’

• Words ending in ‘en’ always kept the same.
– ‘listen’→ ‘listened’

• Words ending in a consonant plus ‘on’ always kept the same.
– ‘abandon’→ ‘abandoned’

• Words ending in a consonant plus a vowel plus an ‘l’ always
have the ‘l’ duplicated according to the British English rules.

– ‘barrel’→ ‘barrelled’

– ‘label’→ ‘labelled’

Furthermore, the consonant is duplicated whenever:

• One of the following:

– The word is just one syllable according to the prosodic [21]
Python module.

– The word is just one syllable according to the new
is syllable function, which counts the number of vowel
clusters.

22

– The last syllable of the word is stressed according to the
prosodic [21] Python module.

• And the word ends with roughly a consonant plus vowel plus
consonant.

– In particular, it must end with a consonant followed
by a vowel or ‘y’, followed by a single character in
‘bcdlgkmnprstvz’.

4. Added rules for ‘to be’.

• For example, previously the past tense of ‘be’ was deemed
‘bed’, rather than ‘was’.

5. Fixed rule for ‘to bid’.

• The past is now ‘*bid’ instead of ‘*bade’, and the past
participle is now ‘*bid’ instead of ‘*bidden’.

6. Added ‘*’ to ‘to bind’, ‘to breed’, ‘to ride’ and ‘to run’, as
there exist many words that end with these verbs that follow their
irregular inflection rules.

7. Removed ‘*’ from ‘to do’ and ‘to let’, as there exist words that
end with these verbs that follow different inflection rules.

• e.g. ‘to torpedo’ or ‘to fillet’

8. Added the rules for several verbs ending in ‘ie’. These verbs are
otherwise converted to end in ‘iing’ incorrectly:

• ‘to underlie’, ‘to caddie’, ‘to hie’, ‘to outvie’ and ‘to

vie’

9. Added rule for ‘to arc’. This is an exception to the consonant
doubling rule introduced stating that the past tense of a verb ending
in ‘c’ ends with ‘cked’

10. Added rules for these verbs ending in ‘s’, as these often had the final
‘s’ removed when converting to plural, past, past participle or present
participle:

• ‘to bias’, ‘to bus’, ‘to caucus’, ‘to canvas’, ‘to

chorus’, ‘to dis’, ‘to focus’, ‘to gas’, ‘to hocus’ and
‘to wis’

11. Added rule for ‘to rent’. The word ‘rent’ is the past and past
participle of the verb ‘to rend’. As a result, the singular of ‘rent’

would return ‘rends’, which is not the desired nor the expected
behaviour.

23

12. Added the following general inflection rules:
Singular Plural Past Present Participle Past Participle

-ics -ic -icked -icking -icked

-Vzzes -Vz -Vzzed -Vzzing -Vzzed

-zes -z -zed -zing -zed

-ies -ie -ied -ying -ied
Where V stands for any vowel. These rules match the following verbs
that were previously improperly converted, among others:

• ‘to panic’, ‘to mimic’, ‘to picnic’ and ‘to traffic’.
• ‘to quiz’ and ‘to whiz’.
• ‘to waltz’.
• ‘to underlie’, ‘to caddie’, ‘to hie’, ‘to outvie’ and ‘to

vie’.

The latter three of these rules work in conjunction with similar rules
that were already present in Lingua::EN::Inflexion.

13. Lastly, the present participle rule for

• ‘-ues -ue -ued -ueing -ued’

was changed from ‘-ueing’ to ‘-uing’ such that:

• ‘argue’ now converts to ‘arguing’ instead of ‘argueing’.
• ‘rescue’ now converts to ‘rescuing’ instead of ‘rescueing’.
• ‘sue’ now converts to ‘suing’ instead of ‘sueing’.

4.3 Changes for nouns

1. Many duplicate rules were removed. For example, there were several
equal rules for:

• French imports like ‘bandeau’, ‘beau’ and ‘tableau’.

• Nationalities such as ‘Congoese’ or ‘Vermontese’.

2. Fixed rules for words that had separate rules for classical and modern
plural forms. This caused ‘nucleus’ and ‘mafioso’ to always
inflect according to the classical rules - even if the modern plural was
requested.

3. Converted the rule ‘(SING)-(PREP) => (PL)-(PREP)’ to
‘(SING)-(PREPR) => (PL)-(PREPR)’. The abbreviation ‘(PREPR)’

stands for ‘prepositions reduced’, and matches all prepositions
except ‘out’, ‘about’, ‘off’, ‘in’, ‘on’ and ‘over’. Noun
collocations ending in these prepositions often apply the inflection on
the preposition rather than on the word before:

• ‘show-off’→ ‘show-offs’

• ‘voice-over’→ ‘voice-overs’

• ‘drive-in’→ ‘drive-ins’

24

4. Increased precedence of the rules that require sub-nouns to
be inflected, so that these rules are tried before other rules.
Previously, ‘walk of life’ would match ‘*life’ before matching
‘(SING)-(PREP)-* => (PL)-(PREP)-*’. As such, the plural of
‘walk of life’ was considered to be ‘walk of lives’, while now
it becomes the correct ‘walks of life’.

5. Added ‘tax => taxes’ to avoid the singular of ‘taxes’ returning
the correct but unexpected Latin import ‘taxis’.

6. Fixed several typos in ‘nouns.lei’, such as:

• Replacing ‘hamadrayads’ with ‘hamadryads’.

• Removing ‘--ox => --oxen’.

7. Removed ‘*’ from ‘*lux => lux’ and ‘*louse => lice’, as there
exist words that end with these nouns that follow different inflection
rules:

• The plural of ‘flux’ should be ‘fluxes’, instead of ‘flux’.
• The plural of ‘blouse’ should be ‘blouses’, instead of
‘blice’.

8. Added the following general inflection rules:
Rule # Singular Plural

1 -oux -oux

2 -nge -nges

3 -[^aeoui][aeouiy]che -[^aeoui][aeouiy]ches

4 -[rnlpwaeio]se -[rnlpwaeio]ses

5 -[aeo]use -[aeo]uses
These rules match the following types of nouns that were previously
improperly converted, among others:

1. French imports like ‘roux’ that do not inflect.

2. Nouns like ‘binge’, ‘orange’ and ‘hinge’ used to convert to
singular by following the classical inflection rule of ‘-[aiy]nges
=> -[aiy]nx’ which works for e.g. ‘meninges’ → ‘meninx’.

3. Nouns like ‘aches’, ‘pastiches’, ‘cliches’, ‘creches’,
‘fiches’ and ‘psyches’ used to follow the rule ‘-[cs]hes =>

-[cs]h’, incorrectly removing the final ‘e’.

4. Nouns like ‘courses’, ‘horses’, ‘curses’, ‘pulses’,
‘collapses’, ‘browses’, ‘bases’ and ‘closes’ used to
convert to singular by following the classical inflection rule of
‘-[^ns]sis => -[^ns]ses’ which works for e.g. ‘analysis’

→ ‘analyses’.

5. Nouns like ‘causes’, ‘pause’, ‘masseuses’, ‘houses’ and
‘blouses’ used to convert to singular by following the classical

25

inflection rule of ‘-[^ns]sis => -[^ns]ses’ which works for
e.g. ‘analysis’ → ‘analyses’.

26

Chapter 5

Evaluation

5.1 Qualitative evaluation procedure

With the creation of Inflexion in Chapter 4: Inflexion described, the
focus shifts to the evaluation procedure developed to test its performance.
We have developed the following qualitative testing framework that will
be applied to several other Python modules that implement morphological
analysis and generation, allowing weaknesses and strengths for these
modules to be identified.

The results of this qualitative evaluation procedure applied on 10
different modules are placed in Appendix A: Qualitative evaluation results,
while information on the other modules can be found in Chapter 6: Existing
Python modules.

The qualitative evaluation procedure restricts itself to the correctness of
the prediction. This is deemed more important than execution time. As a
result, execution time is neither mentioned nor measured. An evaluation
procedure that takes execution time into consideration is described in
Chapter 11: Future work.

Each word or collocation converted via a morphological analysis
and generation algorithm is classified according to one of the following
categories:

1. empty

The predicted output is empty.

2. correct

The predicted output is correct.

3. whitespace error

The predicted output can be converted to a correct output by only
changing the amount of whitespace.

27

4. case error

The predicted output can be converted to a correct output by only
changing the capitalisation.

5. dash space mismatch

The predicted output can be converted to a correct output by only
changing spaces into hyphens or vice versa.

6. collocations mismatch

The predicted output has a different number of words than any correct
output.

7. quote mismatch

The predicted output can be converted to a correct output by only
changing spaces into hyphens or vice versa.

8. collocations wrong term changed

The wrong word in the collocation was modified in the conversion from
the input to the prediction.

9. suffix

The predicted output can be converted to a correct output by only
changing the suffix of the prediction to a different suffix.
These categories are listed as ‘suffix1 vs suffix2’, where suffix1
is the suffix in the prediction, and suffix2 is the suffix in the correct
output.

• For example, given a prediction of ‘loafs’ and a correct output
of ‘loaves’, the evaluation procedure will produce ‘fs vs ves’.

Each of these categories are further elaborated upon in the algorithm
procedure coming up next.
Using these categories, very specific weaknesses of a morphological analysis
and generation algorithm can be discovered. This is invaluable information
for developing, maintaining and improving such algorithms.

The algorithm classifying the errors of a chosen conversion takes
following several parameters as inputs:

• input, the word or collocation passed to the morphological analysis
and generation algorithm. This parameter is not strictly required as
only the correctness of the prediction is looked at, but is sensible to
have for logging purposes.

• predicted, the predicted output when passing input through the
morphological analysis and generation algorithm that is being tested,
for the chosen conversion.

• outputs, the set of known correct outputs when converting an input

using the chosen conversion. Note that this set can be non-singular:

28

– e.g. an output containing ‘placebos’ and ‘placeboes’, the
two accepted plural nouns for given the input of ‘placebo’.

Optionally, this outputs may be ordered to give preference to the first
output.

These parameters are used in the following algorithm:

1. Classifying empty cases.
Some algorithms will return None or an empty string whenever they
fail to perform the conversion. This results in predicted being an
empty string or None, and we classify the conversion as empty.

2. Classifying correct cases.
If predicted is in outputs, then we classify this case as correct.

3. Classifying cases where only the whitespace differs.

• e.g. ‘ word of mouth ’ versus ‘word of mouth’.

predicted is stripped of all whitespace before and after the word
or collocation. Furthermore, every occurrence of two adjacent
whitespace characters is replaced by a single character of whitespace.
This operation is also applied on each output in outputs.
If the modified predicted is in the modified outputs set, then we
classify this case as whitespace error. Otherwise, we undo the
modifications made and proceed.

4. Classifying cases where only the capitalisation differs.

• e.g. ‘Anglo-american’ versus ‘Anglo-American’.

predicted is converted to lowercase. Each output in outputs is also
converted to lowercase.
If the modified predicted is in the modified outputs set, then we
classify this case as case error. Otherwise, we undo the modifications
made.

5. Classifying cases where the difference between a hyphen and a space is
the only difference.

• e.g. ‘show off’ versus ‘show-off’.

If the number of dashes in predicted does not match with the number
of dashes in any output in outputs, then we classify this case as
dash space mismatch.

6. Classifying cases with a differing number of words.

• e.g. ‘sons-of-a-gun’ versus ‘sons-of-guns’.

• e.g. ‘brother’ versus ‘brother-in-law’.

29

Replace all dashes in predicted and all values in outputs with spaces.
If the number of spaces in predicted does not match with the number
of dashes in any output in outputs, then we classify this case as
collocations mismatch.

• For each output in outputs:

- For each word pred word and out word in predicted and
output, respectively:

7. Classifying cases with a differing quotes.

– e.g. ‘do’s’ versus ‘does’.

If pred word contains a quote, while out word does not, or
vice versa, then we classify this case as quote mismatch.

Otherwise, the difference in suffixes is extracted between
pred word and out word by removing the overlapping parts
of the two words:

– ‘does’ and ‘doths’ → ‘es’ and ‘ths’

– ‘persons’ and ‘people’ → ‘rsons’ and ‘ople’

– ‘loafs’ and ‘loaves’ → ‘fs’ and ‘ves’

– ‘addendums’ and ‘addenda’ → ‘ums’ and ‘a’

– ‘mottos’ and ‘mottoes’ → ‘s’ and ‘es’

– ‘book’ and ‘books’ → ‘’ and ‘s’

These two extracted suffixes are entered in a tuple. So, every
output is converted to a list of suffix tuples, one tuple per word.
For example:

– predicted = ‘walk of lives’ and
output = ‘walks of life’ →
[(‘’, ‘s’), (‘’, ‘’), (‘ves’, ‘fe’)]

From now onwards, classifications will be made per output, based on
the list of suffix tuples from the previous step. Each output has one
such list, and the classification differs on which output is deemed best.

If outputs is ordered, then the next steps proceed with only
the list of suffix tuples from the first output. Otherwise, an arbitrary
output from outputs is picked, and its list of suffix tuples will be
used in the next steps.

8. Classifying cases where the wrong word in a collocation is converted.

• e.g. ‘walk of lives’ versus ‘walks of life’.

If the list of tuples of suffixes contains more than one non-empty tuple
(i.e. more than one tuple that indicates an error), then we classify this
case as collocations wrong term changed.

30

9. Classifying cases where the only difference is one suffix.

• e.g. ‘meat loafs’ versus ‘meat loaves’.

If this step is reached, then there is a list with just one non-empty
tuple of suffixes, such as [(‘’, ‘’), (‘fs’, ‘ves’)]. We classify
this case as ‘suffix1 vs suffix2’ where suffix1 and suffix2 are
taken from the one non-empty tuple. In the case of the previous
example, this becomes ‘fs vs ves’.
This classification means that the prediction ended with ‘fs’, when
it should have ended in ‘ves’ instead.

