
Bachelor thesis
Computing Science

Radboud University

Exploring the difference between
2DFA and DFA for G-automata

Author:
Alex van der Hulst
s1041239

First supervisor/assessor:
dr. J.C. Rot

j.rot@cs.ru.nl

Second assessor:
prof. dr. J.H. Geuvers
h.geuvers@cs.ru.nl

April 2, 2022

Abstract

In this thesis, we introduce the notions of the G-automaton and two-way
deterministic finite automata (2DFA) as in [1] and [6]. We show that 2DFA
and DFA accept the same languages and that this is not the case for G-2DFA
and G-DFA. A condition is given for which the construction from 2DFA to
DFA also works for the construction from G-2DFA to G-DFA. Lastly, we
zoom in on an example that does not satisfy this condition and for which
the construction does not work.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Group theory . 4
2.2 Automata theory . 6

3 The definition of G-automata 8
3.1 G-sets . 8
3.2 Equivariance . 12
3.3 G-automata . 13

4 2DFA 17
4.1 Defining 2DFA . 17
4.2 Myhill-Nerode . 18
4.3 2DFA equivalence . 21

5 G-2DFA 25
5.1 From G-2DFA to G-DFA . 27
5.2 Orbit infinite examples . 30

6 Related Work 33

7 Conclusions 34
7.1 Future work . 34

1

Chapter 1

Introduction

Automata theory is a branch of computing science that studies abstract ma-
chines and their capabilities. Automata theory was implemented in areas
such as compiler construction, circuit design, string matching, communica-
tion protocols and program verification [5]. In this paper, we will look at an
automaton model that has an infinite alphabet, and that uses a group action
to preserve the structure of finite states and transitions that DFA and NFA
have. A non-deterministic finite automaton (NFA) is a finite state machine
that accepts words based on the computation in the automaton. For deter-
ministic finite automata (DFA) and two way deterministic finite automata
(2DFA), this computation is unique. The additional property that 2DFA
have, is that they can go back and forth in the word during the computa-
tion, in contrast with DFA and NFA, which go through the word from left
to right.

There already exist some models of automata that can use infinite al-
phabets, such as, finite memory automata and data automata [4][2]. In this
paper, we look at a model called G-automata that was introduced in [1].

This automaton model uses group actions to represent an infinite alpha-
bet and infinite amount of states in a finite way. This allows us to use known
theorems for DFAs, slightly adjust them and use them for G-automata, such
as the Myhill-Nerode theorem.

Another piece of inspiration for this paper is a construction introduced
in [6] that shows that 2DFA and DFA are expressively equivalent, which
means that they accept the same languages. We will give a proof of this
statement with the construction and look at when this construction works
for the G-automaton variant: G-2DFA and G-DFA. The construction can
not work all the time as shown in [1].

This thesis introduces definitions and examples about G-automata and
2DFA that should be more accessible for students than the original sources.

2

After this, we give a condition for which we can make a G-DFA that accepts
the same language as a given G-2DFA.

We now give a quick overview of the content. In chapter 3, we will look
at G-sets, the notion of equivariance and the G-automaton. Chapter 4 will
introduce 2DFA, with an example for which we work out the construction
to obtain a DFA that accepts the same language. Lastly, chapter 5 intro-
duces the notion of a G-2DFA and shows with an extra condition that the
construction used in chapter 4 works for G-2DFA to obtain a G-DFA.

3

Chapter 2

Preliminaries

In this chapter, we will provide some information that is required to read
this paper that the reader might not know yet. We first introduce definition
about group theory, followed by definitions from set theory and automata
theory.

2.1 Group theory

Definition 2.1. A group is a set G with a binary operation · : G×G→ G,
that satisfies the following requirements.

(G1) For all a, b, c ∈ G, (a · b) · c = a · (b · c).
(G2) There exists an e ∈ G with for all a ∈ G, e · a = a = a · e.
Such an e is called the neutral element of G.

(G3) For each a ∈ G, there exists a b ∈ G that satisfies a · b = e = b · a.

