
Bachelor thesis
Computing Science

Radboud University

Using IRMA as an authentication
method for eduVPN

Author:
Wouter van Battum
s1011825

First supervisor/assessor:
prof. dr. B.P.F. Jacobs (Bart)

b.jacobs@cs.ru.nl

External supervisors:
R. Spoor (Rogier)

rogier.spoor@SURF.nl

F. Kooman (François)
f.kooman@tuxed.net

Second assessor:
Botros (Leon)

leon.botros@ru.nl

January 27, 2021

Abstract

SURF, the collaborative organisation for ICT in Dutch education and re-
search, wants to make their VPN service, eduVPN, available for a wider
audience. Currently, institutions log into the service by using the authen-
tication method of SURF, which is only available to students, researchers
and institutions’ employees. Therefore, a prototype for an authentication
method is created using the open source and privacy friendly project called
IRMA.

At first the programming language that will be used for the prototype
will be decided. Second, the front-end and back-end from IRMA will be
integrated into eduVPN. Third, the servers and reverse proxy will be con-
figured such that the servers can communicate securely. These steps leads
to the development of the prototype in which users can log into the VPN
server using their email address attribute from IRMA.

Contents

1 Introduction 3
1.1 IRMA . 3
1.2 My Contribution . 3

2 Preliminaries 6
2.1 IRMA terminology . 6

2.1.1 Attribute . 6
2.1.2 Requestor token . 6

2.2 Browser related . 6
2.2.1 401 Unauthorized Error 6
2.2.2 Content Security Policy (CSP) 6
2.2.3 REST API . 7

2.3 Proxy server . 7
2.3.1 Reverse proxy . 7

3 Programming Language 8
3.1 Front-end . 8
3.2 Back-end . 8

4 Front-end integration 9
4.1 Integration . 9
4.2 Authentication . 9

5 Back-end integration 11
5.1 Authentication . 11

6 Configuration of the servers 13
6.1 IRMA server . 13
6.2 eduVPN . 14
6.3 Reverse proxy . 14
6.4 Overall configuration . 15

1

7 Attribute disclosure 16
7.1 Pseudo-anonymity . 16
7.2 Attribute . 16

7.2.1 Alter the existing attribute 16
7.2.2 Creating a new attribute 17

8 Limitations 18
8.1 Trade-offs . 18

8.1.1 Popup window or integrated element 18
8.1.2 Requestor token or JWT 18
8.1.3 Verifying the session result 19

8.2 Encountered problems . 19
8.2.1 Defer attribute . 19
8.2.2 Loading JWT in the front-end 19
8.2.3 Starting the session in the front-end 20
8.2.4 Session token is in the browser 20
8.2.5 Configuring the reverse proxy 21

9 Conclusions 22
9.1 Sub-questions . 22
9.2 Main research question . 22

10 Future work 24
10.1 Attribute . 24
10.2 Email address . 24
10.3 Keep the IRMA server running 24

11 Acknowledgements 25

A Front-end code 28
A.1 irmaAuthentication.php . 28
A.2 irma impl.js . 29

B eduVPN configuration 30

C Back-end code 35

D IRMA server configuration 40

E Reverse proxy configuration 41

F IRMA Markdown file 43

2

Chapter 1

Introduction

Nowadays, privacy is getting more and more attention everywhere. It is
becoming more important to get a secure internet connection. With a VPN
you already shield yourself from eavesdroppers in your network. Currently,
there are lot of providers for a VPN service. However, SURF1 currently pro-
vides a VPN service for students, researches and employees of institutions,
this service is called eduVPN2. However, SURF wants to expand their reach
and make eduVPN available for everyone. In order to do so they need a pri-
vacy friendly authentication method. The Privacy by Design Foundation3

came up with a solution: IRMA.

1.1 IRMA

IRMA (I Reveal My Attributes) is an open-source project from the Pri-
vacy by Design Foundation. IRMA lets you authenticate yourself using
“attributes”, revealing only the necessary information [1].

An attribute contains certain types of information about the user. For
instance, there is an attribute “Over 18” which you can only obtain when
you are over eighteen. These attributes enables you to only disclose certain
information about yourself and thereby not unnecessarily releasing sensitive
information [2].

1.2 My Contribution

Currently, IRMA is written in JavaScript, Go and Node.js. However, edu-
VPN is written in PHP. Therefore, this research aims to investigate how to
securely integrate IRMA as an authentication method for eduVPN. Thereby,
developing a prototype in which IRMA is integrated into eduVPN.

1https://www.surf.nl/en/about-surf
2https://www.surf.nl/en/eduvpn/about-eduvpn?dst=n1173
3https://privacybydesign.foundation/en/

3

https://www.surf.nl/en/about-surf
https://www.surf.nl/en/eduvpn/about-eduvpn?dst=n1173
https://privacybydesign.foundation/en/

This research is divided in the following sub-questions:

(1) In which programming language should the prototype be written?

(2) How can the front-end be integrated with IRMA?

(3) How can the back-end be integrated with IRMA?

(4) How should the servers be configured such they can communicate se-
curely?

(5) Which attribute should eduVPN ask for during the authentication?

The first sub-question will aid this research, because IRMA and eduVPN
are written in different languages. Therefore, a well-considered choice has
to be made. The second sub-question will aid the research, because for
the front-end, decisions have to be made on which information should be
available in the browser and which information should be kept away from the
browser? The third sub-question will aid the research, because in the back-
end decisions have to be made about which information to request from the
IRMA server and which retrieved information should be verified. The fourth
question is of importance to this research, because if you have integrated
IRMA into eduVPN, how should the servers of IRMA and eduVPN and the
reverse proxy be configured such that they can communicate securely with
each other? The fifth sub-question will aid this research, because the Privacy
by Design foundation provides some attributes that everyone can acquire.
However, the question is which attribute should be chosen or should they
create their own attribute? And why?

After answering these sub-questions, we will be able to draw a conclusion
to the main research question. Furthermore, the prototype that is developed
during this research is based on the answers of these questions.

Outline

The outline of this paper is as follows, in chapter 2 the terminology in
order to understand this research is explained. Chapter 3 will discuss
which programming language should be used for the prototype. In chap-
ter 4, is discussed what happens in the front-end during a session and how
IRMA’s front-end is integrated in eduVPN’s front-end. Chapter 5 will dis-
cuss through the back-end code. In chapter 6, will be discussed how to
configure the IRMA server, eduVPN server and the reverse proxy. Chapter
7 discusses which attribute should be used when the prototype is taken to
production. In chapter 8 will the problems that were encountered during
the research be discussed and how they have been solved. Furthermore, in
this chapter will be discussed which trade-offs were made in the process of
developing the prototype. Chapter 9 will contain the conclusions that can

4

be drawn from the research and sub-questions. The steps that need to be
taken in order to be able to use the prototype will be discussed in chapter
10. In chapter 11 the people who aided the research will be thanked and
the division of work will be elaborated.

5

Chapter 2

Preliminaries

In the previous chapter the problem of eduVPN is defined and discussed. In
this chapter the necessary terminology in order to understand the research
is explained.