This way, similar conversion errors can be grouped together
to identify commonly made mistakes for a specific morphological
analysis and generation algorithm, for a particular conversion.

The outputs of this evaluation procedure applied to all tested modules can
be found in Appendix A: Qualitative evaluation results.

5.2 Quantitative evaluation procedure

We also introduce a quantitative evaluation procedure using the accuracy
measure, which gives a less detailed look at the correctness of a conversion.
It does not give a notion of what kind of error was made, but merely shows
the number of correct results relative to the total number of conversions.

For computing this accuracy, the input data for each of the conversions is
further split up into two separate categories:

• collocations:
This category represents all inputs that contain either a space (‘ ’)
or a hyphen (‘-’).

– e.g. ‘baby-sit’, ‘court martial’, ‘blow-dry’, ‘son of a

gun’ or ‘all-rounder’.

• words:
This category represents all other inputs, i.e. inputs containing just
one word.

Many of the modules tested in this thesis do not work well with collocations.
If this partitioning was not used, these modules would end up with poor
accuracy scores overall, even if they perform supremely for just words. In
short, partitioning allows each module to display its true strength for the
kind of inputs it was designed for.

31

5.3 Testing data

With the morphological analysis and generation module prepared and the
evaluation procedures described, the next step is gathering the inputs and
correct outputs to run the evaluation with. This is where the CELEX Lexical
Database [11] comes in. CELEX is a conjoint initiative of five research
institutes in the Netherlands, who have developed lexical databases to aid
researchers.

These databases contain the plural, singular, past, past participle
and present participle forms of well over 8,000 English verbs, as well as
the plural and singular of over 20,000 nouns. The databases contain both
words and collocations, among much more information.
CELEX mainly contains British English, but it should be noted that it is
inconsistent at times with its consonant doubling [19], hinting at some
American English influences.

The CELEX data is extracted using the WebCelex [22] web interface. The
Lexicon option is selected, after which the English Wordforms option is
chosen. From this point, the steps required to fetch the verb and noun data
differ. Each of these two POS that are tested have a section explaining the
method of fetching the data.

5.3.1 Verbs

When fetching data, WebCelex asks which information is desired. For verbs,
the following items are selected in order:

• Lemma Head - The base form of the word.

• Word - The word itself.

• FlectType - The type of inflection applied on the word.

• Lemma Class - The POS, i.e. ‘N’ for nouns and ‘V’ for verbs.

Afterward, the following query is entered, ensuring that only verbs are
returned:

• Lemma Class eq "V"

This returns an output starting with:

1 Lemma Head\Word\FlectType\Lemma Class

2 abandon\abandon\i\V

3 abandon\abandoned\a1S\V

4 abandon\abandoning\pe\V

5 abandon\abandons\e3S\V

6 abase\abase\i\V

7 abase\abased\a1S\V

8 abase\abases\e3S\V

9 abash\abash\i\V

10 abash\abashed\a1S\V

32

11 abash\abashes\e3S\V

12 abash\abashing\pe\V

13 abase\abasing\pe\V

14 ...

Each line will be parsed such that there is:
• One data structure which converts from the lemma head to any desired

wordform.

• One data structure which converts from a given wordform to its lemma
head.

With these two data structures, any two wordforms can be mapped together
to provide testing data. For example, if testing data is desired from past
participle to singular, then:

• For each past participle extracted from CELEX, convert it to the lemma
head using the appropriate data structure (wordform→ lemma head).

• Convert this lemma head to singular using the appropriate data
structure (lemma head → wordform).

This can be expanded to produce a mapping between any two wordforms.
This will produce the input and outputs values, respectively, for the
evaluation procedures from this chapter.

For parsing, the following FlectType values will be used:

• ‘i’ and ‘eP’:
These represent the infinitive and the plural, and the Word values will
be stored as plurals in these cases. Note that the values for ‘i’ and
‘eP’ are identical for all cases except for the most irregular verb in
the English language: ‘to be’. For this verb CELEX gives the Word

‘are’ for ‘eP’ and ‘be’ for ‘i’.

• ‘e3S’ and ‘e3Sr’:
These represent the third person singular and the classical third person
singular.

– e.g. ‘have’ and ‘hath’, respectively.

• ‘aP’ and ‘aPr’:
These represent the past tense and classical past tense.

– e.g. ‘spoke’ and ‘spake’ are the past tense and classical past
tense of ‘to speak’, respectively.

• ‘pa’ and ‘par’:
These represent the past participle and classical past participle.

– e.g. ‘blended’ and ‘blent’ are the past participle and classical
past participle of ‘to blend’, respectively.

• ‘pe’ and ‘per’:
These represent the present participle and classical present participle.

33

– e.g. ‘running’ is the present participle of ‘to run’. There is
no example of a classical present participle in CELEX.

This concludes the data fetching for verbs. The steps for nouns are similar,
but have some extra steps for uncountable words. These steps will be
described next.

5.3.2 Nouns

For nouns, the following items are selected in the web interface, in order:

• Lemma Head - The base form of the word.

• Word - The word itself.

• FlectType - The type of inflection applied on the word.

• Lemma Class - The POS, i.e. ‘N’ for nouns and ‘V’ for verbs.

• Lemma C N - States whether the word is countable.

Afterward, the following query is entered, ensuring that only nouns are
returned:

• Lemma Class eq "N"

This returns an output starting as:

1 Lemma Head\Word\FlectType\Lemma Class\Lemma C_N

2 a\a\S\N\Y

3 AA\AA\S\N\Y

4 AA\AAs\P\N\Y

5 abacus\abaci\P\N\Y

6 abacus\abacus\S\N\Y

7 abacus\abacuses\P\N\Y

8 abandon\abandon\S\N\N

9 abandonment\abandonment\S\N\N

10 abasement\abasement\S\N\N

11 abatement\abatement\S\N\N

12 abattoir\abattoir\S\N\Y

13 abattoir\abattoirs\P\N\Y

14 ...

Each line is parsed similarly to nouns, except with just two wordforms
instead of five. Furthermore, if a line is uncountable (indicated by an
‘N’ value for Lemma C N) and the corresponding FlectType is ‘S’, then
the word and head will be identical. The head is then added to a set of
uncountable nouns and noun collocations.

Note that some words are deemed both uncountable and countable, such
as ‘hives’, which exists as a word twice in CELEX:

1 Lemma Head\Word\FlectType\Lemma Class\Lemma C_N

2 hive\hives\P\N\Y

3 hives\hives\S\N\N

Line 2 states that ‘hives’ is a plural form of the lemma ‘hive’, and
hence the lemma ‘hive’ is a singular form of ‘hives’. It also says that

34

the lemma ‘hive’ is countable.
Line 3 states that ‘hives’ is a singular form of the lemma ‘hives’, and
shows that the lemma ‘hives’ is uncountable.
As such, CELEX accepts ‘hives’ and ‘hive’ as the singular of ‘hives’,
through lines 3 and 2, respectively. This means that ‘hives’ isn’t
exclusively uncountable. These entries that aren’t exclusively uncountable
will not be put in the set of uncountable nouns and noun collocations, as
they are already present in the countable conversions.

For parsing, the following FlectType values will be used:

• ‘P’ and ‘Pr’:
These represent the plural and the classical plural nouns, and the Word
values will be stored as plurals in these cases.

– e.g. ‘brothers’ and ‘brethren’, respectively.

• ‘S’:
This represents the singular nouns.

5.3.3 Preprocessing

The Word values from CELEX that represent words imported from foreign
language often contain some speech indicators or accents, which will be
removed as a preprocessing step. Some examples are:

1 Lemma Head\Word\FlectType\Lemma Class\Lemma C_N

2 applique\appliqu#e\S\N\0.00\Y

3 confrere\confr ‘ere\S\N\0.00\Y

4 debacle\d#eb^acle\S\N\0.30\Y

5 kummel\k"ummel\S\N\0.00\N

6 senor\se~nor\S\N\0.60\Y

7 curacao\cura ,cao\S\N\0.00\N

8 ...

If value for Word contains ‘#’, ‘`’, ‘^’, ‘"’, ‘∼’ or ‘,’, while the Lemma

Head value does not contain this character, then this character will be
stripped from Word.
As a result, the only difference between the Lemma Head and the Word is the
conversion corresponding to the FlectType. After all, this conversion is the
only feature that is being tested.

5.4 Testing

Testing is split between nouns and verbs. All nouns will be converted to
singular and to plural. The CELEX testing data for nouns was partitioned
between singular, plural and uncountable, and as a result the following
conversions will be tested for nouns:

• Singular to singular.

35

• Singular to plural.

• Plural to singular.

• Plural to plural.

• Uncountable to singular.

• Uncountable to plural.

Note that for the last two conversions, a correct morphological analysis and
generation algorithm should not modify these inputs.

Similarly, all verbs will be converted to the following verb forms:
singular, plural, past, past participle and present participle. As with nouns,
these conversions are made from each of the wordforms in the CELEX testing
data for verbs. This results in 25 conversions: from each of the 5 wordforms
to each of the 5 wordforms.

Adjective conversions are not tested, as there are only a fixed
number of adjectives that change in the conversion from plural to singular
or vice versa. As a result, these can easily be converted using a simple
lookup dictionary, leaving the tests for adjective conversions uninteresting
for this thesis.

Our exact Python port of Damian Conway’s Lingua::EN::Inflexion as
well as our Inflexion will be tested against 8 other competitive modules
that have implemented functions for a subsection of all conversions. The
modules are only given the input word and the desired wordform, meaning
that the modules don’t know which wordform the input word is.
For each module, the outputs of all of these conversions will be applied to
both the procedure from Section 5.1: Qualitative evaluation procedure and
the procedure from Section 5.2: Quantitative evaluation procedure.
The results of the qualitative evaluation procedure are displayed in
Appendix A: Qualitative evaluation results, and the results of the
quantitative evaluation are displayed in Chapter 7: Results.
Both of these results are elaborated on in Chapter 8: Discussion.

36

Chapter 6

Existing Python modules

With a morphological analysis and generation algorithm from Chapter 4:
Inflexion, an evaluation procedure from Section 5.1: Qualitative evaluation
procedure and testing data all ready, all that remains is preparing competing
modules that provide morphological analysis and generation.

This chapter contains 8 commonly recommended modules, each of
which implement some of the conversions that can be tested using the
data fetched in Section 5.3: Testing data. Each conversion for each of
the modules is implemented solely using functionality provided by that
module, in a way that would likely give the best results. As a consequence,
if a module has a preprocessing tool for an input that would likely improve
the overall performance of a conversion, it will be used. This gives each
module the best possible chance.

Figure 6.1 shows the relation between each of these modules.
Every arrow from module x to module y states that module y is inspired
by, a port of, or otherwise uses module x.
We have introduced the Inflexion module in this thesis.

37

Lingua::EN

::Inflect

Lingua::EN

::Inflexion

inflect Inflection

Inflector

Pattern

TextBlob

NLTK

PyInflect LemmInflect

Inflexion

Ruby

Inflector

Perl Modules Python Modules Ruby Modules

Figure 6.1: Relations between modules implementing morphological analysis
and generation.

6.1 Functionality

Before diving into specifics of each of the modules, a broad overview is
given of the functionality supported by each of these modules. Table 6.1
includes all conversions that are tested in this thesis, and marks for each
module whether that conversion is supported.
Note that our module Inflexion as introduced in this thesis is underlined
in all tables from now onwards.

38

Nouns, converting to . . . sing plur

inflect × ×
Inflection × ×
Inflector × ×
Lingua::EN::Inflexion × ×
Inflexion × ×
LemmInflect × ×
NLTK ×
Pattern × ×
PyInflect × ×
TextBlob × ×
Verbs, converting to . . . sing plur past past part pres part

inflect × ×
Inflection

Inflector

Lingua::EN::Inflexion × × × × ×
Inflexion × × × × ×
LemmInflect × × × × ×
NLTK ×
Pattern × × × × ×
PyInflect × × × × ×
TextBlob ×

Table 6.1: Python modules and their supported functionality, marked with
a ×.

6.2 inflect

The inflect [3] module authored by Paul Dyson and maintained by Jason
R. Coombs, is based on the Perl module Lingua::EN::Inflect described
in Section 3.3: Reputation. It has been consistently improved upon since
the creation of this module back in 2010. It has cemented its position as a
solid choice for forming plural and singular nouns.

As inflect is based on the predecessor of Lingua::EN::Inflexion,
it is not surprising that it boasts many functions that are also present in
our port of Inflexion.

• plural noun(word, count=None)

This function takes a singular English noun or pronoun and returns
its plural. Pronouns in the nominative (‘I’ → ‘we’) and accusative
(‘me’ → ‘us’) cases are handled, as are possessive pronouns (‘mine’
→ ‘ours’).

That this function does not allow for the input to be a plural

39

English noun means that it is not recommended for converting any
noun to plural. Nonetheless, this function will be used to convert
any given noun to plural form, as the alternative of not testing these
conversions is worse than performing poorly on them.

• singular noun(word, count=None)

This function takes a plural English noun or pronoun and returns its
singular. Pronouns in the nominative ("we" -> "I") and accusative
("us" -> "me") cases are handled, as are possessive pronouns
("ours" -> "mine"). When third person singular pronouns are
returned they take the neuter gender by default ("they" -> "it"),
not "they"-> "she" nor "they" -> "he".

Note that this function can return False whenever the input
word is deemed singular. In this case we simply return the input
word.

• plural verb(word, count=None)

This function takes the singular form of a conjugated verb (that
is, one which is already in the correct person) and returns the
corresponding plural conjugation.

As with plural noun, this function likely is not a good option
for converting any given verb to plural, as the documentation states
it requires a singular verb. Still, this function will be used to convert
any given verb to plural form.

• present participle(word)

This function takes the singular form of a conjugated verb and returns
the corresponding present participle form.

Again, word must already be singular, with the aforementioned
consequences as a result.