Note that we can say the neutral element since it is unique by the fol-
lowing. Suppose e and e′ both satisfy (G2), then we have e = e · e′ = e′.
Thus we can conclude e = e′, which means that e is unique.

In this thesis, we will mainly use a group that consists of bijections on a
set X called Sym(X). The binary operation is defined by π ·σ := π ◦σ. The
symbol ◦ means that we use function composition, so (π ◦ σ)(x) = π(σ(x))
for x ∈ X.

Theorem 2.2. Sym(X) is a group, where e = idX .

Proof. (G1) Take π, σ, τ ∈ Sym(X) and x ∈ X, then we have:

((π ◦ σ) ◦ τ)(x)

= π(σ(τ(x)))

= (π ◦ (σ ◦ τ))(x).

4

Thus we have (π ◦ σ) ◦ τ = π ◦ (σ ◦ τ)
(G2) Take π ∈ G and x ∈ X, then we have for the identity function on

X, idX :

(π ◦ idX)(x)

= π(idX(x))

= π(x)

= idX(π(x))

= (idX ◦ π)(x).

We can note that idX is also a bijection and thus there exists idX ∈ G with
for all π ∈ G, π · idX = π = idX · π.

(G3) Take π ∈ G. Since π is a bijection, there exists an inverse of π,
that we will call π−1. This inverse function π−1 is also a bijection, since π
is a bijection and thus π−1 ∈ G. Now we have:

π ◦ π−1

= idX

= π−1 ◦ π.

So, we have for π ∈ G, that there exists π−1 with π ◦ π−1 = idX = π−1 ◦ π.
We have seen that Sym(X) satisfies (G1), (G2) and (G3) and is thus a
group.

Definition 2.3. Let H be a subset of a group G. Then H is called a
subgroup of G if it satisfies the following requirements.

(H1) H is not empty

(H2) for all a, b ∈ H we have a · b ∈ H
(H3) for all a ∈ H we have a−1 ∈ H

Note that these requirements imply that e ∈ H. A subgroup of Sym(X)
is, for instance, the set of all bijections π ∈ G where x0 is a fixed point for
some x0 ∈ X, that is : π(x0) = x0.

Definition 2.4. A bijection f : X → X, where f(x) = y, f(y) = x and
f(z) = z for some x, y ∈ X and all z ∈ X, where x 6= y and x 6= z 6= y is
denoted as (x y).

This concludes the preknowledge of group theory. We will now intro-
duce notions about the size of sets, equivalence relations and the Cartesian
products of sets.

Definition 2.5. Sets A and B have the same cardinality, denoted |A| = |B|,
if there exists a bijection from A to B.

5

With this definition, we have that |{a, b, c}| = |{a, d, e}| if all elements
are different, since there is a bijection f : {a, b, c} → {a, d, e} defined by
f(a) = a, f(b) = d and f(c) = e.

Note that this definition is more useful than counting element of a set
since {a, b} would then have size 2 and {a, a, a, b, b} would have size 5, even
though it is the same set.

Definition 2.6. The Cartesian product X × Y of sets X and Y is defined
as:

X × Y = {(x, y) | x ∈ X and y ∈ Y }

Definition 2.7. A relation R ⊆ X × X is an equivalence relation if it
satisfies the following properties

• (x, x) ∈ R for all x ∈ X.

• If (x, y) ∈ R, then (y, x) ∈ R.

• If (x, y), (y, z) ∈ R, then (x, z) ∈ R.

An example of an equivalence relation R ⊆ X ×X is

R = {(x, x) | x ∈ X}.

2.2 Automata theory

Definition 2.8. An alphabet A is a finite set. The elements in A are referred
to as letters.

Definition 2.9. If A is an alphabet, the set of words of finite length A∗ is
defined by:

λ, the empty word or word of length zero is an element of A∗.

If w ∈ A∗ , then aw ∈ A∗ for all a ∈ A.

The set A+ is equal to A∗ \ {λ}

Definition 2.10. For any letter x in an alphabet A and any word w ∈ A∗,
|w|x denotes the number of times the letter x occurs in A∗.

