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Abstract

Malware use domain generation algorithms (DGAs) to generate pseudo-
random domain names to evade supervision. In order to defend against
DGA traffic, security researchers have to discover and comprehend the al-
gorithm by reverse engineering malware samples and register these domains
in a DNS blacklist. Even though, this list has to be frequently updated,
it is readily circumvented by malware authors. An alternative approach is
to detect DGA domains using deep learning techniques to classify domains.
Recent work in DGA detection have leveraged deep learning architectures
such as convolutional neural networks (CNNs) and long short-term memory
networks (LSTMs) to classify domains. However, these classifiers perform
inconsistently. Specifically wordlist-based DGA families have been a strug-
gle for these architectures. We propose a novel model based on a distilled
version of Bidirectional Encoder Representation from Transformers (Distil-
BERT) to detect DGA domains. The word embeddings are pre-trained on
a large unrelated corpus to learn contextual embeddings for words bidirec-
tionally. Afterwards, the pre-trained parameters enable for short training
durations on DGA domains, while the language knowledge stored in the
representation grants high performance with a small training dataset. We
show that our model outperforms existing techniques on DGA classification,
while simultaneously we need less time to train our model. Experiments in
this paper are run on open datasets and the models’ source code is provided
to reproduce the results.
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Chapter 1

Introduction

As the purpose of our digital devices continue to expand, the importance
of protecting our sensitive data has become more crucial. The pandemic
has proven how much we rely on these devices. The value of our digital re-
sources has increased, which makes this an appealing target for exploitation.

A malicious software, or malware, is a software that targets our digital
resources. The emerging presence of malware has created different types of
malware and new attack methods to our computer systems. According to
the AV-Test report, in 2021 the number of malware totaled around 1320
million, a 13 times increase of the report in 2012, which was around 100
million [6].

Most types of modern malware communicate with malicious external servers
using different network protocols. Domain Name Server (DNS) is a network
protocol used frequently to connect to these external servers [25]. The mali-
cious external servers have different domain names to ensure it is available to
the malwares. An external server that has a single domain or a fixed IP ad-
dress can be blacklisted, which will make the server inaccessible. Therefore,
external servers create multiple domain names for the malware to connect
to. The multiple domain names are created by generating them using a do-
main generated algorithm (DGA). The malwares are packed with the same
DGA that the malicious external server uses, so that it can generate the
same domain names. These domain names are registered in advance to se-
cure them. The malware uses DNS services to connect to domain names
that resolve to the IP address of the malicious external server.



Recently malware that uses DGA are polymorphic. The malware can gen-
erate domain names dynamically. One way to do that is by using time
information as a seed for the DGA [5]. The polymorphic aspect of the mal-
ware improves the concealment and robustness of the malware as well as
brings great challenges to DGA-based malware detection.

Hence, a solution is needed to defend against DGA-based malware. Tra-
ditional detection methods use DNS traffic or domain name language char-
acteristics to extract features out of the DGA malware. Afterwards machine
learning is used to analyze the extracted features and complete the identifi-
cation and classification of DGA domain names. However, it is difficult to
determine the DNS traffic and domain name language characteristics of dif-
ferent types of DGA. Specifically, DGA types that use wordlists to generate
domains are difficult to differentiate from benign domains. Therefore, detec-
tion schemes based on feature extraction and DNS traffic have a high time
and bandwidth cost, meaning the features that are extracted are not flexible.

More comprehensive tactics are necessary to detect malicious domain names
and differentiate them from benign domain names. An improved detection
method compared with previous approaches is the detection model based
on deep learning. The benefit of deep learning is the automatic extraction
of the DGA domain features, as well as understanding the context of the
domain names.

We propose a nouveau detection model based on deep learning, the Bidirec-
tional Encoder Representations from Transformers (BERT) to detect DGA
domains. BERT is a transformer-based machine learning technique which
allows for bidirectional training in models. This in contrast to previous ef-
forts train on a text sequence from left to right or right to left. The second
benefit to BERT is that it is already pre-trained on different language rep-
resentation models [I1].

The original English-language BERT base model is pre-trained on unla-
beled data from the BooksCorpus [33] with 800 million words and English
Wikipedia with 2500 million words [3]. Our research will use a distilled ver-
sion of BERT, called DistilBERT [2I]. This model reduces the size of BERT
by 40%, while still retaining 97% of its language understanding capabilities
and being 60% faster. With our DistilBERT model that is pre-trained on
uncased English words, we are able to detect DGA domains with low-cost,
while still surpassing previous detection models.



The paper is structured as follows. In chapter two we will shortly explain
what malware is and what kind of malware types that exist. We will describe
how botnets use domain generated algorithms to stay online and avoid de-
tection. After that we will describe machine learning, specifically different
neural network techniques, from older neural network techniques to newer
ones. As well as pointing out the problems and shortcomings of the older
neural networks. Then, we will introduce a new deep learning model, called
the transformer model. Furthermore, we will unfold the BERT and Dis-
tilIBERT models that are transformer-based. We will clarify the benefits of
these transformer-based models and how they solved several problems of the
older neural network techniques.

In chapter three we will show a detailed implementation of our DistilBERT
detection model to detect DGA-based malware domains. Thereafter, show
the kind of results our DistilBERT model has produced. Finally, we will
compare our results with previous results of DGA detection models.

In chapter four we will examine previous research done in DGA detection,
while looking at their results and their shortcomings.

In chapter five we will evaluate all of our results and discuss the prob-
lems our model has and how to improve it. We will conclude by giving any
suggestions for future research in this field.



Chapter 2

Preliminaries

This section will describe malware, the different types and how it utilizes
DGA to perform malicious acts. It will also explain the basics of machine
learning and different types of neural networks that are necessary for this
research paper.