6.3 Inflection

Inflection [4] is a direct port of the Ruby on Rails module Inflector [23].
The port is authored by Janne Vanhala, while the original module is by
Bermi Ferrer Martinez. This original module, like Lingua::EN::Inflect,
is the basis for several modules on this list. It is more simplistic, and does
not work with verbs.

The exact functionality that overlaps with Inflexion’s is as follows,
according to Inflection’s documentation:

40

• pluralize(word)

Returns the plural form of a word.

• singularize(word)

Returns the singular form of a word, the reverse of pluralize().

The documentation of both of these functions is very broad with their
definition of word, but judging by both the performance and the
implementation used, it is clear that this is only designed for nouns. Testing
these functions with verbs would do the otherwise respectable performance
a disservice.

6.4 Inflector

The Inflector [5] Python module is unsurprisingly another port of the
Ruby on Rails module of the same name by Bermi Ferrer Martinez. The
author of this port is unknown, as the GitHub user who hosts the project
states he took it from a forum post, and published it on GitHub and PyPI so
developers may conveniently use it. It offers roughly the same functionality
as Inflection, but has a slightly different implementation.

6.5 LemmInflect

Brad Jascob is the author of LemmInflect [6], the first Python module on
this list that is not directly inspired by another developer their module.
Instead, it is an improvement upon his own PyInflect [9], another
respected module implementing morphological analysis and generation, of
which the functionality will be described in Section 6.8: PyInflect.

LemmInflect boasts one relevant function:

• getInflection(lemma, tag, inflect oov=True)

The method returns the inflection for the given lemma based on the
Penn Treebank [24] POS tag. It first does a dictionary lookup and
use a rule-based system if the lookup fails, much like Inflexion and
many other modules.
The function returns a tuple with different spellings of the inflection.
For testing, the first item from the tuple is taken.
The function parameters are as follows:

– lemma: the word to inflect
– tag: the Penn Treebank POS tag
– inflect oov: if False, then the rule based inflections will not be

used.

For testing, this function will be called with the following POS tags:

41

Used for Tag Tag meaning

noun, singular ‘NN’ Noun, singular or mass

noun, plural ‘NNS’ Noun, plural

verb, singular ‘VBZ’ Verb, 3rd person singular present

verb, plural ‘VB’ Verb, base form

verb, past ‘VBD’ Verb, past tense

verb, past participle ‘VBN’ Verb, past participle

verb, present participle ‘VBG’ Verb, gerund or present participle

Table 6.2: Penn Treebank POS tags, their uses in our tests, and their
meanings.

However, testing shows that LemmInflect performs considerably better
when the input to getInflection is a lemma, i.e. a base form of a
particular word. Luckily, LemmInflect also provides lemmatization. This
lemmatization function will be used as a preprocessing step before calling
getInflection, to give LemmInflect the best possible performance.

Note that a lemma for nouns is by definition singular, and a lemma
for verbs is plural. So, for these two conversions we are only using the
lemmatization functionality, rather than also calling getInflection.

6.6 NLTK

The Natural Language Toolkit, or NLTK [7], is one of the most commonly
used Python modules for natural language processing. It implements a
function described by Princeton University their WordNet [25] team. This
WordNet is a large lexical database of the English language, which is the
core reason why this function is useful.
The function itself, called morphy [26], uses WordNet to guarantee that
whatever output it gives is a word that exists in the English language.
However, as WordNet only contains lemmas, morphy can only convert to
singular nouns and to plural verbs.

The documentation is as follows:

• morphy(form, pos=None, check exceptions=True)

Find a possible base form for the given form, with the given part
of speech, by checking the list of exceptions in WordNet, and by
recursively stripping affixes for this part of speech until a form in
WordNet is found.

42

6.7 Pattern

This module is hosted by CLiPS [27], the Computational Linguistics
and Psycholinguistics Research Center at the University of Antwerp, and
authored by Tom de Smedt and Walter Daelemans. Pattern [8] is packaged
with many useful features, including noun pluralisation, singularisation and
verb conjugation:

• pluralize(word, pos=NOUN, custom={}, classical=True)

Returns the plural form of the plural form of a singular noun. The
pos parameter (part-of-speech) can be set to NOUN or ADJECTIVE, but
only a small number of possessive adjectives inflect (e.g. my → our).
The ‘custom’ dictionary is for user-defined replacements.
This function is adapted from Damian Conway’s
Lingua::EN::Inflect and its corresponding paper [28].

• singularize(word, pos=NOUN, custom={})
Returns the singular form of a plural noun. The parameters work the
same way as for pluralize.
This function is adapted from Bermi Ferrer Martinez’s Inflector

module.

• conjugate(verb,

tense = PRESENT, # INFINITIVE, PRESENT,

PAST or FUTURE

person = 3, # 1, 2, 3 or None

number = SINGULAR, # SG, PL

mood = INDICATIVE, # INDICATIVE, IMPERATIVE,

CONDITIONAL or SUBJUNCTIVE

aspect = IMPERFECTIVE, # IMPERFECTIVE, PERFECTIVE or

PROGRESSIVE

negated = False, # True or False

parse = True) # True or False
Pattern has a lexicon of 8,500 common English verbs and their
conjugated forms, which can be requested using this function. This
functionality is based on XTAG [29] by the University of Pennsylvania.
If a word is not in the lexicon from the aforementioned University, then
a number of rules will be applied to generate the conjugated form.

6.8 PyInflect

As mentioned, PyInflect [9] is the predecessor of Brad Jascob’s
LemmInflect [6]. PyInflect is designed as an extension for spaCy [30], one
of the largest open-source NLP modules. Like LemmInflect, it is based on
the Automatically Generated Inflection Database (AGID) [31]. The AGID

43

data provides a list of inflections for various word lemmas.
This module can also be used standalone using functions with signatures
identical to LemmInflect’s. However, as opposed to LemmInflect, these
functions can return None.

Also note that no lemmatization is applied before calling these functions
for PyInflect, as it does not implement lemmatization itself.

6.9 TextBlob

The final module on this list is TextBlob [10], a text processing module
authored by Steven Loria. It uses both NLTK and Pattern for some of
its functionality, and in particular adapted its pluralize and singularize
methods from Pattern.
Though these functions claim to work on any word, it is clear they are
only designed for nouns and adjectives, just like the original functions by
Pattern.

It also implements lemmatization using the morphy from in NLTK,
though implemented slightly differently than merely calling morphy from
NLTK directly. This lemmatization is used for converting a verb to its plural
form.

44

Chapter 7

Results

The results of this chapter are from the quantitative evaluation procedure
described in Section 5.2: Quantitative evaluation procedure. The results
from the qualitative evaluation procedure from Section 5.1: Qualitative
evaluation procedure are placed in Appendix A: Qualitative evaluation
results.

The tables in this chapter contain accuracy scores of the conversion
from an input described by the table column to an output described by the
section header. Each wordform in the header, e.g. singular, is further split
up in:

• words:
The conversion is applied on single words only.

• colloc: (short for collocation)
The conversion is applied on collocations only, i.e. only on multiple
words separated by a space or hyphen, such as:

– ‘son of a gun’, ‘baby-sit’, ‘passer-by’ or ‘mother in

law’.

Many modules described in Chapter 6: Existing Python modules were
not built for conversions on collocations. If the split was not used, these
modules would end up with poor accuracy scores, even if they perform
excellently for just words. As an additional consequence, users can base
their module choice based on whether their data has collocations or not.
See Section 5.2: Quantitative evaluation procedure for more information.

The accuracy scores in the results are based on the number of correct
outputs divided by the number of inputs. In other words, when a module is
unsure about a conversion and returns nothing, it is counted as incorrect.

The three best accuracy scores of every column are colored differing

45

greys, such that the darkest color is the best accuracy. Accuracy scores
below 25% are not colored.

7.1 Nouns

Nouns are converted from singular, plural and uncountable to both singular
and plural, for each module. This results in two types of conversions, to
singular and to plural. See Section 5.4: Testing for more information.

7.1.1 Accuracy of converting nouns to singular

Modules
From Singular Plural Uncountable

words colloc words colloc words colloc

inflect 97.40% 97.94% 97.53% 96.90% 73.28% 82.70%

Inflection 98.13% 98.64% 95.78% 93.77% 90.18% 86.38%

Inflector 96.77% 97.71% 95.38% 93.64% 70.69% 81.30%

Lingua::EN::Inflexion 99.44% 99.32% 96.23% 94.33% 93.73% 87.62%

Inflexion 99.47% 99.34% 97.65% 96.29% 93.77% 87.84%

LemmInflect 99.39% 97.23% 97.43% 91.25% 95.35% 76.27%

NLTK1 93.60% 8.78% 90.52% 8.42% 79.43% 7.68%

Pattern 96.62% 97.35% 96.54% 94.55% 70.94% 80.22%

PyInflect1 96.55% 0.00% 1.78% 0.00% 86.71% 0.00%

TextBlob 96.61% 97.35% 96.69% 94.55% 70.96% 80.22%

7.1.2 Accuracy of converting nouns to plural

Modules
From Singular Plural Uncountable

words colloc words colloc words colloc

inflect 97.76% 96.91% 1.78% 0.94% 0.44% 0.54%

Inflection 97.08% 94.78% 98.53% 96.21% 9.51% 13.51%

Inflector 97.48% 94.69% 90.29% 91.18% 7.07% 13.57%

Lingua::EN::Inflexion 98.09% 95.76% 99.07% 98.53% 6.64% 12.59%

Inflexion 98.56% 97.41% 99.23% 98.39% 6.60% 12.43%

LemmInflect 95.33% 92.01% 95.56% 92.72% 46.07% 12.16%

Pattern 96.63% 94.15% 1.71% 0.78% 1.11% 3.08%

PyInflect1 95.46% 0.00% 1.61% 0.00% 0.78% 0.00%

TextBlob 96.75% 94.30% 1.73% 0.80% 1.07% 2.76%

1Returned no output for some inputs.

46

7.2 Verbs

For verbs the following five wordforms are considered: singular, plural, past, past participle and present participle. Conversions
are made between each of these wordforms. This results in five types of conversions: to singular, to plural, to past, to past
participle and to present participle.

7.2.1 Accuracy of converting verbs to singular

Modules
From Singular Plural Past Past Part. Present Part.

words colloc words colloc words colloc words colloc words colloc

Lingua::EN::Inflexion 99.95% 5.44% 99.50% 4.58% 0.87% 0.08% 0.93% 0.08% 0.00% 0.00%

Inflexion 99.95% 99.84% 99.73% 99.64% 0.87% 4.10% 0.93% 6.51% 0.00% 0.00%

LemmInflect 99.57% 5.36% 99.16% 4.46% 98.16% 3.91% 98.17% 3.87% 99.00% 4.38%

Pattern 98.97% 5.56% 98.83% 4.34% 96.89% 3.63% 97.19% 3.60% 97.94% 3.99%

PyInflect1 0.03% 0.00% 99.11% 0.00% 0.90% 0.00% 0.98% 0.00% 0.00% 0.00%

1Returned no output for some inputs.

47

7.2.2 Accuracy of converting verbs to plural

Modules
From Singular Plural Past Past Part. Present Part.

words colloc words colloc words colloc words colloc words colloc

inflect 99.36% 8.44% 99.98% 100.0% 0.87% 4.10% 0.93% 6.51% 0.00% 0.00%

Lingua::EN::Inflexion 99.47% 4.50% 99.81% 99.21% 0.87% 4.02% 0.93% 6.39% 0.00% 0.00%

Inflexion 99.59% 99.01% 99.91% 99.92% 0.87% 4.10% 0.93% 6.51% 0.00% 0.00%

LemmInflect 99.67% 4.38% 99.45% 97.40% 98.30% 7.66% 98.25% 9.88% 99.09% 4.30%

NLTK12 97.80% 2.21% 97.83% 2.25% 96.62% 2.01% 96.83% 1.99% 97.33% 2.13%

Pattern 99.19% 4.42% 99.74% 98.74% 97.23% 7.46% 97.53% 9.72% 98.21% 3.95%

PyInflect1 0.09% 0.00% 99.66% 0.00% 0.87% 0.00% 0.93% 0.00% 0.00% 0.00%

TextBlob 96.91% 2.21% 99.88% 99.96% 95.89% 6.03% 96.10% 8.42% 96.49% 2.13%

7.2.3 Accuracy of converting verbs to past

Modules
From Singular Plural Past Past Part. Present Part.

words colloc words colloc words colloc words colloc words colloc

Lingua::EN::Inflexion 94.45% 4.22% 94.22% 4.14% 98.61% 4.37% 98.02% 4.25% 3.10% 0.00%

Inflexion 98.01% 98.38% 97.87% 98.38% 99.17% 98.22% 98.64% 95.98% 4.06% 23.41%

LemmInflect 97.87% 4.02% 97.59% 4.03% 97.91% 3.98% 97.85% 3.94% 97.92% 4.07%

Pattern 98.01% 3.71% 97.92% 3.79% 98.00% 3.75% 98.19% 3.71% 98.23% 3.71%

PyInflect1 0.03% 0.00% 97.95% 0.00% 0.88% 0.00% 0.95% 0.00% 0.00% 0.00%

1Returned no output for some inputs.
299.96%, 100.00%, 99.37%, 99.50% and 99.74% if empty outputs are ignored when converting words to plural from singular, plural, past, past

participle and present participle, respectively.

48

7.2.4 Accuracy of converting verbs to past participle

Modules
From Singular Plural Past Past Part. Present Part.

words colloc words colloc words colloc words colloc words colloc

Lingua::EN::Inflexion 94.40% 4.14% 94.24% 4.14% 98.15% 4.29% 98.64% 4.33% 3.10% 0.00%

Inflexion 97.95% 98.42% 97.90% 98.42% 98.60% 94.35% 99.19% 99.27% 4.03% 23.45%

LemmInflect 97.89% 3.98% 97.66% 3.99% 97.89% 3.94% 97.95% 3.91% 97.97% 4.03%

Pattern 98.01% 3.94% 97.92% 3.95% 97.57% 4.02% 97.92% 3.98% 98.14% 3.99%

PyInflect1 0.03% 0.00% 98.16% 0.00% 0.87% 0.00% 0.98% 0.00% 0.00% 0.00%

7.2.5 Accuracy of converting verbs to present participle

Modules
From Singular Plural Past Past Part. Present Part.

words colloc words colloc words colloc words colloc words colloc

inflect 93.92% 4.11% 93.86% 4.34% 0.87% 0.08% 0.93% 0.08% 0.00% 0.00%

Lingua::EN::Inflexion 95.26% 4.38% 95.01% 4.42% 3.75% 0.08% 3.88% 0.08% 100.0% 4.66%

Inflexion 98.66% 99.01% 98.62% 98.97% 4.60% 24.57% 4.81% 26.90% 99.95% 99.68%

LemmInflect 98.23% 4.22% 97.90% 4.23% 97.79% 3.83% 97.75% 3.79% 98.30% 4.34%

Pattern 98.54% 4.42% 98.45% 4.34% 97.74% 3.99% 98.00% 3.95% 98.76% 4.38%

PyInflect1 0.03% 0.00% 98.16% 0.00% 0.90% 0.00% 1.00% 0.00% 0.00% 0.00%

1Returned no output for some inputs.

49

Chapter 8

Discussion

This chapter will explain why the results are as they are, and give
recommendations based on our personal judgment of the results as shown
in Chapter 7: Results and Appendix A: Qualitative evaluation results.

This chapter has the same structure as Chapter 7: Results. Each
table from that chapter is discussed using the following sections:

• First impressions.

– What is our judgment of the results from both Chapter 7: Results
and the data in Appendix A: Qualitative evaluation results?

• Inflexion versus Lingua::EN::Inflexion.

– Have our changes actually improved upon Damian Conway’s
Lingua::EN::Inflexion?

• Recommendation.

– What module should be used for each conversion, depending on
the characteristics of the inputs?

Data from both Chapter 7: Results and Appendix A: Qualitative evaluation
results will be used to back up the recommendations and judgments
made. After discussing each table individually, a general judgment on the
evaluation procedure and the modules implementing morphological analysis
and generation is given in Section 8.3: Our overall judgment, which helps
answering the two research sub-questions.

8.1 Nouns

8.1.1 Judgment of converting nouns to singular

• First impressions:
At first glance it is clear that Inflexion dominates the conversion to
singular.

50

inflect outperforms in particular for plural to noun, but falls
far behind in the other categories. On average, the conversion from
singular to singular is performed very well. This is not particularly
surprising, as many of these modules will default to not changing
anything when converting to singular, and no changes need to be
made for singular to singular.

This default behaviour explains the strikingly good performance
for uncountable inputs to singular, as compared to the performance
for uncountable inputs to plural. For this conversion, a common
default behaviour is adding a ‘s’, e.g. in ‘book’ to ‘books’.

It can be noted that many modules support noun collocations.
This is a different story for verbs.

Because Inflexion performs well for any input noun, a user
can use it to convert any unknown noun to singular and be fairly
confident that the result is a correct singular noun.

• Inflexion versus Lingua::EN::Inflexion:
Our program Inflexion outperforms the module it was based
on, Lingua::EN::Inflexion, in every single conversion, both for
words and collocations. As can be seen in Section A.1.1: Singular
to singular, the cases where the results differ are classified by the
evaluation procedure to be of the class ‘incorrect suffix used’.

The corresponding suffix table shows that the only difference is
that Lingua::EN::Inflexion has 6 extra errors (out of over 20
thousand test cases) for the category of ‘ouse vs ice’.

This means that Lingua::EN::Inflexion converted a word into a
form that ended with ‘ouse’, while the real singular ends with ‘ice’.
This is a direct consequence of change 7 from Section 4.3: Changes
for nouns, which replaces the rule ‘*louse => lice’.

• Recommendation:
Regardless of whether your data contains just words or also
collocations, our Inflexion is likely to outperform all other modules
for this conversion.

We strongly recommend the use of Inflexion for all conversions of
nouns to singular.

51

8.1.2 Judgment of converting nouns to plural

• First impressions:
The accuracy when converting from uncountable nouns to plural
is strikingly low for almost all modules, with the exception of
LemmInflect, which stands shoulders above the rest. For the
remaining columns, Inflexion and even Lingua::EN::Inflexion

dominate. The inflect and Inflection modules get some third
places and a second, but on average do not compete. Most modules
make at least 1.5 times as many errors as Inflexion.

Like with converting to singular, PyInflect only performs well
when the input is already of the base form of the noun POS:
singular. This is in stark contrast to its successor LemmInflect, which
outperforms it greatly.
However, despite the good performance for uncountable to plural,
LemmInflect still performs poorly on average as compared to the top
modules for this conversion.

The difference in accuracy between Inflexion and the other
modules can be marked up to how Inflexion makes considerably
less errors in the suffix category, as can be seen in Section A.1.4:
Singular to plural. The suffix table shows that failing to append an
‘s’ is an issue for Inflection and LemmInflect, who claim 107
and 364 of these errors, respectively. These values are massive as
compared to Inflexion’s 28. Other struggles are using the ‘es’

prefix as opposed to just ‘s’, and adding an ‘s’ where there should
not be one. Inflexion performs well in all of these categories.

• Inflexion versus Lingua::EN::Inflexion:
Unlike with converting to singular, our Inflexion does not
exclusively improve upon Lingua::EN::Inflexion. Though beating
the latter by 0.49, 1.65 and 0.16 percentage points, it loses to
Lingua::EN::Inflexion by 0.14, 0.04 and 0.16 percentage points
on the rightmost three columns. However, the conversion from
singular to plural is the most important, as it will be most commonly
used in practice. This is where Inflexion beats its predecessor
handily. Furthermore, the performance gains are much larger than
the losses. So, Inflexion is still a significant improvement upon
Lingua::EN::Inflexion.

For the conversion from singular to plural, Inflexion has reduced the
number of errors classified as wrong term changed (which only occur
for collocations) by half. It has also reduced the number of suffix errors

52

by roughly 25% relative to Lingua::EN::Inflexion. The reduction
in performance for plural to plural collocations is due to one new error
classified as case. Similarly marginal changes for some suffix are the
cause of the slight lack in performance for uncountable to plural nouns.

In the end, Inflexion improves upon Lingua::EN::Inflexion

for this conversion.

• Recommendation:
Due to LemmInflect’s disappointing performance on singular to plural
and plural to plural, it should not be used despite the good accuracy
for uncountable to plural.
Once again we strongly recommend the use of Inflexion for all
conversions of nouns to plural.

8.2 Verbs

8.2.1 Judgment of converting verbs to singular

• First impressions:
The five modules implementing this conversion are all impressive,
with PyInflect falling behind. It is immediately noticeable that
both Inflexion and Lingua::EN::Inflexion only perform when
the input is either a singular or a plural. Furthermore, it is striking
that only Inflexion has the ability to generate outputs for verb
collocations such as ‘box in’ accurately.

For past tense, past participle and present participle only LemmInflect

and Pattern compete. LemmInflect has the great advantage of being
able to use its formidable lemmatization function as a preprocessing
step for the input. This allows it to first convert these verbs from
past tense, past participle and present participle back to plural. After
doing so, it can apply its morphological generation algorithm.

This is where LemmInflect and Pattern shine, despite performing
worse than Inflexion and Lingua::EN::Inflexion for converting
from singular and plural.

According to Appendix sections A.2.2 to A.2.5, the collocation
errors for all modules except Inflexion are primarily a result of the
wrong term being changed, e.g. ‘box ins’ instead of ‘boxes in’.

• Inflexion versus Lingua::EN::Inflexion:
There is a noticeable difference in collocation accuracy between our
Inflexion and Lingua::EN::Inflexion, directly as a result of

53

change 2 described in Section 4.2: Changes for verbs. This jump
from 5.44% to 99.84% and 4.58% to 99.64% are very noteworthy
improvements.

For words, there is only one conversion where a change is noticeable,
and that is the most useful one: converting plural to singular.
For this conversion, roughly half of the errors were removed, moving
the accuracy from an already immaculate 99.50% to the even better
99.73%. Section A.2.2: Plural to singular shows us that this difference
is likely in the reduction of the 49 suffix errors to only 19 suffix errors,
out of some 8,300 test cases. This is mostly a result of the 27 times
Lingua::EN::Inflexion fails to append an ‘s’, while Inflexion

has only failed to do so twice.

• Recommendation:
If the inputs to the morphological analysis and generation algorithm
contains words that are in past tense, past participle or present
participle, use LemmInflect for the conversion to singular.

Otherwise, if the inputs are all words or collocations are plural,
or if the inputs contain exclusively singulars and plurals, use
Inflexion.

Lastly, there is no module that supports collocations in past
tense, past participle or present participle. Our recommendation is
to split up these words, identify which word should be changed in
morphological generation, and use LemmInflect to convert that word.

8.2.2 Judgment of converting verbs to plural

• First impressions:
TextBlob and inflect, two modules that have not been very present
thus far, are suddenly top performers for plural to plural. However,
this conversion is not particularly noteworthy, as no changes need to
be made to the input when converting from plural to plural.
As these two modules fail to perform well relative to the other
modules for the different conversions, neither is a good general pick
for converting to plural.

Inflexion continues to perform very well from singular and
plural, and like Lingua::EN::Inflexion fails on conversions from
past tense, past participle and present participle.

LemmInflect is very formidable when converting from singular

54

to plural. This is a result of its respectable lemmatization function,
which helps it to take first place for a conversion from singular for the
first time and last time.
In addition to taking the first place here, it also outperforms all
modules by a large margin for converting from past, past participle
and present participle.
Despite placing near last for plural to plural, its accuracy of 99.45%
is still good, and it makes this module a solid choice for this conversion.

As can be seen when looking at Appendix A.2.6 to A.2.10, the
NLTK module often returns nothing, but makes very little mistakes
when it does return an output. As the footnote under Section 7.2.2:
Accuracy of converting verbs to plural states, the accuracies are
99.96%, 100.00%, 99.37%, 99.50% and 99.74% if empty outputs are
ignored when converting words to plural from singular, plural, past,
past participle and present participle, respectively. These accuracy
scores are considerably higher than the otherwise best scores. Because
of this, NLTK can be used for converting to plural with a high level
of trust that if a word is returned, it will be the correct plural. If
nothing is returned, the second best option of LemmInflect can be
used.

• Inflexion versus Lingua::EN::Inflexion:
Once again, there is a striking difference in the accuracy of converting
singular verb collocations to plural. Beyond that, our Inflexion

either performs equally or better than Lingua::EN::Inflexion.

Converting words from singular to plural has seen a small
improvement, and so has the detection of whether a word is
already plural. According to Section A.2.7: Plural to plural, the
number of suffix errors has been reduced from 31 to 7 for this
conversion, out of over 8,300 test cases.
This difference is caused by how Lingua::EN::Inflexion incorrectly
removes an ‘s’ 31 times, while Inflexion only makes this mistake 7
times.

• Recommendation:
If the inputs contain collocations, and are only singular or plural, use
Inflexion.

If the inputs are only or mostly words, first use NLTK’s conversion. In
the event that nothing is returned, use LemmInflect instead.

If the inputs contain collocations, and are not only singular or

55

plural, split up the collocation into words and pass the verb through
NLTK and LemmInflect like described previously.

8.2.3 Judgment of converting verbs to past

• First impressions:
The pattern that is visible when converting to singular and to plural is
not as present here. That is, Inflexion and Lingua::EN::Inflexion

don’t exclusively perform well when converting from plural or singular,
but also when converting from past tense and past participle.
PyInflect is placed in the top three for a conversion for the first
time, and immediately takes first place for plural to past.
Furthermore, LemmInflect is not as dominating as it is when
converting to singular or plural.

The highest accuracy from both past and past participle can be
explained by how both Lingua::EN::Inflexion and Inflexion

have a system that attempts to check whether a word is already in
the right form. As the past and past participle form of a verb only
differ if the verb is irregular, a word that is in past participle is often
identified to also be in past tense.

However, like when converting from e.g. past tense to singular,
Inflexion and Lingua::EN::Inflexion do not remove suffixes
before converting. As a result, for present participle to past, it will
incorrectly convert e.g. ‘working’ to ‘workinged’.

The LemmInflect and Pattern modules do not have this limitation,
and as a result have more consistent results. Especially the latter
module performs quite well.

• Inflexion versus Lingua::EN::Inflexion:
Our Inflexion is an immense improvement upon
Lingua::EN::Inflexion for converting to past tense. The accuracy
of collocation conversions of all forms except present participle to
past tense has been increased from roughly 4% to 95-98%.

Furthermore the accuracy of conversion from singular and plural to
past were improved from roughly 94% to roughly 98%. According
to Section A.2.11: Singular to past, this is a consequence of how the
number of suffix errors made were more than halved. This is a result
of the improvement of the consonant duplication algorithm described
as change 3 in Section 4.2: Changes for verbs.

56

Even converting from past and past participle has improved by
roughly 0.6 percentage points each.

• Recommendation:
If the inputs are exclusively words of the base form of plural, use
PyInflect. Otherwise, if the inputs contain collocations, or if the
inputs are known to have few or no present participle forms, then
Inflexion should be used.
Alternatively, if there are present participle forms, ‘Pattern’ should
be used for more consistent results.

8.2.4 Judgment of converting verbs to past participle

• First impressions:
The results look very similar to the conversion of to past. This is not
particularly surprising as the past tense and past participle only differ
if the verb is irregular, e.g. ‘flew’ and ‘flown’.

One interesting difference is how the balance between LemmInflect

and Pattern has shifted slightly. Rather than Pattern beating
LemmInflect outright for all words, the latter is outperforming the
former for two out of five word forms.