Definition 2.11. A DFA is a tuple M = (Q,Σ, δ, q0, F), where

• Q is a finite non-empty set of states,

• Σ is a finite non-empty alphabet,

• δ : Q× Σ→ Q is a transition function,

6

• q0 ∈ Q is the initial state and

• F ⊆ Q is the set of final states.

The function δ∗ : Q × Σ∗ → Q is used for defining the acceptance of DFA
and is defined as:

• δ∗(q, λ) = q for all q ∈ Q.

• δ∗(q, xw) = δ(δ∗(q, x), w) for all q ∈ Q, x ∈ Σ and w ∈ Σ∗.

The language accepted by DFA M is defined as the set

L(M) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}.

To be able to represent configurations of an automaton, we define `M ,
which allows for compact notation.

Definition 2.12. The function `M : Q× Σ∗ → Q× Σ∗ is given by

[qi, xw] `M [δ(qi, x), w]

for x ∈ Σ, w ∈ Σ∗ and δ the transition function of DFA M .
The notation [qj , w] `∗M [qi, w

′] indicates that [qj , w] `M ... `M [qi, w
′].

7

Chapter 3

The definition of G-automata

In this chapter, we will define G-automata that were also defined in [1]. First
the notions of G-sets and equivariance are introduced, which are crucial for
the definition of G-automata.

3.1 G-sets

Let us first look at how we can look at an infinite set in a finite way. Consider
an automaton that accepts all the words over N∗ where the first letter is even.

q0

0

1

2

3

...

...

0

1

2

3

N

N

N

N

This automaton has an infinite amount of states and transitions, but we
could represent this automaton as follows.

q0

0

1

even

odd

N

N

Although the set of states is infinite, we can interpret the automaton in a
finite way.

8

We use group actions on sets to formalize the set of states and the
alphabet of the G-automaton. A group action on an automaton can be
for instance that we permute the states and letters in the automaton. If we
were to have the following transition, we could permute the transition and
state into the second figure, by taking the permutation (0, 2).

q0 0
0

applying (0,2)
=========⇒

q0 2
2

Definition 3.1. A group action is a function G × X → X, where X is a
set and G a group with the following requirements: for all x ∈ X and for all
π, σ ∈ G

e · x = x

π · (σ · x) = (π · σ) · x.

The symbol e denotes the neutral element of G. Such a set X is called a
G-set.

Definition 3.2. A data symmetry (D, G) is an infinite set of data D and a
subgroup G of the group of all bijections on D, Sym(D).

An example of a G-set is D, with G equal to Sym(D). The group action
π ∈ G on di ∈ D is defined as π ·di = π(di). Since π is a bijection on D, π(di)
is again an element of D, so we indeed have a function G × D → D. The
neutral element of G is idD, since idD · di = idD(di) = di for all di in D. The
second requirement is also met since π · (σ · di) = π(σ(di)) = (π ◦ σ) · di =
(π · σ) · di.

Example 3.3. We will now list some data symmetries:

• The equality symmetry. The set D is a countably infinite set, for
instance the natural numbers and G is the group of all bijections on
D.

• The total order symmetry. The set of data values D is the set of
rational numbers: Q. G is the group of all monotone bijections, which
means that for every bijection f , we have q ≤ p =⇒ f(q) ≥ f(p) for
all q, p ∈ Q.

We saw earlier that D is a G-set, with the corresponding group Sym(D).
This now also allows for the following G-sets with the group action defined
as the point-wise action.

Suppose G has a group action on D and π ∈ G.

• Dn and Dω. The set of n-tuples of data values and infinite sequences of
data values. The point-wise action is then defined by: π·(d1, d2, . . . , dn) =
(π ·d1, π ·d2, . . . , π ·dn) and π ·(d1, d2, d3, . . .) = (π ·d1, π ·d2, π ·d3, . . .).

9

• D∗. The set of all words of data values, where the point-wise action is
π · (d1d2 . . . dn) = π · d1π · d2 . . . π · dn

• P(D). The power set of D, where the element-wise action is π ·
{d1, d2, d3, . . . } = {π · d1, π · d2, π · d3, . . . }

•
(D
n

)
= {C ⊆ D | |C| = n}. The set of subsets of D of size n, where the

element-wise action is π · {d1, d2, . . . , dn} = {π · d1, π · d2, . . . , π · dn}.

Let us look at group actions from Sym(D) on elements in
(D
n

)
and

D∗ in a more concrete example. Take the permutation that cycles only
d1, d4 and d6: π := (d1 d4 d6) ∈ Sym(D) and the set {d1, d2, d3, d5} ⊆

(D
n

)
.

Then

π · {d1, d2, d3, d5}
= {π · d1, π · d2, π · d3, π · d5}
= {π(d1), π(d2), π(d3), π(d5)}
= {d4, d2, d3, d5}.

Using the same permutation π and applying it to the element d4d6d1 ∈ D∗
gives

π · d4d6d1
= π · d4π · d6π · d1
= π(d4)π(d6)π(d1)

= d6d1d4.

One might see that not all elements in, for instance, D∗ can be permuted
to all other elements even if they have the same length. Suppose we are in
the equality symmetry and suppose we have the element d1d2 ∈ D∗, where
d1 6= d2. Then we cannot find π ∈ G such that π · d1d1 = d1d2 because π is
a bijection. To distinguish elements that cannot be sent to each other when
using the group action, we will now introduce the notion of orbits.

Definition 3.4. For x ∈ X and X a G-set, the set G · x = {g · x | g ∈ G}
is called the orbit of x.

For the construction of the G-automaton, we will only look at orbit-finite
sets, which means that there is a finite amount of different orbits. Orbits
might have some elements in common and we can actually see that orbits
need to always be exactly the same or disjoint.

Theorem 3.5. Every G-set is a disjoint union of orbits

Proof. Let X be a G-set and G the group action on X. Take x1, x2 ∈ X.

10

Suppose we have that G · x1 ∩G · x2 6= ∅, that is, there exist g1, g2 ∈ G
with g1x1 = g2x2. This implies g−12 g1x1 = x2 and x1 = g−11 g2x2, which
means that G · x1 = G · g−11 g2x2 = G · x2. We can now conclude that two
orbits must be the same or disjoint. Since x = e · x ∈ G · x, we have that
X is contained in the union of orbits. An orbit is by definition of the group
action also contained in X. Thus X is equal to the union of orbits. We can
now conclude that X is a disjoint union of orbits

Example 3.6. The above outcome was also expected when looking at the
earlier example of D∗. In fact, we can now distinguish the orbits of
{w ∈ D∗ | |w| = 2} in the equality symmetry. The orbits are {d1d2 | d1 6= d2}
and {d1d2 | d1 = d2}. And the orbits in the total order symmetry are:
{d1d2 | d1 < d2}, {d1d2 | d1 > d2} and {d1d2 | d1 = d2}.

We can also look at orbits of more general cases, for instance Dn and
P(D).

Example 3.7. Let us first look at P(D) in the equality symmetry. Since the
group action acts as a bijection on D, the number of elements will stay the
same when applying the group action. Thus sets of different cardinalities
are in different orbits. We can also see that sets of the same cardinality are
in the same orbit. Take for instance {d1, d2, . . . , dn}, {c1, c2, . . . , cn} ∈

(D
n

)
.

If we remove elements that are in the intersection, we get {di, . . . , dj} and
{ck, . . . , cl}. Note that these sets have the same cardinality, since they were
the same cardinality and the number of elements removed was the same. If
we now take the permutation π := (di ck) · · · · · (dj cl), we get:

π · {d1, d2, . . . , dn} = {c1, c2, . . . , cn}

This means that sets of the same cardinality are in the same orbit. Thus sets
of the same cardinality are exactly the orbits of P(D). Since P(D) has an
infinite amount of sets of different cardinalities, P(D) has an infinite amount
of orbits.

The set Dn has a finite amount of orbits. To count the number of orbits,
we will use the numbers that are used as a solution to a counting problem,
named Bell’s numbers.

Theorem 3.8. The G-set Dn has Bn orbits in the equality symmetry, where
Bn denote Bell’s numbers.

Proof. The orbits of Dn can be characterized by which indexes of the n-tuple
contain the same elements. The orbit {(d1, d2, d3) | d1 = d2, d1 6= d3} ⊆ D3,
for example, can be described by the following partition of the set {1, 2, 3}:
{{1, 2}, {3}}. We can thus describe an orbit with the corresponding partition
of indexes. Since we can make a bijection this way between the partitions
of the set {1, 2, . . . , n} and the orbits of Dn, Dn has exactly Bn orbits.

11

3.2 Equivariance

In this section, we will introduce the notion of equivariance, which will be
relevant for our transition function and the sets of initial and final states in
the G-automaton.

Definition 3.9. A subset Y of a G-set X is called equivariant if π · Y = Y
for all π ∈ G.

Note that this implies that Y is a union of orbits since:

Y =
⋃
π∈G

π · Y =
⋃
π∈G

⋃
x∈Y
{π · x} =

⋃
x∈Y

G · x.

The group action π · Y above, is the point-wise action illustrated after Ex-
ample 3.3. An example of an equivariant subset of G-set X is X itself, which
we also saw in Theorem 3.5.

We have so far obtained a way to use group actions on sets. We have
also seen after Example 3.3 how a point-wise action can be used to create
G-sets. This also holds for the product of two G-sets:
If we have a group G with a group action on X and Y , we can make a new
group action on X × Y as follows.

For π ∈ G and (x, y) ∈ X × Y : π · (x, y) = (π · x, π · y).

A relation R ⊆ X × Y can be used to describe functions, which means that
this also allows us to make a definition about equivariant functions.

Definition 3.10. A function f : X → Y , for G-sets X and Y , is equivariant
if for all x ∈ X and for all π ∈ G we have f(π · x) = π · f(x).

This definition corresponds to Definition 3.9 in the following way. Sup-
pose we have an equivariant function f . We would now like that the re-
lation given by our function f , {(x, f(x)) ∈ X × Y }, would also be equiv-
ariant. But f is equivariant, so π · x is sent to π · f(x) for all π ∈ G.
Thus (π · x, π · f(x)) ∈ {(x, f(x)) ∈ X × Y }, which implies that the set
{(x, f(x)) ∈ X × Y } is equivariant.

We will illustrate this definition with examples involving earlier intro-
duced G-sets with their corresponding group action.

Example 3.11. The function f : D3 → D2 defined by (d1, d2, d3) 7→ (d1, d2)
is equivariant. We can see this by writing out the definitions.

f(π · (d1, d2, d3))
= f((π · d1, π · d2, π · d3)) (Group action in D3.)

= (π · d1, π · d2)
= π · (d1, d2) (Group action in D2.)

= π · f(d1, d2, d3)

Thus f(π ·(d1, d2, d3)) = π ·f(d1, d2, d3), which implies that f is equivariant.

12

Example 3.12. A function g :
(D
2

)
→ D2 cannot be equivariant.

Suppose g is equivariant and that for d1 6= d2, we have g({d1, d2}) = (c1, c2).
If c1 /∈ {d1, d2}, then we can take a permutation π that only swaps c1 and
c3 and leaves the other data values: (c1, c3), where d1 6= c3 6= d2. Then

g(π · {d1, d2})
= g({π · d1, π · d2})
= g({d1, d2})
= (c1, c2)

6= (c3, c2)

= (π · c1, π · c2)
= π · (c1, c2)
= π · g({d1, d2})

This is a contradiction with the assumption the g is equivariant. We can
thus assume the function g should be of the form {d, e} 7→ (d, e), but now
we have the following for a permutation σ that does not swap d1 and d2.

g(σ · {d1, d2}) = g({σ · d1, σ · d2}) = g({σ · d2, σ · d1}) = (σ · d2, σ · d1)
6= (σ · d1, σ · d2) = σ · (d1, d2) = σ · g({d1, d2})

So a function g :
(D
2

)
→ D2 cannot be equivariant.

Theorem 3.13. If f : X → Y and g : Y → Z are equivariant. Then g ◦
f : X → Z is equivariant.

Proof. Suppose f : X → Y and g : Y → Z are equivariant. Then for all
x ∈ X and for all π ∈ G we get (g ