
Bachelor thesis
Computing Science

Radboud University

Linearly and arboreally stackable
quantum-dot cellular automata
and their discrete simulation

Towards a scalable 2n-bit nano-scale processing cuboid

Author:
Willem Lambooy
willem.lambooij@ru.nl

s1009854

First supervisor/assessor:
dr. Cynthia Kop
C.Kop@cs.ru.nl

Second assessor:
dr. Sjaak Smetsers
S.Smetsers@ru.nl

August 20, 2021





Abstract

The contemporary semiconductor chip technology reduces transistor sizes
at a rate that is asymptotic; a direct consequence of the increasing effect
of the uncertainty principle that plays at the quantum scale. Exactly this
effect enables the formation of quantum-dot cellular automata: a technology
from the emerging nanocomputing paradigm that operates on the Coulombic
repulsion between individual electrons.

In this thesis, we present QCA-STACK : a system written in the func-
tional programming language Haskell that enables the discrete simulation of
such automata – as opposed to continuous simulation with QCADesigner,
the most widely used tool for this purpose since its conception in 2005. We
show 2n-bit designs of ALU components; designs contrived in such a way
that a 2n-bit component can be extended in the third dimension to produce
a 2n+1-bit component, essentially by stacking the design on top of itself.
Furthermore, we present algorithms that perform such stacking operations
for both linearly and arboreally stackable designs. With the aforementioned,
we were able to discretely simulate a 64-bit RCA and a 32:1 multiplexer with
consistent results.
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Chapter 1

Introduction

All conventional electronic devices implementing digital logic circuits in use
by consumers ranging from regular smartphone users to big corporations
working on supercomputing solutions depend on the state of CMOS (Com-
plementary Metal-Oxide-Semiconductor) technology and have done so since
the late 1960s. The developments in this field predominantly revolve around
sizing down building blocks used for integrated circuits, transistors specifi-
cally. Since its conception, the technology has improved at a rate very close
to the one predicted by Gordon Moore in 1965 (Moore’s Law). Or at least,
until around a decade ago, that is.

Advancements made in the last decade show little hope for a future for
Moore’s projection and even Moore himself stated in 2005 that he expected
his ‘law’ would cease to apply by 2020-2025. [2] As components are sized
down to produce integrated systems in the order of nano-scale, physical
boundaries are being reached and complications arise by cause of the in-
creasing effect of the uncertainty principle that plays at the quantum-scale.

The era dominated by CMOS technology is coming to an end and with
this, a new technology should arise. This new technology should not only
improve over CMOS in terms of miniaturisation potential but also in terms
of energy efficiency. Besides this, the technology should allow for the imple-
mentation of digital logic circuits that are similar to the ones its predecessor
allows for, as this enables the many existing systems to be ported with
relative ease.

Field-coupled nanocomputing (FCN) is a group of promising emergent
technologies that satisfy the previously listed requirements. The technolo-
gies overcome issues relating to quantum effects that CMOS struggles with
at its physical limits by playing on these quantum interactions directly and
using them as a means of transducing a signal. FCN mimics and realises the
concept of cellular automata, in which the state of a cell at a given time de-
pends on the state of neighbouring cells at the preceding time. This has been
shown to allow for the implementation of digital logic circuits. [15, 8, 19]
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At the current time, FCN mainly exists as a theoretical concept due
to the difficulty and cost of producing physical systems using contempo-
rary technology. However, a great number of contributions have been made
towards a physical realisation of the system, including but not limited to
Molecular QCA, Atomic QCA, NanoMagnet Logic and Silicon Atomic QCA.
[8, 29] All of these technologies have their advantages and disadvantages;
NanoMagnet Logic can be produced using current-state technology and al-
lows for ‘cells’ to be produced in sizes lower than 100 nanometre – while
Silicon Atomic QCA, although more difficult to realise, enables an even fur-
ther downscale to the order of single atoms and thus supports the production
of single nanometre ‘cells’. [19] The implementations all offer significant im-
provements over CMOS technology: a reduced scale by up to three orders of
magnitude as previously discussed, and furthermore an extremely low power
consumption and theoretical clock speeds in the order of Terahertz. [26, 21]

* * *

In this thesis, we will discuss one of the earliest of FCN technologies, pro-
posed by Lent et al. in 1993: Quantum-dot Cellular Automata (QCA). [15]
This technology is used as the overarching theoretical principle for all of the
aforementioned physical FCN implementations and is therefore the focus of
this work. This is a thesis in the field of theoretical computing science; we
thus consider the system purely in a theoretical manner.

Even more so, in Chapter 3 we discuss how the physical system that
emerges from the dynamics of quantum-dot cellular automata can be re-
duced to a functional system of rules that is consistent with the original
system to an extent that is required for the purpose of simulation. Here
we take the implementation found in a simulation engine of QCADesigner
– the conventional QCA simulation solution – as our foundation, and trans-
form this continuous simulation engine into a reduced discrete simulation
engine to form QCA-STACK, a command-line QCA simulation and design
tool written in Haskell.

Our functional take on the QCA system facilitates experimentation with
the three-dimensional aspect of the QCA system. In Chapter 4, we present
scalable designs of ALU components that exploit this three-dimensionality.
Our method opens entirely new doors of scaling that could lead to the for-
mation of an extensible, ultra-dense processing cuboid consisting of stack-
able components similar to towers – making it resemble the skyscraper-filled
Downtown Manhattan. This novel way of scaling is realised through the ex-
tension of our system with functions that enable the generation of 2n-bit
designs by means of stacking operations: a 2n-bit design is procedurally
stacked on top of itself in the third dimension to produce a 2n+1-bit design.
Beside a linear stacking operation, we also present an arboreal one: this
operation expands its input using the recursive quality of a tree structure.

Preliminarily, however, we discuss the foundational dynamics of QCA.
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Chapter 2

Basic QCA dynamics

2.1 QCA Fundamentals

The scientific literature has varied ways of elaborating on this topic, differing
slightly on terminology and depth of definition for certain concepts. In this
chapter, a bespoke description of QCA dynamics is presented in which the
logical functioning of the system is the key focus. This being a computing
science thesis, physical phenomena are generally deemed extraneous to the
focal point of this work and will thus be at most mentioned, though not
expounded. The following publications were primary sources: [27, 30, 28, 3].

2.1.1 The cell

At the core of a quantum-dot cellular automaton is the QCA cell, a two-
dimensional plane with equal length sides. Inside are four quantum-dots
that are both spaced evenly apart from each other, and from the centre and
the nearest corner of the cell. Each quantum-dot is a nanoscopic molecular
structure that functions as a site that at most one electron can occupy.
When exactly two electrons are put into a single cell, two stable states exist
due to the repelling coulomb forces between the individual electrons. The
two electrons will always be most stable in opposite corners, allowing us to
distinguish the polarisations of the two stable states as P = −1 and P = +1
that can be read as binary 0 and binary 1 respectively.

P = −1 P = +1

Figure 2.1: The two stable states of a QCA cell.
Black indicates the presence of an electron in a quantum-dot.
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When two cells are close to each other, this same force will cause the
electrons to affect other nearby electrons through electro-static interaction.
The cell walls prevent the electrons from escaping the cell, however. This
property allows for the propagation of a signal as will be shown with the
following example.

Take two directly adjacent cells, A and B. Cells can be fixed in a certain
polarisation as will be discussed in the next subsection. Let this be the case
for cell A and let its polarisation be P = −1. Since the state of this cell is
locked, it acts as a driving force in the propagation of a signal; A is therefore
called the driver cell in the current context. Cell B will follow and stabilise
in the same polarisation, since e, the electron in cell A that is closest to cell
B, repels the electrons in cell B from q, the quantum-dot in cell B that is
closest to electron e. The electrons in cell B thus conform to the polarisation
of cell A, making the polarisations of both cells identical. This property of
signal propagation allows for the creation of logical gates in QCAs.

e q

A B

Figure 2.2: Cell B takes the polarisation of cell A.
The driver cell is indicated by the thick border.

2.1.2 The clock

While it is possible for electrons to tunnel to nearby unoccupied quantum-
dots in the same cell, they need an amount of energy for this that exceeds
a certain tunneling threshold. This communal energetic property of the
electrons in a cell is called the tunnelling energy (γ). To provide the means
of locking a cell in a certain polarisation, i.e. restraining the electrons in
this cells from tunnelling to other quantum-dots within the cell, each cell has
intra-cellular barriers that govern the tunnelling threshold within the cell.
If the barrier energy is high for this cell, we say that its barriers are raised;
therewith the tunnelling threshold for the electrons within this cell is raised.
This results in these electrons not having enough energy to tunnel to other
quantum-dots, therefore fixing the polarisation of said cell, regardless of the
electrostatic effects of neighbouring cells. Inversely, when the barrier energy
is low, the barriers are lowered and the electrons are able to tunnel to other
quantum-dots within the cell to conform to the least energetic configuration.
It should be noted, however, that the polarisation of a cell is undefined when
its intra-cellular barriers are lowered. Since the electrons can move freely in
this state, no distinct polarisation can either be observed or propagated.
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CHAPTER 2. BASIC QCA DYNAMICS

Synonymous with the barrier energy and therefore inversely proportional
with the tunnelling energy is the clock signal. When the clock is high, the
barrier energy is high and vice versa. This signal is useful for ensuring input
signals are propagated correctly by applying a defined evaluation order of
the cells. By making the clock high for some cell A from time T = 1
to time T = 2 while synchronously raising the clock from low to high for a
neighbouring cell B, the latter cell will stabilise according to the polarisation
of the former. Cell A is the driver cell here and finds itself in the Hold phase,
as its polarisation is being held. Conversely, cell B is currently switching
its polarisation from an undefined to a defined state and is therefore in the
aptly named Switch phase. When this clock shift arrives at the upper bound
at time T = 2 and the polarisation of cell B is now fixed, the signal has been
propagated and the clock of cell A can be lowered.

The inherent cyclicity of the ‘clock’ concept applies to the QCA clock
just as it applies to the clock found in CMOS architecture. The QCA clock
cycles in a clipped sinusoidal manner where the clock-high and -low are the
lower and upper clipping thresholds respectively. The four successive phases
that emerge can be distinguished as follows: Hold (high clock), Release (high
to low clock), Relax (low clock) and Switch (low to high clock).

B
a
rr
ie
r
en

er
gy

Time1 2 3 4 5

Hold Release Relax Switch

(a) The four respective clock phases cell of A from the example.

B
a
rr
ie
r
en

er
gy

Time1 2 3 4 5

Switch Hold Release Relax

(b) The four respective clock phases of cell B from the example.

Figure 2.3: The clock signal for cell A and cell B in section 2.1.2.
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SECTION 2.1.2

Continuing our example as shown in Figure 2.3, cell B can now propagate
the signal further through the automaton. Take note that while we say that
every cell has its own clock – in the same way that cell A and cell B have
different clocks – these clocks are synchronised in their phase transitions
and only differ in the starting clock phases. Consequently, multiple cells can
have the same clock. At time T = 3, the clock of cell A will stay lowered for
an additional time frame while its respective driver cells are polarised with
a fresh input. This clock will then be incremented from the lower to the
higher limit at time T = 4 to produce a distinct polarisation at time T = 5.
At this time, the clock of cell A will be in the same state as it was when our
example begun at time T = 1, although the actual polarisations of the cell
at these times will be unrelated. One full clock cycle has been completed.

This example of signal propagation can be expanded to form a QCA
wire, like the one shown in Figure 2.4. A connected array of cells with the
same clock can propagate a signal just fine in many cases, yet multiple clock
phases could be favoured for stability as will be touched on later.

+1

+1

T = 0

T = 1

T = 2

T = 3

Hold Switch Relax Release

Release Hold Switch Relax

Relax Release Hold Switch

Switch Relax Release Hold

Figure 2.4: A QCA wire in four successive moments.
All consecutive instants displayed are one clock phase duration apart. The
positive polarisation, or the signal P = +1, is carried from the left side to

the right side of the wire.

An automaton continues cycling through the clock phases, applying new
input values with every full cycle to each input cell when the cell enters
the Switch phase, until it terminates when the final input has been fully
propagated and each output cell has been read out in the Hold phase.
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CHAPTER 2. BASIC QCA DYNAMICS

The astute reader might wonder why there is a need to assign entire
phases to the high to low and low to high phase transitions. Why can the
clock not be a two-state system with pseudo-instant state transitions like
in CMOS? The literature presents a physical basis for this consideration,
coupling it to the adiabatic theorem in quantum mechanics. [27] Appo-
sitely put, this theorem states that an abrupt change [in barrier energy] in
a quantum mechanical system leads to the system having insufficient time
to settle to the state of minimum energy. [1] Such non-adiabatic switching
is not preferred for clock switches in QCAs, as proper control over a state
following a clock switch is problematic.

Aside from physics, a more practical justification of the four-phased
clocking signal proceeds from the extra stability of a QCA on a design level
that it grants. Signal propagation with a QCA wire is not as straightforward
as with connected two-state systems found in CMOS; longer wires require
multiple clock phases for consistent signal transmission. Switching a cell in a
wire formed of a longer array of same-clock cells in a cell-dense environment
from an undefined to a defined polarisation can lead to a polarisation that
is inconsistent with the wire’s property of integrity, as seen in Figure 2.5.
Each switching cell is sensitive to influence from any nearby cell in the Hold
phase, so also from cells in a neighbouring wire. In a longer array of same-
clock cells, the cells that are further away from the intended driver cells are
more prone to accumulating the majority of incoming electro-static effects
from unintended driver cells. With more equal-length clock phases, there is
more space to prevent such interference when designing a QCA – albeit an
increment in clock phases comes with the downside of reduced clock speeds.

+1 −1

Wire A

Wire B
E E E

Figure 2.5: An example of a faulty wire.
Wire B does not retain the integrity of its signal (P = +1) since it is

affected by cells in the Hold phase from neighbouring wire A. The swayed
cells – the three rightmost cells displayed in wire B – are predominantly
influenced by the driver cells in wire A, rather than by those in the wire

they are a part of. These cells thus conform to the polarisation of the
former set of driver cells.
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SECTION 2.1.3

2.1.3 Logical gates

Logical gates form the fundamental basis that enable digital logic. Any
system that can implement and connect AND-, OR- and NOT-gates can in
theory be used to forge sophisticated complexes, like a processing core.

There are two logical gates that are essential to QCA designs, and enable
the creation of the three aforementioned gates. All figures in this section
consist of driver cells (cells depicted with thick borders) and non-driver cells.
The former can be regarded as cells in the Hold phase, whilst the latter as
cells in the Switch phase.

The NOT-gate

The first one, the most elemental gate in every type of logic circuit, is
the NOT-gate. This gate is very simply implemented by having the input
cell be diagonally adjacent to the output cell so that two corners touch.
In this configuration, electrons in the output cell will arrange themselves
perpendicular to how the electrons in the input cell are arranged, inverting
the polarisation of the output cell with respect to the input.

Input

Output

Figure 2.6: A NOT-gate.

The cause of this effect can be logically reasoned. If the input cell has
an electron in its quantum-dot in the corner closest to the output cell, the
cause is obvious. This example can be seen in Figure 2.6. Alternatively, if
the input cell is oppositely polarised and there is no electron occupying this
same quantum-dot, the cause is not directly apparent.