2.1 IRMA terminology

2.1.1 Attribute

According to the definition of [3] an attribute is “A small piece of data,
generally containing a statement about the attribute owner”. This could be
for instance that the owner of that the attribute is over eighteen.

2.1.2 Requestor token

The requestor token is a string that is specified in the configuration file from
the IRMA server. If the IRMA server is setup such that a token must be
provided, only applications that have such a token can communicate with
the IRMA server.

2.2 Browser related

2.2.1 401 Unauthorized Error

According to the MDN contributors [4] the 401 error response code means
that the request has not been applied because the request did not contain
the correct credentials for the target source.

2.2.2 Content Security Policy (CSP)

According to the MDN contributors [5] the CSP is an added layer of security
on top of the regular security a browser provides, such that attacks like Cross

6

Site Scripting and data injection attacks are mitigated. Therefore protects
your server from data theft to the distribution of malware.

2.2.3 REST API

Red Hat [6] states that a REST API is an API that conforms to the con-
straints of REST, where REST is a set of architectural constraints to be
used for creating web services. REST allows the requester to access and
manipulate textual representations of resources by using predefined opera-
tions [7].

2.3 Proxy server

2.3.1 Reverse proxy

According to the definition from NGINX [8] a reverse proxy is a type of
proxy server that typically sits behind the firewall in a private network and
directs client requests to the appropriate back-end server. Furthermore, it
provides extra security. Because for instance the proxy can close all the
ports except 433 if you only want to communicate over HTTPS.

7

Chapter 3

Programming Language

IRMA and eduVPN are written in different languages. Therefore, a decision
has to be made in which language we are going to write the prototype. This
problem will be discussed in this chapter.

3.1 Front-end

For the front-end, there had to be chosen between PHP and JavaScript. We
chose for a JavaScript inside a PHP file so we could have the best possible
collaboration. This was easily done, as we could insert a JavaScript script
inside PHP through: <script type= "javascript">.

3.2 Back-end

For the back-end, the decision was less trivial. Because, the back-end code
for IRMA is also written in JavaScript and contains helpers that can be used
in the handling of the sessions. Although, the JavaScript from IRMA has
those functions, we have chosen to use PHP as the programming language
for the back-end. Such that the communication with the rest of the eduVPN
server did not become over complicated. Furthermore, the IRMA server has
a REST API1 which could be used for session handling. For the back-end
we have chosen to use PHP. This is because eduVPN is written in PHP.

1https://irma.app/docs/api-irma-server/

8

https://irma.app/docs/api-irma-server/

Chapter 4

Front-end integration

In the previous chapters the problem is explained, the preliminaries are
discussed and the programming language that will be used are discussed. In
this chapter we are going to elaborate the front-end code.

4.1 Integration

For the front-end we had to choose between a popup or an integrated form
from IRMA. We have chosen for a popup because this would let us keep the
style sheet and layout from eduVPN. This also meant that we did not need
to integrate the style sheet of IRMA in the style sheet of eduVPN.

For functionality we had to include an IRMA JavaScript package named
“irma.js”. The package provides the functionality of generating the popup
window that shows the QR-code, which is used for the authentication. The
layout is shown in Figure 4.1.

In order to comply to a strict Content Security Policy in production, we
had to put the front-end code in the irma impl.js file. This file is can be
found in Appendix A.

4.2 Authentication

For the authentication there are multiple ways in which the front-end can
be configured [9]. Because the sensitive data needs to be kept outside of the
browser, we have chosen to configure the IRMA plugin in such a way that
it only shows the QR-code.

The authentication process starts directly when the login page is opened.
The QR-code that is shown is build by the IRMA plugin and is based on
the session pointer it gets from the back-end. If the QR-code is scanned,
the popup window waits for the user to authenticate themselves. If the
user has shared their attribute in the IRMA app, the popup window closes.

9

Otherwise, the popup window shows an error message saying that some-
thing went wrong. If the authentication succeeded, the front-end submits
an empty form to the back-end as a sign that the session result can be
fetched from the IRMA server.

The complete code from the front-end can be found in Appendix A.

Figure 4.1: Layout of the front-end

10

Chapter 5

Back-end integration

In the previous chapters the front-end is explained and the necessary infor-
mation about the problem is discussed. In this chapter, the back-end code
will be elaborated.

5.1 Authentication

The variables that are used for starting the verification are userIdAttribute
and secretToken. These variables are specified in the configuration file
config.php file, which is in Appendix B. The location on where to find the
IRMA server is saved as a default value in the eduVPN configuration and
therefore does not needs to be specified here.

At first, the back-end sends a POST request [10] with the attribute that
needs to be disclosed by the user. This POST request has an Authorization
header that contains the token which the eduVPN server uses to identify
itself at the IRMA server. At this point the IRMA server creates a session
and responses with the session pointer and session token. From this response
the variable sessionPtr is extracted at the back-end and send to the front-
end for the generation of the QR-code. The value of the variable token is
stored in the current session. The token is not send to the front-end, because
then an adversary is not able to extract the session token the network traffic.
Therefore, the adversary cannot communicate with the IRMA server about
the current session.

If the authorisation succeeded, the form in the front-end is submitted and
that gives the back-end the signal to send a GET request to the IRMA server
asking for the result [10]. After the back-end server has gotten the response
from the IRMA server it checks whether the proofStatus is present in the
response. If it is present the back-end server checks whether proofStatus

is “VALID”. If there is no proofStatus or it is not “VALID”, a 401 error
is thrown. Furthermore, the back-end checks whether the status of the
session is finished, this means that the value of status is “DONE”. At last,

11

the back-end checks if the session ended without any errors. Therefore, it
checks for the presence of the field error, if that field is not present the
session ran without errors. If the results from the verification checks are
correct, the back-end server sets the variable userIdAttribute to the value
of rawvalue. The variable rawvalue is the value which the user identified
itself with, in the case of the prototype this is an email address. If the
back-end server is not able to extract rawvalue from the response, then the
server will throw a 401 error.

If the variable userIdAttribute is set to rawvalue, the browser is redi-
rected to the VPN homepage. On the homepage under the section “Ac-
count” the email address that is used for the authentication can be found
at “userId”.

The complete code from the back-end can be found in Appendix C.

12

Chapter 6

Configuration of the servers

Now that we know from the previous chapters what the front-end and back-
end does, we will look elaborate in this chapter how the IRMA server, edu-
VPN server and reverse proxy should be configured.

6.1 IRMA server

In order to configure the IRMA server such that it communicates securely
with the eduVPN server, the option production needed to be set to true.
This meant that the defaults for the configuration options would be stricter
[11]. Because we wanted to restrict the access to the IRMA server as much as
possible, the eduVPN server needs to identify itself with a requestor token.
Furthermore, setting the production variable to true, meant that we either
specify an email address or set the variable no email to true. We chose to
set no email to true, because the prototype is not used for production and
therefore we do need the updates about changes in the IRMA software or
ecosystem. However, in production the email address should be specified.

What also is specified in the configuration file is the URL on which the
IRMA app can find the IRMA server. The address and port on which the
eduVPN server can find the IRMA server is specified in the listen addr

and port variables. For security reasons the server only allows users to
disclose their email address attribute. Such that if for example an adversary
does not have a valid email address but has a different valid attribute, the
adversary is not able authenticate themselves using the other attribute.

For the prototype is chosen to use the email address as the attribute that
needs to be disclosed in order to be granted access to the VPN service. An
example IRMA server session log is shown in Figure 6.1 (for privacy reasons
the sensitive data is deducted).

The IRMA configuration file can be found in Appendix D.

13

6.2 eduVPN

Before the eduVPN environment is ready to run with IRMA as the authen-
tication method, the configuration needs to be altered. This means alter-
ing the /etc/vpn-user-portal/config.php file. This is done by changing
the authentication method to IrmaAuthentication and by specifying the
IrmaAuthentication section such that the server knows which attribute
should be disclosed and what the requestor token is. The requestor token
must match the token in the IRMA server configuration. The location on
which the eduVPN server can reach the IRMA server is not specified. This
is because the default has been set to the location specified in the IRMA
configuration. These changes lead to the following configuration:

// ...

'authMethod' => 'IrmaAuthentication',

// ...

'IrmaAuthentication' => [

'userIdAttribute' => 'pbdf.sidn-pbdf.email.email',

'secretToken' => 'dz0OSwTqr0tJxpH7uJ9GL0PZMf3OCELF',

],

The entire configuration file can be found in Appendix B.
For the prototype, the attribute that needs to be disclosed is the email

address attribute. This attribute is only chosen for proof of concept, a more
privacy-friendly attribute would be for instance the over18 attribute. In
section 9.2 is elaborated what attribute should be used if the prototype is
taken to production.

An example eduVPN server session log is shown in Figure 6.2 (for privacy
reasons the sensitive data is deducted).

6.3 Reverse proxy

Because the IRMA and eduVPN server run behind a reverse proxy, the
reverse proxy also needed to be configured, such that it would properly
handles the sessions. Only one line needed to be added to the <VirtualHost
*:443> section:

ProxyPass "/irma/" "http://localhost:8088/irma/"

Because the requests from the eduVPN server to the IRMA server and vice
versa are inside an internal network behind the reverse proxy, there is no
need to use HTTPS. The entire reverse proxy configuration can be found in
Appendix E.

14

6.4 Overall configuration

An organized overview is created to increase readability for users that want
to use IRMA as the authentication method in the eduVPN environment.
This overview is written as a Markdown file. It can be found in Appendix
F.

Figure 6.1: IRMA server log

Figure 6.2: eduVPN server log

15

Chapter 7

Attribute disclosure

In the previous chapters the development of the prototype is discussed and
what the prototype entailed. In this chapter the attribute that should be
used in production is discussed.

7.1 Pseudo-anonymity

Currently, the prototype uses the email address as the attribute that needs
to be disclosed by the user. However, this is not exactly privacy friendly.
Therefore, in order to increase anonymity the user should be identified with
a numerical ID or a pseudonym. This means that we would achieve pseudo-
anonymity. For users of course the most optimal solution to achieve full
anonymity. However, that means that when the user is online, they can
do whatever they want because it cannot be linked back to them. For
SURF, pseudo-anonymity would be the best option, because users can still
be anonymous online but are not anonymous for SURF. Therefore, when an
user would violate the user agreement or performs illegal actions online, the
user can still be identified and penalised.

7.2 Attribute

7.2.1 Alter the existing attribute

SURF already has an attribute in the IRMA database. Currently, this at-
tribute is only available to students, researchers and institutions’ employees.
The attribute contains the following information [12]:

(1) The institute that provided the attribute.

(2) The position of the user at the institution.

(3) The ID number of the user at the institution.

16

(4) The full name of the user as registered by the institution.

(5) The front name of the user as registered by the institution.

(6) The family name of the user as registered by the institution.

(7) The email address of the user at the institution

In order to achieve pseudo-anonymity this attribute needs to be altered such
that is available to everyone. This can be done by for instance leaving (1)
empty, setting (2) to for instance “public” and setting (3) to the membership
ID. Furthermore, (4)-(7) should be provided by another IRMA attribute
such that the information that is provided can be trusted.

7.2.2 Creating a new attribute

The second option is to create a new attribute containing the information
that is needed by SURF. In order to achieve pseudo-anonymity this attribute
would also needs some sort of membership ID which can be related to a
single user. The user information in this attribute should also be provided
by IRMA, such that the information is trustworthy. There is a side note,
because creating a new attribute is not done for free, so this option comes
with additional costs [13].

17

Chapter 8

Limitations

In the previous chapters the prototype is explained and discussed. In this
chapter we will review the process that got us to the prototype as it cur-
rently is. In particular, the trade-offs we had to make and the problems we
encountered will be discussed.

8.1 Trade-offs

8.1.1 Popup window or integrated element

When the irma.js file is used, there is a choice of using an integrated
form in your web page or a popup window. We chose for a popup window,
because this meant we did not had to integrate the IRMA style sheet into the
eduVPN style sheet. Currently this choice is out convenience, such that we
did not need to go through the IRMA style sheet and extract the necessary
elements. The only disadvantage occurs when you want to add more buttons
or elements to the web page. Then, the user would need to close the IRMA
popup window and refresh the page in order to get another popup window.
The popup window could also be shown when clicked on a button. However,
because currently the users only need the popup window, we chose not to
use a button.

8.1.2 Requestor token or JWT

The second trade-off we had to make was that we had to choose between
authenticating via a requestor token or via JWT. After a problem with using
JWT in the browser we decided to use the requestor token instead. If this
token is kept secret, and nobody bypasses the reverse proxy, no one else
can access the IRMA server. However, if this token is leaked, adversaries
can only start a new session on the IRMA server and disclose the email
attribute. This is, because the IRMA server is configured such that it only

18

allows the requestor to disclose the email address attribute. Furthermore,
Mr Kooman is not a fan of JWT. Therefore it was an easy decision.

8.1.3 Verifying the session result

The irma.js file provides the functionality of checking if the attribute that
the user disclosed is valid. However, if the REST API is used it is also
possible to let the back-end handle the verification. We have chosen for
the latter, because this meant that we could also keep the attribute that
the user disclosed in the back-end. Therefore we have chosen to verify the
results ourselves in the back-end. The request that the back-end sends to
the IRMA server and the response of the IRMA server to the back-end are
shown in Figure 7.1 (for privacy reasons sensitive data is deducted).

Figure 8.1: The request for the result and the response

8.2 Encountered problems

8.2.1 Defer attribute

Problem

The first problem that we encountered was that that we got the error from
the browser that the variable irma could not be found. This was because at
first the original JavaScript form had the defer option enabled at the import
of the irma.js file. This meant that the irma.js file had not been loaded
yet but the JavaScript already wanted to access the variable irma, which is
defined in irma.js.

Solution

The solution to this problem was neither deferring the import of irma.js

nor the JavaScript code that handles the front-end.

8.2.2 Loading JWT in the front-end

Problem

The second problem occurred when we tried to sign the session requests
using JWT. This could be done by including a Node.js package made by

19

the Privacy by Design Foundation. This would mean that we needed the
require() function in our JavaScript. However, a browser cannot load
Node.js modules.

Solution

As a solution we decide to let go of the JWT and use the requestor token
instead. This meant we needed to include an “Authorization header” in the
POST-request to the IRMA server when the authentication session would
be initiated.

8.2.3 Starting the session in the front-end

Problem

At first, we tried to handle the entire session in the front-end by using the
functionality from irma.js. However, this meant that we could not extract
the session token. This session token is needed to verify the session result
in the back-end.

Solution

The solution was using the IRMA REST API, which meant that we needed
to perform a POST request in the front-end and extract the session token
from the response. Then, the session token needed to be sent to the back-
end, and the session pointer to the IRMA plugin.

8.2.4 Session token is in the browser

Problem

From the previous problem another problem arose. Starting the session in
the front-end meant that the session token and the secret token from the
authorization header would be visible in the browser. This is of course far
from desirable because if an adversary got hold of the secret token. The
adversary would then be able to start sessions to our IRMA server himself.
Otherwise, if the adversary got a hold on the session token, he could for
instance delete the session before it was finished or we could verify the
result.

Solution

The solution to this problem was starting the session from the back-end.
This meant that no sensitive data would be visible it an adversary would
sniff the network traffic between the front-end and the reverse proxy.

20

8.2.5 Configuring the reverse proxy

Problem

When configuration the reverse proxy we ran into the problem that when
we started a session we could see a QR-code in the web browser. However,
is disappeared after a second and returned an error.

Solution

The solution was that we needed to add backslashes to the reverse proxy
configuration. After we did this, it worked but another problem arose.

Problem

The second problem with the reverse proxy was that once we created an
IRMA session, and the browser asked for the status of the session at the
IRMA server, that the IRMA server said it did not know the session and
therefore returned an error, a bad request error. The underlying problem
was that the reverse proxy stripped of a part of the URL: “/irma/”.

Solution

In order to solve this problem we had to extend the URL in the reverse proxy
configuration such that the requests were redirected to the correct endpoint.
This meant appending the “/irma/” section to the URL. We went from
“ProxyPass ‘/irma/’ http://localhost:8088/” to “ProxyPass ‘/irma/’

http://localhost:8088/irma/”. This solved the issue.

21

Chapter 9

Conclusions

In the previous chapters, the problem is described, the preliminaries are
explained, the sub-questions have been answered, and the steps that need
to be taken to implement an IRMA server for eduVPN have been described.
In this chapter, the conclusion that can be based on the previous chapters
is drawn.

9.1 Sub-questions

The conclusions that can be drawn from the sub-questions are as follows:

(1) The front-end can be written in your preferred programming language.
However, it needs to have a JavaScript block in the front-end to use
the functionality provided by the IRMA plugin.

(2) The front-end can be integrated with IRMA by using the functionality
of the irma.js file.

(3) The back-end can be integrated with IRMA by using the REST API
functionality to construct the correct requests to perform the session.

(4) The server should be configured behind a reverse proxy such that the
traffic between the servers is hidden from the outside.

(5) The attribute that should be asked for during the authentication should
be existing attribute from SURF, with more options such the everyone
can obtain the attribute.

9.2 Main research question

From the sub-questions and research we can conclude that in order to inte-
grate IRMA into eduVPN securely, you need to follow the steps shown in
this research. However, then it would not be privacy friendly because the

22

email address is used as the attribute that needs to be disclosed. The de-
velopment of the attribute is essential in adapting the prototype for privacy
friendly production usage.

23

Chapter 10

Future work

In the previous chapters the the prototype is explained and discussed. How-
ever, in order to take this prototype into production, a few adaptions have
to be made. These adaptions are for further research and work. Therefore,
these adaptions will be discussed in this chapter.

10.1 Attribute

For testing purposes the email address attribute is used. However, for pro-
duction purposes the attribute discussed in chapter 9 should be developed
and used.

10.2 Email address

When the prototype is adapted for production, the IRMA server configura-
tion should contain an email address of one of the main developers. This
email address will be stored by the Privacy by Design Foundation. This
email address is only used to notify the developers about changes in the
IRMA software or ecosystem. This is important because if those changes
are not implemented or the IRMA server is not adapted, the IRMA server
could become no longer compatible with the rest of the IRMA ecosystem.
[14].

10.3 Keep the IRMA server running

Currently, the IRMA server of the prototype runs on a virtual machine and I
start the server when I connect to the virtual machine. This means that the
IRMA server does not always run and the prototype is not always available.
For the production the IRMA server should be hosted somewhere where it
is permanently hosted.

24

Chapter 11

Acknowledgements

This research and prototype could not have been possible without the sup-
port of one of my supervisors, François Kooman. He helped me by writing
a large part of the back-end code. He wrote the back-end based on what I
had researched about what the back-end should do, for instance the POST
request to the IRMA server and which values to retrieve from the responses.
He did this because he is much more sophisticated with programming in
PHP than me. So overall, we discussed what needed to be done and then he
wrote the back-end code, such that it looked and worked at its best. I wrote
the front-end and Kooman extended it such that it would comply to the
strict CSP setting. Furthermore, Kooman improved the IRMA Markdown
file I wrote such that it contained less text and was adapted to the final
updates.

25

Bibliography

[1] Privacy by Design Foundation, Privacy Policy, 2020. [Online].
Available: https://privacybydesign.foundation/privacy-
policy-en/#top-of-page.

[2] ——, IRMA in detail. [Online]. Available:
https://privacybydesign.foundation/irma-explanation/.

[3] ——, Technical overview, 2020.
[Online]. Available: https://irma.app/docs/overview/.

[4] MDN Contributors, 401 Unauthorized, 2020.
[Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Status/401.

[5] ——, Content Security Policy (CSP), 2020. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP.

[6] Red Hat Inc., What is a REST API, 2021. [Online]. Available:
https://www.redhat.com/en/topics/api/what-is-a-rest-api.

[7] Wikipedia Contributors, Representational state transfer, 2020.
[Online]. Available: https:
//en.wikipedia.org/wiki/Representational_state_transfer.

[8] NGINX developers, What Is a Reverse Proxy Server? n.d.
[Online]. Available: https:
//www.nginx.com/resources/glossary/reverse-proxy-server/.

[9] I. Derksen, IRMA client, 2020. [Online]. Available:
https://github.com/privacybydesign/irma-frontend-

packages/blob/6a8899c855da6d82f40b38b0f5088462d385084c/

plugins/irma-client/README.md.

[10] Privacy by Design Foundation, IRMA API server, 2020.
[Online]. Available: https://irma.app/docs/api-irma-server/.

[11] ——, irma server, 2020. [Online]. Available:
https://irma.app/docs/irma-server/#production-mode.

[12] ——, IRMA attributes, n.d. [Online]. Available:
https://privacybydesign.foundation/attribute-

index/en/pbdf.pbdf.surfnet.html.

26

https://privacybydesign.foundation/privacy-policy-en/#top-of-page
https://privacybydesign.foundation/privacy-policy-en/#top-of-page
https://privacybydesign.foundation/irma-explanation/
https://irma.app/docs/overview/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/401
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/401
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.nginx.com/resources/glossary/reverse-proxy-server/
https://www.nginx.com/resources/glossary/reverse-proxy-server/
https://github.com/privacybydesign/irma-frontend-packages/blob/6a8899c855da6d82f40b38b0f5088462d385084c/plugins/irma-client/README.md
https://github.com/privacybydesign/irma-frontend-packages/blob/6a8899c855da6d82f40b38b0f5088462d385084c/plugins/irma-client/README.md
https://github.com/privacybydesign/irma-frontend-packages/blob/6a8899c855da6d82f40b38b0f5088462d385084c/plugins/irma-client/README.md
https://irma.app/docs/api-irma-server/
https://irma.app/docs/irma-server/#production-mode
https://privacybydesign.foundation/attribute-index/en/pbdf.pbdf.surfnet.html
https://privacybydesign.foundation/attribute-index/en/pbdf.pbdf.surfnet.html

[13] ——, Integrate IRMA in your website, n.d. [Online]. Available:
https://privacybydesign.foundation/irma-verifier/#issue.

[14] ——, Email address, 2020.
[Online]. Available: https://irma.app/docs/email/.

27

https://privacybydesign.foundation/irma-verifier/#issue
https://irma.app/docs/email/

Appendix A

Front-end code

A.1 irmaAuthentication.php

1 <?php $this−>l ayout ('base' , ['pageTitle' => $this−>t ('Sign In

')]) ; ?>
2 <?php $this−>s t a r t ('content') ; ?>
3 <!--

4 irma.js obtained from https://gitlab.science.ru.nl/irma/

github-mirrors/irma-frontend-packages/-/jobs/111202/

artifacts/browse/irma-frontend/dist

5 @see https://github.com/privacybydesign/

irma-frontend-packages/tree/master/irma-frontend

6 -->
7 <script src="<?php echo $this->getAssetUrl($requestRoot , 'js/

irma.js '); ?>"></script>
8 <script src="<?php echo $this->getAssetUrl($requestRoot , 'js/

irma_impl.js '); ?>"></script>
9 <!--

10 the _irma/verify endpoint is triggered after the

attribute release with the

11 IRMA app is complete. This is only used to inform the

backend that the

12 IRMA server needs to be queried to obtain the

attribute...

13 -->
14 <div id="irmaAuth" data−session−ptr="<?php echo $this->e(

$sessionPtr); ?>">
15 <form method="post" action="<?php echo $requestRoot; ?>

_irma/verify">
16 </ form>
17 </div>
18 <?php $this−>stop ('content') ; ?>

28

A.2 irma impl.js

1 "use strict" ;
2
3 document . addEventListener ("DOMContentLoaded" , function () {
4 const s e s s i onPt r = document . getElementById ("irmaAuth") .

datase t . s e s s i onPt r ;
5 const irmaFrontend = irma . newPopup({
6 debugging : false ,
7
8 session : {
9 s t a r t : false ,

10 mapping : {
11 s e s s i onPt r : function () {
12 return JSON. parse (s e s s i onPt r) ;
13 }
14 } ,
15 r e s u l t : fa l se
16 }
17 }) ;
18
19 irmaFrontend . s t a r t () . then (function (re sponse) {
20 document . que rySe l e c to r ("div#irmaAuth form") . submit () ;
21 }) . catch (function (e r r o r) {
22 conso l e . e r r o r ("Couldn't do what you asked" , e r r o r) ;
23 }) ;
24
25 }) ;

29

Appendix B

eduVPN configuration

1 <?php
2
3 re turn [
4 // override default branding style (templates/CSS) with

custom style.

5 // NOTE: the styling/branding MUST be installed for this

to work!

6 //'styleName' => 'eduVPN',
7 //'styleName' => 'LC',
8
9 //'authMethod' => 'FormPdoAuthentication ', // PDO

(database)

10 //'authMethod' => 'FormLdapAuthentication ', // LDAP

11 //'authMethod' => 'FormRadiusAuthentication ', // RADIUS

12 //'authMethod' => 'SamlAuthentication ', // SAML (

php-saml -sp)

13 //'authMethod' => 'MellonAuthentication ', // SAML (

mod_auth_mellon)

14 //'authMethod' => 'ShibAuthentication ', // SAML (

Shibboleth)

15 'authMethod' => 'IrmaAuthentication' ,
16
17 // Default Session Expiry

18 // The session expiry will be used to determine the "Not

After" of the

19 // issued X.509 certificates and the moment at which to

start rejecting

20 // the OAuth tokens.

21 'sessionExpiry' => 'P90D' , // 90 days

22 //'sessionExpiry' => 'PT12H', // 12 hours

23 //'sessionExpiry' => 'P1D', // 1 day

24
25 // LDAP

26 'FormLdapAuthentication' => [
27 // *** OpenLDAP / FreeIPA ***

28 'ldapUri' => 'ldaps://ipa.example.org' ,
29 'bindDnTemplate' => 'uid={{UID}},cn=users ,cn=accounts

30

,dc=example ,dc=org' ,
30 //'permissionAttribute' => 'eduPersonEntitlement ',
31 //'permissionAttribute' => 'memberOf',
32
33 // *** Active Directory ***

34 //'ldapUri' => 'ldap://ad.example.org',
35 //'bindDnTemplate' => 'DOMAIN\{{UID}}',
36 //'baseDn' => 'dc=example ,dc=org',
37 //'userFilterTemplate' => '(sAMAccountName={{UID}})',
38 //'permissionAttribute' => 'memberOf',
39] ,
40
41 // RADIUS

42 'FormRadiusAuthentication' => [
43 'serverList' => [
44 [
45 'host' => 'radius.example.org' ,
46 'secret' => 'testing123' ,
47 //'port' => 1812,

48] ,
49] ,
50 //'addRealm' => 'example.org',
51 //'nasIdentifier' => 'vpn.example.org',
52] ,
53
54 // SAML (php-saml -sp)

55 'SamlAuthentication' => [
56 // 'OID for eduPersonTargetedID

57 'userIdAttribute' => 'urn:oid
:1.3.6.1.4.1.5923.1.1.1.10' ,

58 // OID for eduPersonPrincipalName

59 //'userIdAttribute' => 'urn:oid
:1.3.6.1.4.1.5923.1.1.1.6 ' ,

60
61 // ** AUTHORIZATION | PERMISSIONS **

62 // OID for eduPersonEntitlement

63 //'permissionAttribute' => 'urn:oid
:1.3.6.1.4.1.5923.1.1.1.7 ' ,

64 // OID for eduPersonAffiliation

65 //'permissionAttribute' => 'urn:oid
:1.3.6.1.4.1.5923.1.1.1.1 ' ,

66
67 // override the SP entityId , the default is:

68 // https://vpn.example.org/vpn-user -portal/_saml/

metadata

69 //'spEntityId' => 'https://vpn.example.org/saml',
70
71 // (Aggregate) SAML metadata file containing the IdP

metadata of IdPs

72 // that are allowed to access this service

73 'idpMetadata' => '/path/to/idp/metadata.xml' ,
74
75 // set a fixed IdP for use with this service , it MUST

be available in

31

76 // the IdP metadata file

77 'idpEntityId' => 'https://idp.example.org/saml' ,
78
79 // set a URL that performs IdP discovery , all IdPs

listed in the

80 // discovery service MUST also be available in the

IdP metadata file ,

81 // NOTE: do NOT enable idpEntityId as it will take

precedence over

82 // using discovery...

83 //'discoUrl' => 'http://vpn.example.org/php-saml -ds/
index.php',

84
85 // AuthnContext required for *all* users

86 //'authnContext' => ['urn:oasis:names:tc:SAML:2.0:ac:
classes:TimesyncToken '],

87
88 // Users with certain permissions obtained through

89 // "permissionAttribute" MUST also have ANY of the

listed

90 // AuthnContexts. If they currently don't, a new

authentication is

91 // triggered to obtain it

92 //'permissionAuthnContext' => [

93 // 'urn:example:LC-admin' => ['urn:oasis:names:tc:
SAML:2.0:ac:classes:TimesyncToken '],

94 //],

95
96 // Allow for overriding global sessionExpiry based on

SAML

97 // "permissionAttribute" value(s)

98 //'permissionSessionExpiry' => [

99 // 'urn:example:LC-admin' => 'PT12H',
100 //],

101] ,
102
103 // SAML (mod_auth_mellon)

104 'MellonAuthentication' => [
105 // OID for eduPersonTargetedId

106 'userIdAttribute' => 'MELLON_urn:oid:1
_3_6_1_4_1_5923_1_1_1_10' ,

107 // OID for eduPersonPrincipalName

108 //'userIdAttribute' => 'MELLON_urn:oid:1
_3_6_1_4_1_5923_1_1_1_6 ',

109
110 // ** AUTHORIZATION | PERMISSIONS **

111 // OID for eduPersonEntitlement

112 //'permissionAttribute' => 'MELLON_urn:oid:1
_3_6_1_4_1_5923_1_1_1_7 ',

113 // OID for eduPersonAffiliation

114 //'permissionAttribute' => 'MELLON_urn:oid:1
_3_6_1_4_1_5923_1_1_1_1 ',

115] ,
116

32

117 // SAML (Shibboleth)

118 'ShibAuthentication' => [
119 'userIdAttribute' => 'persistent -id' ,
120 //'userIdAttribute' => 'eppn',
121
122 // ** AUTHORIZATION | PERMISSIONS **

123 //'permissionAttribute' => 'entitlement ',
124 //'permissionAttribute' => 'affiliation ',
125] ,
126
127 // the permission required to be able to access the "

admin" portion of

128 // the portal , see "permissionAttribute" in the

authentication

129 // configuration sections

130 //'adminPermissionList' => ['urn:example:LC-admin '],
131
132 // list of userIds that have access to the admin

133 'adminUserIdList' => ['admin'] ,
134
135 // Require Users to use 2FA

136 'requireTwoFactor' => false ,
137 //'requireTwoFactor' => true ,

138
139 // Available 2FA methods

140 //'twoFactorMethods' => ['totp '], // TOTP

141 'twoFactorMethods' => [] , // 2FA disabled

142
143 // supported languages in the UI, the first one mentioned

is the default

144 'supportedLanguages' => [
145 'en_US' => 'English' ,
146 //'nl_NL' => 'Nederlands',
147 //'nb_NO' => 'norsk bokmal',
148 //'da_DK' => 'Dansk',
149 //'fr_FR' => 'Francais',
150] ,
151
152 'Api' => [
153 'consumerList' => [
154 //'_CLIENT_ID_' => [

155 // 'redirect_uri_list' => [

156 // '_REDIRECT_URI_1_ ',
157 // '_REDIRECT_URI_2_ ',
158 //],

159 // 'display_name' => '_DISPLAY_NAME_ ',
160 // 'require_approval' => true ,

161 // 'client_secret' => '_SECRET_',
162 //],

163] ,
164
165 // Enable Remote Access , i.e. users from other VPN

servers listed in

166 // the below remoteAccessList files to access this

33

VPN server through

167 // the OAuth API

168 'remoteAccess' => false ,
169 'remoteAccessList' => [
170 'production' => [
171 'discovery_url' => 'https://static.eduvpn.nl/

disco/secure_internet.json' ,
172 'public_key' => 'E5On0JTtyUVZmcWd+I/

FXRm32nSq8R2ioyW7dcu/U88=' ,
173] ,
174 //'development' => [

175 // 'discovery_url' => 'https://static.eduvpn.
nl/disco/secure_internet_dev.json',

176 // 'public_key' => '
zzls4TZTXHEyV3yxaxag1DZw3tSpIdBoaaOjUGH/Rwg

=',
177 //],

178] ,
179] ,
180
181 'IrmaAuthentication' => [
182 // Specify the URL to your (local) IRMA server.

183 // OPTIONAL , DEFAULT: http://localhost :8088

184 //'irmaServerUrl' => 'http://localhost:8088',
185
186 // The attribute used for the user ID in the service

187 'userIdAttribute' => 'pbdf.sidn -pbdf.email.email' ,
188
189 // The token to talk to the session endpoint of the

IRMA server , make

190 // sure it matches the one configured in the IRMA

server config

191 'secretToken' => 'dz0OSwTqr0tJxpH7uJ9GL0PZMf3OCELF' ,
192] ,
193
194 // Connection to vpn-server -api

195 'apiUser' => 'vpn-user -portal' ,
196 'apiPass' => 'veZmnEeaOWWlBFFtayWcax9TuldGDb4M' ,
197 'apiUri' => 'http://localhost/vpn-server -api/api.php' ,
198] ;

34

Appendix C

Back-end code

1 <?php
2
3 /*

4 * eduVPN - End-user friendly VPN.

5 *

6 * Copyright: 2016-2019, The Commons Conservancy eduVPN

Programme

7 * SPDX -License -Identifier: AGPL -3.0+

8 */

9
10 namespace LC\Porta l ;
11
12 use LC\Common\Config ;
13 use LC\Common\Http\BeforeHookInter face ;
14 use LC\Common\Http\Exception \HttpException ;
15 use LC\Common\Http\RedirectResponse ;
16 use LC\Common\Http\Request ;
17 use LC\Common\Http\Response ;
18 use LC\Common\Http\ Se rv i c e ;
19 use LC\Common\Http\ Serv i c eModu l e In te r f a c e ;
20 use LC\Common\Http\ S e s s i o n I n t e r f a c e ;
21 use LC\Common\Http\User In fo ;
22 use LC\Common\HttpCl ient \HttpC l i en t In t e r f a c e ;
23 use LC\Common\Json ;
24 use LC\Common\Tp l In t e r f a c e ;
25
26 c l a s s IrmaAuthent icat ion implements Serv i ceModule Inte r face ,

Be foreHookInter face
27 {
28 /** @var \LC\Common\TplInterface */

29 protec ted $ tp l ;
30
31 /** @var SessionInterface */

32 p r i va t e $ s e s s i o n ;
33
34 /** @var \LC\Common\HttpClient\HttpClientInterface */

35 p r i va t e $httpCl i ent ;

35

36
37 /** @var \LC\Common\Config */

38 p r i va t e $ con f i g ;
39
40 pub l i c func t i on c on s t r u c t (S e s s i o n I n t e r f a c e $ s e s s i on ,

Tp l In t e r f a c e $tp l , H t tpC l i en t In t e r f a c e $httpCl ient ,
Conf ig $ con f i g)

41 {
42 $ th i s−>s e s s i o n = $ s e s s i o n ;
43 $ th i s−>t p l = $ tp l ;
44 $ th i s−>ht tpCl i en t = $ht tpCl i ent ;
45 $ th i s−>c on f i g = $ con f i g ;
46 }
47
48 /**

49 * @return void

50 */

51 pub l i c func t i on i n i t (S e rv i c e $ s e r v i c e)
52 {
53 $ s e rv i c e−>post (
54 '/_irma/verify' ,
55 /**

56 * @return \LC\Common\Http\Response

57 */

58 func t i on (Request $ r eques t) {
59 i f (nu l l === $sess ionToken = $ th i s−>s e s s i on−>

get ('_irma_auth_token')) {
60 throw new HttpException ('token not found

in session' , 400) ;
61 }
62
63 $ i rmaStatusUrl = sprintf ('%s/session/%s/

result' , $ th i s−>con f ig−>r e qu i r e S t r i n g ('
irmaServerUrl') , $sess ionToken) ;

64 $httpResponse = $ th i s−>httpCl ient−>get (
$ i rmaStatusUrl , [] , []) ;

65 // @see https://irma.app/docs/api-irma -server

/#get-session -token -result

66 $ jsonData = Json : : decode ($httpResponse−>
getBody ()) ;

67 i f (\ a r r a y k e y e x i s t s ('error' , $ jsonData)) {
68 throw new HttpException ('Error: ' .

$ jsonData ['error'] , 401) ;
69 }
70
71 // the "proofStatus" key is only available

when the

72 // authentication finished , here we make sure

it is 'VALID'
73 i f (! \ a r r a y k e y e x i s t s ('proofStatus' ,

$ jsonData)) {
74 throw new HttpException ('missing "

proofStatus"' , 401) ;
75 }

36

76 i f ('VALID' !== $ jsonData ['proofStatus']) {
77 throw new HttpException ('"proofStatus"

MUST be "VALID"' , 401) ;
78 }
79
80 // the 'status' key is only 'DONE' when the

81 // authentication finished , here we make sure

it is 'DONE'
82 i f (! \ a r r a y k e y e x i s t s ('status' , $ jsonData))

{
83 throw new HttpException ('missing "status"

' , 401) ;
84 }
85
86 i f ('DONE' !== $ jsonData ['satus']) {
87 throw new HttpException ('"status" MUST be

"DONE"' , 401) ;
88 }
89
90 // the 'error key is only available when an

error occured'
91 // here we make sure we continue without an

error

92 i f (\ a r r a y k e y e x i s t s ('error' , $ jsonData)) {
93 throw new HttpException ('an error occured

' , $ jsonData ['error'] , 401) ;
94 }
95
96 $use r IdAtt r ibute = $ th i s−>con f i g−>

r e qu i r e S t r i n g ('userIdAttribute') ;
97 $user Id = nu l l ;
98
99 // extract the attribute we want

100 foreach ($ jsonData ['disclosed'] [0] as
$ a t t r i b u t eL i s t) {

101 i f ($use r IdAtt r ibute === $ a t t r i b u t eL i s t ['
id']) {

102 $user Id = $ a t t r i b u t eL i s t ['rawvalue'] ;
103 }
104 }
105
106 i f (nu l l === $user Id) {
107 throw new HttpException ('unable to

extract "' . $use r IdAtt r ibute . '" from

the disclosed attribute(s)' , 401) ;
108 }
109
110 $ th i s−>s e s s i on−>s e t ('_irma_auth_user' ,

$user Id) ;
111
112 // return to where the users started at

113 return new RedirectResponse ($request−>
requ i reHeader ('HTTP_REFERER') , 302) ;

114 }

37

115) ;
116 }
117
118 /**

119 * @return \LC\Common\Http\UserInfo|\LC\Common\Http\

Response|null

120 */

121 pub l i c func t i on executeBe fore (Request $request , array
$hookData)

122 {
123 i f (S e rv i c e : : i sWh i t e l i s t e d ($request , ['POST' => ['/

_irma/verify']])) {
124 re turn nu l l ;
125 }
126
127 i f (nu l l !== $authUser = $ th i s−>s e s s i on−>get ('

_irma_auth_user')) {
128 re turn new User In fo (
129 $authUser ,
130 []
131) ;
132 }
133
134 // @see https://irma.app/docs/getting -started/#

perform -a-session

135 $httpResponse = $ th i s−>httpCl ient−>postJson (
136 $ th i s−>con f ig−>r e qu i r e S t r i n g ('irmaServerUrl') . '/

session' ,
137 [] ,
138 [
139 '@context' => 'https://irma.app/ld/request/

disclosure/v2' ,
140 'disclose' => [
141 [
142 [
143 $ th i s−>con f i g−>r e qu i r e S t r i n g ('

userIdAttribute') ,
144] ,
145] ,
146] ,
147] ,
148 [
149 'Authorization: ' . $ th i s−>con f i g−>

r e qu i r e S t r i n g ('secretToken') ,
150]
151) ;
152
153 $ jsonData = Json : : decode ($httpResponse−>getBody ()) ;
154 i f (! \ a r r a y k e y e x i s t s ('sessionPtr' , $ jsonData)) {
155 throw new HttpException ('"sessionPtr" not

available JSON response' , 500) ;
156 }
157 // extract "token" and store it in the session to be

used

38

158 // @ verification stage

159 i f (! \ a r r a y k e y e x i s t s ('token' , $ jsonData)) {
160 throw new HttpException ('"token" not available in

JSON response' , 500) ;
161 }
162 $sess ionToken = $ jsonData ['token'] ;
163 $ th i s−>s e s s i on−>s e t ('_irma_auth_token' , $sess ionToken

) ;
164
165 // extract sessionPtr and make available to frontend

166 $ s e s s i onPt r = Json : : encode ($ jsonData ['sessionPtr']) ;
167
168 $ re sponse = new Response (200 , 'text/html') ;
169 $response−>setBody (
170 $ th i s−>tp l−>render (
171 'irmaAuthentication' ,
172 [
173 'sessionPtr' => $ s e s s i onPtr ,
174]
175)
176) ;
177
178 return $ re sponse ;
179 }
180 }

39

Appendix D

IRMA server configuration

1 produc t i on : true
2 no ema i l : true
3 # l i s t e n only on "localhost" as t r a f f i c goes e i t h e r d i r e c t l y
4 # to l o c a l ho s t , ∗ or ∗ through the r ev e r s e proxy
5 l i s t e n a d d r : "127.0.0.1"

6 po r t : 8088
7 # th i s i s the URL used by the app to connect to the IRMA−go

s e r v e r through the
8 # (r ev e r s e) proxy
9 u r l : "https://vpn.example/irma"

10
11 r e q u e s t o r s :
12 vpn:
13 # the a t t r i b u t e to be used for the user ID
14 d i s c l o s e p e rms : ["pbdf.sidn-pbdf.email.email"]
15 auth method: "token"

16 # key to a l low VPN por t a l to t a l k to s e r v e r . Generate one
us ing e . g .

17 # `pwgen −s 32 −n 1`
18 key : "dz0OSwTqr0tJxpH7uJ9GL0PZMf3OCELF"

40

Appendix E

Reverse proxy configuration

1 <Virtua lHost ∗ : 80>
2 ServerName http : //irma.spoor.nu:80
3 UseCanonicalName on
4
5 LogLevel warn
6 ErrorLog l o g s / irma . spoor . nu e r r o r l o g
7 TransferLog l o g s / irma . spoor . nu a c c e s s l o g
8
9 Red i rec t permanent / https : //irma.spoor.nu/

10 </Virtua lHost>
11
12 <Virtua lHost ∗ : 443>
13 ServerName https : //irma.spoor.nu:443
14 UseCanonicalName on
15
16 LogLevel warn
17 ErrorLog l o g s / irma . spoor . n u s s l e r r o r l o g
18 # Do not log (valid) web browser requests

19 #TransferLog logs/irma.spoor.nu_ssl_access_log

20
21 SSLEngine on
22
23 #SSLCertificateFile /etc/pki/tls/certs/irma.spoor.nu.crt

24 #SSLCertificateKeyFile /etc/pki/tls/private/irma.spoor.nu

.key

25 #SSLCertificateChainFile /etc/pki/tls/certs/irma.spoor.nu

-chain.crt

26
27 # Let's Encrypt

28 SSLCe r t i f i c a t eF i l e / e t c / l e t s e n c r yp t / l i v e / irma . spoor . nu/
c e r t . pem

29 SSLCer t i f i ca t eKeyF i l e / e t c / l e t s e n c r yp t / l i v e / irma . spoor . nu
/ pr ivkey . pem

30 SSLCer t i f i c a t eCha inF i l e / e t c / l e t s e n c r yp t / l i v e / irma . spoor .
nu/ chain . pem

31
32 # Security Headers

41

33 Header always s e t S t r i c t−Transport−Secur i ty "max-age

=15768000"

34
35 ProxyPass "/irma/" "http://localhost :8088/irma/"

36
37 # Redirect requests to the portal (302)

38 RewriteEngine on
39 RewriteRule "^/$" "/vpn-user -portal/" [R]
40 </Virtua lHost>

42

IRMA Authentication
NOTE: IRMA authentication is NOT supported, you are on your own!

NOTE: The IRMA server is NOT part of the VPN software packages. YOU are responsible

for its installation, configuration, installing updates, keep it secure and in general

keep it running!

NOTE: IRMA authentication is NOT production ready! Check the bottom of this document

for open issues.

We assume that you already have a working VPN server with valid TLS certificate. See

deployment if you do not already.

IRMA Server Installation & Configuration

Download and install the IRMA server according to the documentation. Use the following

configuration file, e.g. irma.yml :

use stricter defaults for the configuration options

production: true

no_email: true

listen only on "localhost" as traffic goes either directly

to localhost, *or* through the reverse proxy

listen_addr: "127.0.0.1"

port: 8088

this is the URL used by the app to connect to the IRMA-go server through the

(reverse) proxy

url: "https://vpn.example/irma"

requestors:

 vpn:

 # the attribute to be used for the user ID

 disclose_perms: ["pbdf.sidn-pbdf.email.email"]

 auth_method: "token"

 # key to allow VPN portal to talk to server. Generate one using e.g.

 # `pwgen -s 32 -n 1`

 key: "dz0OSwTqr0tJxpH7uJ9GL0PZMf3OCELF"

To start the IRMA server:

$ irma server -c irma.yml

Portal Configuration

Modify /etc/vpn-user-portal/config.php by changing authMethod to IrmaAuthentication

and adding the IrmaAuthentication section. For example:

// ...

'authMethod' => 'IrmaAuthentication',

// ...

Appendix F

IRMA Markdown file

43

'IrmaAuthentication' => [

 // Specify the URL to your (local) IRMA server.

 // OPTIONAL, DEFAULT: http://localhost:8088

 //'irmaServerUrl' => 'http://localhost:8088',

 // The attribute used for the user ID in the service

 'userIdAttribute' => 'pbdf.sidn-pbdf.email.email',

 // The token to talk to the session endpoint of the IRMA server, make

 // sure it matches the one configured in the IRMA server config

 'secretToken' => 'dz0OSwTqr0tJxpH7uJ9GL0PZMf3OCELF',

],

Change the Apache configuration to add the reverse proxy line to allow the IRMA app to

talk to the IRMA server. Modify /etc/httpd/conf.d/${WEB_FQDN}.conf and add the

following line in the <VirtualHost *:443> section:

ProxyPass "/irma/" "http://localhost:8088/irma/"

Restart Apache:

$ sudo systemctl restart httpd

	Introduction
	IRMA
	My Contribution

	Preliminaries
	IRMA terminology
	Attribute
	Requestor token

	Browser related
	401 Unauthorized Error
	Content Security Policy (CSP)
	REST API

	Proxy server
	Reverse proxy

	Programming Language
	Front-end
	Back-end

	Front-end integration
	Integration
	Authentication

	Back-end integration
	Authentication

	Configuration of the servers
	IRMA server
	eduVPN
	Reverse proxy
	Overall configuration

	Attribute disclosure
	Pseudo-anonymity
	Attribute
	Alter the existing attribute
	Creating a new attribute

	Limitations
	Trade-offs
	Popup window or integrated element
	Requestor token or JWT
	Verifying the session result

	Encountered problems
	Defer attribute
	Loading JWT in the front-end
	Starting the session in the front-end
	Session token is in the browser
	Configuring the reverse proxy

	Conclusions
	Sub-questions
	Main research question

	Future work
	Attribute
	Email address
	Keep the IRMA server running

	Acknowledgements
	Front-end code
	irmaAuthentication.php
	irma_impl.js

	eduVPN configuration
	Back-end code
	IRMA server configuration
	Reverse proxy configuration
	IRMA Markdown file