The term “malware” is coined by blending two words: malicious and soft-
ware, a software that is malicious in nature. Malware can have multiple
purposes, such as cybercriminals using it to extract data from the victims’
computer to leverage against them for financial gain. This data can range
from financial data to sensitive personal data, like healthcare records, per-
sonal emails, passwords and countless other possibilities.

The most common ways victims receive malware is through the internet and
email. Malware can penetrate a victims’ computer in different ways, such
as: surfing malicious websites, viewing malicious ads, downloading infected
files, and installing malicious programs or apps. When a malware infects
the computer system of a victim, it can end up in a network of infected
computers.

2.1 Botnets

A compromised machine that is infected by malware can end up in a network
of infected machines (botnets). This machine is a bot in that network, which
receives and responds to commands from the command & control server (C
& C). The C & C server is controlled and receives commands by a human
controller called a botmaster. The botmaster conceals itself by employing a
number of proxy machines, called the stepping stones, between it and the C
& C server. The life cycle of a botnet can be divided into four phases. Only
the first two phases are significant for this research.



The first phase is when the machine (bot) receives the malware and exe-
cutes the binary. After the machine is infected, this machine (bot) tries to
contact the C & C server to announce its presence and communicate with
it. This establishment phase is called Rallying. There are two ways that the
bot can contact the C & C server. The first way, the bot uses the IP address
of the C & C server to contact it. This IP address can be hardcoded into
the binary of the bot. The problem with this, is that the IP address can
be exposed by reverse engineering the binary. The IP address can also be
seeded, where the bot is provided by a list of peers. The second way is that
the bot knows the domain name of the C & C server. The domain name will
be hardcoded into the bot binary, which also makes it vulnerable to reverse
engineering the binary.

2.2 Domain Generation Algorithm

Another way that the malware can connect to the C & C server is by gener-
ating a domain name. This is done by using a domain generation algorithm
(DGA). Bots can dynamically contact the C & C server using DGA. They
attempt to resolve the generated domain names by sending DNS queries to
the C & C server until one of the domains resolves. Domains that do not
resolve will result in Non-Existent Domain (NXDomain) responses.

Domain names that are generated by DGA are also known as Algorith-
mically Generated Domains (AGD). The DGA uses a seed that serve as a
shared secret between the botmaster and the bot. There are two types of
seeds: static seed and dynamic seed. The seed is required for the DGA
to calculate the AGDs. The DGA takes the seed value as input to gen-
erate pseudo-random strings and append algorithmically TLD (Top Level
domains) to the domains, such as .nl, .com, .org, .edu. The static seed can
be a dictionary of words, random strings that are concatenated, numbers
or any other value that the botmaster can come up with. Dynamic seeds
change with time, which makes them dynamic. These seeds can be cur-
rency exchange rate, daily trending twitter hashtag, weather temperature,
and current date and time. The static and dynamic seed elements are then
stitched together to generate a pseudo-random string.

The botmaster uses the DGA to generate a large number of domain names
for the C & C server. The constant change of domain names for the C &
C server is known as Domain-Fluxing. The botmaster tries to register gen-
erated domain names in advance in order to reserve those domain names.
When the bot receives the malware, the malware queries the pre-registered
domain name and resolves the IP address using DNS. Often the botmaster
registers the domain name a few hours prior to an attack and disposes of it



within a day. Whenever the bots can not resolve the previous domain name,
they query the next set of generated domain names until it finds a domain
that does work.

The DGA and constant domain-fluxing of the C & C server provides agility
and resilience to the infrastructure of the botnet. This makes it hard to
predict what domain names a bot will try to resolve. On the other hand,
analysts will re-engineer DGA by analyzing the malware and understanding
how the algorithm works. The difficulty of analyzing DGA is to predict
what kind of seed these DGA will use at a specific time. It is also infeasible
to report all the domain names that can be generated. Since some DGA
use English dictionaries as static seed values, it makes it even harder to
distinguish benign domain names from malicious ones.

2.3 Machine Learning

Machine learning has recently been an attractive tool used in security. One
way to combat DGA is to use machine learning to classify the structure of
the generated domains. There are two machine learning methods: super-
vised and unsupervised learning. Unsupervised learning uses algorithms to
analyze and cluster data, which in our specific case are the domains. These
algorithms discover hidden patterns or data groupings, without a need for
human intervention. There are three ways to approach unsupervised learn-
ing: clustering, association and dimensionality reduction. The domains are
divided into clusters to find statistical attributes for each group. To produce
a cluster with good generalization capabilities, it can take a lot of time and
effort [I5]. Supervised learning does not rely on the statistical attributes for
each group to classify DGAs. Supervised learning attempts to understand,
classify the input and predict the outcome accurately. The relationship is
represented as a structure to predict the outputs for specific future inputs.



2.4 Neural Networks

Artificial Neural Networks are artificial systems that are inspired by the bi-
ological counterpart. The system learns in a supervised manner to perform
tasks by training on various datasets and examples. These neural networks
are composed of multiple node layers: input, hidden and output layers.
Each node is connected to another node and has an associated weight w
and threshold ¢. When the threshold ¢ of a specific node is above a certain
threshold value, then that node is activated, otherwise no data is passed
along to the next layer of the network. This is determined by a specifically
used activation function in the network.

The network uses training data to learn and improve the accuracy of the
network. This is usually done by backpropagation. Backpropagation is
a supervised learning algorithm that computes the difference between the
model output and the actual output using gradient descent and the chain
rule. It checks if the error is minimized and updates the weights w and
biases accordingly. It repeats the process until the error becomes minimum
[16].

2.5 Activation Functions

The activation functions are functions that determine the output of a neural
network. It maps the input value of a neuron to the output value. The
function receives the calculated weighted sum of the inputs and the added
bias, and then decides if this sum passes through to the next layer or not.
There are two types of activation functions: linear activation functions and
non-linear activation functions. The linear activation functions are functions
that do not update the weighted sum of the input, but instead returns
the value directly. A neural network with multiple layers needs non-linear
activation functions, because linear activation functions would make the
hidden layer in that network purposeless.