The physics of this situation can be compared to how two magnet bars
interact when they are put parallel to each other with their poles aligned and
one them is fixed in position while the other can only rotate. Technically the
magnets are stable when they are perfectly parallel to each other, though
as soon as this balance is lost only slightly, the mobile magnet will rotate
itself perpendicularly to the immobile one. This loss of balance is imminent
due to entropy, hence the configuration in which the two magnet bars are
aligned perpendicular to each other is considered the most stable state, i.e.
the least energetic configuration.
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CHAPTER 2. BASIC QCA DYNAMICS

The 3MAJ-gate

The second essential gate, the three-majority-gate or 3MAJ-gate, occurs less
frequently in conventional systems that allow for logical gates, however this
three-input gate is very powerful in QCA designs because of its simplicity
in implementation. Essentially, four cells are needed: three inputs cells and
an output cell. The three input cells are positioned directly adjacent to
the output cell, each on a different side. The output cell will conform, as
the name suggests, to the majority of the three inputs. When two of the
inputs have polarisation P = +1 and one input has polarisation P = −1, the
output, which is affected equally by each input, will stabilise in polarisation
P = +1 since the cumulative electrostatic energy that influences it to be
polarised as such is greater than that of the opposite polarisation. While
this opens up entirely new doors in the design of logical circuits compared
to what is possible with conventional CMOS logic, note that the AND-
and OR-gate can be created using this gate by fixing one of the inputs to
polarisation P = −1 and P = +1 respectively as seen in Figure 2.8.

A

B

C

O

Figure 2.7: A 3MAJ-gate with inputs A, B and C and output O.
This example shows the majority of the inputs set to polarisation P = +1,

causing the output cell to be most stable in the same polarisation.
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SECTION 2.2

A

B

−1

O

(a) The 3MAJ-AND-gate.

A

B

+1

O

(b) The 3MAJ-OR-gate.

Figure 2.8: The AND- and OR-gate as 3MAJ-gates. Both have inputs A
and B and output O. These logical gates include a fixed input cell

polarised at −1 and +1 for the AND and OR-gate respectively.
For the left (AND) gate, the output O will only change to P = +1 if both
of the inputs become positive. Therefore: A AND B → O. For the right
(OR) gate, only one of the inputs polarised at P = +1 is needed to keep

the output positive. If both inputs are set to P = −1, the majority of the
inputs will be negative and the output cell will follow. A OR B → O.

2.2 Bistable Approximation simulation

Since QCA designs are especially difficult to physically realise with the cur-
rent state of technology, their functioning and stability is generally analysed
with the use of digital simulation engines. Just like with CMOS designs,
QCAs are usually designed with specialised software. In particular, the tool
that is most commonly used for this is QCADesigner. This tool has been
around for nearly two decades; it provides building tools for the design of
QCAs and two simulation engines. The first one, the Coherence Vector sim-
ulation engine, is time-dependent and a less straightforward approach than
the other. Time-dependent in this sense means that the simulation engine
implements a function whose output is determined by time. We will focus on
the second and most frequently used of the two, the Bistable Approximation
simulation engine.

This simulation engine is time-independent and operates on the assump-
tion that each cell can assume one of two states, similar to how the stability
of a QCA cell was earlier defined as a two-state system with polarisations
P = −1 and P = +1. The engine computes the state for each cell based on
the states of neighbouring cells in a certain radius.

13



CHAPTER 2. BASIC QCA DYNAMICS

2.2.1 Kink Energy

At the core of both simulation engines found in QCADesigner is the Kink
Energy function. It acts as a scaling factor for the mutual influence be-
tween two cells which decreases with distance. The function quantifies this
energetic property for cells i and j by computing the electrostatic energies
between every quantum-dot in i with each one j. The result is summed,
first for when the cells have opposite polarisation, then the same is com-
puted for when the cells have the same polarisation. The resulting kink
energy between cell i and j (Eki,j) is produced by subtracting these two.

Formally, the function computing the electrostatic energy between quantum-
dot i and quantum-dot j is defined as below.1

Ei,j =
1

4πε0εr

qiqj
|ri − rj |

Here, ri denotes the location vector of quantum-dot i in three-dimensional
space, hence |ri − rj | corresponds to the absolute distance between i and j.

A couple of constants are found in the equation. We will quickly go
through most of them although we will not explore why they are there. In
short, they are present to make the function simulate the physical process
that is happening using real-world constants. In the next chapter, we will
discuss the redundancy of these constants when purely looking at the logical
functioning of the system.

� ε0 and εr are permittivity constants. ε0 is the permittivity in free
space and εr is the relative permittivity. These constants represent
how easily an electron can travel through free space and through the
cell wall material respectively. The latter medium requires a lot more
energy from an electron to travel through, hence εr is a high number
relative to ε0. QCADesigner’s default value for εr differs from the
other permittivity constant by 13 orders of magnitude.

� qi is the charge energy of a quantum-dot i, directly proportional to the
electron volt constant (eV = 1.602×10−19 J). It can be read as Pi×eV
where Pi = ±1 depending on whether there is an electron occupying
this quantum-dot or not. This leads to two different outcomes for qiqj :
either eV 2 when the respective cells of quantum-dots i and j have the
same polarisation, or −eV 2 if their polarisation is opposite.

1While researching this simulation engine by looking at its documentation and source
code, an inconsistency between the two was discovered: assuming the kink energy equation
in the documentation is correct, the source code erroneously divides by 4 an extra time.
It strictly follows the equation in the documentation, multiplying 1

4πε0εr
by qiqj then

dividing the result by |ri − rj |, though instead of putting ±eV 2 for qiqj , they put ± eV
2

4
.

In global consts.h in the source code, they define the constant QCHARGE SQUAR OVER FOUR

that is used for this. QCADesigner’s author was contacted on this but no response was
received as of yet.
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SECTION 2.2.3

2.2.2 Calculating the polarisation

Now, with the function that computes the kink energy, all the elements
required to compute the polarisation of a cell are present. The core of this
equation consists of the summation of the polarisations of all neighbouring
cells scaled with their respective kink energies relative to the cell for which
the polarisation is to be computed. The complete equation to calculate the
polarisation of cell i is formally defined below.2

Pi =

∑
j

1
2γj
Eki,jPj√

1 + (
∑

j
1

2γj
Eki,jPj)

2

Here:

� Pj is the polarisation of neighbouring cell j

� γj is the tunnelling energy of the electrons in cell j. This is inversely
proportional to the barrier energy, also known as the clock. In the
Hold phase, when the clock is high, the barrier energy is high and the
tunnelling energy is low, causing 1

2γj
to be high compared to when j

is in the Relax phase and the clock is low. This leads to the clock
being directly proportional to the effect the polarisation of j has on
the polarisation of i.

Again – similarly with the constants from the previous equation – the
clock, which has its lower and upper bounds as constants, is redundant as
an arithmetic scaling factor. This will be discussed in the next chapter.

2.2.3 Simulating a QCA

The above equation enables the computation of the polarisation of a single
cell in an environment of cells for a single moment. For bistable approxi-
mation simulation, this computation is repeated for every cell in the envi-
ronment to complete a single iteration. This process iterates until for each
cell in the environment, the difference between the polarisations of the cell
calculated in iteration i and iteration i− 1 is less than or equal to a user-set
convergence tolerance (ε). At this point it is said that the automaton has
converged to a stable state for this instant. This exit condition can be logi-
cally written as ∀x ∈ Env : |P ix−P i−1x | ≤ ε, where Env denotes the relevant
cell environment and P ix the computed polarisation of cell x in iteration i.

A QCA can be fully simulated by repeating this process for each consec-
utive moment starting at time 0 until a finish condition is met.

2Note that while cells in the Hold phase are always fully polarised to ±1, the same
does not go for cells that undergo a shift in barrier energy. The equation above allows
polarisations to be evaluated to a decimal number, which makes sense for the latter case:
if a cell in the Switch phase is slightly polarised to P > 0 by neighbouring cells, it will
propagate this signal further, though not as strongly as a cell in the Hold phase.
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Chapter 3

A functional QCA system:
QCA-STACK

As a proposed alternative to CMOS, QCAs are typically considered together
with the dynamics of their physical implementation. This approach to con-
ducting QCA research enables products to act as blueprints to put into use
when QCA fabrication technology reaches a certain readiness, although the
physical aspects introduce an abundance of variables to consider and thusly
hinder lateral exploration of the emergent functional system.

QCA technology is one paradigm in an expanding set of realisable Field-
Coupled Nanocomputing (FCN) technologies that are similar on a concep-
tual level. Chances are that FCN will be the next big thing in digital
information processing after CMOS. [29] Still there is no guarantee that the
generic QCA system as presented in the previous chapter (the Metal-Island
implementation: [27]) will be the victor in this; experimental results even
favour other implementations. [8] By abstractifying from the conventional
physical context of QCAs to a certain extent, we hope to contribute not
only to the theoretical field of QCA technology directly, but concurrently to
ambient or related fields of study.

* * *

In this chapter, our main focus will be the abstractification of the QCA
system from factors that bind it to the physical implementation, forming
a discretely simulating simulation engine: one clock cycle is simulated in
four time steps as there are four clock phases, opposing QCADesigner’s
continuous simulation of the adiabatic clock signal switching.

QCADesigner has no support for the procedural extensibility of QCA
designs: the ultimate subject of this thesis. Because of this, the choice was
made to create a bespoke QCA simulation and design tool: QCA-STACK.
With the theoretical QCA system being focal to this thesis, the reduction
to its logical core became a key focus in the design of our simulation engine.
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3.1 Bistable Approximation simulation adapted and
made discrete

3.1.1 Simplifying the Kink Energy function

Consider the function to compute the electrostatic energy between two
quantum-dots i and j from the previous chapter once again:

Ei,j =
1

4πε0εr

qiqj
|ri − rj |

. (3.1)

As annotated in Section 2.2.1, qiqj can be read as ±eV 2. We can write this
as pi,j · eV 2 where pi,j ∈ {−1, 1}. If pi,j = 1, it signifies that the respective
cells of i and j have the same polarisation. Accordingly, pi,j = −1 indicates
that these cells have opposite polarisation.

In any established context, i.e. a context where εr is defined, the only
terms in Equation 3.1 that vary with differing i and j are ri, rj and pi,j . We
can thus write:

∃c ∈ R : Ei,j = c · E′i,j , with (3.2)

E′i,j =
pi,j

|ri − rj |
. (3.3)

Since our objective is to create a simulation engine free from factors that
bind it to the physical implementation of QCAs, we can abstract away from
this constant c for our functional system and focus on defining E′i,j . This
diminishes the problem to two sub-problems for any i and j: calculating the
absolute distance between i and j, and determining the value of pi,j .

Calculating |ri − rj |

The position of a quantum-dot in a cell can be derived by taking the offset
from the centre of its encapsulating cell. For cell i with location vector
Vi = (xi, yi, zi), we can encode the positions of its quantum-dots in a 2× 2
matrix over vectors in the following way, distributing them evenly in the
enclosed space:

Qi =



xi − L
4

yi + L
4

zi


xi + L

4

yi + L
4

zi


xi − L

4

yi − L
4

zi


xi + L

4

yi − L
4

zi




=

[
qi,11 qi,21

qi,12 qi,22

]
. (3.4)

Remember that cells are equilaterals; L denotes the length of a side.1

1QCADesigner sets this value to 1 nanometre by default, though 18 nanometers is most
commonly used. [25, 5, 13, 17]
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Computing |ri−rj | is now a trivial task; the Euclidean distance between
the two location vectors of the respective quantum-dots i and j is taken.
More concretely: let i be the quantum-dot in the upper left corner of some
cell a and let j be the quantum-dot in the lower right corner of some cell
b. We can calculate the distance |ri − rj | by taking the Euclidean distance
between the vectors qa,11 and qb,22 as follows:

|ri − rj | = d(qa,11, qb,22) =

√√√√ 3∑
k=1

(qa,11,k − qb,22,k)2. (3.5)

Defining function p and computing the kink energy

In the context of computing the kink energy between two cells, determining
the value of pi,j for any i and j is a more convoluted task than computing the
absolute distance between two quantum-dots. Since the actual polarisations
of the cells are left unregarded, it is impossible to determine pi,j directly.

Like mentioned in Section 2.2.1, the kink energy between two cells is
computed by subtracting the energy between them given the cells have the
same polarisation from the energy between the cells when their polarisation
is opposite. Using the definition of E′i,j from Equation 3.3 to determine the
energy between two quantum-dots, we can formally put this as:

Eki,j = Ek,diffi,j − Ek,samei,j , with (3.6)

Ek,diffi,j =
∑

kl∈{11,21,12,22}

∑
mn∈{11,21,12,22}

pdiffkl,mn

|qi,kl − qi,mn|
, and (3.7)

Ek,samei,j =
∑

kl∈{11,21,12,22}

∑
mn∈{11,21,12,22}

psamekl,mn

|qi,kl − qi,mn|
. (3.8)

Here, kl and mn represent the quantum-dots in cells i and j respectively by
assuming the values of indices of a 2× 2 matrix.

To complete this definition, we need the functions pdiff and psame. For
the convenience of the implementation in Haskell, the approach of con-
structing these functions as nested 2 × 2 matrices of 2 × 2 matrices was
favoured. These matrices, in the form of Akl,mn, consist of pi,j values where
Akl,mn = −1 if the quantum-dots at qi,kl and qj,mn share one electron be-
tween them and Akl,mn = 1 otherwise. Using > as the infix operator for this
function, we can write this as:

Akl,mn = qi,kl > qj,mn. (3.9)

18



SECTION 3.1.1

The following matrix emerges when, for each quantum-dot of cell i, > is
applied to that quantum-dot with each one of cell j.

[
qi,11 > qj,11 qi,11 > qj,12

qi,11 > qj,21 qi,11 > qj,22

] [
qi,12 > qj,11 qi,12 > qj,12

qi,12 > qj,21 qi,12 > qj,22

]
[
qi,21 > qj,11 qi,21 > qj,12

qi,21 > qj,21 qi,21 > qj,22

] [
qi,22 > qj,11 qi,22 > qj,12

qi,22 > qj,21 qi,22 > qj,22

]
. (3.10)

The matrices pdiff and psame for two cells respectively having opposite and
same polarisation can be derived from the above matrix:

pdiff =


[
−1 1

−1 1

] [
1 −1

1 −1

]
[
−1 1

−1 1

] [
1 −1

1 −1

]
, and (3.11)

psame =


[

1 −1

1 −1

] [
−1 1

−1 1

]
[

1 −1

1 −1

] [
−1 1

−1 1

]
. (3.12)

Looking at these matrices, it is directly apparent that:

∀kl mn ∈ {11, 21, 12, 22} : pdiffkl,mn = −psamekl,mn. (3.13)

This means we can rewrite Equation 3.8 and consequently Equation 3.6 to:

Ek,samei,j =
∑

kl∈{11,21,12,22}

∑
mn∈{11,21,12,22}

−pdiffkl,mn

|qi,kl − qi,mn|
(3.14)

= −Ek,diffi,j , and (3.15)

Eki,j = 2Ek,diffi,j . (3.16)

The constant (2) in the last equation can be merged with the constant c
from Equation 3.2 and can thus be disregarded since our definition of the
kink energy function abstracts away from constants. This produces:

Eki,j = Ek,diffi,j =
∑

kl∈{11,12,21,22}

∑
mn∈{11,12,21,22}

pdiffkl,mn

|qi,kl − qi,mn|
. (3.17)
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Implementing the kink energy function in Haskell

We can generate the values of pdiff with arithmetic on the column numbers:

pdiffkl,mn = (−2l + 3) · (2n− 3). (3.18)

This is used in the definition of calcKinkEnergy , the function that com-
putes the kink energy between two cells and returns it as a Double:

calcKinkEnergy :: Cell -> Cell -> Double

calcKinkEnergy c1 c2 = sum . toList . flatten .

mapPos ( \(_,n) a ->

mapPos ( \(_,q) b ->

fromIntegral ( ( -2 * l + 3 ) * ( 2 * n - 3 ) )

/ absQDotDistance a b

) $ getQDots c2

) $ getQDots c1

In this definition:

� Cell is the object that represents a cell. It is uniquely identified by its
three-dimensional location vector and has a number of additional fields
that we will expound on in Section 3.1.2. For now, it is important to
note that there exists a function getQDots that takes a cell as argument
and yields a matrix of location vectors of its quantum-dots similar to
the one from Equation 3.4.

� absQDotDistance computes the absolute distance between two quantum-
dots like described in the section on calculating |ri − rj |.

� sum . toList . flatten returns the sum of values in a nested matrix.

� mapPos maps over the values in a matrix along with their respective
row and column numbers. It is a part of Haskell’s Matrix library
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3.1.2 Computing the polarisation of a cell

Continuing the bottom-up approach of simulating a QCA, the next step is
to compute the polarisation of a cell in an environment using our definition
of the kink energy function. Preliminarily, however, we need to discuss
properties of the QCA cell and the simulation state in order to grasp every
aspect of the resulting polarisation function definition. In the following
paragraphs, formal definitions are mainly given in Haskell code.

Properties of the QCA cell

The most obvious properties of a QCA cell are its location and current
polarisation. The former is unique for each cell in an environment and can
therefore be used to identify a cell, hence also to test the equality of two
cells. In the Haskell implementation, this location is defined to have the
type Pos, which is equivalent to a 3-tuple of Double-type numbers. A value
of this type can be read as a (x, y, z) location vector.

type Pos = (Double,Double,Double)

The following code snippet shows properties of the QCA cell:

data Cell = Cell { loc :: Pos

, pol :: Double

, phase :: Time -> Phase

, label :: String

, isInput :: Bool

, isOutput :: Bool }

Here:

� loc is the location vector of the cell in three-dimensional space.

� pol is the current polarisation of the cell as a Double.

� phase is the clock function. It takes discrete time values as an integer
as argument and outputs the current clock phase the cell is in. We
will discuss the intricacies of the discrete clocking system in the next
paragraph.

� label is a textual label used to identify a cell in an output log.

� isInput and isOutput hold information on whether the cell is an input
or output cell respectively. These fields are used in several functions
as we will see later in this chapter. In short, input cells act differently
than regular cells since they are externally controlled, while output
cells are just regular cells whose polarisation is read out and appended
to the output log at the end of each time step.
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The continuous clock signal made discrete

Before we dive into our adjustments to the existing system, let us first
consider QCADesigner’s method of implementing the clock signal.

As discussed in Section 2.2.2, the tunnelling energy – or inversely propor-
tional to it, the barrier energy – scales the effect a cell has on its neighbouring
cells just as the kink energy does. Physically, this barrier energy moves with
the clock as a continuous repeating signal. QCADesigner simulates this by
dividing the total simulation in a user-set amount of samples, then running
iterations on each consecutive sample. In particular, the value of the clock
signal is taken at each sample and used to determine the polarisation of
each cell in the environment at the time of the sample. The amount of sam-
ples recommended by the documentation comes down to 2000 samples per
repetition of the clock signal.

With the creation of our system, we endeavoured to reduce the existing
system to its logical core. This process includes the transformation of the
continuous clock signal to a discrete one. As a first step, we define the
range of time units as a discrete group with the following type synonym
definition:

type Time = Integer

At each time, each cell can be in one of the clock phases that we know:
Hold, Release, Relax or Switch. We define it in Haskell thus:

data Phase = Hold | Release | Relax | Switch

The phase function of the Cell type is now fully defined: each cell has its
current phase as a function of discrete time units as a property. Since each
phase has its own characteristics, we form a set of rules instead of employing
the clock signal as a scaling factor. Take the following rule for example: if
some cell c is in the Hold phase at time T = t, we want its polarisation to
be the sign of its current polarisation, otherwise we do not alter cell c. We
can implement this rule as a function that transforms a Cell:

setHoldPolarisation :: Time -> Cell -> Cell

setHoldPolarisation t c = if phase c t /= Hold then c

else c { pol = signum $ pol c }

A small note on Haskell record syntax: a type can be defined with
records, like the definition of Cell on the previous page. Each record is
simply a function that takes its parent type – in this case a Cell – as its
first argument and returns a value or function of the defined type. Records
can also be overwritten as seen in the code snippet above.

In Section 3.1.3, we will discuss how this adaptation to the system plays
out in practise and what adjustments are needed in the complete simulation
engine in order to stay true to the functioning of the existing one.

22



SECTION 3.1.2

The simulation state

When simulating a QCA, there are a number of variables that the engine
needs to keep track of. To achieve this, we will use Haskell’s State monad
and construct the simulation state object SimState that keeps track of our
variables.

Most trivially, the engine needs to keep track of the cells in the current
environment. We can name this variable the cellEnv and define it to be a
list of Cell-types with the type [Cell]. Another important variable that
the engine needs to keep track of is the time. It is, for instance, used in
the phase function seen in the previous two paragraphs to determine the
current phase a cell is in. We can simply define this as the field time with
the type Time.

We can compile the aforementioned state variables, plus a few additional
ones that we will need later, into records of the SimState type:2

data SimState = SS { cellEnv :: [Cell]

, time :: Time

, stability :: Stability

, inputs :: [Input]

, inputBuf :: Input

, outputs :: Output }

Aside from the previously defined fields, the following are (partially) defined:

� stability keeps track of stability of a simulation state. We will go
further into the use of this field in Section 3.2.1. The type Stability

is a type alias of the type Bool:

type Stability = Bool

� inputs and inputBuf are used to give inputs to the QCA. They will
be further discussed in Section 3.2.3.

� outputs logs the outputs of the QCA. We will use and discuss this in
Section 3.2.2.

Functions returning a State SimState-type can apply operations on
the State’s current SimState object, such as getting to retrieve the current
state of the cell environment, or setting to change the value of the stability
flag, for instance. Such functions are consecutively applied to form a chain
of operations.

2Two records have been left out from this definition since they are not directly rel-
evant to the plain simulation of a QCA. The two records are kinkCache which caches
the kink energy between each pair of cells in the environment for optimisation purposes,
and finishLog, which keeps track of variables used to determine whether the QCA has
finished. We briefly touch on the latter in Section 3.3.1.
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Implementing the polarisation function in Haskell

Now that we defined the QCA cell and the simulation state and their re-
spective properties, we can continue the engine definition by defining the
polarisation function.

Recall the equation to compute the polarisation of a cell from Section
2.2.2:

Pi =

∑
j

1
2γj
Eki,jPj√

1 + (
∑

j
1

2γj
Eki,jPj)

2
. (3.19)

The term 1
2γj

scales the polarisations of neighbouring cells with the tun-

nelling energy of the respective cells. Our simulation engine applies the
clock signal in a different way as discussed in this section, hence this term
can be omitted in the equation that we will use to implement the function
that computes the polarisation of a cell. We define this equation as follows:

P ′i =

∑
j E

k
i,jP

′
j√

1 + (
∑

j E
k
i,jP

′
j)

2
. (3.20)

The function will take a cell as argument – the cell to compute the
new polarisation of – and returns a Double. Since this result depends on
the state of the simulation, we need to encapsulate this return type in the
State monad and put our simulation state object SimState into effect. We
thus define the function that computes the new polarisation of a cell:

newPol :: Cell -> State SimState Double

newPol c = ( \x -> x / sqrt ( 1 + x ** 2 ) ) . sum . (

( zipWith (*) . map pol ) <*> map ( calcKinkEnergy c )

) <$> getNeighbours c

All functions in this definition are either native to Haskell or have been
defined previously, apart from the function getNeighbours. This function,
typed Cell -> State SimState [Cell], takes a cell as argument and re-
turns all ‘neighbouring’ cells in the current cell environment. In particular,
it filters out each cell from the current cell environment for which the abso-
lute distance from the centre of that cell to the centre of the cell given as
argument to the function is more than a user-set effect radius. The filtered
cell environment is returned as output.

Naturally, the rationale for not considering the entire cell environment
instead, each time the polarisation of a cell is calculated, is purely compu-
tational efficiency. The kink energy between two cells decays rapidly with
increased distance between them, hence cells that are spaced further apart
have a negligible amount of influence on each other as the kink energy be-
tween those cells approaches zero. Their interaction can thus be disregarded
in a simulation.
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3.1.3 Complications involved in the discrete simulation

The discrete simulation of QCAs offers a great advantage in terms of com-
putational complexity. Iterations need not be run for each sample – around
500 times per clock phase – but instead for each clock phase. While this
approach produces a logical system that accurately simulates QCAs in the
same way QCADesigner does for most inputs, there is specifically one edge
case where the QCA utilises qualities of the adiabatic clock switching pro-
cess. We will discuss this anomaly by exemplifying the 3XOR-gate.

Additionally, as the continual sampling of QCADesigner’s simulation
engine makes multiple time steps for each time step of the discrete method
of simulation, the former inherently matches the functioning of the physical
implementation more accurately. To compensate for this shortcoming, QCA-
STACK introduces a defined evaluation order to match the physical process
that transpires. This will be discussed in the last paragraph of this section.

The 3XOR-gate

The 3-input XOR-gate – also referred to as the TIEO- (three input exclusive
or) or 3XOR-gate; we use the latter here – as the name suggests, takes three
inputs A, B and C, and outputs A ⊕ B ⊕ C. The gate was first presented
in [3] and proves to be a useful asset for QCA full adder miniaturisation as
it functionally consists of merely twelve cells. This will be further discussed
in Chapter 4. An exemplary state of the gate is shown in Figure 3.1 below.

A B

C

O

Figure 3.1: The 3XOR-gate with inputs A, B and C, and output O. The
green cells are in the Hold phase and are therefore marked as driver cells.
Also recall that differently coloured cells indicate different clock phases:

orange follows green, green follows purple: the Release phase.
The example displays the following polarisations: A = C = +1,
B = O = −1. When converting the polarisations to logic 0 and 1,

A⊕B ⊕ C = O.
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While the example from Figure 3.1 does not illustrate the previously
mentioned edge case, the logic behind the gate’s behaviour for this input
might not be directly obvious. Specifically, it is important to grasp how the
cells in the second clock phase of the gate are polarised.

The cells directly adjacent to an input cell – a cell in the first clock
phase of the gate – naturally assume the polarisation of their direct neigh-
bour. The cells directly adjacent to inputs A and C both negatively polarise
the cell diagonally between them, hence this cell is polarised to P = −1. The
cell diagonally between the cells directly adjacent to inputs B and C, how-
ever, receives an equal amount of oppositely charged electro-static energy
from its diagonal neighbours. Resultantly, the two energies cancel out and
the smaller amount of negatively charged energy from its left non-adjacent
neighbour thusly acts as the deciding factor.

A problematic case for the discrete simulation engine

This edge case arises when, contrary to the state shown in Figure 3.1, not
one but both of the cells diagonally adjacent to cells directly adjacent to an
input cell receive equal amounts of oppositely charged electro-static energy
from both sides. This is the case for A = 1, B = 1, C = 0 and A = 0,
B = 0, C = 1. The former case is shown in Figure 3.2 below.

V W

A B

C

O

Figure 3.2: A 3XOR-gate again with inputs A, B and C, and output O.
Inputs A and B are polarised to P = +1 whereas C is polarised to P = −1.

Cells V and W cannot assume a clear polarisation in this state.

The above figure presents a difficult case for the discrete simulation en-
gine as not all cells in the Switch phase (the cells depicted in orange) can
assume a clear polarisation. In particular, the cells labelled V and W receive
equal amounts of oppositely charged electro-static energy from either side
of one diagonal. As discussed for the previous example state of this gate,
the energies cancel out and a weaker interactant acts as the deciding force.
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A naive discrete simulation engine would polarise V and W to the polar-
isation of inputs A and B, P = +1 in this case. Although the polarisations
of inputs A and C cancel out for cell V , the faraway input B and its left
neighbour will cause the cell to be polarised positively ever so slightly. Cell
W is similarly polarised to P = +1 with the same reasoning.

This result is not consistent with the functioning of a 3XOR-gate, how-
ever. The ‘sub-’QCA consistent of solely the orange and blue cells in Figure
3.2 is functionally equivalent to the 5-majority-gate (5MAJ-gate) presented
in [18], meaning output O will polarise to the majority of the orange cells
in the figure. Hence for the presented case, the positively polarised cells V
and W cause output O to be polarised to P = +1 in the next phase. With
two of the three inputs polarised to P = +1, a 3XOR-gate should output
the polarisation P = −1. Continuous simulation of the QCA demonstrates
that this gate functions appropriately anyway.

Continuous simulation using QCADesigner

There is a slight difference in the way QCADesigner implements the clock
signal. Instead of the engine running one clock with each cell following this
clock starting from their defined starting phase, QCADesigner produces four
clock signals that run one phase apart. Each cell implements one of these
four signals as the variable tunnelling energy of the electrons in the cell.
A high clock in QCADesigner’s output hence means high tunnelling energy
and a therefore undefined polarisation, characteristic of the Relax phase. A
low clock produces a defined polarisation, a quality of the Hold phase.

The 3XOR-gate was implemented in QCADesigner and its Bistable Ap-
proximation simulation engine was run with default settings on the input as
depicted in Figure 3.2: A = B = +1, C = −1. Results gained from running
the simulation engine are displayed in Figure 3.3. Three additional cells
have been labelled: U is the cell between V and W , S and T represent the
cells directly above – as seen in Figure 3.2 – cells V and W respectively.

The displayed simulation output shows only a fraction of the full output;
other parts are not as relevant to understand how the polarisations of V and
W are decided. Specifically, the Switch phase transition of the clock 2 – the
clock implemented by the cells in the Relax phase in Figure 3.2 – is shown.
At this point, clock 1 is constant low, meaning that V and W already went
through the Switch phase and are now in the Hold phase. It can be seen,
however, that their polarisation is not clearly defined and rests around the
zero point, waiting for a deciding factor. The two cells are very slightly
negatively polarised due to the negative effect cell U has on them. Cell U ,
even though the electrons in this cell have a high tunnelling energy, affects
its left and right neighbours ever so slightly with the negative polarisation
it receives from the cell below it, as well as the cells directly adjacent to the
respective inputs cells B and C.
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Figure 3.3: Output from QCADesigner’s Bistable Approximation
simulation engine, displaying the Switch phase transition of the cells

previously in the Relax phase in the state depicted in Figure 3.2.
The value of clock 2 and the polarisations of cells V , W , U , S, T and O
are graphed over time. The numbers on the horizontal axes represent the
sample numbers. The polarisation of a cell in the Relax phase is close to

the middle green dashed line, as its polarisation not well defined.

The process of the 3XOR-gate for this case is hinges on a nominal de-
terministic race condition. Cells V and W , being in the Hold phase, will
polarise quickly when given a predominant push in either direction, hence
their polarisation depends which deciding push is given first. In Figure 3.3,
it can be seen that cell U is the first to be affected by the decreasing clock
signal, around sample number 9425.