• Inflexion versus Lingua::EN::Inflexion:
Almost identically to the previous conversion, our Inflexion knocks
Lingua::EN::Inflexion out of the water.

• Recommendation:
When the inputs are only plural words, use PyInflect for the best
results. Otherwise, if the inputs contain collocations, or if there are
few or no present participle forms among the inputs, then Inflexion

ought to be used.
If there are present participle forms, or if more consistent results are
desired, Pattern or alternatively LemmInflect should be used.

8.2.5 Judgment of converting verbs to present participle

• First impressions:
The accuracy for present participle to present participle at 100% for
Lingua::EN::Inflexion is quite surprising. Furthermore, Inflexion
once again takes the first place performance for the conversions from
singular and plural. Pattern and LemmInflect are once again very
similar in performance, but the former definitely performs better on
average.

57

Unlike the previous two conversions, PyInflect is no longer
the best choice. It is also clear that inflect is by far the worst
performing module for this conversion.

Once again, Pattern is the best option when consistency is
desired, while Inflexion outperforms Pattern for the cases that it
supports, but does horribly for the two that it does not.

• Inflexion versus Lingua::EN::Inflexion:
For the conversions from singular and plural, our Inflexion greatly
outperforms Lingua::EN::Inflexion, reducing the percentage of
incorrect conversions from roughly 5% to roughly 1.4% on average.
The difference in results for collocations are even more striking,
improving the percentage of correct conversions from roughly 4.4% to
roughly 90%.

Converting words from present participle to present participle
has not seen a noticeable change in accuracy, while the collocation
accuracy is improved heavily.

Neither Lingua::EN::Inflexion nor Inflexion work well when
converting from past or from past participle to present participle.
However, Inflexion has improved an impressive 25 percentage points
on Lingua::EN::Inflexion for collocations of these conversions.

• Recommendation:
If the inputs contain collocations or do not contain any past tense
or past participle forms, then Inflexion will have the best results.
However, Pattern should be used whenever the inputs do contain
past tense or past participle words, for better consistency.

8.3 Our overall judgment

Our Inflexion consistently performs as or among the best, and is the
uncontested best option for converting nouns. For verbs it has great
performance, but gives up some consistency by only performing wonderfully
for several wordforms.
The Pattern module with its conjugate function and the LemmInflect

module with its getLemma and getInflections functions both give more
consistent results for verbs, but never outperform our Inflexion on the
conversions that both modules are good at.

Our Inflexion module is a top contender for a morphological analysis
and generation algorithm, especially for nouns, and also for verbs. It

58

consistently outperforms its predecessor Lingua::EN::Inflexion, and
shines due to its low number of suffix errors, as can be determined from
the results of the tests using our evaluation procedure in Appendix A:
Qualitative evaluation results.

Though the evaluation procedure from Section 5.1: Qualitative evaluation
procedure is enormously helpful in identifying exactly for which types of
inputs certain modules perform better or worse, most users will only care
whether a conversion is executed correctly or not. After all, the noun
‘book’ being converted to plural incorrectly and resulting in ‘bookes’

is not in any way better or worse than being incorrectly converted to
‘bookis’.
As a result, this evaluation procedure is wonderful for comparing and
contrasting the intricacies of morphological analysis and generation
algorithms, but is not more useful than merely determining whether an
output is correct or not when it comes to determining which module is
better.
For determining which module is better, the secondary evaluation procedure
described in Section 5.2: Quantitative evaluation procedure is more useful.

In short, the qualitative evaluation procedure is invaluable for developing
and testing a morphological analysis and generation algorithm, while the
quantitative evaluation procedure works wonders for comparing the raw
performance of such algorithms.

59

Chapter 9

Related work

This chapter contains some of the key papers that helped guide us in creating
this thesis.
Beyond that, the 8 Python modules listed in Chapter 6: Existing Python
modules may be considered as related work as well. We opted to explain
them earlier on instead, as they help explain the results in Chapter 7:
Results.

9.1 Conway (1998)

Damian Conway his paper [28] is the basis of several Python
modules: Section 6.2: inflect, Section 6.7: Pattern and Section 6.9:
TextBlob. It introduces a pluralizing algorithm that is used in
Lingua::EN::Inflect [17]. Conway has adapted and improved upon
this work to create its successor Lingua::EN::Inflexion [2], but the core
idea remains.

There is not a large difference in supported functionality between the
two modules by Conway. As such, it would be interesting to apply the
evaluation procedures introduced in Section 5.1: Qualitative evaluation
procedure on Lingua::EN::Inflect as well, so there is more robust
evidence that Lingua::EN::Inflexion indeed outperforms its predecessor
Lingua::EN::Inflect.
Currently, the only evidence of that is Damian Conway’s word [17].

This paper [28] introduces several rule-based algorithms. As opposed
to models that require learning, these rule-based algorithms do not overfit,
as long as the rules are kept general. These general rules based on
grammatical rules attempt to create a pluralisation scheme that even works
on words that do not exist (yet). As language continues to expand, this
rule-based system might work better on new words than models that are

60

taught on existing language.

9.2 Minnen et al. (2000), Minnen et al. (2001)

Minnen, Carroll and Pearce wrote two papers [15, 19] on their tools morpha
and morphg, a morphological analyser and generator, respectively. As
opposed to any other module in this paper, these tools allow the user
to switch between British English and American English. It does so by
controlling the behaviour with respect to consonant doubling. This could
definitely be adapted into Inflexion, but testing the performance of this
requires splitting the testing data up into American English and British
English.

The morphological generator is derived automatically from the
morphological analyser. On the other hand, the morphological analyser is
derived using morphological knowledge acquired semi-automatically from
large corpora and dictionaries.
Neither system uses a lexicon for conversion, but rather roughly 1,400 rules
ranging from very general to very specific, including rules for irregular words.

As with Conway’s work [2, 17, 28] and our adaptation Inflexion,
this system is likely to contain a rule to correctly handle words that have
not previously been encountered. Further similarities include that all of
these systems allow multiple accepted forms for a conversion, e.g. both
‘mangoes’ and ‘mangos’ are accepted plurals of the noun ‘mango’.

morpha and morphg are also tested with CELEX data, but these models were
finetuned specifically to this testing set, making the boasted accuracy of
roughly 99.95% nothing more than a fabrication. What kind of accuracy
can be expected on other data sets is the question.

Though both morhpa and morphg are still technically freely available,
any user wishing to access the source code is advised to look via an
archiving website, as all links to the source code in the papers are no longer
accessible.

9.3 Van den Bosch et al. (1999)

The paper [12] by Van den Bosch and Daelemans constricts itself solely to
morphological analysis using memory-based learning. This is supervised
machine learning that learns by storing examples of a task in memory. When
new examples are presented, it searches for the best-matching example
in memory to help give an appropriate result. With enough examples in

61

memory, a memory-based learning algorithm can learn classifications.

The model in this paper [12] works on chunks of words of at most
11 characters, and has reformulated the problem into a classification
problem. It does perform noticeably worse on unseen words, hinting
at overfitting or weaknesses. This paper veered us away from using
machine learning on letter chunks to classify words or subwords. Though
it would be useful to be able to segment words correctly in order to
apply the morphological generation step on only the relevant subword, the
performance here does not seem sufficient to be worth looking further into.

However, this paper and several others that were glanced over before
starting with this research used CELEX as a source for testing and training
data. This caused us to look in that direction for a source of our testing data.

It should be noted that Daelemans is also the author of the Section 6.7:
Pattern Python module.

9.4 Heemskerk (1993)

Heemskerk’s paper [32] also introduces a method for morphological analysis
with a MORphological PArser (MORPA), which uses a lexicon to segment
words into components. Many words can be segmented into multiple
seemingly valid chunks, e.g.:

• ‘repaired’ → ‘re’ + ‘pair’ + ‘ed’ versus ‘rep’ + ‘air’ + ‘ed’

In such cases, the former segmentation is more logical. What MORPA
does is add a probability through a probabilistic context-free grammar
to filter out unlikely segmentations. Though MORPA was developed for
Dutch, which requires more segmentation than the English language [32],
a similar method could prove useful for segmentation and classification of
morphemes. Then, the morphological generation step could be applied only
on the relevant morphemes.
This acted as our backup in case porting and adapting the existing
Lingua::EN::Inflexion Perl module proved unfruitful.

Like the previous paper by Van den Bosch et al. (1999) [12], MORPA was
tested on data from CELEX, further guiding us in that direction.

9.5 Bloch (1947)

The paper of Bloch [20] focuses on linguistics as opposed to morphological
analysis or generation. The paper explains inflection rules and mentions

62

potential suffixes and inflectional categories. Bloch gives information on the
verb ‘be’, and most noticeably provides a thought to be complete list of 200
irregular verbs in standard colloquial English, together with several classical
verbs. This list was of great importance in determining whether section of
rules for irregular verbs in Lingua::EN::Inflexion is lacking or not.

63

Chapter 10

Conclusions

RQ 1 As elaborated on in Section 8.3: Our overall judgment, our newly
developed evaluation procedure described in Section 5.1: Qualitative
evaluation procedure works remarkably well for comparing and contrasting
morphological analysis and generation algorithms. However, our procedure
from Section 5.2: Quantitative evaluation procedure is more useful for
determining which algorithm performs the best.

RQ 2 Our module Inflexion which implements a morphological analysis and
generation algorithm as described in Chapter 4: Inflexion consistently
outperforms its predecessor Lingua::EN::Inflexion by Damian Conway,
according to both of our evaluation procedures.

Beyond merely outperforming Lingua::EN::Inflexion, our module
Inflexion is consistently at the top of modules for converting nouns and
noun collocations from any form to any form. According to our judgment
on the evaluation of our morphological analysis and generation algorithms
of British English from Section 8.1: Nouns, Inflexion should be used over
any other module for all noun conversions.

For verbs, our Inflexion is also dominant, but lacks consistency.
As elaborated on in Section 8.2: Verbs, the recommended module for
applying morphological analysis and generation on verbs depends on several
factors. These include which wordform is being converted to, as well as the
characteristics of the input data that will be used in this conversion.

Though our judgment often favors Inflexion, other modules like
LemmInflect and Pattern are also frequently recommended. NLTK and
PyInflect also perform best in some rare situations.

RQ In conclusion, our implementation of a morphological analysis and
generation algorithm of British English in our Inflexion module often beats
the competing modules, and should be considered as a very respectable and
competitive option.

64

Chapter 11

Future work

This chapter is split up in three distinct categories:

• Future research
This section mentions some new research that can be done to expand
upon the work in this thesis.

• Evaluation
This section enumerates possible improvements or additions to the
quantitative and/or the qualitative evaluation procedures from this
thesis.

• Inflexion

This section enumerates possible improvements to the Inflexion

Python module to improve its effectiveness and further broaden its
applicability.

11.1 Future research

In the future, the detailed recommendations made in Chapter 8: Discussion
can be built into a new Python module which delegates the work for a
conversion to the recommended module. This way, one module can be
created which has the best performance for all conversions.

It may include functionality to specify the type of inputs, e.g.:
• With or without collocations.

• The inclusion or exclusion of specific word forms, e.g. singular, plural,
past, past participle or present participle.

The new module can use this information to better determine which
modules should be used.

For any conversion the new module may optionally choose several

65

Python modules, perform the conversion with all picked modules, and then
return the most frequently predicted output. This method might improve
accuracy at the cost of execution time.

Researchers can experiment with which modules should be used for which
conversions based on Chapter 8: Discussion and their own evaluation.
Researchers may also create a flowchart for each conversion to determine
which module has priority when several modules all produce different
predicted outputs.

This way, even the complicated recommendations like from Section 8.2.2:
Judgment of converting verbs to plural can effortlessly be used by developers.

11.2 Evaluation

This section enumerates possible improvements or additions to the
quantitative and/or the qualitative evaluation procedures from this thesis.

1. Perform quantitative evaluation on merely the morphological analysis,
i.e. answering the question: “Is the current word in a particular form”.
Our module Inflexion, and several others from Chapter 6: Existing
Python modules support these kinds of wordform checks, but these
tests extend beyond the scope of this thesis.

2. Some words convert differently based on the grammatical person
desired. Some morphological analysis and generation algorithms have
support for this, but this thesis does not test them. Qualitative and
quantitative evaluation on conversions given a grammatical person
should be performed.
This should allow for the following examples, among others:

• For the verb ‘to be’, converted to singular:
Person Output Example

1st ‘am’ ‘I am’

2nd ‘are’ ‘you are’

3rd ‘is’ ‘he is’

• For the noun ‘we’, converted to singular:
Person Output Example

1st ‘I’ ‘I am’

2nd ‘you’ ‘you are’

3rd ‘it’ ‘it is’

• For the adjective ‘your’, converted to singular:

66

Person Output Example

1st ‘my’ ‘my book’

2nd ‘your’ ‘your book’

3rd ‘its’ ‘its book’

This functionality is implemented in Inflexion, but is not tested in
this thesis.

3. Some words convert differently based on the grammatical gender
desired. This functionality is supported by some morphological
analysis and generation algorithms. Qualitative and quantitative
evaluation should be performed for these cases.
This should allow for the following example, among others:

• For the adjective ‘our’, converted to singular:
Gender Output Example

Masculine ‘his’ ‘his book’

Feminine ‘her’ ‘her book’

Neuter ‘its’ ‘its book’

This functionality is not implemented in Inflexion. The neuter case
is always used as default.

4. Some nouns have classical plurals in addition to modern plurals, such
as ‘brethren’ as the classical plural of ‘brother’, or ‘pence’ as
the classical plural of ‘penny’.

This functionality is implemented in Inflexion, but not tested
and compared to other morphological analysis and generation
algorithms within this thesis. This can be expanded upon in future
research.