2.5.1 ReLU Activation Function

ReLU, or Rectified Linear Unit, is a linear activation function. It is linear
when the input is positive and 0 when the input is negative. The range of
ReLu is [0,inf). The benefit of ReLu is that there is a reduced likelihood
of the gradient to vanish when the gradient is constant. However, the
constant gradient results that the network learns faster. Another benefit
is the sparsity, as the network has more units in a layer, other activation
functions will be processed to describe the output of that network. When
the calculated sum value in ReLU is negative, it yields 0. This means there
are fewer neurons firing, which makes the network lighter.
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Figure 2.1: |ReLU activation function

The disadvantage is that ReLLU tends to blow up, as the range goes to
infinity and there is no mechanism to constrain the output when it is pos-
itive. Another disadvantage is that if too many activations in the network
reach below zero, then the neurons in the network will output zero. This
means that the outputs die out, which will prohibit learning. This is called
the Dying ReLu problem [I§].

2.5.2 Sigmoid Activation Function

The sigmoid activation function is a non-linear activation function that looks
like an S-shape. Any small changes in the incoming X value (the calculated
sum) will cause the Y value (the output) to change significantly. The range
of the function is (0,1). That means the range is bounded, which means it
does not blow up. The disadvantage of the sigmoid activation function is
the vanishing gradients [2.6.1
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Figure 2.2: Sigmoid activation function
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2.5.3 Tanh Activation Function

The tanh activation function resembles the sigmoid function. The difference
is that the range of tanh activation function is (—1,1). Another difference
is that the gradients are stronger for tanh than sigmoid. That means the
derivatives are steeper. One benefit tanh has over sigmoid, is that it avoids
biases in the gradients [30].

tanh(z)

Figure 2.3: [Tanh activation function

2.6 Recurrent Neural Networks

Recurrent neural networks (RNN), are a type of neural network that uses
the output from the previous step and feeds this output as input in the
current step. Whereas in traditional neural networks, the network assumes
that the inputs and outputs are independent of each other. The cost func-
tion or error in RNN can be calculated at any time t. At any time ¢, the
current input is a combination of inputs x; and x;_1. This makes the neu-
ral network recurrent, it has feedback loops at each iteration of the hidden
layer. Recurrent neural networks are used for Sequence Modeling. Sequence
Modeling is the task to predict future outcomes.

However, there are some drawbacks to RNN. The first drawback is when
the sequence is done in order, there is a limit in how much training can
be parallelized. The second drawback is that the farther away the relevant
points in the sequence are from one another, the harder and slower it is to
make connections between them. This drawback is caused by the vanishing
gradient problem.
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Figure 2.4: Recurrent Neural Network (RNN) illustration
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2.6.1 Vanishing Gradient Problem

The vanishing gradient problem can be encountered when gradient-based
learning methods and backpropagation are used. Adding more layers using
non-linear activation functions to the neural network causes the gradients
of these loss functions to approach zero. The gradient will be vanishingly
small, which in turn prevents the current weight from changing its value.
This can lead to the neural network to stop training further. As mentioned
before, an activation function like the sigmoid function, squishes a large in-
put space into a value between 0 and 1. The effect of this is that a large
change in input would cause a small change in the output. The derivative
therefore becomes miniscule. The derivative approaches zero, which causes
the gradient of this layer in the network to vanish.

One of the networks that suffers from the vanishing gradient problem is
a basic recurrent neural network. When the feedback loops occur and the
gradient gets lower, it becomes harder for the network to update its weights.
The weights of the initial value will not change effectively through the train-
ing process, which can lead to inaccuracy in the network.

The solution to the vanishing gradient problem is to use activation func-
tions for the network that are resilient to this problem, such as ReLu. This
is because ReLLU does not cause a small derivative. Another solution is to
use resilient neural networks, such as residual networks [12]. There are also
specialized RNNs that are more resistant to this problem. One of these
specialized networks is the long short-term memory (LSTM) network.

2.6.2 LSTM

Long short-term memory (LSTM) is a specialized RNN that is capable of
learning in long-term dependencies. It is designed to remember information
for long periods of time. It does this by adding a forget mechanism. The
hidden layer in LSTM is a gated cell. It consists of four layers that interact
with each other to produce the output of that cell to pass on to the next hid-
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den layer. LSTM consists of three logistic sigmoid gates and one tanh layer,
compared to traditional RNNs that use only a single layer of tanh. These
gates are used in order to limit information or pass information through the
cell. The inputs of LSTM go through the input, forget and output gate. The
forget gate decides to remember or to skip inputs from the previous hidden
states. The mechanism of the forget gate mostly solves the vanishing gradi-
ent problem. The input gate decides what new information has to be added
to the cell. Finally the output gate decides which new or old information
has to be passed to the next hidden layer by using the memory state that
is updated by the input and forget gate.

.

c(t-1) > > ()
forget gate:| input gate: — fi(t)
1 by
g 0
h(t-1) / *
x(t)

Figure 2.5: Long short-term memory network (LSTM) illustration

While LSTM overcomes the vanishing gradients in the network, it in-
herits some problems of RNNs, such as: no parallelization, as there is a
sequential path for the data in the network. While LSTMs have mitigated
the vanishing gradient problem, it could not completely get rid of the prob-
lem. The data in LSTM has to move from cell to cell in a sequential manner,
same as in traditional RNN. This problem inherently lies in the recursion
of RNNs. RNNs can be slow to train, but LSTMs are even slower to train,
because they are more complex than traditional RNNs.
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2.7 Transformers

A transformer is a new network architecture in which the input sequence can
be passed in parallel, which can increase the speed drastically. The trans-
former is first introduced by Vaswani et al. in their paper ”Attention Is
All You Need” [27]. The transformer model is based solely on the attention
mechanism. Attention is a mechanism that figures out for each token, how
relevant all the other tokens are in a sequence. Attention learns to weigh the
relationship of each token in the input sequence to other tokens in the output
sequence. The core idea is that the transformer model uses only the part
of the input where the most relevant information is concentrated instead of
the entire sequence. The same as a neural network is considered to mimic a
human brain, the attention mechanism also tries to implement the action of
selectively concentrating on relevant things, while ignoring other not rele-
vant inputs in the neural network. Self attention is similar to attention, but
it allows the inputs not to only interact with the outputs, but with other
inputs as well. The transformer model that Vaswani et al. proposes in their
paper uses multi-headed attention layers. In multi-headed attention, each
head in the layer learns attention relationships independently. Attention is
constructed as a combination of three matrices, where every value in those
matrices are learned.