The symmetry in the design allows us to reduce the comparison in energy
received from neighbouring cells in the Hold phase for cell U and cells S
and T . For instance, the symmetry makes the energy for cell S and cell T
equivalent, hence we need only consider one of the two. Let the cells directly
adjacent to inputs A and B be A1 and B1 respectively. The energies for cell
U and cell S can be compared by calculating the following difference:3

(−1 · EkU,A1
)− (+1 · EkS,B1

) ≈ 0.0025. (3.21)

While the difference is not significant, it seems to be enough for cell
U to win the race condition. Cells V and W quickly assume the negative
polarisation, therewith further polarising cell U . Cell S balances around the
zero point due to the energies accumulated from cells A1, V and U until
finally switching when cell O starts polarising negatively.

3The calcKinkEnergy function from Section 3.1.1 was used to compute this.
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Solving the edge case for the discrete method

The race condition that decides how certain cases involving one or more cells
with an undefined polarisation in the Hold phase resolve, remains difficult
to translate directly to a discrete system. Although this problem is certainly
not impossible to solve, its complexity increases with increasingly compli-
cated edge cases as a result of the energetic interactions that take place on
the three-dimensional plane, continually changing over minute time frames.

A solution for a simulation system that could perhaps be proven to be
equivalent to the existing continuous simulation system, is an engine that
acts as a hybrid discrete-continuous one. It would act as a discrete simula-
tion system, but instead of solving an edge case much like the one discussed
by analysing the convoluted network of energies at one state, it would sim-
ulate this phase transition continually instead. While there could be more
certainty on the accuracy of a semi-discrete simulation engine, simplicity
was favoured for the design of the fully discrete simulation engine presented
in this thesis.

Motivated by the perceived rarity of this edge case, being – so far – only
encountered in the context of the 3XOR- and the 5MAJ-gate, a discrete
solution that works especially well in the encountered contexts was opted for.
The method emanated from an alternate deduction of how the polarisation
of cells V and W is decided for the case discussed in the preceding two
paragraphs.

Consider how cells V and W polarise when these cells are left out of the
equation when computing the polarisations of the cells in the succeeding
phase, and we instead compute the polarisations of cells V and W when
those polarisations are decided. We can model this scenario by modifying
the clock phases of these cells to be two phases later, as shown in Figure 3.4
below. The subsequent phase in shown in Figure 3.5.

V W

Figure 3.4: The 3XOR-gate, modified to illustrate our scenario.
As cells V and W have moved from the Hold phase to the Relax phase, we

say that their respective clocks have been incremented by two.
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V W

Figure 3.5: The modified 3XOR-gate displaying the state following the
state shown in Figure 3.4 by one phase transition.

Cells V and W assume the polarisation of the majority of their directly
adjacent neighbours in the Hold phase. Both thusly polarise to P = −1.

The above figure shows that cells V and W acquire the polarisation
P = −1. This is the correct polarisation for the edge case we discussed,
hence we could use the method that obtained these results on dubious cells
in general. Naturally, this approach also produces a correct result for the
other edge case in which the input polarisations are inverted, as this causes
each polarisation to be inverted.

For the last step of our method, we roll the simulation back to the state
where the edge case arose and plug in the acquired polarisations for the
problematic cells. For the case that was extensively discussed, this results
in the state shown in Figure 3.6 below.

V W

A B

C

O

Figure 3.6: The 3XOR-gate, now with the correct polarisations plugged in
for cells V and W . This leads to output O correctly polarising to P = −1.

In logical terms: A = B = 1, C = 0, A⊕B ⊕ C = 0 = O.
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As discussed previously, we make no claims on the accuracy of this
method for the general case of dubious cells and no further research was done
on this due to time constraints. Evaluating the accuracy of our method or
finding an alternative provably correct method is left as a interesting topic
of research for future works.

The importance of evaluation order with discrete simulation

During the development of the discrete simulation engine, one other issue
was observed; the simulation of certain designs produced unexpected results
that were inconsistent with the existing simulation solution. This occurred
due to the näıve approach to cell evaluation order that was implemented.

When simulating cells in an environment – as will be discussed in detail
in Section 3.2.1 – the cells are evaluated in a certain order. As polarisa-
tions of cells are sequentially computed, cells that are evaluated later in
the sequence consider the newly computed polarisations of cells that were
evaluated earlier in the sequence. When simulating discretely, certain en-
vironments can develop differently depending on the order of evaluation as
will be shown with the upcoming example.

QCADesigner’s simulation engine randomises the evaluation order by
default, though the evaluation order matters much less for this method of
simulation. Simulating by continually sampling a continuous signal matches
the reality of the adiabatic switching process much closer, hence the small-
step approach, by definition of the adiabatic theorem (discussed in section
2.1.2), produces states of global minimum energy with better accuracy. For
the discrete simulation engine, a different method is required to match the
states that eventuate from the physical processes that occur during a phase
transition. We present our method in the next paragraph.

A

B

C

O

Figure 3.7: An atypical 3MAJ-gate with inputs A, B and C and output O.
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Consider the 3MAJ-gate shown in Figure 3.7. This shape, in its essence,
occurs in [23] and will be used in Chapter 4 of this thesis. The important
difference with the 3MAJ-gate discussed in Section 2.1.3 is that the cell on
position (x, y) = (xB, yA) does not differ in clock phase with its left and
vertical adjacent neighbours. Nevertheless this gate functions like a 3MAJ-
gate should, at least when simulated correctly.

We can use QCA-STACK’s visual output function that will be discussed
in Section 3.3.2 to display the gate more compactly. Figure 3.8 below depicts
the gate for some input, together with the correct subsequent state.

(a) QCA-STACK’s render of
Figure 3.7.

(b) The correctly simulated
subsequent state.

Figure 3.8: The 3MAJ-gate from Figure 3.7 in two consecutive states,
rendered and simulated using QCA-STACK with its visual output function.
Characters + and - represent polarised cells in the Switch phase. Cells in
the Hold phase are represented either by their bold-faced versions, or by

bold and underlined characters in the case of input or output cells.

We define a naming convention for cells in Figure 3.8 based on their lo-
cation on the grid: cell C is on grid position (x, y) = (2, 0) and hence named
c20; cell B is named c24. Now consider what happens when polarisations of
the cells are evaluated in the following order: first the cells adjacent to an
input cell are evaluated in any order, then sequentially cells c32, c42 and c52,
and finally cells c22 and c62 in any order. The first set of cells will clearly
polarise to their nearest input cell. The next cell in line, cell c32, receives
negated energy from its two diagonal neighbours, thus polarising to P = +1
and propagating this signal further to cells c42 and c52. At the intersection,
cell c22 receives more positive energy from the horizontal axis than negative
energy from the vertical one, hence it polarises to P = +1 as well. Output
cell O assumes the polarisation of its left neighbour and thereby produces an
output that is inconsistent with the expected functioning of the 3MAJ-gate.

Two consecutive states of the simulation of the 3MAJ-gate with the
aforementioned order of evaluation are depicted in Figure 3.9.
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(a) The erroneously simulated
state.

(b) The state following the one
shown in Figure 3.9a.

Figure 3.9: The 3MAJ-gate from Figure 3.7 in two consecutive states,
simulated with QCA-STACK using a specific order of cell evaluation.
The sub-figures show how output O is incorrectly polarised to P = −1
when simulated with a näıve approach to cell evaluation order, yet the

majority of the inputs is polarised to P = −1.

Sorting on propagation order

When considering the physical processes that take place when simulating the
3MAJ-gate with the inputs from the example in the previous paragraph, it
seems only logical that cell c22 should be evaluated before cell c32. As
the cell barriers are being lowered, the cells previously in the Switch phase
gradually polarise. The cells closer to a driver cell polarise more quickly
as they receive more polarising energy. They will propagate this newly
acquired polarisation further, though only slightly since they are not fully
polarised and the barriers are not fully lowered, hence only affecting very
nearby cells. This property of polarisation propagation through adjacent
cells can be compared to the functioning of a wire, in which a signal reaches
nearer areas sooner than ones further away. Following this property when
choosing the cell evaluation order ensures cell c22 is evaluated before cell c32.

To implement this for the QCA-STACK engine, we can design a function
that sorts the cell environment on the rule of propagation, before sequen-
tially evaluating the cells in the environment. We define this rule in natural
language as follows: a cell that is closer to a driver cell should be evaluated
before a cell that is further away from one. More formally, this is:

a < b ⇐⇒ MD(a,Env, t) < MD(b, Env, t), (3.22)

where MD(a,Env, t) returns the absolute distance from a to the nearest
driver cell in Env at time T = t. This result can be obtained by filtering
Env for cells that are in the Hold phase at that time and returning the
absolute distance from a to the nearest one.
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3.2 Simulating a QCA

We continue the definition of QCA-STACK’s discrete simulation engine. In
the previous section, we defined the core function newPol, and discussed
methods to improve the simulation accuracy in the absence of multi-step
simulation of the adiabatic switching process. With these tools, we are now
able to construct the core of the discrete simulation engine.

3.2.1 Simulating one time step

We start by defining the elements needed to simulate one time step. This
begins with describing how one iteration is run on a cell environment.

Simulation rules

As briefly described in Section 2.2.3, one iteration of the simulation is com-
pleted by sequentially evaluating the polarisation of each cell in the envi-
ronment. The process repeats until, for each cell, the difference between the
respective polarisations set in the current and the previous iteration is not
more than the user-set convergence tolerance. Defining this in Haskell starts
by defining how the polarisation of a cell is determined. This, among other
things, consists of computing the new polarisation with function newPol,
defined in Section 3.1.2. As stated in that section, the discrete simulation
engine takes a rule-based approach to simulation, instead of simulating a
function with samples of a continuous clock value. We hence need to define
the rules that need to be applied to determine the polarisation of a cell.

We informally define the rules to determine the polarisation of a cell as
follows. We will later define it formally in Haskell. For any cell c:

� If c is an input cell, we do not change its polarisation.
Supplying polarisations to input cells is handled separately by the
simulation engine, this will be handled in detail in Section 3.2.3.

� If c is in the Switch phase, we compute the new polarisation.

� If c is in the Hold phase, we do not change its polarisation.
There is one exception to this. We discussed in Section 3.1.3 that cells
can have an undefined polarisation in the Hold phase. If this is the
case, we want to evaluate the polarisation of the cell anyway.

� If c is in the Release phase, we set its polarisation to zero.

� If c is in the Relax phase, we do not change its polarisation.
The polarisation of a cell in the Relax phase should always be zero.
Since regular cells are always initialised with no polarisation and since
the previous rule states that polarisations are set to zero in the pre-
ceding phase, there is no need to change anything in this phase.
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There are two additional rules that apply when computing the new po-
larisation for a cell.

� If the difference between the current polarisation and the newly com-
puted one is more than the convergence tolerance, we set the SimState’s
stability flag to False, which is set to True before the iteration is
run. By this rule, the new polarisation of each cell in the environment
must converge in order to produce a stable simulation at one time step,
i.e. keep the stability flag set to True after the polarisation of each
cell in the environment has been evaluated.

� If the polarisation of a cell in the Hold phase is evaluated, we set
this cell’s polarisation to the sign of the newly computed polarisation.
This operation is also part of function setHoldPolarisation that was
defined as an example in Section 3.1.2.

Evaluating the polarisations of cells in an environment in Haskell

Cells are sequentially evaluated using the tick function. This function im-
plements the rules described in the previous paragraph. We define it as:

tick :: Time -> Cell -> State SimState ()

tick t c

| ( phase c t == Hold && pol c /= 0 )

|| phase c t == Relax || isInput = return ()

| phase c t == Release = setPol c 0

| otherwise = newPol c >>= \p ->

when ( abs ( p - pol c ) > convergenceTolerance )

( setStability False ) >>

setPol c ( if phase c t == Hold then signum p else p )

Two functions that occur in this definition are non-native to Haskell and
have not been defined in earlier sections.

setPol :: Cell -> Double -> State SimState ()

setStability :: Stability -> State SimState ()

These setter functions update the State monad by modifying a field of
the SimState object. In the case of function setPol, the cellEnv field is
updated with a modified polarisation for one of its elements. Additionally,
we define constant convergenceTolerance as a global constant along with
a default value:

convergenceTolerance :: Double

convergenceTolerance = 1e-8
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The tick function is called in sequence for each cell in the environment
in function tickAll, defined below. One iteration has been run when this
function finishes; it then returns the current value of the stability flag.

tickAll :: State SimState Stability

tickAll = get >>= \st ->

foldr ( (>>) . tick ( time st ) ) ( gets stability )

$ cellEnv st

A brief note on Haskell’s State monad and how it is used in our context.
Function get retrieves the current state of the SimState object. In all
definitions in this thesis, such SimState-typed variables will be named st.
Function gets takes one argument, a function that takes a SimState-type as
its only argument (a SimState record for instance), applies this argument to
the current state of the SimState object, and returns the result encapsulated
in State SimState. Lastly, we will encounter function modify, which takes
a state updating function as its only argument.

Simulating multiple iterations

As discussed earlier in this section and in Section 2.2.3, a time step is simu-
lated by running multiple iterations until, for each cell in the environment,
the newly computed polarisation converges. The QCA is said to be con-
verged to a stable state, a state of minimal global energy. The lower the
convergence tolerance is set, the longer it takes for each cell in the environ-
ment to converge, and the more accurate the simulation as there is more
certainty about the minimality of the global energy in the resulting state.

Since the number of iterations that is run is a considerable scaling factor
in the computational complexity, we allow the user to limit the number of
iterations to a certain maximum. This means that the exit condition from
Section 2.2.3 should be modified to the following:

i > Max Iterations ∨ ∀x ∈ Env : |P ix − P i−1x | ≤ ε. (3.23)

We define function doIterations, which takes the maximum amount
of iterations as argument. Each time before running an iteration with the
tickAll function, the function sets the stability flag to True and sorts the
cell environment with a call to function sortOnPropagation. The former is
done so the function can verify whether the entire cell environment converged
after running the iteration, as each non-converging polarisation computation
changes this flag to False. The latter is necessary for simulation consistency
due to reasons explained in the paragraph on evaluation order in Section
3.1.3. The last paragraph of the latter section describes the sorting operation
that is being performed here.
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When the function is done iterating, it calls function getDubiousCells,
also defined below. This function filters the environment for cells in the
Switch phase that are not polarised enough to consider their polarisation
defined: so-called dubious cells or dubiants. Their case has been exten-
sively discussed in Section 3.1.3. Returning this set of cells enables us
to monadically chain the function handleDubiants directly after function
doIterations; the set is passed to it as the final argument. The function
applies the solution described in Section 3.1.3 to decide the polarisations of
dubious cells and is defined below.

doIterations :: Integer -> State SimState [Cell]

doIterations 0 = getDubiousCells

doIterations n = setStability True >> sortOnPropagation >>

tickAll >>= \case

True -> getDubiousCells

False -> doIterations $ n - 1

getDubiousCells :: State SimState [Cell]

getDubiousCells = gets $ \st ->

filter ( \c -> abs ( pol c ) < 0.05

&& phase c ( time st ) == Switch )

$ cellEnv st

handleDubiants :: Integer -> [Cell] -> State SimState ()

handleDubiants maxIters uds = unless ( null uds ) $ do

ce <- gets cellEnv

modify $ \st ->

st { cellEnv = filter ( `notElem` uds ) ce }

t <- nextPhase

_ <- doIterations maxIters ; setHoldPols $ t + 1

modify $ \st -> st { cellEnv = cellEnv st ++ uds }

foldr ( (>>) . tick t . ( \c -> c { pol = 0 } ) )

( return () ) uds

modify $ \st ->

st { cellEnv = filter ( `elem` uds ) ( cellEnv st )

++ filter ( `notElem` uds ) ce

, time = time st - 1 }

The last definition uses the previously undefined functions nextPhase

and setHoldPols. The former increments the time field, then executes the
latter function. It will be further defined and used in the next section. Func-
tion setHoldPols fully polarises all cells in the Hold phase at the time given
as argument, by effectively applying the function setHoldPolarisation

that was defined in Section 3.1.2 to each cell in the environment.
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3.2.2 Implementing the simulation function in Haskell

In the previous section, we defined the functions required to simulate a single
time step with multiple iterations. In this section, we apply these methods
to produce a function that simulates multiple time steps of a QCA and logs
the output at each time step. We start by defining the latter process.

Logging simulation output

At each time step, after the iterations have been run, we want to log the
simulation output to track the evolution of certain cells specified as output
cell. This is done by executing function addOutputs, which filters the cell
environment for output cells: cells that have their isOutput field set to
True. The output contains a list of output cells in their current state along
with the current values of the time and stability fields, and is prepended
to the outputs list of the SimState object. This field is defined to be of
type Outputs in Section 3.1.2, which is a type alias defined as follows:

type Output = [ ( (Time,Stability) , [Cell] ) ]

The function is defined as follows:

addOutputs :: State SimState ()

addOutputs = modify $ \st -> st { outputs =

( ( time st , stability st )

, filter isOutput $ cellEnv st ) : outputs st }

The simulation function

We now define the core function simulate. The function runs recursively to
simulate all time steps, incrementing the time field with every step, until a
certain finish condition is met. In this definition, this finish condition is de-
cided by function isFinished, which returns a State SimState Bool. We
do not define this function here as it would make this section unnecessarily
complex, though we will briefly touch on it in Section 3.3.1. Additionally,
function setInputCells is used in the definition. This method does as its
name suggests and is described in a separate section, Section 3.2.3.

simulate :: Integer -> State SimState ()

simulate maxIters = setInputCells >>

doIterations maxIters >>= handleDubiants maxIters >>

addOutputs >>

isFinished >>=

flip unless ( nextPhase >> simulate maxIters )
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Function nextPhase was previously mentioned. It first calls function
incrTime, which updates the state by incrementing the time field by one and
returns the resulting value, then it calls function setHoldPols, described at
the end of Section 3.2.1, and returns the earlier obtained return value, the
current value of time.

nextPhase :: State SimState Time

nextPhase = incrTime >>= (<$) <*> setHoldPols

Users do not call the simulate function directly, instead they call the
function defined in Section 3.2.4. This function sets up the initial state with
the supplied cell environment and inputs and executes the simulation.

3.2.3 Asynchronously supplying input values to the engine

Designing an input system for a discrete QCA simulation system is no un-
complicated task. Since QCA-STACK is designed to be used as a command-
line tool, the program should be able to handle user-given inputs that are
not too complicated for the user to construct. Before we look at why this
is a complicated task, we first consider how inputs should be given by the
user.

Giving inputs to the engine

Consider a very simple QCA, consisting only of a 3MAJ-gate. The QCA has
three inputs, labelled A, B and C. The user now wants to simulate a clock
cycle with the following inputs: A = +1, B = +1, C = −1. This could be
supplied to the engine in the following format:

type Input = [(Cell,Charge)]

Here, Charge is simply defined as:

data Charge = Negative | Neutral | Positive

Given that the Cell-types a, b and c respectively represent cells A, B and
C, our user will thus supply:

inp :: Input

inp = [ (a,Positive) , (b,Positive) , (c,Negative) ]

Now consider that the user wants to simulate the gate with different
inputs for each consecutive clock cycle. The input type becomes a list of
Input-types, each consecutive element destined to be used in a consecutive
clock cycle. Say the user wants to simulate first the previous input, then
the input: A = −1, B = +1, C = +1. The user supplies:
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inp :: [Input]

inp = [ [ (a,Positive) , (b,Positive) , (c,Negative) ]

, [ (a,Negative) , (b,Positive) , (c,Positive) ] ]

If all input cells are in the same clock phase, supplying input values is
trivial. The first item of the input list is taken each time the cells are in
the Switch phase and the polarisations of the input cells are set to their
corresponding input values (this involves the simple process of converting
a Charge to a Double). This item is then removed from the input list so
that the same operation can be performed next time the inputs are set. The
problem increases in complexity when an Input cannot be set in a single
clock phase, as the input cells are in different clock phases.

Per clock input buffering

When QCA designs scale up in size and complexity, the probability that all
input cells are defined to start in the same phase becomes slim. Since we
do not want to give the user the task of giving inputs for each consecutive
phase, we need a method that accepts the input from the previous example,
even if the input cells are out of phase. This can be done by using an input
buffer for each clock. We describe the procedures as follows:

PREPARE Let an operation be applied to the user-given input that sorts
the input into a list of four Input-types, one for each clock. Same-
phase inputs are inserted in the same index of this list while maintain-
ing their respective order; inputs that should be given earlier occur
earlier in the Input. We now have four input buffers, one per clock.

LOAD Each time we set inputs with setInputCells, we sequentially load
elements from the input buffer in which each cell is currently in the
Switch phase – the current-clock input buffer (CCIB) – and put them
in another buffer: the active input buffer (AIB). The AIB will only
accept inputs of which the input cell is unique in the buffer. After
this operation has been applied to each input in the CCIB, we remove
from it the cells that were added to the AIB.

SET After each loading operation, we apply one of the following operations
on inputs in the AIB depending on their current phase:

Switch We set the input cell to the corresponding input value.

Release We set the polarisation of the input cell to zero. The input
is removed from the AIB.

Other We do nothing.

The PREPARE procedure is performed once before the simulation starts;
each call to function setInputCells invokes procedures LOAD and SET.
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Formatting user-given inputs to per clock buffers

In essence, the [Input] -> [Input] transformation from a list of sequential
user-given inputs to a list of input buffers is no more complicated than
the application of the three following operations: we concat the lists to
an Input-type with all inputs, we sort these inputs on the clock of the
respective input cells, and finally we group the inputs on equal clocks. This
produces an [Input]-type of list size 4. Every input with same-phase input
cells ends up in the same list, while maintaining the original order between
the inputs within each list.

The problem becomes more complicated when we consider the following
example of a larger scale, propagating QCA: let Q be a QCA with input
cells In for n ∈ N with N = {0 . . . 31}. We define I0 to have clock 0, and
each consecutive input is one phase apart, hence we say I1 has clock 1 and
so on. Resultantly, I4 will have clock 4, which is equivalent to clock 0. These
phased inputs allow signals to propagate through Q, so the signal that starts
at I0 is progressively influenced by subsequent input cells.

A näıve input system with per clock buffers would not only set input cell
I0 upon the first call to function setInputCells, but all input cells in the
following set:

{In | n ∈ N ∧ n mod 4 = 0} .

This leads to erroneous signal propagation through Q. When the first input
is applied to I0, the signal propagates further, receiving input values from
the first input from I1 through I3, before then receiving a input values from
the second input from I4 through I7. I8 through I11 apply input values from
the third input and so on. We hence need to offset these inputs in the buffer
so that the first signal will receive an input value from the first input for
every In for n ∈ N .

We do this by prepending our user-given input with Neutral-value inputs
for the input cells we want to offset, before we perform the PREPARE
procedure. Since this procedure respects the order of inputs, the first LOAD
procedure will load the AIB with Neutral-value inputs for input cells we
want to offset, thereby offsetting the values from first input for these cells by
one clock cycle. By recursively applying a method that finds cells we need
to offset, we create layers of offset: two layers for input cells I8 through I11,
three for I12 through I15 and so on.

We define function offsetBuf that recursively finds layers of input cells
we need to offset. The function takes the ordered (I0 before I1) list of input
cells of the QCA as argument and assumes that the first input will always
begin in the Switch phase. We apply the function and prepend its output
to the user-given input with the following function application:

( map (,Neutral) ( offsetBuf inCells ) : ) userInput
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offsetBuf :: [Cell] -> [Cell]

offsetBuf [] = []

offsetBuf inps = (++) <*> offsetBuf $ offsetInputs inps

where

offsetInputs = dropWhile ( \c -> phase c 0 /= Switch )

. dropWhile ( \c -> phase c 0 == Switch )

The State fields input and inputBuf are the formatted per clock buffer
and the AIB respectively.

3.2.4 Running the simulation engine

Thus far, we defined functions to be used by the engine itself to simulate
a QCA, though none specifically designed for the user to invoke. In this
section, we define function runSimulation: the most fundamental way to
produce simulation output from user input. In Section 3.3.2 and Section
3.3.1, we will show other methods that the user can invoke for more user-
friendly and insightful simulation output, or for more control on the running
length of the simulation.

There are three arguments a user supplies to the simulation engine. First
and foremost, the cell environment. This is simply the collection of cells that
make up the QCA. Additionally, the user supplies the (unformatted) input
that they desire to simulate, as well as the maximum amount of iterations
to control the running time of the simulation. Our function executes func-
tion execState from Haskell’s State library; this takes a State-returning
function as its first argument that modifies the initial state given as second
argument: the provided SimState in our case. It returns the resulting state.

We define the function thus:

runSimulation :: Integer -> [Input] -> [Cell] -> Output

runSimulation maxIters inps ce = outputs $

execState ( simulate maxIters ) defaultState

{ cellEnv = ce

, inputs = parseInputs ( getInputs ce ) inps }

Here:

� defaultState is defined as the ‘blank’ state, with all list-type fields
set to the empty list, time set to 0, et cetera.

� parseInputs performs the PREPARE procedure described in the
previous section. It calls function getInputs, which filters the cell
environment for cells with isInput set to True and sorts them on
their (previously undefined) number field. This field is useful when
upscaling a QCA from n inputs to 2n inputs as will be discussed in
the next chapter.
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3.3 Other noteworthy features of QCA-STACK

Previously in this chapter we discussed the core functionality of QCA-
STACK: the discrete simulation of QCAs through user input. In the next
chapter we will cover functionality that especially distinguishes the system
from the conventional QCA designing tool QCADesigner: programmatical
extensibility of QCA designs, the feature that mainly motivated the creation
of QCA-STACK. There is more functionality that has been added to our sys-
tem than we have previously covered or will cover in Chapter 4, however.
This section highlights a selection.

3.3.1 Finish conditions

We previously encountered function isFinished in the simulate function
presented in Section 3.2.2. This function decides whether the QCA has
finished, by evaluating whether the last input has been propagated to the
last output cell and output of this cell is recorded in the Hold phase.

This is an especially hard problem to solve for larger scale QCAs, as there
is no uncomplicated approach to deciding by how many clock phases the last
input and output cells differ in practise, instead of taking their absolute clock
phase difference. Designs can be made that propagate a signal from the last
input cell to the last output cell over multiple clock phases, hence it would
require an algorithm that analyses the cell environment to consistently find
the correct clock phase difference. Alternatively, this difference could be
determined by the user and given as argument to the simulation engine.

Due to time and scope limitations, none of the aforementioned methods
were implemented. Instead, a smaller scale automatic last-input-propagated
algorithm was designed. We will not describe how it works in all of its
intricacies, as the process is not straighforward and thus out of scope for
this chapter. In short, it uses the finishLog field of the State object –
mentioned in the footnote in Section 3.1.2 – to keep track of the highest-
numbered output cell that recorded output in the Hold phase.

To give more detail, the algorithm starts keeping track when the input
buffer of the first clock is empty, taking the number of the current highest-
numbered output cell in the Hold phase as the highest number – this is
stored in the finishLog field. With every call to the function it then looks
for an output cell in the Hold phase with a number not lower than the
current highest number, until an output cell is found with its number equal
to the maximum number of output cells in the cell environment. In this case,
function isFinished returns True to indicate that the QCA has finished.

Additionally, to give the user more control over the simulation length, an
analogue to function simulate was formed that takes the maximum amount
of phases as argument. It replaces the call to function isFinished with a
test of the value of the time field (T ) against this argument (Tmax).
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3.3.2 Visual and pretty-print outputs

In Section 3.2.4, we discussed function runSimulation, which produces raw
output in the form of an Output-type. While this unprocessed type of output
is useful for debugging purposes, it is not particularly easy to interpret.
Figure 3.10 below shows such output.

Figure 3.10: Simulation of a 3MAJ-gate with function runSimulation.
The function truthTable is used here. This function generates a truth
table from its input, to be used as user-given input to the simulation

engine. Also note that list of outputs is reversed; earlier recorded outputs
have higher indices. This is due to an optimisation, as prepending an

element to a list in Haskell is of lower time complexity than appending it.

Pretty-print output

An algorithm was designed that groups the simulator output into sequential
output groups corresponding to sequential inputs. The procedure of this
algorithm will not be discussed since this is again out of scope for this
chapter. The function is named and typed as follows:

prettyPrintIO :: [Input] -> Output -> IO ()

It is invoked by a runSimulation analogue: function runSimPretty. The
latter function differs from the former in two places. Firstly, instead of
taking raw input as its second argument as function runSimulation does,
it takes a function that acts as a input generator. It can be seen in the type
definition of function runSimPretty:

runSimPretty :: Integer -> ( [Cell] -> [Input] ) -> [Cell]

-> IO ()

The input generator function takes a list of input cells as argument,
obtained by the application of function getInputs to the third argument
supplied. This enables the user to supply the cell environment only once
when running the simulation engine with an input generator, as opposed
to passing it twice as seen in the example shown in Figure 3.10. Supplying
direct inputs now requires the user to simply utilise Haskell’s const function.
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Secondly, the output – as well as the unprepared input – is applied
to function prettyPrintIO. This produces prettily printed outputs where
outputs are shown together with their respective inputs, as seen in Figure
3.11 below.

Figure 3.11: Simulation of a 3MAJ-gate with function runSimPretty.
The design has three inputs cells, labelled A, B and C. The output cell is

labelled as 3MAJ .

Visual output

The pretty-print output mode, while effective as a clear input-output view,
does not give insight into inter-cellular interactions. The former mode – as
generated by function runSimulation – does give detailed information on
the polarisations of the output cells at each time, though being limited to
output cells only, it does not grant insight into the dynamics of the entire
QCA. Such insight can, however, be gained with a visual output mode.

We describe the requirements the visual output must meet to enable the
user to debug a QCA by visually analysing the inter-cellular interactions.
The output should:

� show the polarisation of each cell in the environment at each time step.

� show the relative positions of the cells in the environment.

� support multi-layered (three-dimensional) designs.

Single-layered (two-dimensional) designs are easily printed as the output
medium (a computer screen) is two-dimensional itself, though multi-layered
designs are harder to render. An uncomplicated solution was opted for:
layers are printed side by side, with the lowest layer shown on the left side.
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Visual output is generated by running the simulation engine with the
function runSimVisual, typed equivalently to function runSimPretty. The
function invokes another analogue of the simulate function that, instead
of logging outputs with function addOutputs, appends a graphical repre-
sentation of the current cell environment to an output string. The string is
returned and printed by function runSimVisual. Output is printed to the
console after each clock phase as a result of Haskell’s lazy evaluation.

The graphical representation consists solely of ASCII characters, though
infused with ANSI escape sequences to introduce colours and differing type-
faces. In particular, cells currently in the Hold phase are printed as bold
characters while otherwise printed as regularly-faced characters. Addition-
ally, input and output cells in the Hold phase are rendered as bold and
underlined characters. Cells in the Release or Relax phase are printed as o.

Examples of output generated by function runSimVisual are seen in
Figures 3.8 and 3.9 of this chapter, as well as in figures found in Chapter 4.
Figure 3.12 below exemplifies visual output of a multi-layered QCA.

Figure 3.12: Example output generated by the visual output mode.
The output shows two simulated time steps of a multi-layered wire crossing
that utilises the third dimension to form a bridge. The underlined cells at
time T = 1 are input cells, whereas those at time T = 2 are output cells.

3QCA-STACK was (for the most part) created in the Jetbrains IntelliJ IDEA. The vi-
sual output function was therefore designed for IntelliJ’s built-in console. Other Windows
CLIs such as Windows PowerShell are able to display ANSI-escaped text sequences also,
though colours and spacing could differ from the intended output.
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3.3.3 Input files

The simulation of a QCA requires the user to define the cell environment in
Haskell as a [Cell]-type, which includes defining each individual cell in the
list separately. Fortunately, QCA-STACK includes template cells so that
defining most cells only requires an altered location and phase function in
most cases. As an example, the cell environment threeMajCellEnv used in
Figures 3.10 and 3.11 is defined in Figure 3.13 below.

Figure 3.13: Cell environment threeMajCellEnv defined in Haskell.
Function clock is used in the definition; this generates a phase function
with the starting phase depending on the argument given. Template cells

are defined to start in the Switch phase with clock 0.

While this method of defining cell environments is convenient enough for
small QCAs, the task becomes tedious when defining larger designs. As a
solution to this, we present a feature that enables QCA-STACK to be used
as a design tool: QCA definition input files.

A description of the input file format

The input files begin with a textual representation of the cell environment,
we call this the layout definition. Layers are delimited with a row contain-
ing only = characters, one for each column. Each character in the layout
definition is separated by exactly one space; trailing spaces are permitted
on each line of the input file.

Each non-space character in a layer represents a cell in the environment.
The value of their loc field is derived from the position in the layout defi-
nition. The characters can be one of the following:

� A + or - character represents a fixed positive or negative input cell
respectively. These are found in the AND- and OR-gates shown in
Figure 2.8.

� A number n ∈ {0..9} represents a regular cell with its phase function
set to clock (n mod 4).

� Any letter in the ranges A-Z and a-z. The other section of the input
file uses these letters as identifiers in order to define fields for these
cells. Equal letters on different positions therefore produce cells that
differ in the loc field, though have the same other fields.
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After the layout definition comes the other section of the input file: the
cell definitions. The two sections are separated by the $ character, directly
preceded and followed by a minimum of one newline character. The cell
definitions that follow are delimited by a minimum of one newline character
and formatted thus: first the identifying letter directly followed by a colon,
then, on the following subsequent lines in any order, the flags. The flag
definitions begin with a - character followed by a space, after which one of
the following flags is put:

� input or output respectively sets the isInput or isOutput flag to
True.

� clock = n sets the phase function to clock (n mod 4).

� label = "a" sets the label field to a; any non-" character is accepted.

� number = n sets the number field to n; n should be a natural number.

� offset = (x,y,z) adjusts the loc field by adding the given x, y and
z values. This is useful for defining cells with one or more non-integer
coordinates, as coordinates inferred from the layout definition grid can
only be integers.

Setting any of the aforementioned overwrites (or adjusts) the default value
for the appropriate Cell field; not setting a flag is therefore also an option.

The content of an input file representing an AND-gate is shown below.

= = =

-

a 0 o

b

= = =

$

a:

- input

- label = "A"

b:

- input

- label = "B"

o:

- output

- label = "A /\ B"

- clock = 1
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Chapter 4

Stackable QCAs

In the previous chapter, we discussed our bespoke QCA system and the
intricacies of its method of simulation. The system was conceived not for
the purpose of offering replacement for the conventional QCA simulation
solution (QCADesigner), but instead to offer the possibility to program-
matically alter cell environments with ease. In particular, the capability to
create a generalised method to stack a QCA on top of itself was sought. In
theory, the emergent system of the multi-layered QCA allows for unbounded
three-dimensionality; we utilise this concept to form 2n-extensible QCAs.

In this chapter, we will consider the multi-layered QCA conceptually and
discuss its appearance in related works. We then present primary compo-
nents of the ALU as 2n-bit extensible designs: the ripple carry adder (RCA),
the bitwise logical operations module (AND/OR specifically) and the multi-
plexer (MUX). The first two scale linearly and are thus comparatively easy
to implement, whereas the multiplexer scales partly logarithmically. This
introduces a non-trivial problem; we propose a solution in Section 4.4.2.

Throughout this chapter, we assume the reader is familiar with the func-
tioning of the essential logic gates (Section 2.1.3) and the 3XOR-gate (Sec-
tion 3.1.3). QCA-STACKs visual output mode will also make appearances;
instructions on the interpretation of this output are found in Section 3.3.2.

The QCA-STACK input files associated with designs presented in this
chapter are found in Appendix A. In particular, the designs presented in
Sections 4.2.2, 4.3 and 4.4.1 can be found there. The same input files and
input files of other designs are also found on the QCA-STACK GitHub page.

4.1 Extending QCAs in the third dimension

Before we consider the use of stacking QCA designs and methods to do so,
let us first consider the practise of designing multi-layered QCAs along with
its benefits and possible disadvantages, as well as the conventional use of
multi-layering in quantum-dot cellular automata.
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There has currently been around twenty years of research on QCAs. Most
works published in the field present a new design and compare it to simi-
lar existing designs. A good proportion of these are multi-layered designs,
though almost each multi-layered design that is presented in a publication
consists of strictly three layers. One publication was found that presents a
5-layer design; this appears to be the single exception to the pattern. [7]
In practise, a three-layered QCA amounts to a dual-layer QCA since the
middle layer is nearly always used as a tool to propagate a signal upwards.

Consider two cells stacked directly on top of each other, with the lower
cell as the driver cell. Each electron in the lower cell pushes the electrons
in the other cell away, hence the latter cell assumes a polarisation that is
opposite of that of the former. When another cell is put above the two, the
signal negation takes place twice and the integrity of the signal originating
from the lowest cell is therefore kept; this is shown in Figure 4.1.

Figure 4.1: Three cells stacked on top of each other.
The signal originating from the lowest cell is conducted to the highest cell.

This concept is used to form conventional multi-layered QCAs, function-
ally consisting of two layers connected by a conducting middle layer. One of
the most practical uses is for a wire crossing; this is shown in Figure 3.12.
Furthermore, it is used for the design of ultra-dense processor components
such as ripple carry adders; the two logical gates the design consists of are
placed above each other and connected to inputs to form the adder.

The literature that was consulted makes no statement on why specifically
three layers are used and not more. The apparent scarcity of publications
presenting a n > 3 multi-layered design makes one wonder about the attain-
ableness of a physical implementation of such a system. Since we focus on
the theoretical side of the QCAs in this thesis in the field of computing sci-
ence, we disregard possible concerns on the physical implementation of n > 3
multi-layered designs and assume the QCA system is fully functional in the
third dimension. Additionally, for the ease of designing three-dimensional
QCAs, we compute the layer separation needed to make the kink energy be-
tween a cell and its coplanar directly adjacent neighbour equivalent to the
negated kink energy between the same cell and its vertical (non-coplanar)
neighbour; this is done in the next subsection.

51



CHAPTER 4. STACKABLE QCAS

4.1.2 Pragmatical layer separation

Since we seek to utilise the third dimension as simply another dimension, we
need the absolute kink energy to be equivalent between coplanar and non-
coplanar cells of the same Euclidean distance to any cell. This is similar to
how the second dimension is introduced to a one-dimensional QCA system:
any two cells that are adjacent in a one-dimensional QCA have the same
kink energy as any two cells that are directly adjacent in a two-dimensional
QCA.

Layer separation is simply implemented by scaling all z values with a
certain constant when computing a Euclidean distance. When the z-scalar
(Zs) is set to 1 so that there is no scaling, two non-coplanar neighbouring
cells c and ca, according to QCA-STACK, have a kink energy of Ekc,ca ≈
−0.11. Two coplanar neighbouring cells c and cb, however, have a kink
energy of Ekc,cb ≈ 0.82. We need to compute the value of Zs such that

Ekc,ca ≈ 0.82. The approach to computing the value is as follows:

� We calculate the exact value of the kink energy between cells c and
cb, where cell c has location vector Vc = (0, 0, 0) and cell cb has Vcb =
(1, 0, 0). Let this be Ekc,cb .

� We calculate the exact value of the kink energy between cells c and
ca, with Vca = (0, 0, Zs). Let this be Ekc,ca .

� We define the following equality: Ekc,cb = −Ekc,ca . We solve the equa-
tion for Zs.

The resulting equation is the following:

− 4

Zs
+
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Z2
s + 1

4

− 4√
Z2
s + 1
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= −

(
4

3
+

√
64

5
−
√

8

5
−
√

8

)
(4.1)

Considering the difficulty of obtaining an exact value for Zs and the gain
of having an exact value instead of an approximation, it was opted for to
enter the equation in the online calculator Wolfram|Alpha.1 This calculator
was able to approximate a numerical solution for Zs with increasing accuracy
each time the ‘More digits’ button was clicked. The result approximates to
the following:

Zs ≈ 0.581215 (4.2)

Supplying the simulation engine with a larger decimal number incre-
ments the simulation running time. By setting Zs with six decimals, the
two kink energies start differing after the fifth decimal. This was deemed
sufficiently accurate.

1https://www.wolframalpha.com
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4.2 Ripple Carry Adder

Arithmetic operations are a core feature of a processing core. Some of the
primary components of the ALU that is responsible for these operations are
the RCA, the bitwise logic module and the multiplexer; we discuss the first
in this section.

There have been many publications in the field of QCAs that have pre-
sented new and/or improved designs of the RCA, either single-layer or multi-
layer. [23, 18, 16, 12] Here, we present stackable RCA, based on the design
presented in [23]. Stackable in this sense means that we can apply an op-
eration to the design to transform an n-bit RCA into a 2n-bit RCA. The
base RCA that we present is 2-bit and consist of two modified versions of
the RCA presented in [23] stacked on top of each other where the latter
is rotated and reflected in a way that enables the carry out to propagate
directly into the carry in of the stack that is to be placed on top of it.

The RCA – with inputs A, B and Cin (carry in) and outputs SUM and
Cout – functionally consists of two core components: a 3MAJ-gate and a
3XOR-gate. The inputs are connected to the gates to produce outputs in
the following way:

3MAJ(A,B,Cin) = Cout, and (4.3)

3XOR(A,B,Cin) = SUM. (4.4)

The corresponding truth table confirms that this holds:

A B Cin
Cout SUM

3MAJ(A,B,Cin) 3XOR(A,B,Cin)

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Table 4.1: The truth table of an RCA along with the outputs of the
3MAJ- and 3XOR-gates.

The two gates, very similarly to [23], are put above each other – the
3MAJ-gate on the bottom layer – with the input cells on the lower layer
propagated upwards to serve as inputs to the 3XOR-gate as well. This
constitutes a 1-bit RCA.
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4.2.1 The 2n-bit RCA

Multi-layered designs take up a lot of space to display two-dimensionally;
we hence use the visual output mode to display the design. The 2-bit base
design consists of nine layers: four layers for each 1-bit RCA (of which
half are conducting layers), and one layer that contains only the upwards
propagated Cout output signal. This last layer is merged with the first layer
of the RCA that is stacked on top of it; the cell with the Cout signal takes
the place of the new Cin input cell here. Since both gates constituting the
1-bit RCA – and particularly the 3MAJ gate that produces the Cout – have
an input-output clock phase difference of one, the second 1-bit RCA is offset
by one clock phase as it requires the Cout output from the first 1-bit RCA.

As example input to the RCA, we compute the sum 3+2. This amounts
to the following inputs: A0 = A1 = B1 = 1, B0 = Cin = 0 (A0 and B0 are
the inputs of the lower 1-bit RCA). The simulation starts at time T = 0,
where the first input cells are in the Switch phase. We show the first four
layers of the 2-bit RCA at times T ∈ {1, 2} in Figure 4.2; the second set of
four layers is shown at times T ∈ {2, 3} in Figure 4.3. The ninth layer is not
shown; it contains a single cell directly above the cell in the layer below it.

Figure 4.2: The lower 1-bit RCA with inputs Cin (top), A0 (left) and B0.
The first layer contains a 3MAJ-gate that produces the Cout output, which

is propagated upwards. The third layer contains the SUM0 output cell.
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Figure 4.3: The upper 1-bit RCA with inputs A1 (left) and B1 (bottom).
The Cout signal from the lower 1-bit RCA is propagated upwards and taken
as the third input to the 3MAJ-gate (right). Output cell Cout is polarised
to the output of the 3MAJ-gate (P = +1); output cell SUM1 is polarised

in the third layer shown (P = −1). Together with the polarisation of
output cell SUM0 (P = +1), the outputs represent the number 5.

4.2.2 The 2n-bit RCA: Version 2

The previously shown design of the 2n-bit RCA has an issue when it comes
to using the design as a components of a larger design: the SUM output
signals are difficult to propagate further, as their respective obvious exit
paths are blocked by the upward-propagating Cout signals.

We present a solution to this that does not include an additional clock
phase. Propagating the Cout signal to the edge of the design within the same
clock phase introduces complications, as this outward-propagating path is
prone to influence from other areas of the design. The resulting design
functions correctly when simulated with a higher number of maximum it-
erations, though seems not entirely stable for a lower number. The design
could therefore be considered not robust.

The simulation output of the earlier discussed version of the 2n-bit RCA
shown in Figure 4.3 is shown in Figure 4.4 as the second version.
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Figure 4.4: The upper 1-bit RCA of the second version of the 2n-bit RCA.
There is no change in the input cells, though the 3XOR- and 3MAJ-gate
layers have been swapped. Additionally, the output of the 3MAJ-gate is

shifted to the right such that the interference between that output and the
output of the 3XOR-gate is minimised.

In the layer shown top-left, it can be seen that two cells have non-integer x
coordinates; this was set using the offset flag of the input file, discussed

in Section 3.3.3. The visual output mode is able to display cells at x
coordinates ±0.5, though y and z coordinates must be integers.

4.2.3 A general linear stacking solution

In this paragraph, we present the method to apply to, for instance, any 2n-
bit RCA to turn it into a 2n+1-bit RCA. The method is designed in such a
way that it can be applied as a general solution for linearly stackable designs;
we show another example in Section 4.3.

Our method needs to distinguish two different types of input and output
cells. In particular, there are regular input and output cells such as A0, B1

and SUM1, and there are propagation input and output cells like Cin and
Cout. To define this distinction, we extend the definition of the Cell type
with the field propagate of type Bool. This field can be set in an input
file by adding the flag propagate to a cell, just like how the flags input or
output are added.
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The function, named stackDesign, takes an argument of type Int (n),
another argument of type (Int,Int) (t = (a, b)), and the input cell envi-
ronment of type [Cell]. It basically duplicates the cell environment and
returns the result, though some alterations are done to the original cell en-
vironment and the duplicated one. The original cell environment gets just
one adjustment: output cells with the propagate field set to True – output
cell Cout for instance – are converted to normal cells. That is, the output

and propagate fields are set to False.
The duplicated cell environment (the new stack) undergoes more mod-

ifications and uses the parameters n and t. This first argument facilitates
the process of determining the size of the input stack, which is, for instance,
used to number the new cells. Function stackDesign is called with n = 20

when stacking a design for the first time, then with n = 21 when stacking
the result again and so on. The second argument parametrises properties of
the base design.

The following modifications are applied to the new stack:

� Input cells with the propagate field set to True are removed. This
removes input cell Cin from the new stack, for example.

� Each cell is translated upwards: the z coordinate is incremented by
the maximum z coordinate value in the original cell environment.2

� The phase function of each cell is adjusted (except when the polarisa-
tion of the cell is fixed): the clock of each cell is incremented by a · n
clock phases. Here, a is the function parameter that represents the
first input → last output clock phase difference of the base design.

� If a cell has a number set, this number is incremented by b ·n. Here, b
represents the amount of different numbers of the base design; a base
design with A0 and A1 is therefore stacked with b = 2 to produce A2

and and A3.

Additionally, function stackNTimes was formed. It takes the amount
of times the cell environment should be stacked as input for a more user-
friendly experience:

stackNTimes :: Int -> (Int,Int) -> [Cell] -> [Cell]

stackNTimes 0 _ = id

stackNTimes n t = stackDesign ( 2 ^ ( n - 1 ) ) t

. stackNTimes ( n - 1 ) t

2This assumes the cell environment starts at z = 0 and only goes upwards. Com-
patibility with cell environments with lower z coordinates should be straightforward to
implement, though this has not been done as of yet.
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4.2.4 Results: an addition calculator

To test the 2n-bit RCA designs and the stacking function, function calculate

was designed that asks the user for an expression in the form of a+ b, and
computes the result by constructing the minimal 2n-bit RCA needed to com-
pute the answer and simulating with the corresponding input to obtain the
result. The 2n-bit RCA is formed by calling stackNTimes n (2,2) ce. Here,
ce is the base RCA design version 1 for which a and b are both 2.

Addition with 16-bit numbers produced results in reasonable time when
simulated with the max iterations set to 30: around one to two minutes
depending on the hardware. The RCA cell environment that computes such
sums consists of 65 layers and 481 cells. When computing larger sums,
the simulation produces correct results (tested with up to 64-bit numbers)
though the simulation time increases exponentially as the size of the cell
environment increases drastically.

4.3 Bitwise AND / OR

Bitwise logical operations are an unmissable component of an ALU, used,
for instance, to test conditions (x86’s test instruction). Typically, a bitwise
logical operations module would consist of the following bitwise logical op-
erations: AND, OR, XOR and one’s complement. We present a simplistic,
stackable 1-bit base design for 2n-bit bitwise AND / OR operations.

The first time a 3MAJ-gate was discussed in this thesis, the method to
create AND- and OR-gates from a 3MAJ-gate was also shown (Figure 2.8).
The only difference between the two is the polarisation of the fixed cell –
this applies to the 1-bit base design of the bitwise AND / OR as well. The
stacked design simply becomes a chain of non-coplanar AND- or OR-gates;
Figure 4.6 on the next page displays the (once-stacked) bitwise AND.

Figure 4.5: Visual simulation output of the bitwise AND, showing 1 ∧ 1.
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Figure 4.6: A 3D representation of the proposed stackable AND-gate.
The base design consists of an input cell (I0), an output cell OUT and a

regular cell above it, and a cell with a fixed polarisation. If this fixed cell is
set to be polarised to P = −1 (as shown), the gate computes the bitwise

AND of its inputs. If set to P = +1, the gate behaves according to a
bitwise OR.

The greyed out cells represent the new stack, this introduces a new input
cell such that the once-stacked design outputs I0 ∧ I1. The output cell,

which has the propagate flag set to true, is moved up by two layers, with
the old output cell converting to a regular cell.

Input cell I0 is polarised to P = +1 in the state shown; this polarises the
output cell to P = +1. Stacked once with input cell I1 polarised to

P = +1 as shown, the new output cell is again polarised to P = +1. This
is shown in Figure 4.5; this figure displays the state at time T = 1.

In an n-bit bitwise AND, the output signal is continuously propagated
upwards through the individual AND-gates and is ultimately output as
On−1 ∧ In−1 at the nth AND-gate, where On is the value of the output
signal after the nth AND-gate.3 The exact same logic applies to the n-bit
bitwise OR, which outputs On−1 ∨ In−1.

3There are methods to compute the bitwise AND / OR in log(n) steps, hence this
linear method of scaling does not produce an optimally efficient gate. This gate is shown
as a different example of a linearly stackable design. Given the right scaling algorithm,
the design – be it with minor tweaks – can be scaled arboreally to produce a more efficient
output. This can be derived from the fact that each two branches, B1 and B2, can be
merged to one branch, R, with the same operation: R = B1 ∧B, for example. Achieving
a general arboreal scaling solution that can be applied to, for instance, both this gate and
the one discussed in the next section is a future goal. More on this in Section 4.4.2.
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4.4 Multiplexer

The multiplexer is an important gate that takes 2n DATA inputs and n SE-
LECT inputs with n > 0 and outputs the DATA input corresponding to the
given SELECT inputs. An example of its use is in the bitwise logic module,
which takes a certain amount of input bits along with an opcode. This op-
code acts as the SELECT inputs of the multiplexer. It selects which of the
DATA inputs – the outputs of the different logical operations – should be
output. Within the field of the nanocomputing paradigm, QCA multiplexers
are a relatively widely researched topic. [9, 31, 24, 20, 6, 11]

4.4.1 The 2n-bit multiplexer

The functioning of a two-input multiplexer (2MUX) with DATA inputs A
and B, SELECT input S and output Y can be mathematically defined as
the following: Y = AS + BS. This is implemented in the design seen in
Figure 4.7. It has been inspired by [24] and by a presentation of the same
author on YouTube.

S

A+ ↑ ↑ B+

Y

P = −1

P = +1

(a) A 2MUX at time T .

S

A+ ↑ ↑ B+

Y

P = −1

P = +1

(b) The same 2MUX at time T + 1.

Figure 4.7: A 2MUX at two consecutive time steps.
The two DATA inputs A and B are positioned on a layer lower than the

one shown. Their positively polarised signals are conducted upwards to the
cells next to the negative fixed cell. This forms two AND-gates: AS, BS.

The shape on the bottom that resembles the 5-facet of a die functions as a
3MAJ-gate, or rather an OR-gate because of the fixed positive cell.
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This design is not linearly stackable: a 4MUX has double the amount
of DATA and SELECT inputs, but an 8MUX, compared to a 4MUX, has
double the DATA inputs and only one extra SELECT input. This relation
continues for increasing multiplexer sizes: each time the amount DATA
inputs is doubled, the amount SELECT inputs is incremented by one. The
design instead scales similarly to a perfect binary tree: adding a layer to the
tree doubles the amount of leaves and increases the height by one.

This relation was inspired by a figure from [20], where 2MUX blocks are
connected to each other as nodes in a binary tree shape; each layer of the
tree has a distinct SELECT input that is supplied to all multiplexers on
that layer. Each 2MUX creates one DATA output from two DATA inputs,
effectively defining the property of a reversed (leafs → root) binary tree.

Figure 4.8 below shows the main layer of the proposed base design of the
2n-bit multiplexer. Essentially we see two 2MUX designs similar to the one
shown in Figure 4.7 merged together to form a 4 input - 2 output multiplexer
(we write [4→ 2]MUX from now on). The outputs, Y0 and Y1, are selected
by the second SELECT input (S1) and are propagated upwards as inputs
of the 2MUX from Figure 4.7. Output of this 2MUX is selected by the first
SELECT input (S0); this is the output of the 4MUX as a whole.

S1

Y0 Y1

P = −1 P = −1

P = +1

↑+ ↑− ↑+ ↑+

Figure 4.8: The proposed [4→ 2]MUX. The outputs Y0 and Y1 are given to
the 2MUX from Figure 4.7 as DATA inputs to complete the 4MUX design.
The four DATA inputs, similarly to the previous design, are propagated up
to the cells next to the fixed negative cells. Their polarisations are shown.
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It should be noted that the different clock phases have been generously
distributed in the designs shown in the last two figures. This is not optimal
when designing a minimum delay QCA, though this design was formed with
the intent of creating a stackable base design. Because of this, the stability of
the design – which severely decreases with multiple iterations of the stacking
algorithm as a result of more unwanted inter-cellular interactions – was
favoured over the input-output latency.

In the next section, we present the stacking algorithm that creates a func-
tional 8MUX from the 4MUX base design after one application, a 16MUX
after another application and so on. This algorithm was experimentally
used to produce cell environments of multiplexers up to 64-bit – rendering
these in a console becomes tediously slow as the size of the design increases,
though a script was written that converts visual output into an HTML page
to aid rendering times (Section 4.4.4). Successful simulations have been
done with 32MUX, though this has not been achieved with the 64MUX.
The limitations concerning this will be discussed in Section 4.4.3.

4.4.2 The binary tree stacking algorithm

Much of this stacking algorithm shares properties with a binary tree. Our
base design, the 4MUX discussed in the previous paragraph, can be com-
pared to a perfect binary tree with three nodes and four leaves. The leaves
represent the inputs; they are processed by the [4→ 2]MUX layer shown in
Figure 4.8. The two nodes at depth 1 of the binary tree represent this multi-
plexer. The multiplexer is essentially two 2MUXs merged together into one
design; they both get SELECT input S1 – note that the number matches
the depth. The 2MUX at the upper layer, shown in Figure 4.7, is the root
node at depth 0 and has SELECT input S0.

The algorithm consists of three steps. First we form the new lowest
multiplexing layer, similar to increasing the height of our perfect binary
tree by one. Applied to our 4MUX base design, this new layer becomes a
[8→ 4]MUX with SELECT input S2, on top of which the 4MUX is stacked.
Secondly, we create a layer consisting of wires connecting the outputs of
the new multiplexing layer to the inputs of the previous stack. This step
was not required to connect the multiplexers from Figures 4.7 and 4.8, since
the outputs of the former fit directly under the inputs of the latter. New
layers, however, do not share this property with the layer they should con-
nect to. Lastly, we assign clock phases to the design in a way that makes
the design stable without adding too many unnecessary clock phases. Espe-
cially this is a difficult task to generalise for each stacking operation, as the
aforementioned criteria affect a small design differently than a large one.

We briefly discuss each point in the following paragraphs.4

4Much detail is left out. The algorithm was implemented in just over 100 dense lines
of Haskell code, whereas the core of the simulation engine required around half of that.
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Creating the new lowest multiplexing layer

This step is conceptually the simplest of the three. Essentially, we take the
lowest multiplexing layer – let this be a [2a → a]MUX – and copy it twice
such that the new lowest multiplexing layer consists of two [2a → a]MUXs
to form a [4a → 2a]MUX. The original SELECT inputs are converted to
regular cells and instead a new row of cells that includes the new SELECT
input is added to the top of the layer, connecting the separate multiplexers.
This is also applied in the design seen in Figure 4.8, where the row containing
S1 connects to the SELECT input rows of the individual 2MUXs. For the
purpose of stability and consistency, each row is offset by one clock phase.
Resultantly, the SELECT input row of the new layer becomes the first clock
phase each time, offsetting the rest of the layer by one clock phase. Clock
offsets for the rest of the design are discussed in the upcoming paragraph
on clock phases.

The tricky part of this step is determining the length and starting col-
umn of this new row. The function that is ultimately called to stack the
multiplexer design is named stackTreeDesign and, equivalently to func-
tion stackNTimes, takes an Int-type argument n that is incremented by
one with each additional stacking, starting at n = 1. This parameter is,
amongst other things, used to compute the aforementioned properties of the
new row, and in it, the position of the new SELECT input.

The [4 → 2]MUX has a horizontal length of 7. Leaving one cell space
in between, two of these multiplexers next to each other would add up to a
horizontal length of 15. This sequence continues to 31, 63, et cetera; clearly
these are all powers of two minus one. When function stackTreeDesign is
called for the first time on the 4MUX base design with n = 1, it generates
the new lowest multiplexing layer with a horizontal length of 22 ·2n−1 = 15.
The new SELECT input s is positioned in the same column as the spacer
between the two [4→ 2]MUXs: the 22 · 2n−1 = 8th column. Since x values
start at zero, this translates to: sx = 4 · 2n−1 − 1.

The new row always has one cell fewer on the left side of the SELECT in-
put than on the right side. It connects to the two rows under it by beginning
next to the rightmost cell of the first row and ending next to the leftmost
cell of the second row. This leads to somewhat irregular row lengths; hence
there is no straightforward expression that tells us the x value of the first cell
in the row (r0x) for a given n. The first six values of the emergent sequence
are as follows:

[
r0x(1), r0x(2), . . . , r0x(6)

]
= [5, 10, 21, 42, 85, 170]. A linear ho-

mogeneous recurrence relation that produces the sequence was constructed:

∀n ∈ N : n ≥ −1→ r0x(n) =


1, if n = −1.

2, if n = 0.

2n+1 + r0x(n− 2) otherwise.

(4.5)
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The associated solution of this relation was computed, this yielded a small
yet notable performance increase.

r0x(n) =
−3 + (−1)n+1 + 2n+3 · (3 + (−1)2n+1)

6
(4.6)

Since the rightmost cell of the new row is in the same column as the
leftmost cell of the row that comes after it with the next stacking operation,
we can express the ordered sequence of x values of the cells in the new row
as follows: [

r0x(n), r0x(n) + 1, . . . , r0x(n+ 1)
]
.

Forming the connecting wires

In the previous paragraph, we discussed how a [4a → 2a]MUX can be
formed from a [2a → a]MUX. In this paragraph, we tackle the problem of
connecting the 2a outputs from the former to the 2a input from the latter.
We describe the algorithm that produces the layer with the connecting wires,
and additionally the modifications to the rest of the cell environment that
are required to fit this layer in.

The algorithm, simply put, creates Manhattan paths from each output
of the [4a → 2a]MUX to the corresponding input of the [2a → a]MUX,
whilst maintaining a minimum wire spacing of one cell; this is said to be
sufficient to avoid cross-wire interference. [17] This is done in such a way
that the right half of the wires is a mirror copy of the left half; therefore we
only need to actively create the wires for one half.

In order to enable this mirroring property as well as the creation of
the Manhattan paths, the cell environment given as input to the stacking
algorithm should be centred with respect to the new lowest multiplexing
layer. From now on, we refer to the former as the root and to the latter as
the new leaf. The root is shifted to the right by 2n+1 to perfectly align the
centres of the root and the new leaf. By design of the stacking algorithm,
each of the multiplexing layers is vertically aligned in such a way that the
SELECT input row is on the very top of the design.5

The paths are created starting with the left outermost path; this one
goes up from the leftmost output of the new leaf until it reaches the height
of the inputs of the root.6 Any cells that should be put horizontally to
connect this part of the path to the leftmost input of the root are added to
the path: this completes the first path.

The other paths follow a slightly different logic, although the function
that creates paths is the same for each path. A path goes up from the new

5For clarification: in this context, vertically directional words like up/down, high/low
and top/bottom refer to the two-dimensional representation of a layer.

6The output cells locations of the new leaf are obtained by filtering the cell environment
for cells with the propagate flag set to True. This flag is strictly set for the output cells
of the lowest multiplexing layer.
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leaf output until there is exactly one vertical cell space between the end of
the path and the first path. The path then goes to the right until it reaches
the same column as the root input that the path should get to; it goes up
to that input to complete the path. If a new leaf output is on or directly
adjacent to an already existing path, the path starts at a lower point, exactly
one cell space removed from the lowest existing path in the column. This
makes the path misalign with the corresponding new leaf output; this is
fixed with the method that is discussed next. The left half of the wires is
now in its elemental form.

The y value of the lowest path directly determines the new y value of the
new leaf outputs. All other paths are extended such that they now begin at
this y value. The new leaf is also modified such that each of the output cells
is moved to this new y value and a connecting wire from the old position
straight down to the new position is made. These extensions can be seen in
Figure 4.9 on the next page.

Two other figures are shown on this page; they all show a part of the cell
environment generated by two applications of the tree stacking algorithm
on the 4MUX base design. The figures are shown at different times in such
a way that the output signals of the [16 → 8]MUX in Figure 4.9 can be
followed to the [8→ 4]MUX in Figure 4.11. The signals take multiple clock
phases to pass through the layer with the connecting wires, shown in Figure
4.10. The consideration for this is expounded in the next paragraph.

Setting the clock phases

We previously discussed that all cells that are not in the new leaf should
be offset by one clock phase by the addition of the new SELECT input
row. Furthermore, cells in the root should get an additional phase offset in
accordance with the clock delay of the wire layer. A number of rules that
produce this delay were defined in order to yield consistent signal transmis-
sion through the wires for multiplexers up to 32-bit, whilst keeping delay
relatively minimal. Issues regarding the stability of higher bit multiplexers
are discussed in Section 4.4.3.

The programmatical setting of clock phases for a wire layer of any size
is a difficult task when considering both the stability of the wires – the
prevention of crosstalk between wires – and the total clock delay – the
minimisation of the clock phases required to consistently transduce signals
through the wires. Parallel wires spaced one cell space apart are generally
stable, though wire corners turned out to be prone to inconsistent signal
transduction and thus require additional clock phases.7

7It is possible that this phenomenon occurs by cause of QCA-STACK’s method of sim-
ulation, and especially the cell evaluation order. Due to time restrictions, a comparative
analysis with simulation output of QCADesigner was not done, though this would confirm
the validity of the concern. More on this in Section 4.4.3.
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Figure 4.9: A [16→ 8]MUX, created with the tree stacking algorithm.

Figure 4.10: The layer that connects the [16→ 8]MUX to the [8→ 4]MUX.

Figure 4.11: A [8→ 4]MUX. Here, it passes the rightmost output of each
consecutive output pair of the [16→ 8]MUX on to the [4→ 2]MUX.
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When the multiplexer is scaled up, each wire receives more external influ-
ence; this complicates the process of defining a layer of wires that functions
consistently with a minimum amount of clock delay. Again, the function
is applied to wire layers of any size, hence, for instance, a rule that fixes
a stability issue for the 32MUX could introduce unnecessary delay in the
16MUX.

The clocks for each cell in the wires are set by sequentially traversing the
wires cell by cell, starting from the bottom each time. If a certain condition
concerning a relative position of a nearby cells in a different wire is met, the
clock is increased for the rest of the wire. When all wires have been fully
traversed, the clocks are synced up such that each wire has the same delay.
This introduces a bottleneck factor: the wire with the highest clock delay
decides the delay for the other wires.

For debugging purposes of the wire layers, the function showCEClocks

was designed. It makes a call to the function that is called at every time
step when simulating with function runSimVisual, but gives it a flag that
makes the function show just the clock numbers of cells in the given cell
environment. Cells that are in the Switch phase at time T = 0 are displayed
with ‘0’, cells in the Switch phase at time T = 1 with ‘1’, et cetera. Output
of this function is seen in Figure 4.12 below.

Figure 4.12: Output of function showCEClocks, showing the wire layer
that connects the outputs of the [32→ 16]MUX to the inputs of the

[16→ 8]MUX of the triply stacked 4MUX base design.

A general tree stacking algorithm?

The algorithm that is discussed in this section was specifically designed
to be applied on the proposed 4MUX base design, however no significant
constants were used.8 Other functions sharing the arboreal scaling property

8For example: the algorithm sets the label field to "SEL" for the new SELECT input.
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of the multiplexer exist: the more efficient approach to scaling the bitwise
AND / OR, discussed in the footnote of Section 4.3, is one such example. We
speculate that the proposed algorithm could scale any design that scales as a
binary tree, given that the algorithm is parametrised with scaling properties
that are specific to the design. Examples of this for our multiplexer are the
functions sx and r0x and the horizontal root offset function that is used to
centre the root with respect to the new leaf. Transforming the algorithm
into a general N -tree stacking algorithm might not be a far reach either.

4.4.3 Limitations and future work

In earlier paragraphs, it was mentioned that the stability of the stacked
multiplexer design decreases from sizes 64-bit and on. With every scale-up,
each part of each wire becomes longer and the number of wires are increased.
This leads to a less stable design; wires have more space to lose the integrity
of the signal they are carrying.

There is a simple solution to this: more clock phases. This approach
was applied to get the 32MUX stable, though the effort was not continued
for the 64MUX. The additional clock-setting rules that would be needed for
this would most likely impair the less-stacked cell environments resulting
from the stackTreeDesign function in terms of clock delay. Alternatively,
the clocks in each wire could be incremented after every n cells. This is
guaranteed to work for n = 1 although this results in a massive clock delay.
Setting n = 5 could produce stable designs for higher-bit multiplexer with
reasonable clock delay, though this was not verified.

Optimising the clock setting algorithm is an interesting topic for future
research. It would contribute to a resilient tree scaling algorithm, to be used
to form a 64MUX, 128MUX or even beyond. After searching for publications
that present a 16-bit multiplexer or higher, it was concluded that the effort
to create a design of this scale has not been made, or at least no such effort
was published. However, certain publications do propose a scheme to create
a multiplexer of this order, or present a lower-bit multiplexer and advertise
it to be used as a building block for higher-bit one. [20, 9]

As discussed in footnote 7 of this chapter, QCA-STACK’s method of
simulation could be to blame concerning the wire instability at higher-bit
multiplexers. A script that converts a QCA-STACK cell environment to a
QCADesigner input file can be made to test whether this continuous simu-
lation engine produces different results. If QCADesigner shows that wires
that are only stable in QCA-STACK after adding a certain amount of clock
phases are in fact stable with fewer clock phases, this would lead to two sub-
jects for future work. Firstly, the clock setting algorithm could be made more
conservative with adding clock phases, and secondly, our discrete simulation
engine would need attention in order to be consistent with QCADesigner’s
output; it most likely requires a different evaluation order algorithm.
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Lastly, a note must be made on the QCA-STACK’s input system. With
the large generated multiplexers, the delays between some of the inputs –
specifically the SELECT input S0 compared to the DATA inputs in a 16-
or higher-bit multiplexer – become significant, preventing the input system
to supply the user-given inputs to the QCA in the expected logical manner.
Possibly, the input system can be extended to process extra user input,
specifying certain clock delays. Alternatively, an algorithm could be made
that traverses a QCA to algorithmically determine the clock delay between
two cells, which could be used to determine the required clock offset of
certain inputs.

4.4.4 Visual output to HTML

As cell environments are scaled up to the order of the algorithmically gener-
ated 32MUX or 64MUX – respectively consisting of 1359 cells and 19 layers,
and 4503 cells and 23 layers – viewing visual simulation output in a console
becomes infeasible. Even faster systems are unable to render such cell envi-
ronments in an instant; add this to the fact that the procedurally generated
multiplexers of this specific size respectively require around 30 and around
50 clock phases to produce a result, and it becomes clear that an alternative
method of displaying simulation output must be sought after for the visual
assessment of the intended functionality of the QCA. Most CLIs also limit
the number of consecutive lines that can be viewed, preventing the user to
see the entire simulation output for larger queries.

To improve the user experience in this regard, a method was devised
that enables the user to view visual QCA-STACK output in a browser as
a HTML page. The simulation running function runSimNPhasesWrite is
parametrised with a Tmax – described in Section 3.3.1 – and writes the
visual simulation output (including ANSI escape sequences) to an output
file. This file is converted to an HTML file with the use of a Python script
that was created for this purpose, which depends on the library ansi2html.9

Both the intended layout and the intended colours are retained in the
HTML output. Browser viewing offers much faster rendering times and has
no limits regarding the size of the page. The script along with exemplary
multiplexer simulation outputs as HTML pages are found on the QCA-
STACK GitHub page.10

This method of viewing simulation output improves over CLI output in
a number of ways, although the rendering times are still not ideal for large
designs. For larger scale use, a method that enables hardware accelerated
viewing should be created in order to achieve optimal rendering times.

9https://github.com/pycontribs/ansi2html
10https://github.com/wlambooy/QCA-STACK
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Related Work

In 1993, Lent et al. published an article that became known as the concep-
tion of the QCA paradigm. [15] In this article, they present the fundamental
physics of the system as well as small AND- and OR-gates and methods for
QCA memory storage. The system of clocking QCAs is later worked out in
2001 by Hennessy and Lent. [10] Tóth later writes a dissertation in which
the physics and the clocking system are extensively described. [27] This
thesis is used as a foundational reference work for the simulation engines of
QCADesigner, presented in a paper in 2005. [30] QCADesigner has been
used in numerous publications to verify the functioning of designs presented,
including each reference in this thesis that presents a non-schematical design.

It is particularly interesting to compare this work with publications pre-
senting RCAs or multiplexers. The RCA design we present can be used to
generate RCAs exceeding 512 bits with ease, though successful simulations
have only been achieved with an up to 64-bit RCA due to limitations of the
hardware used for the simulation – the amount of memory that is needed
scales exponentially in the current state of QCA-STACK. Conversely, other
researchers were able to simulate a 128-bit RCA. [4] If we compare the cell
count of this design with our procedurally generated design, however, we
notice a significant difference. The 128-bit RCA design consists of 32256
cells, while our generated design consists of just of a little more than a tenth
of that: 3841 cells. A generated 1024-bit RCA consists of 30721 cells, fewer
still than the existing 128-bit RCA.

As stated in Section 4.4.3, no publication was found that presents a 16:1
multiplexer. We can compare the cell count of an existing 8:1 multiplexer
to our procedurally obtained version, however. The early generation of such
multiplexers consist of around 500-700 cells, though newer designs have been
presented that are able to achieve the same with just over 300 cells. [22, 14]
After searching for the lowest cell count of an existing multiplexer of this
capacity, it was concluded that the lowest cell count is 260 cells, presented
in [9]. In comparison, our 8:1 multiplexer consists of 165 cells.
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Chapter 6

Conclusions

In the previous chapters, we have seen how the QCA system was reduced to
its functional core to form the QCA-STACK simulation engine, and how it
was extended with stacking algorithms that were able to generate extensible
2n-bit ALU components. Now we discuss how this concept can be used to
ultimately form a 2n-bit nano-scale processing cuboid.

Consider the design of an extensible 2n-bit ALU. This ALU would con-
sist of a 2n-bit RCA, a 2n-bit bitwise logical operations module, a 2n-bit
bit-shift, et cetera. All of these designs would be stackable and each design
has a specific function or function call that transforms it into a 2n+1 de-
sign. The ALU connects the designs in such a way to create a functional
2n-bit unit. Now extending this unit into a 2n+1-bit one simply requires
each individual component to be stacked using the corresponding stacking
operation. We have seen that linearly stackable components require no extra
space on the plane when stacked, though arboreally stackable components
do. Undoubtedly, an algorithm can solve this spacing issue for us. Addi-
tionally, an algorithm should be designed that connects the components and
synchronises the clock phases to produce a 2n+1-bit ALU.

In theory, the same logic could be applied to other required parts of
a processor, forming a processor consisting of densely packed components
that would look similar to skyscrapers in Downtown New York. Hence, by
the three-dimensional nature of the structure, a scalable 2n-bit nano-scale
processing cuboid emerges.

6.1 Future works

Realising the proposed concept requires certain algorithms whose processes
have not been considered throughout this thesis, leaving much work to be
done. Additionally, the correctness of the discrete simulation engine should
be assessed and possibly improved, as discussed in Section 3.1.3. Also the
tree stacking function requires attention; this was discussed in Section 4.4.3.
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Appendix A

Input Files

A.1 RCA: Version 2

1 = = = = = = =

2 c

3 0

4 0 1 y

5 a 0 1 1 y 1 s

6 0 1

7 0

8 b

9 = = = = = = =

10 0 0

11

12

13 0

14 0

15

16 0 0

17 = = = = = = =

18 0

19 0

20 0

21 1

22 0 1 1 1 1 1 1

23 1

24 0

25 = = = = = = =

26

27

28

29 1

30 1

31

32

33 = = = = = = =

34 S

35 2

36 x x

37 A 1 2 2 2 1 1

38 1 2 1

39 1

40 B

41 = = = = = = =

42

43

44

45 1 1

46 1 1

47

48 1 1

49 = = = = = = =

50 C

51 2

52 2

53 2

54 1 1 1 1 2 1 1

55 1

56 1

57 = = = = = = =

58 2 2

59

60

61

62

63

64

65 = = = = = = =

66 2

67

68

69

70

71

72

73 = = = = = = =

74

75 $

76

77 a:

78 - input

79 - label = "A"

80 - clock = 0

81 - number = 0

82

83 b:

84 - input

85 - label = "B"

86 - clock = 0

87 - number = 0

88

89 A:

90 - input

91 - label = "A"

92 - clock = 1

93 - number = 1

94

95 B:

96 - input

97 - label = "B"

98 - clock = 1

99 - number = 1

100

101 c:

102 - input

103 - label = "Cin"

104 - clock = 0

105 - propagate

106

107 C:

108 - output

109 - label = "Cout"

110 - clock = 2

111 - number = 1

112 - propagate

113

114 s:

115 - output

116 - label = "SUM"

117 - clock = 1

118 - number = 0

119

120 S:

121 - output

122 - label = "SUM"

123 - clock = 2

124 - number = 1

125

126 y:

127 - clock = 1

128 - offset = (0,-0.5,0)

129

130 x:

131 - clock = 2

132 - offset = (0.5,0,0)
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A.2 AND / OR

1 = = =

2 o i

3 = = =

4 1

5 = = =

6 -

7 = = =

8

9 $

10

11 i:

12 - input

13 - label = "I"

14 - clock = 0

15 - number = 0

16

17 o:

18 - output

19 - label = "AND"

20 - clock = 1

21 - propagate

1 = = =

2 o i

3 = = =

4 1

5 = = =

6 +

7 = = =

8

9 $

10

11 i:

12 - input

13 - label = "I"

14 - clock = 0

15 - number = 0

16

17 o:

18 - output

19 - label = "OR"

20 - clock = 1

21 - propagate

A.3 Multiplexer

1 = = = = = = =

2

3

4

5 a b c d

6

7

8 = = = = = = =

9

10

11

12 2 2 2 2

13

14

15 = = = = = = =

16 0 S 0 0

17 1 1 1 1

18 2 2 2 2

19 3 - 3 3 - 3

20 4 4 4 4

21 4 4 p + p 4 4

22 = = = = = = =

23

24

25

26

27

28 5 5

29 = = = = = = =

30

31

32 1 1

33 5 5

34 5 5

35 5 5

36 = = = = = = =

37

38

39 1 1

40

41

42

43 = = = = = = =

44 s 0

45 1 1

46 2 - 2

47 2 2

48 3

49 + o

50 = = = = = = =

51 $

52

53 a:

54 - input

55 - label = "I"

56 - clock = 2

57 - number = 0

58

59 b:

60 - input

61 - label = "I"

62 - clock = 2

63 - number = 1

64

65 c:

66 - input

67 - label = "I"

68 - clock = 2

69 - number = 2

70

71 d:

72 - input

73 - label = "I"

74 - clock = 2

75 - number = 3

76

77 s:

78 - input

79 - label = "SEL"

80 - clock = 0

81 - number = 0

82

83 S:

84 - input

85 - label = "SEL"

86 - clock = 0

87 - number = 1

88

89 o:

90 - output

91 - clock = 3

92 - label = "OUT"

93

94 p:

95 - clock = 5

96 - propagate
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