5. Perform qualitative and quantitative evaluation on the comparative
and superlative wordforms for adjectives. For example, for the
adjective ‘good’:

• comparative: ‘better’
• superlative: ‘best’

This functionality does not exist in Damian Conway’s
Lingua::EN::Inflexion, but we did build it into Inflexion.
What lacks is qualitative and quantitative evaluation for these
conversions.

6. Perform quantitative evaluation on all 31 conversions with input words
that were modified accordingly:

• Different types of capitalisation:

– ‘Title Case’.

67

– ‘UPPER CASE’.

– ‘RanDoM CAsE’.

• Different types of whitespace:

– ‘ leading whitespace’.

– ‘trailing whitespace ’.

– ‘duplicated whitespace between words’.

– ‘replacing-spaces-with-hyphens’.

– replacing hyphens with spaces: ‘knight-errant’ into
‘knight errant’.

Results of these tests give developers insights on what kind of
normalisation is required on data used in each module.

7. Modify the quantitative evaluation procedure by weighing each input
by how often it exists in the English language. This way, errors for
the verb ‘to do’ have a larger effect on a module’s score than errors
for the verb collocation ‘to bowl over’.

CELEX has support for the following parameters that may prove
helpful for this:

CobDev COBUILD frequency deviation

CobLog COBUILD frequency, logarithmic

CobMln COBUILD frequency (1,000,000)

CobSLog COBUILD spoken frequency, logarithmic

CobSMln COBUILD spoken frequency (1,000,000)

CobS COBUILD spoken frequency 1.3m

CobSpellDev COBUILD spelling frequency deviation

CobSpellFreq COBUILD spelling frequency

CobWLog COBUILD written frequency, logarithmic

CobWMln COBUILD written frequency (1,000,000)

CobW COBUILD written frequency 17.4m

Cob COBUILD frequency

Table 11.1: CELEX parameters regarding word frequency.

We have looked into using these parameters, but were unsuccessful in
creating a scoring function that met our standards without extending
beyond the scope of this thesis.

8. Apply evaluation that takes into account the execution time of each
program in relation to its performance. This way developers can be
sure that the additional 0.1 percentage point accuracy does not come
at the cost of 100 times the execution time.

68

11.3 Inflexion

This section enumerates possible improvements to the Inflexion Python
module to improve its effectiveness and further broaden its applicability.

1. Improve morphological analysis of past participle, present participle
and past tense verbs. Currently these forms are not correctly
identified, causing the morphological generation to be applied on
non-root words, e.g.:

• ‘using’ converted to past tense becomes ‘usinged’.

Instead, the morphological analysis section should recognise that
the input ‘using’ is of the present participle form, and let the
morphological generation apply on the root ‘use’ instead.

2. Improve conversions surrounding comparative and superlative
adjectives.

• Add is comparative and is superlative functionality to
detect whether a given adjective is of these forms.

• Conversions from singular to comparative or superlative work
well, but the conversion the other way around is not well
supported yet.

3. Implement support for grammatical gender, or otherwise allow for
non-neuter pronouns. For example, currently the singular of the
adjective ‘our’ is ‘its’. However, users of Inflexion may desire to
specify the desired grammatical gender (masculine, feminine or neuter)
so that ‘her’ or ‘his’ is returned instead.

69

Bibliography

[1] Algeo, John ; Butcher, Carmen A.: The origins and development
of the English language. Cengage Learning, 2013

[2] Conway, Damian: Lingua::EN::Inflexion. https://metacpan.org/

pod/Lingua::EN::Inflexion. Version: Jul 2020

[3] Dyson, Paul ; Coombs, Jason R. (Hrsg.): inflect. https://github.

com/jaraco/inflect. Version: Nov 2020

[4] Vanhala, Janna: Inflection. https://github.com/jpvanhal/

inflection. Version: Aug 2020

[5] Ixmatus: inflector. https://github.com/ixmatus/inflector.
Version: Oct 2019

[6] Jascob, Brad: LemmInflect. https://github.com/bjascob/

LemmInflect. Version: Feb 2020

[7] Bird, Steven ; Loper, Edward ; Klein, Ewan: NLTK. https://

github.com/nltk/nltk. Version: Jan 2021

[8] Smedt, Tom D. ; Daelemans, Walter: pattern. https://github.

com/clips/pattern. Version: Apr 2020

[9] Jascob, Brad: pyInflect. https://github.com/bjascob/pyInflect.
Version: Feb 2020

[10] Loria, Steven: TextBlob. https://github.com/sloria/TextBlob.
Version: Jan 2021

[11] Wouden, Ton Van d.: Celex: Building a multifunctional
polytheoretical lexical data base. In: Proceedings of BudaLex
88 (1990), 363–373. https://tonvanderwouden.nl/index_files/

papers/CELEX-euralex88.pdf

[12] Bosch, Antal van d. ; Daelemans, Walter: Memory-based
morphological analysis. In: Proceedings of the 37th annual meeting
of the Association for Computational Linguistics on Computational

70

https://metacpan.org/pod/Lingua::EN::Inflexion
https://metacpan.org/pod/Lingua::EN::Inflexion
https://github.com/jaraco/inflect
https://github.com/jaraco/inflect
https://github.com/jpvanhal/inflection
https://github.com/jpvanhal/inflection
https://github.com/ixmatus/inflector
https://github.com/bjascob/LemmInflect
https://github.com/bjascob/LemmInflect
https://github.com/nltk/nltk
https://github.com/nltk/nltk
https://github.com/clips/pattern
https://github.com/clips/pattern
https://github.com/bjascob/pyInflect
https://github.com/sloria/TextBlob
https://tonvanderwouden.nl/index_files/papers/CELEX-euralex88.pdf
https://tonvanderwouden.nl/index_files/papers/CELEX-euralex88.pdf

Linguistics (1999). http://dx.doi.org/10.3115/1034678.1034726.
– DOI 10.3115/1034678.1034726

[13] Kemmer, Suzanne: Words in English: Structure. https://www.ruf.

rice.edu/~kemmer/Words04/structure/index.html

[14] MORPHOLOGY II. https://www.ling.upenn.edu/courses/Fall_

1998/ling001/morphology2.html

[15] Minnen, Guido ; Carroll, John ; Pearce, Darren: Robust,
applied morphological generation. In: Proceedings of the first
international conference on Natural language generation - INLG ’00
(2000). http://dx.doi.org/10.3115/1118253.1118281. – DOI
10.3115/1118253.1118281

[16] Firth, John R.: Modes of meaning. Papers in Linguistics 1934-1951.
In: London, New York, et al 190 (1957), S. 215

[17] Conway, Damian: Lingua::EN::Inflect. https://metacpan.org/pod/
Lingua::EN::Inflect. Version: Dec 2020

[18] Build software better, together. https://github.com/topics/nlp

[19] Minnen, Guido ; Carroll, John ; Pearce, Darren: Applied
morphological processing of English. In: Natural Language Engineering
7 (2001), Nr. 3, S. 207–223. http://dx.doi.org/10.1017/

s1351324901002728. – DOI 10.1017/s1351324901002728

[20] Bloch, Bernard: English Verb Inflection. In: Language 23
(1947), Nr. 4, S. 399. http://dx.doi.org/10.2307/410300. – DOI
10.2307/410300

[21] Heuser, Ryan ; Falk, Josh ; Anttila, Arto:
quadrismegistus/prosodic. https://github.com/quadrismegistus/

prosodic. Version: 2010

[22] Max Planck Institute for Psycholinguistics. http://celex.mpi.nl/

[23] Martinez, Bermi F.: Inflector. https://api.rubyonrails.org/

classes/ActiveSupport/Inflector.html. Version: Jun 2020

[24] Penn Treebank P.O.S. Tags. https://www.ling.upenn.edu/courses/
Fall_2003/ling001/penn_treebank_pos.html

[25] What is WordNet? https://wordnet.princeton.edu/

[26] Morphy. https://wordnet.princeton.edu/documentation/

morphy7wn

71

http://dx.doi.org/10.3115/1034678.1034726
https://www.ruf.rice.edu/~kemmer/Words04/structure/index.html
https://www.ruf.rice.edu/~kemmer/Words04/structure/index.html
https://www.ling.upenn.edu/courses/Fall_1998/ling001/morphology2.html
https://www.ling.upenn.edu/courses/Fall_1998/ling001/morphology2.html
http://dx.doi.org/10.3115/1118253.1118281
https://metacpan.org/pod/Lingua::EN::Inflect
https://metacpan.org/pod/Lingua::EN::Inflect
https://github.com/topics/nlp
http://dx.doi.org/10.1017/s1351324901002728
http://dx.doi.org/10.1017/s1351324901002728
http://dx.doi.org/10.2307/410300
https://github.com/quadrismegistus/prosodic
https://github.com/quadrismegistus/prosodic
http://celex.mpi.nl/
https://api.rubyonrails.org/classes/ActiveSupport/Inflector.html
https://api.rubyonrails.org/classes/ActiveSupport/Inflector.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://wordnet.princeton.edu/
https://wordnet.princeton.edu/documentation/morphy7wn
https://wordnet.princeton.edu/documentation/morphy7wn

[27] Centre for Computational Linguistics and Psycholinguistics. https:

//www.uantwerpen.be/en/research-groups/clips/

[28] Conway, Damian: An algorithmic approach to english pluralization.
In: Proceedings of the Second Annual Perl Conference, 1998

[29] The XTAG Project. https://www.cis.upenn.edu/~xtag/

[30] Explosion: spaCy. https://github.com/explosion/spaCy

[31] Atkinson, Kevin: Automatically Generated Inflection Database
(AGID). http://wordlist.aspell.net/agid-readme/

[32] Heemskerk, Josée S.: A probabilistic context-free grammar for
disambiguation in morphological parsing. In: Proceedings of the sixth
conference on European chapter of the Association for Computational
Linguistics (1993). http://dx.doi.org/10.3115/976744.976767. –
DOI 10.3115/976744.976767

72

https://www.uantwerpen.be/en/research-groups/clips/
https://www.uantwerpen.be/en/research-groups/clips/
https://www.cis.upenn.edu/~xtag/
https://github.com/explosion/spaCy
http://wordlist.aspell.net/agid-readme/
http://dx.doi.org/10.3115/976744.976767

Appendix A

Qualitative evaluation results

A.1 Nouns

A.1.1 Singular to singular

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 1 19734 0 0 4 0 0 0 498
Inflection 1 19881 0 0 0 0 0 0 355
Inflector 1 19625 0 0 0 0 0 0 611
Lingua::EN::Inflexion 0 20118 0 1 0 0 0 0 118
Inflexion 0 20124 0 1 0 0 0 0 112
LemmInflect 1 20019 0 76 1 0 0 0 140
NLTK 5024 15204 0 0 0 0 0 0 9
Pattern 0 19585 0 0 0 0 0 0 652
PyInflect 4952 15284 0 0 0 0 0 1 0
TextBlob 0 19584 0 0 0 0 0 0 653

73

Module vs s um vs a my vs our us vs i an vs en ouse vs ice y vs ies us vs era other
inflect 459 4 0 0 9 6 3 4 13
Inflection 263 70 0 0 9 6 4 0 3
Inflector 497 70 0 22 9 6 4 0 3
Lingua::EN::Inflexion 96 3 0 0 8 6 2 0 3
Inflexion 96 3 0 0 8 0 2 0 3
LemmInflect 84 22 0 19 0 0 3 0 12
NLTK 8 0 0 0 0 0 0 0 1
Pattern 481 70 49 22 9 6 3 5 7
PyInflect 0 0 0 0 0 0 0 0 0
TextBlob 482 70 49 22 9 6 3 5 7

A.1.2 Plural to singular

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 20206 0 0 4 2 13 28 493
Inflection 0 19780 0 0 0 2 30 28 906
Inflector 0 19710 0 0 0 2 30 28 976
Lingua::EN::Inflexion 0 19878 0 0 0 0 10 28 830
Inflexion 0 20197 0 0 0 0 10 28 511
LemmInflect 0 19936 0 73 1 2 33 27 674
NLTK 5177 15101 0 0 0 0 0 0 468
Pattern 0 19940 0 0 0 2 28 28 748
PyInflect 20369 290 0 0 0 0 0 0 87
TextBlob 0 19963 0 1 1 7 28 28 718

74

Module s vs e vs vs s y vs ie vs e fe vs ve i vs us a vs um other
inflect 67 62 72 32 29 0 36 55 140
Inflection 143 182 85 74 60 98 45 27 192
Inflector 203 182 91 75 56 98 32 27 212
Lingua::EN::Inflexion 97 53 62 78 46 1 15 15 463
Inflexion 104 81 62 78 40 0 15 15 116
LemmInflect 210 25 56 37 37 0 8 12 289
NLTK 369 8 9 0 2 0 3 7 70
Pattern 166 146 82 54 56 19 32 26 167
PyInflect 65 0 0 0 0 0 0 8 14
TextBlob 145 123 82 53 55 19 32 26 183

A.1.3 Uncountable to singular

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 6483 0 0 0 0 0 0 2126
Inflection 0 7693 0 0 0 0 0 0 916
Inflector 0 6282 0 0 0 0 0 0 2327
Lingua::EN::Inflexion 0 7956 0 0 0 0 0 0 653
Inflexion 0 7963 0 0 0 0 0 0 646
LemmInflect 0 7856 0 206 0 0 2 0 545
NLTK 2997 5511 0 0 0 0 0 0 101
Pattern 0 6279 0 1 0 0 0 0 2329
PyInflect 2747 5861 0 0 0 0 0 1 0
TextBlob 0 6280 0 0 0 1 0 0 2328

75

Module vs s um vs a y vs ies us vs i vs es my vs our an vs en ouse vs ice other
inflect 2075 0 20 1 11 0 5 5 9
Inflection 717 148 21 0 12 0 5 5 8
Inflector 2105 148 21 23 12 0 5 5 8
Lingua::EN::Inflexion 591 0 20 1 11 0 5 5 20
Inflexion 592 0 20 1 11 0 5 1 16
LemmInflect 452 26 11 15 10 0 0 0 31
NLTK 95 0 3 0 1 0 0 0 2
Pattern 2071 148 19 21 12 35 5 5 13
PyInflect 0 0 0 0 0 0 0 0 0
TextBlob 2070 148 19 21 12 35 5 5 13

A.1.4 Singular to plural

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 19746 0 5 5 0 56 27 398
Inflection 0 19545 0 0 0 1 132 26 533
Inflector 0 19604 0 0 0 1 133 26 473
Lingua::EN::Inflexion 0 19747 0 4 0 0 132 27 327
Inflexion 0 19895 0 5 0 0 63 27 247
LemmInflect 0 19145 0 70 3 4 142 26 847
Pattern 0 19446 1 0 0 1 143 27 619
PyInflect 4952 15112 0 1 0 0 0 9 163
TextBlob 0 19471 0 0 0 1 143 27 595

76

Module vs s es vs s s vs s vs es vs es ans vs en s vs x us vs i other
inflect 14 112 78 27 3 8 16 0 140
Inflection 107 16 67 44 95 0 16 35 153
Inflector 42 16 59 46 96 0 16 35 163
Lingua::EN::Inflexion 33 111 27 11 32 0 13 0 100
Inflexion 28 19 28 37 29 0 15 0 91
LemmInflect 364 21 56 16 33 134 15 0 208
Pattern 27 165 112 85 26 0 1 0 203
PyInflect 53 17 11 8 1 3 8 1 61
TextBlob 27 165 108 84 8 0 1 0 202

A.1.5 Plural to plural

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 332 0 0 4 0 5 2 20398
Inflection 0 20337 0 0 0 0 0 0 404
Inflector 0 18771 0 0 0 0 0 0 1970
Lingua::EN::Inflexion 0 20523 0 0 0 0 0 0 218
Inflexion 0 20549 0 1 0 0 0 0 191
LemmInflect 0 19698 0 76 3 3 1 2 958
Pattern 0 313 1 0 0 0 10 2 20415
PyInflect 20364 262 0 0 0 0 0 0 115
TextBlob 0 318 0 0 0 0 10 2 20411

77

Module s vs y vs ies ss vs es vs vs s ess vs umss vs a usess vs i other
inflect 19803 0 198 157 0 47 45 25 123
Inflection 346 0 0 28 0 0 0 0 30
Inflector 647 1252 0 28 0 0 0 0 43
Lingua::EN::Inflexion 125 0 0 36 0 0 0 0 57
Inflexion 137 0 0 30 0 0 0 0 24
LemmInflect 371 33 0 78 328 0 0 0 148
Pattern 19922 0 206 26 1 47 45 25 143
PyInflect 25 0 0 60 0 0 0 0 30
TextBlob 19918 0 206 26 1 47 45 25 143

A.1.6 Uncountable to plural

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 40 0 0 0 0 0 0 8569
Inflection 0 893 0 0 0 0 0 0 7716
Inflector 0 729 0 0 0 0 0 0 7880
Lingua::EN::Inflexion 0 682 0 0 0 0 1 0 7926
Inflexion 0 676 0 0 0 0 1 0 7932
LemmInflect 0 3339 0 18 0 0 23 0 5229
Pattern 0 132 5 0 0 0 9 0 8463
PyInflect 2747 53 0 0 0 0 0 0 5809
TextBlob 0 123 0 0 0 0 9 0 8477

78

Module s vs es vs ies vs y es vs is a vs um ves vs f des vs s ies vs ey other
inflect 5932 1713 844 34 0 8 0 9 29
Inflection 5198 1526 907 32 30 8 0 0 15
Inflector 5337 1520 907 33 30 8 0 0 45
Lingua::EN::Inflexion 5294 1652 902 32 1 8 0 1 36
Inflexion 5346 1611 902 32 1 8 0 1 31
LemmInflect 3489 823 598 30 2 0 25 0 262
Pattern 5963 1575 842 34 0 8 0 16 25
PyInflect 3482 1473 789 30 1 2 17 0 15
TextBlob 5960 1592 842 34 0 8 0 16 25

A.2 Verbs

A.2.1 Singular to singular

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 5960 0 0 0 0 0 0 2400
Inflexion 0 8353 0 0 0 0 0 0 7
LemmInflect 0 5936 0 2 5 2 0 1 2414
Pattern 0 5906 0 2 1 0 0 5 2446
PyInflect 8341 2 0 0 0 0 0 0 17

Module s vs ies vs y es vs vs s s vs r es vs s s vs g s vs es other
Lingua::EN::Inflexion 2372 20 6 0 0 0 0 0 2
Inflexion 4 0 1 0 0 0 0 0 2
LemmInflect 2346 20 7 1 9 2 8 0 21
Pattern 2374 20 2 9 0 6 0 7 28
PyInflect 2 0 13 0 0 0 0 0 2

79

A.2.2 Plural to singular

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 5908 0 0 0 0 2397 1 49
Inflexion 0 8330 0 0 0 0 5 1 19
LemmInflect 0 5885 0 1 5 5 2394 2 63
Pattern 0 5863 0 2 1 0 2391 6 92
PyInflect 2553 5769 0 0 0 0 0 0 33

Module vs s es vs s s vs es es vs ses vs es s vs ds s vs inds vs ounds other
Lingua::EN::Inflexion 27 3 6 0 6 0 0 0 7
Inflexion 2 1 4 4 5 0 0 0 3
LemmInflect 21 2 1 4 2 4 4 4 21
Pattern 35 6 8 2 4 7 2 4 24
PyInflect 7 16 1 4 0 0 2 0 3

A.2.3 Past to singular

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 53 0 0 0 1 2445 3 5975
Inflexion 0 157 0 0 0 1 6 3 8310
LemmInflect 0 5884 0 0 4 4 2444 2 139
Pattern 0 5802 0 1 20 1 2439 8 206
PyInflect 8384 53 0 0 0 1 0 0 39

80

Module ds vs s eds vs s peds vs s leds vs s teds vs s geds vs s s vs es beds vs s other
Lingua::EN::Inflexion 2832 2290 96 91 77 58 4 36 491
Inflexion 3520 3212 157 105 104 79 10 52 1071
LemmInflect 5 0 0 0 0 0 17 0 117
Pattern 1 0 1 0 0 0 35 0 169
PyInflect 2 0 0 0 0 0 1 0 36

A.2.4 Past participle to singular

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 57 0 0 0 1 2474 2 5980
Inflexion 0 225 0 0 0 1 6 2 8280
LemmInflect 0 5895 0 0 4 4 2473 1 137
Pattern 0 5830 0 1 20 1 2467 7 188
PyInflect 8432 58 0 0 0 1 0 0 23

Module ds vs s eds vs s peds vs s ns vs s leds vs s teds vs s geds vs s s vs es other
Lingua::EN::Inflexion 2832 2290 96 25 91 77 58 4 507
Inflexion 3520 3212 157 140 105 104 79 5 958
LemmInflect 5 0 0 12 0 0 0 18 102
Pattern 1 0 1 2 0 0 0 35 149
PyInflect 2 0 0 0 0 0 0 1 20

81

A.2.5 Present participle to singular

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 0 0 0 0 0 2396 0 5950
Inflexion 0 0 0 0 0 0 6 0 8340
LemmInflect 0 5866 0 1 5 2 2395 1 76
Pattern 0 5794 0 2 6 0 2390 5 149
PyInflect 8344 0 0 0 0 0 0 0 2

Module ings vs s ings vs es yings vs ies tings vs s pings vs s lings vs s gings vs s nings vs s other
Lingua::EN::Inflexion 2399 2638 197 86 96 91 58 42 343
Inflexion 3743 3456 263 243 157 105 86 86 201
LemmInflect 0 0 0 0 0 0 0 0 76
Pattern 0 0 0 0 0 0 0 0 149
PyInflect 0 2 0 0 0 0 0 0 0

A.2.6 Singular to plural

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 6002 0 0 0 0 1 1 2356
Lingua::EN::Inflexion 0 5908 0 0 0 0 20 1 2431
Inflexion 0 8311 0 0 0 0 0 1 48
LemmInflect 0 5917 0 1 2 0 50 1 2389
NLTK 2604 5753 0 0 1 0 0 0 2
Pattern 0 5890 0 2 2 0 26 0 2440
PyInflect 8341 5 0 0 0 0 0 0 14
TextBlob 0 5701 0 0 1 0 1 1 2656

82

Module s vs es vs ies vs y vs e e vs s vs ve y vs ie l vs other
inflect 2098 184 43 5 10 0 11 0 5
Lingua::EN::Inflexion 2152 195 45 3 12 9 9 0 6
Inflexion 10 0 1 3 19 0 8 0 7
LemmInflect 2124 193 44 4 2 9 3 3 7
NLTK 1 0 0 0 0 0 0 0 1
Pattern 2146 196 45 3 4 9 2 7 28
PyInflect 14 0 0 0 0 0 0 0 0
TextBlob 2325 206 52 57 0 9 2 0 5

A.2.7 Plural to plural

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 8379 0 0 0 0 0 0 1
Lingua::EN::Inflexion 0 8349 0 0 0 0 0 0 31
Inflexion 0 8373 0 0 0 0 0 0 7
LemmInflect 0 8282 0 2 2 3 0 0 91
NLTK 2605 5774 0 0 1 0 0 0 0
Pattern 0 8333 0 3 1 0 0 0 43
PyInflect 2556 5824 0 0 0 0 0 0 0
TextBlob 0 8372 0 0 1 0 0 0 7

83

Module vs s vs nd vs d ind vs ound vs ind vs ong vs g l vs other
inflect 1 0 0 0 0 0 0 0 0
Lingua::EN::Inflexion 31 0 0 0 0 0 0 0 0
Inflexion 7 0 0 0 0 0 0 0 0
LemmInflect 22 17 5 4 6 6 5 3 23
NLTK 0 0 0 0 0 0 0 0 0
Pattern 29 0 6 3 0 0 0 0 5
PyInflect 0 0 0 0 0 0 0 0 0
TextBlob 2 0 1 4 0 0 0 0 0

A.2.8 Past to plural

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 157 0 0 0 1 1 4 8314
Lingua::EN::Inflexion 0 155 0 0 0 1 20 4 8297
Inflexion 0 157 0 0 0 1 1 4 8314
LemmInflect 0 5989 0 0 2 2 44 2 2438
NLTK 2696 5744 0 0 1 1 0 0 35
Pattern 0 5921 0 1 22 1 24 3 2505
PyInflect 8384 51 0 0 0 1 0 0 41
TextBlob 0 5805 0 0 1 1 1 3 2666

84

Module ed vs d vs ied vs y ped vs ted vs led vs ame vs ome ged vs other
inflect 3705 2782 231 157 104 105 48 79 1103
Lingua::EN::Inflexion 3696 2776 231 157 104 105 47 79 1102
Inflexion 3705 2782 231 157 104 105 48 79 1103
LemmInflect 1029 459 42 57 25 14 42 20 750
NLTK 0 2 0 0 0 0 0 0 33
Pattern 1032 460 43 59 25 14 43 20 809
PyInflect 1 3 0 0 0 0 0 0 37
TextBlob 1123 515 56 68 34 21 45 27 777

A.2.9 Past participle to plural

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 225 0 0 0 1 1 3 8284
Lingua::EN::Inflexion 0 222 0 0 0 1 19 3 8269
Inflexion 0 225 0 0 0 1 1 3 8284
LemmInflect 0 6057 0 0 2 2 42 1 2410
NLTK 2717 5767 0 0 1 1 0 0 28
Pattern 0 6010 0 1 22 1 22 2 2456
PyInflect 8432 55 0 0 0 1 0 0 26
TextBlob 0 5892 0 0 1 1 1 2 2617

85

Module ed vs d vs ied vs y n vs ped vs ted vs led vs ne vs other
inflect 3705 2782 231 140 157 104 105 52 1008
Lingua::EN::Inflexion 3696 2776 231 140 157 104 105 52 1008
Inflexion 3705 2782 231 140 157 104 105 52 1008
LemmInflect 1029 459 42 105 57 25 14 42 637
NLTK 0 2 0 0 0 0 0 0 26
Pattern 1032 460 43 96 59 25 14 43 684
PyInflect 1 3 0 0 0 0 0 0 22
TextBlob 1123 515 56 96 68 34 21 43 661

A.2.10 Present participle to plural

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 0 0 0 0 0 1 1 8344
Lingua::EN::Inflexion 0 0 0 0 0 0 21 1 8324
Inflexion 0 0 0 0 0 0 1 1 8344
LemmInflect 0 5869 0 1 2 0 87 1 2386
NLTK 2618 5712 0 0 1 0 0 0 15
Pattern 0 5809 0 2 7 0 27 0 2501
PyInflect 8344 0 0 0 0 0 0 0 2
TextBlob 0 5663 0 0 1 0 1 1 2680

86

Module ing vs ing vs e ting vs ping vs ning vs ling vs ging vs bing vs other
inflect 4529 2910 243 157 87 105 86 52 175
Lingua::EN::Inflexion 4520 2901 241 157 87 105 86 52 175
Inflexion 4529 2910 243 157 87 105 86 52 175
LemmInflect 1434 560 136 56 39 14 25 15 107
NLTK 0 0 0 0 0 0 0 0 15
Pattern 1469 574 137 58 40 14 26 16 167
PyInflect 1 1 0 0 0 0 0 0 0
TextBlob 1576 637 152 68 46 21 33 19 128

A.2.11 Singular to past

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 5605 0 0 0 1 2416 1 333
Inflexion 0 8199 0 0 0 1 6 1 149
LemmInflect 0 5799 0 1 3 3 2416 2 132
Pattern 0 5799 0 1 6 1 2416 1 132
PyInflect 8338 2 0 0 0 0 0 0 16

Module ed vs led vs ed ed vs d ed vs ted ed vs ped ted vs ed ed vs red ed vs other
Lingua::EN::Inflexion 8 33 4 2 3 64 10 4 205
Inflexion 0 43 11 8 11 13 13 2 48
LemmInflect 49 0 3 11 8 1 2 4 54
Pattern 9 1 13 2 2 4 0 7 94
PyInflect 0 0 0 0 0 0 0 1 15

87

A.2.12 Plural to past

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 5586 0 0 0 1 2313 2 449
Inflexion 0 8186 0 0 0 1 5 2 157
LemmInflect 0 5779 0 1 3 6 2310 3 249
Pattern 0 5792 0 1 4 1 2313 2 238
PyInflect 2551 5698 0 0 0 0 0 1 101

Module ed vs ed vs led vs ed ed vs d ed vs ted ed vs ped ned vs ted vs ed other
Lingua::EN::Inflexion 65 8 33 8 2 3 14 64 252
Inflexion 2 0 43 13 8 11 0 13 67
LemmInflect 82 49 7 6 11 8 4 1 81
Pattern 59 9 7 15 2 2 17 5 122
PyInflect 1 60 9 0 5 5 0 1 20

A.2.13 Past to past

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 5920 0 0 0 0 49 0 2506
Inflexion 0 8380 0 0 0 0 0 0 95
LemmInflect 0 5869 0 1 2 3 50 2 2548
Pattern 0 5868 0 1 7 0 49 1 2549
PyInflect 8382 52 0 0 0 0 0 1 40

88

Module ed vs ned vs ped vs red vs d vs ted vs med vs ed vs led other
Lingua::EN::Inflexion 1526 367 318 95 34 62 32 0 72
Inflexion 23 3 0 0 13 1 0 0 55
LemmInflect 2139 51 92 37 29 10 19 45 126
Pattern 1263 449 318 221 31 64 32 6 165
PyInflect 18 2 0 0 6 3 0 0 11

A.2.14 Past participle to past

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 5894 0 0 0 0 390 0 2228
Inflexion 0 8327 0 0 0 0 1 0 184
LemmInflect 0 5876 0 1 2 3 391 2 2237
Pattern 0 5890 0 1 7 0 390 1 2223
PyInflect 8430 56 0 0 0 0 0 1 25

Module ed vs ned vs ped vs red vs ted vs ed vs led med vs fed vs other
Lingua::EN::Inflexion 1299 318 296 83 54 0 27 0 151
Inflexion 6 9 0 0 0 0 0 0 169
LemmInflect 1853 44 85 37 10 45 19 7 137
Pattern 1078 394 296 187 55 6 27 35 145
PyInflect 13 1 0 0 2 0 0 0 9

89

A.2.15 Present participle to past

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 180 0 0 0 1 2415 3 5745
Inflexion 0 829 0 0 0 1 6 3 7505
LemmInflect 0 5793 0 1 3 3 2414 1 129
Pattern 0 5802 0 1 7 1 2414 1 118
PyInflect 8342 0 0 0 0 0 0 0 2

Module inged vs ed yinged vs ied ed vs led inged vs d inged vs tinged vs unninged vs an other
Lingua::EN::Inflexion 5354 194 0 34 20 13 3 127
Inflexion 6832 236 0 43 37 36 28 293
LemmInflect 0 0 47 0 0 0 0 82
Pattern 0 0 6 0 0 0 0 112
PyInflect 1 0 0 0 0 0 0 1

A.2.16 Singular to past participle

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 5597 0 0 0 1 2416 1 338
Inflexion 0 8194 0 0 0 1 6 1 151
LemmInflect 0 5796 0 1 4 2 2416 1 133
Pattern 0 5802 0 1 4 1 2416 0 129
PyInflect 8336 2 0 0 0 0 0 0 15

90

Module ed vs led vs ed ed vs d ed vs ted ed vs ped ted vs ed ed vs red sed vs ed other
Lingua::EN::Inflexion 8 30 9 2 3 64 10 0 212
Inflexion 0 39 14 8 11 13 13 0 53
LemmInflect 45 1 2 11 8 1 2 3 60
Pattern 9 1 13 2 2 4 0 2 96
PyInflect 0 0 0 0 0 0 0 7 8

A.2.17 Plural to past participle

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 5584 0 0 0 1 2249 2 512
Inflexion 0 8186 0 0 0 1 5 2 154
LemmInflect 0 5779 0 1 4 5 2246 2 311
Pattern 0 5793 0 1 5 1 2249 1 298
PyInflect 2549 5707 0 0 0 0 0 1 91

Module ed vs ed vs led vs ed ed vs d ned vs ed vs ted ed vs ped ted vs ed other
Lingua::EN::Inflexion 110 8 30 8 24 2 3 64 263
Inflexion 0 0 39 13 0 8 11 13 70
LemmInflect 137 45 6 5 6 11 8 1 92
Pattern 94 9 3 15 26 2 2 5 142
PyInflect 0 57 5 0 0 5 4 1 19

91

A.2.18 Past to past participle

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 5888 0 0 0 0 356 1 2227
Inflexion 0 8244 0 0 0 0 1 1 226
LemmInflect 0 5864 0 1 3 2 357 4 2241
Pattern 0 5847 0 1 21 0 356 2 2245
PyInflect 8380 51 0 0 0 0 0 1 40

Module ed vs ned vs ped vs red vs ted vs ed vs led med vs fed vs other
Lingua::EN::Inflexion 1303 318 296 83 54 0 28 0 145
Inflexion 6 0 0 0 0 0 0 0 220
LemmInflect 1858 42 85 37 10 41 19 7 142
Pattern 1082 394 296 188 55 6 28 35 161
PyInflect 13 1 0 0 2 0 0 0 24

A.2.19 Past participle to past participle

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 5933 0 0 0 0 78 0 2501
Inflexion 0 8445 0 0 0 0 0 0 67
LemmInflect 0 5881 0 1 3 2 79 3 2543
Pattern 0 5881 0 1 21 0 78 1 2530
PyInflect 8430 58 0 0 0 0 0 1 23

92

Module ed vs ned vs ped vs red vs ted vs med vs fed vs ed vs led other
Lingua::EN::Inflexion 1519 379 318 95 60 32 0 0 98
Inflexion 16 1 0 0 0 0 0 0 50
LemmInflect 2145 51 92 37 12 19 7 41 139
Pattern 1254 455 318 221 61 32 41 6 142
PyInflect 14 1 0 0 2 0 0 0 6

A.2.20 Present participle to past participle

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

Lingua::EN::Inflexion 0 180 0 0 0 1 2415 2 5746
Inflexion 0 828 0 0 0 1 6 2 7507
LemmInflect 0 5795 0 1 4 2 2414 1 127
Pattern 0 5804 0 1 6 1 2414 0 118
PyInflect 8342 0 0 0 0 0 0 0 2

Module inged vs ed yinged vs ied ed vs led inged vs d inged vs n tinged vs inged vs ninged vs other
Lingua::EN::Inflexion 5355 194 0 34 10 13 18 3 119
Inflexion 6834 236 0 43 43 36 34 28 253
LemmInflect 0 0 43 0 0 0 0 0 84
Pattern 0 0 6 0 0 0 0 0 112
PyInflect 1 0 0 0 0 0 0 0 1

93

A.2.21 Singular to present participle

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 5568 0 0 0 0 2416 0 367
Lingua::EN::Inflexion 0 5653 0 0 0 0 2415 0 283
Inflexion 0 8248 0 0 0 0 6 0 97
LemmInflect 0 5822 0 1 3 0 2415 0 110
Pattern 0 5845 0 2 4 0 2415 0 85
PyInflect 8334 2 0 0 0 0 0 0 15

Module ing vs ling ning vs ing ting vs ing ing vs eing ring vs ing ing vs ring ing vs ting ing vs ping other
inflect 91 109 69 15 20 10 3 3 47
Lingua::EN::Inflexion 8 83 69 6 21 10 2 3 81
Inflexion 0 1 15 10 1 13 8 11 38
LemmInflect 52 1 1 7 1 2 12 8 26
Pattern 9 4 4 6 8 0 2 2 50
PyInflect 0 0 0 0 0 0 0 0 15

A.2.22 Plural to present participle

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 5567 0 0 0 0 2415 1 363
Lingua::EN::Inflexion 0 5636 0 0 0 0 2415 1 294
Inflexion 0 8240 0 0 0 0 5 1 100
LemmInflect 0 5799 0 1 3 3 2412 1 127
Pattern 0 5834 0 2 4 0 2415 0 91
PyInflect 2547 5707 0 0 0 0 0 0 92

94

Module ing vs ling ning vs ing ting vs ing ing vs eing ring vs ing ing vs ping ing vs ting ing vs ring other
inflect 91 109 69 16 21 3 3 10 41
Lingua::EN::Inflexion 8 83 69 8 21 3 2 10 90
Inflexion 0 1 15 10 1 11 8 13 41
LemmInflect 52 1 1 7 1 8 12 2 43
Pattern 9 6 5 6 8 2 2 0 53
PyInflect 65 0 1 6 1 5 3 1 10

A.2.23 Past to present participle

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 53 0 0 0 1 2464 3 5949
Lingua::EN::Inflexion 0 223 0 0 0 1 2464 3 5779
Inflexion 0 906 0 0 0 1 6 3 7554
LemmInflect 0 5855 0 1 3 2 2463 1 145
Pattern 0 5856 0 1 18 1 2463 2 129
PyInflect 8378 53 0 0 0 1 0 0 38

Module edding vs ing eding vs ing ieding vs ying ding vs ing ing vs ling ewing vs owing iding vs ying other
inflect 5376 66 196 32 0 9 15 255
Lingua::EN::Inflexion 5319 65 194 30 0 7 13 151
Inflexion 2746 4146 238 41 0 24 17 344
LemmInflect 0 0 0 5 48 2 0 90
Pattern 0 1 0 3 6 1 2 116
PyInflect 0 2 0 2 0 1 0 33

95

A.2.24 Past participle to present participle

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 57 0 0 0 1 2493 2 5957
Lingua::EN::Inflexion 0 231 0 0 0 1 2493 2 5783
Inflexion 0 986 0 0 0 1 6 2 7515
LemmInflect 0 5866 0 1 3 2 2492 0 146
Pattern 0 5885 0 1 18 1 2492 1 112
PyInflect 8428 59 0 0 0 1 0 0 22

Module edding vs ing eding vs ing ieding vs ying ning vs ing ding vs ing ing vs ling ening vs ing other
inflect 5376 66 196 33 33 0 1 252
Lingua::EN::Inflexion 5319 65 194 21 31 0 2 151
Inflexion 2746 4146 238 49 39 0 35 262
LemmInflect 0 0 0 5 6 48 6 81
Pattern 0 1 0 3 4 6 0 98
PyInflect 0 2 0 0 2 0 0 18

A.2.25 Present participle to present participle

Module empty correct whitespace case dash space collocations wrong term changed quote suffix

inflect 0 0 0 0 0 0 1 0 8343
Lingua::EN::Inflexion 0 5929 0 0 0 0 0 0 2415
Inflexion 0 8333 0 0 0 0 0 0 11
LemmInflect 0 5822 0 2 3 0 0 0 2517
Pattern 0 5850 0 2 4 0 0 0 2488
PyInflect 8342 0 0 0 0 0 0 0 2

96

Module ing vs ning vs ping vs ring vs ting vs ming vs ing vs ling ing vs e other
inflect 7359 449 318 95 57 32 0 18 15
Lingua::EN::Inflexion 1511 364 318 95 57 32 0 18 20
Inflexion 11 0 0 0 0 0 0 0 0
LemmInflect 2205 30 75 0 0 0 51 18 138
Pattern 1260 449 318 220 57 32 6 18 128
PyInflect 2 0 0 0 0 0 0 0 0

97

	Introduction
	Preliminaries
	Lingua::EN::Inflexion
	Wealth of functionality
	Adaptability, extendibility and upkeep
	Reputation
	Bugs and limitations

	Inflexion
	General changes
	Changes for verbs
	Changes for nouns

	Evaluation
	Qualitative evaluation procedure
	Quantitative evaluation procedure
	Testing data
	Verbs
	Nouns
	Preprocessing

	Testing

	Existing Python modules
	Functionality
	inflect
	Inflection
	Inflector
	LemmInflect
	NLTK
	Pattern
	PyInflect
	TextBlob

	Results
	Nouns
	Accuracy of converting nouns to singular
	Accuracy of converting nouns to plural

	Verbs
	Accuracy of converting verbs to singular
	Accuracy of converting verbs to plural
	Accuracy of converting verbs to past
	Accuracy of converting verbs to past participle
	Accuracy of converting verbs to present participle

	Discussion
	Nouns
	Judgment of converting nouns to singular
	Judgment of converting nouns to plural

	Verbs
	Judgment of converting verbs to singular
	Judgment of converting verbs to plural
	Judgment of converting verbs to past
	Judgment of converting verbs to past participle
	Judgment of converting verbs to present participle

	Our overall judgment

	Related work
	Conway (1998)
	Minnen et al. (2000), Minnen et al. (2001)
	Van den Bosch et al. (1999)
	Heemskerk (1993)
	Bloch (1947)

	Conclusions
	Future work
	Future research
	Evaluation
	Inflexion

	Qualitative evaluation results
	Nouns
	Singular to singular
	Plural to singular
	Uncountable to singular
	Singular to plural
	Plural to plural
	Uncountable to plural

	Verbs
	Singular to singular
	Plural to singular
	Past to singular
	Past participle to singular
	Present participle to singular
	Singular to plural
	Plural to plural
	Past to plural
	Past participle to plural
	Present participle to plural
	Singular to past
	Plural to past
	Past to past
	Past participle to past
	Present participle to past
	Singular to past participle
	Plural to past participle
	Past to past participle
	Past participle to past participle
	Present participle to past participle
	Singular to present participle
	Plural to present participle
	Past to present participle
	Past participle to present participle
	Present participle to present participle