The transformer architecture that is proposed in the paper, uses a sequence
to sequence model [2], that consists of an encoder and a decoder. Before the
inputs go into the encoder, the input has to be embedded. Input embedding
maps every word to a point in space where similar words or meanings are
physically closer to each other in that space. This space is called the embed-
ding space. The embedding space maps a word to a vector. In a sentence
the same words can have different meanings. That is why transformer mod-
els have positional encoders. These encoders are vectors that give context
based on the position of a word in a sentence. Adding positional encodings
to a transformer model will result in embeddings of words with context in-
formation. The resulting input embedding with context information then
goes into the encoder. This encoder contains a stack of multi-headed at-
tention and a feed-forward neural network [22]. These feed-forward neural
networks are used to transform the attention vectors to make it digestible
for the next encoder or decoder block. The decoder is similar to the en-
coder, only it has an additional multi-head attention block. Transformers
are used for sequence to sequence tasks like NLP or machine translation. It
is also used as autoencoding language modeling, such as masked language
modelling. One of the models that is trained on masked language modeling,
created by Google, is called BERT.

13
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Figure 2.6: [The Transformer model architecture

2.7.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) is a large
transformer masked language model. It is mostly used for pre-training nat-
ural language processing (NLP). The main innovation of this technique is
applying bidirectional training on a Transformer model. In contrast, other
efforts looked at it in a single direction, from left to right or right to left.
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BERT uses the encoder mechanism to generate a language model. Bert’s
encoder reads the entire sequence of words at once. Therefore, it ensures
that the model learns the context of a word from all of its surroundings,
making it bidirectional. BERT are pre-trained on two tasks: language mod-
elling (LM) and next sequence prediction (NSP). It uses Masked LM (MLM)
for pretraining language modelling. This is done by replacing 15% of any
sequence with a [MASK] token. The model tries to predict the original value
of the masked words, using the context provided by the other non-masked
words in a sequence. Masked language models are a type of contextual word
embedding models. Contextual word embedding gives a model different rep-
resentation for different sentences.

The next task of the training process, BERT uses next sentence prediction to
better understand the relationship between two sentences. While the model
is training it receives sentences as input pairs and it learns to predict if the
second sentence in the input pair is also the next sentence that was in the
original document. BERT separates sentences with a special [SEP]| token.
Then the model is fed with two input sentences at a time. During training,
50% of the time the second sentence is the subsequent sentence in the orig-
inal document, while in the other 50% of the time it is a random sentence
from the full corpus. The assumption being that the random sentence will
be disconnected from the first sentence.

The top probability words corresponding | perched, sat, seated, hopped, ...

to the masked word ‘perched’ I

Output  [CLS]  the cat perched on the mat [SEP]  the cat - on the mat

r ¢t o+ o+t t t t t t t 1t f

[SEP]

1

BERT for Masked Language Model

(I I AR R R R R R R R A

Input [CLS] the cat perched on the mat [SEP] the cat [MASK] on the mat

Sentence S Sentence S with masked word ‘perched’

Figure 2.7: BERT for masked model architecture
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[SEP]
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All together the input in BERT is processed in these six steps:

1.

Each sentence sequence is separated by a [SEP] token. It is placed at
the end of each sentence.

Every sentence will replace 15% of its words with a [MASK] token.

At the beginning of the first sentence a special [CLS] token will be
inserted.

. Every other word in a sentence is transformed into an embedded token.

A sentence embedding is added to each token. They are similar in con-
cept as token embeddings, but these embeddings are used to indicate
if sentence A or sentence B is added to each token.

At last a positional embedding gets added to every token to indicate
their position in the sequence.

16



Chapter 3

Research

In this section we will explain the technical details of our DistilBERT model.
First, we will justify which libraries and framework we used for our model.
Second, we will showcase how we have implemented the libraries in python
to create our model. Afterwards, we will analyze our dataset, consisting of
malicious and benign domains. Lastly, we will demonstrate the results of
our model. The python notebook code is accessible in [A]

3.1 System Architecture

To build and train our DistilBERT model, we used the ktrain library [19].
Ktrain is a lightweight open source wrapper for the deep learning library
TensorFlow Keras [10]. According to the authors, it helps to build, train
and deploy neural networks in a more accessible and easier way. Ktrain
allows you to easily estimate an optimal learning rate for your model given
a learning rate finder.

For data analysis on our dataset, we use the open source scikit-learn li-
brary [7]. It is a simple and efficient tool to predict and analyze data, built
on NumPy, SciPy and matplotlib.

3.2 Datasets

This paper uses two open datasets to make the research reproducible. The
Tranco one million domains [20] are used for benign, non DGA, domains.
Tranco is a research-oriented top sites ranking dataset that is hardened
against manipulation. Most researchers [4][I7][13][26] rely on popularity
rankings such as the Alexa top one million domain list. However, the Tranco
paper [20] finds out that it is trivial for an adversary to manipulate the com-
position of these lists. The list of Alexa top one million can be altered by
as little as a single HT'TP request by adversaries.

17



Therefore, the Tranco paper comes up with an one million domain list that
is hardened against these manipulations. This is the list we use for our
DGA domain detector. We only use a fourth of the domains in the 1 million
Tranco list, totalling 200000 benign domains.

For the DGA malicious domains, we use the UMUDGA dataset [31]. UMUDGA
is a dataset for profiling DGA-based botnets. It contains 37 notorious dis-
tinct malware variants generated domain lists. For our model, we have opted
out for approximately 5000 domain lists per malware variant. Our DGA do-
mains totals 184765. Combined we have a total of 384765 domains in our
dataset, with a proportion of 52% between benign and DGA domains.

3.3 DistilBERT Detector

To prepare our dataset for the detector, we first separate our dataset into
input (X) and output (y) columns. Then, we use the sklearn library function
train_test_split(X,y, test_size, random_state), which splits our dataset into a
random train and test (validation) dataset. This function uses a random
state, which accepts an integer seed to control the shuffling applied to the
data before the split. The test_size indicates the percent of the dataset that
will be allocated to the test set. For our model, the proportion between
train and test date is 25% and 75% respectively.

The ktrain library wraps pre-trained, fast and easy to use models that can
be applied to our text data. The text classification model that we will use
for our detector is the DistilBERT [21I] model. As mentioned in the intro-
duction, it is a distilled version of BERT, that reduces BERT by 40%, while
still retaining 97% of its language understanding capabilities and being 60%
faster. DistilBERT is pre-trained on the same data as BERT [3]. In our
model we use the English uncased base pre-trained DistilBERT model. The
texts in the model are lowercase and tokenized using WordPiece [29] and a
vocabulary size of 30000. The DistilBERT model is trained on 8, 16 GB
V100 for 90 hours. We use this model to preprocess our training and test
data using the ktrain wrapper.

3.3.1 Learning Rate

We wrap our preprocessed training and test dataset into the ktrain.Learner
object using the ktrain.get_learner(model, train_data, val_data, batch_size)
function. We use a batch size of six for our network. The batch size is the
number of samples that will be passed through to the neural network.

18



The important hyperparameters that we have to set for our neural net-
work is the learning rate. To properly train a neural network, we have to
minimize the loss function. If the learning rate is too high, training will not
be minimized. However, if the learning rate is too low, training will be slow
or can stall. To have an optimal learning rate for our model, we can simulate
the training by starting with a low training rate and gradually increasing it.
As written by Leslie Smith [23] in his paper, he indicates that when plotting
the learning rate versus the loss, a good choice for training is the maximal
learning rate associated with a still falling loss. This is referred to by Smith
as an LR Range Test, or as an LR Finder. The LR Finder can be executed
in ktrain as well using the function Ir_find() and produce a plot with the
Ir_plot() function. We can select the maximal learning rate where the loss
is still falling prior to divergence in the plot.

A number of studies have shown that by varying the learning rate dur-
ing training can improve performance to a neural model in terms of both
loss minimization and better validation accuracy. A learning rate schedule,
such as the lcycle learning rate schedule [24] has benefits to the learning
rate. Ktrain has a fit_onecycle function that employs the 1cycle policy. This
policy increases for the first half of the training the learning rate from a base
rate to a maximum rate, while decays the learning rate to a near-zero value
for the second half of the training. Therefore, the maximum learning rate is
set using the learning rate finder function mentioned above as well as using
the lcycle learning rate function to train our model. After we have applied
the Ir_find() function on our model and plotted this with the lr_plot() func-
tion We select the maximal learning rate where the loss is still falling
prior to divergence. Therefore we choose 3°~°
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Figure 3.1: DistilBERT LR Range test result

3.4 Metrics For Validation

To measure our model performance, we calculate multiple metrics that are
used commonly in machine learning research. To illustrate the metrics, we
will use the following abbreviations: true positive (TP), true negative (TN),
false positive (FP), false negative (FN), true positive rate (TPR) and false
positive rate (FPR). The metrics are calculated as follows:

SNTP
> TP+ FP

The precision metrics measures the ratio of correct positively labeled
instances to all positively labeled instances.

SN TP
> TP+ > FN

The recall metrics measures the ratio of correct positively labeled in-
stances to all instances that should have been labeled positive.

Precision =

Recall =

Precision - Recall

Fr=2-
! Precision + Recall

F} is the harmonic mean of Precision and Recall.
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S TP
SSTP+3Y FN

TPR =

True Positive Rate (TPR) is a synonym for Recall.
SSFP
SSFP+S.TN

False Positive Rate (FPR) determines the rate of incorrectly identified la-
beled instances.

FPR =

TP+TN

A —
Y = TP TN + FP+ FN

Accuracy is the fraction of predictions our model solved correctly.

The receiving operating characteristics (ROC) curve is an evaluation met-
ric for binary classification problems that plots TPR and FPR at various
threshold values. It essentially separates the ’signal’ from 'noise’. The ROC
curve is a good metric to find out if our neural network is overfitting. The
area under the curve (AUC) is an area under the ROC curve that compares
ROC curves. Models whose predictions are 100% wrong, have an AUC of
0.0, whereas models whose predictions are 100% correct have an AUC of
1.0.

3.5 Experiment

This section evaluates the performance of our DistilBERT model. All oper-
ations are performed on a Google Cloud platform. We utilized the Google
Colab Pro+ features, which gave us access to 1 V100 GPU, 53 GB of RAM
and 8 CPU cores.

We have trained our model for 8 hours, 33 minutes and 13 seconds in 4
epochs. It had an accuracy of 0.9877 for the train data and 0.9809 for the
test (validation) data. In figure we can find our learner performance in
each epoch on our train and validation data.
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Figure 3.2: Calculating our training performance: loss of our model in each
epoch for our train and validation dataset

Whenever the model is trained, we have to cross-check the model with the
test data. For that we can use the validate function of the ktrain library. The
results of our experiments are given in Table 3.1} We can observe that our
model performed exceedingly well, having an accuracy of 99%. Furthermore,
both the benign and DGA domains, totalling 96192, have an average of 99%.

In order to find out how our model performed on each specific DGA family,
we evaluated all 37 DGA families and benign domains to get their Precision,
Recall and Fl-score. The results of that experiment can be found in Table
While evaluating the results, we are able to observe that our model has
a better performance on non dictionary-based DGA than dictionary-based
DGA families. Dictionary-based DGA families such as nymaim, matsnu,
gozi have a score lower than the average score of 99%. A possible reason for
this could be that our dataset has more non dictionary-based DGA families
compared to dictionary-based DGA families. Our model has more training
data on non dictionary-based DGA families, therefore our model is more
bias towards them. Our model also seems to struggle more with short-
length DGA domains, like proslikefan, pykspa DGA families, that have a
shorter domain name (URL) compared to other DGA families. This could
be, because our DistilBERT model is pre-trained on long English sentences.

We also evaluated the ROC-AUC score for our model. Our model has an

ROC-AUC score of 0.9997. This score surpassed the ROC-AUC score of
previous research, such as [13] and [28].
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Precision Recall Fl-score Support

benign 0.9955 0.9964 0.9964 50103
DGA 0.9961 0.9951 0.9956 46089
accuracy 0.9958 96192

macro avg 0.9957 0.9957 0.9957 96192
weighted avg  0.9958 0.9958 0.9958 96192

Table 3.1: Results of our DistilBERT model, expressed in Precision, Recall
and F1-score
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nr | DGA Precision  Recall Fl-score Support
1 | alureon 1.0000 0.9905  0.9952 1268
2 | banjori 1.0000 1.0000  1.0000 1283
3 | bedep 1.0000 0.9984  0.9992 1248
4 | benign 1.0000 0.9964  0.9982 50103
5 | ccleaner 1.0000 1.0000  1.0000 1234
6 | chinad 1.0000 1.0000  1.0000 1332
7 | corebot 1.0000 1.0000  1.0000 1270
8 | cryptolocker | 1.0000 1.0000  1.0000 1261
9 | dircrypt 1.0000 0.9951  0.9976 1237
10 | dyre 1.0000 1.0000  1.0000 1235
11 | fobber 1.0000 0.9952  0.9976 1258
12 | gozi 1.0000 0.9873 0.9936 1257
13 | kraken 1.0000 0.9958  0.9979 1189
14 | locky 1.0000 0.9959  0.9980 1230
15 | matsnu 1.0000 0.9821 0.9910 1226
16 | murofet 1.0000 1.0000  1.0000 1238
17 | necurs 1.0000 0.9983  0.9992 1206
18 | nymaim 1.0000 0.9613 0.9803 1188
19 | padcrypt 1.0000 0.9983  0.9992 1191
20 | pizd 1.0000 1.0000  1.0000 1182
21 | proslikefan 1.0000 0.9800 0.9900 1298
22 | pushdo 1.0000 0.9917  0.9958 1198
23 | pykspa 1.0000 0.9848 0.9924 1253
24 | qadars 1.0000 0.9992  0.9996 1298
25 | qakbot 1.0000 1.0000  1.0000 1213
26 | ramdo 1.0000 1.0000  1.0000 1270
27 | ramnit 1.0000 0.9968  0.9984 1250
28 | ranbyus 1.0000 1.0000  1.0000 1247
29 | rovnix 1.0000 0.9944  0.9972 1249
30 | shiotob 1.0000 0.9976  0.9988 1264
31 | simda 1.0000 0.9961  0.9980 1272
32 | sisron 1.0000 1.0000  1.0000 1215
33 | suppobox 1.0000 1.0000  1.0000 1252
34 | symmi 1.0000 1.0000  1.0000 1252
35 | tempedreve | 1.0000 0.9874  0.9937 1282
36 | tinba 1.0000 0.9992  0.9996 1296
37 | vawtrak 1.0000 0.9918  0.9959 1220
38 | zeus-newgoz | 1.0000 0.9992  0.9996 1237

Table 3.2: Results of our DistilBERT model on each distinct DGA family,
expressed in Precision, Recall and F1-score. The
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Chapter 4

Related Work

In this section we will discuss some of the previous work that has been done
to detect DGA domains. There are multiple approaches to research DGA
domains.

One of the first approaches to detect DGA domains is by using unsuper-
vised learning. Chang and Lin [8] propose a dynamic way to detect botnets
DNS traffic monitoring. First, the known benign and malicious domain
names are filtered in the DNS traffic. Afterwards, the Chinese-Whispers
algorithm is applied to the remaining domains to cluster them according to
the similarity of the query behaviour. Zhou et al. [32] use a passive DNS
dataset to record the information of domain access, consisting of 18 features,
to detect Fast-Flux domains using random forest algorithm. Knowing that
not resolved DGA domains result in NXDomain responses, Antonakakis et
al. [] classify and cluster the domains with Hidden Markov Models (HMM).
However, because the clustering strategy rel on domain names’ structural
and lexical features, it is limited to DGA-based C & C only.

Woodbridge et al. [28] is the first to utilize supervised deep learning for
DGA detection. A simple implementation of an LSTM is used for non-
specific DGA analysis. They show that their LSTM network outperforms
unsupervised learning methods such as character-level HMM and random
forest models. Nonetheless, their LSTM model does not have a high score
on suppobox or matsnu, the dictionary DGA families. Their research has
inspired other research to use supervised learning methods to better identify
DGA domains. In a different angle Anderson et al. [1] use a generative Ad-
versarial Network (GAN) to investigate if the adversarial learning technique
is able to deceive DGA detection.
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Tran et al. [26] present a novel LSTM.MI algorithm that combines both
binary and multiclass classification models to improve the cost-effectiveness
of the LSTM. They demonstrate that the LSTM.MI algorithm provides
an improvement of at least 7% compared to the original LSTM. Chen et
al. [9] propose a LSTM Property and Quantity Dependent Optimization
(LSTM.PQDO) that dynamically optimizes the resampling proportion of
the original number and characteristics of the samples. This research re-
sults in a better performance compared to earlier models by overcoming the
difficulties of unbalanced datasets. Another research done by Lison et al.
[17] alter the structure of the LSTM to a bi-directional LSTM layer. The
enhancement of the bi-directional LSTM layer results in a F} score of 0.971.

Koh et al. [I4] are one of the first that utilized deep learning to train
their model. They classify domains based on word-level information by
combining pre-trained context-sensitive word embedding with a classifier.
The LSTM is trained both on single-DGA and multiple-DGA data. The
model outperforms existing techniques on wordlist-based DGA. Highnam et
al. [13] research pick up on Koh et al [I4] work. By systematically evaluating
deep learning, a novel hybrid neural network, called the Bilbo the fibagginfi
model, is created that consists of a model which uses a convolutional neural
network (CNN) and a LSTM network in parallel. This CNN+LSTM combo
network is the most consistent in performance in terms of AUC, Fj score
and accuracy compared to previous work.

4.1 Contribution

This thesis will further contribute to detecting DGA domains using deep
learning. We propose a novel approach to detecting DGA domains, by uti-
lizing the newly developed transformer models to pre-train our model that
bidirectionally classifies context-sensitive word embedding of DGA domains.
We use an alternative distilled version of the Bidirectional Encoder Repre-
sentations from Transformers model (BERT), called DistilBERT [2I]. We
are one of the first to have used the BERT model to detect and classify DGA
domains.
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Chapter 5

Conclusions

We presented a novel deep learning network to classify and detect malicious
generated domain names. This was done by using a pre-trained context-
sensitive word embedding bidirectional network (specifically DistilBERT
[21]). Current methods for this task are inadequate for handling this chal-
lenge. As our results showcased, we were able to detect DGA domains with
minimal training data by utilizing language semantics knowledge. Although
our model was better at classifying non-dictionary based DGA domains then
dictionary-based DGA domains, it had an overall better performance than
all previous deep learning architectures. Our model delivers an F1-score of
0.9957 and an accuracy of 0.9958 for detection and classification tasks re-
spectively.

Future research could focus on investigating the dictionary-based malware
families to further improve the overall system accuracy. As well as focussing
on further developing the embedded pre-train process of the DistilBERT
architecture. The embedding could be amenable to fine-tuning to DGA
domains specifically. Even though, the unmodified pre-trained DistilBERT
model performed extremely well, there might still be room for improvement.

All relevant source code and suggestions on deploying a DistilBERT archi-
tecture were provided by this paper. In addition, we reference open datasets
to create an equal classifier to that presented in this paper. To the best of
our knowledge, the presented system is by far the best performing DGA
classification system.
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Appendix A

Appendix

In this section the source code of the DistilBERT model can be accessed.
The purpose of the following is for the convenience of reproduction. The

A.1 Source Code DistilBERT Model

# —*— coding: utf—8 —x—
777 DistilBERT _detector.ipynb

Automatically generated by Colaboratory.

## DistilBERT Detector to detect DGA domains.
#H## Author: Abdulkarim Abdulkadir, $4840933

### Load the libraries

We will load the libraries, and check if we are in the Google
Colab environment to pip install ktrain and import the drive
mount library. This is to make sure that if the notebook is
run locally , it will not execute Google Colab environment

commands .
»»»

import pandas as pd

import numpy as np

import os

import sys

from sklearn.utils import shuffle

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

from sklearn.metrics import roc_auc_score

ENV_.COLAB = ’google.colab’ in sys.modules

if ENV.COLAB:
## install modules
!pip install —q ktrain
from google.colab import drive
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drive .mount(’/content/drive’

, force_remount=True)
## print
print ('Environment: .Google.Colaboratory .Pro+.")
import ktrain
SEED = 42

777 Again we check which environment we are to correctly find the
location of the data of our domains”””

if ENV.COLAB:
dga_location = ’/content/drive/MyDrive/research /DGA_domains/’
benign_domains = ’/content/drive/MyDrive/research/
benign_domains/top—Im. csv’
else:
dga_location = ’data/DGA _domains/’
benign_domains = ’data/benign_domains/top—Im.csv’

77?We have a total amount of 19 different DGA types. Including
the benign domain data, this will total 20 different types.

999

dga_domains = [dga for dga in os.listdir (dga_location) if dga.
endswith(r”.csv”)]
print (" Total _amount._of DGA_types:.’

I

, len(dga_domains))

7t Load the data tnto arrays

We will only take 200,000 domains of our benign data set, to
have almost the same ratio of benign and DGA domains. In
total we have 384,765 domains: 200,000 benign domains and
184765 DGA domains.

2999

dataset = pd.DataFrame /()

benign_dataframe = pd.read_csv(benign_domains)

benign_dataframe.insert (1, ’type’, ’benign’)

benign_dataframe.insert (2, ’class’, 0)

dataset = dataset.append(benign_dataframe[:200000], ignore_index

=True)

for i, dga in enumerate(dga_domains):
dga_dataframe = pd.read_csv(dga_location + dga)
dga_dataframe.insert (1, type’,dga.split(”.7)[0])
dga_dataframe.insert (2, class’ 1)

dataset = dataset.append(dga_dataframe, ignore_index=True)
print (" Total _amount.of DGA_domains:.”, dataset[’class’].
value_counts () [1])
print (" Total _amount._of_benign._domains:.” , dataset[’class’].
value_counts () [0])
print (” Total _amount_of_domains:.” , len(dataset))
if ENV.COLAB:

dataset.to_csv(’/content/drive/MyDrive/research/dataset’,
index=False)
else:
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dataset.to_csv(’data/dataset’, index=False)

77 We will split our data into random train and test subsets.
Our test size will be 25%. Our random_state that control the
randon number generated has to be given. Popular seeds are 42
or 0. We chose 42 for obvious reasons.”””

if ENV.COLAB:
dataset = pd.read_csv(’/content/drive/MyDrive/research/dataset
")
else:
dataset = pd.read_csv(’data/dataset’)

labels = dataset|[’class’]
class_.names = labels.unique()
X = dataset.drop(dataset.columns[[2]], axis=1)
x_train, x_test, y_train, y_test = train_test_split (X,
labels |,
test_size
=0.25,
random_state
=SEED)

?7” Display the first and last 10 data of our dataset.”””
display (dataset .head (10) .append(dataset.tail (10)))

print (" Size_of_training._set: %s” % (len(x_train)))
print (" Size_of_validation_set: %s” % (len(x_test)))

77 Display the first 10 domains in the train and test dataset
respectively.”””

display (x-train.head (10).append(x_train. tail (10)))
display (x_test.head (10) .append(x_test.tail (10)))

"7 We list all the text models that ktrain offers. For our
research we will use the distilbert model. Which is a faster,
smaller and distilled version of BERT. 777”

ktrain.text.print_text_classifiers ()

777 Specifically , the distilbert base uncased model. This model
is trained on uncased English words.”””

model_name = ’distilbert —base—uncased’
t = ktrain.text.Transformer (model_name, class_names=labels.
unique () ,

maxlen=350)

77”Drop the ’type’ column in the train and test input data. As
we need only the domains to train our model. This type is
needed in our train and test dataset later on to wvalidate on
each specific DGA familytype.”””
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X_train = x_train.drop(x_train.columns|[[1]], axis=1).squeeze ()
X_test = x_test.drop(x_-train.columns|[[1]], axis=1).squeeze ()

77” Naming our pre—process train and validation dataset
respectively.”””

train = t.preprocess_train(X_train. tolist (), y_-train.to_list ())

val = t.preprocess_test (X_test.tolist (), y-test.to_list ())
model = t. get_classifier ()

77 We will find a good learmning rate using the learning rate
range test to provide wvaluable information about an optimal
learnign rate. To point has to be chosen at which the loss
starts descending and the point at which the loss stops
descending or becomes ragged. For BERT and DistilBERT models
the learning rate that Google recommends is between 5e—5 and
26_5.”””

learner = ktrain.get_learner (model,
train_data=train ,
val_data=val ,
batch_size=6)

learner.lr_find (max_epochs=4)
learner.lr_plot ()

77”Based on the plot above we choose 3e—5 as our learning rate.
We will fit a model follwing the Icycle policy.”””

learner. fit_onecycle (3e—5, 4)

777 Save the learned model to location, so that we can reuse the
model without training our dataset again.”””

predictor = ktrain.get_predictor (learner.model, preproc=t)
if ENV.COLAB:
predictor.save(’/content/drive/MyDrive/research/model/ ")
else:
predictor.save( ’model/”)

77 View observation with top losses in wvalidation dataset. The ”

n” is the amount of top losses we want to observe.”””

learner . view_top_losses (preproc=t, n=1, val_data=None)
777We will validate our model using our test data.”””
learner . validate ()

learner . plot ()

valid_preds = learmner.predict ()
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len(valid_preds), dataset.shape, valid_preds|[:5]
7 Model prediction on wvalidation data

Load the saved predictor model to predict on our walidation data
again. This time we will evaluate and validate each specific
DGA family separately.

2999

if ENV_.COLAB:
predictor = ktrain.load_predictor(’/content/drive/MyDrive/
research /model/ ")

else:
predictor = ktrain.load_predictor (’model/”)
learner = ktrain.get_learner (predictor.model, train_data = train

, val_data = val, batch_size = 6)

77?We check if it still results in the same precision, recall
and fl—score value as before saving the model.”””

learner . validate ()
?7?Find the exact accuracy of our model”””

learner.evaluate (print_report=False ,save_path="/content/drive/
MyDrive/research /DistilBERT _detector_classification.csv’)

777 Compute the ROC-AUC score”””

y-pred = learner.predict() # predicts validation data by default

y-true = learner.ground_truth () # yields true values from
validation data by default
score = roc_auc_score (y_-true, y_pred)

print ("ROG-AUC_score: .%.6f_.\n" % (score))

77?We create our wvalidation dataset again so that we can
evaluate the dataset on each type of DGA family.”””

validation_dataset = x_test

validation_dataset.loc[validation_dataset [ ’type’] != ’benign’, ’
class’ | =1

validation_dataset.loc[validation_dataset|[’type’] = ’benign’, ’
class’ ] =0

validation_dataset [’class’] = validation_dataset[’class’]. astype
(int)

print(validation_dataset)
print(validation_dataset .shape)

777 We evaluate every DGA family separately and save it to the
disk‘”””

for dga in dga_domains:
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x_test_per_type = validation_dataset.loc[validation_dataset [’

type’] == dga.split(”.”)[0]].iloc [:,0]
y-test_per_type = validation_dataset.loc[validation_dataset [’
type’] = dga.split(7.7)[0]]. iloc [:,2]

validate_per_type = t.preprocess_test(x_test_per_type.to_list
(), y-test_per_type.to_list ())

learner.evaluate(test_data=validate_per_type ,print_report=
False ,save_path="/content/drive /MyDrive/research/
classifaction_-’ + dga)

77?We evaluate the benign domains of our wvalidation dataset and
save it as well.”””

x_test_benign = validation_dataset.loc[validation_dataset[’ type’
] = ’benign’].iloc [:,0]

y-test_benign = validation_dataset.loc[validation_dataset[’ type’
] = ’benign’].iloc [:,2]

validate_benign = t.preprocess_test(x_-test_benign.to_list (),

y-test_benign.to_list ())

learner .evaluate (test_data=validate_benign ,print_report=False,
save_path="/content/drive /MyDrive/research/
classifaction_benign.csv’)
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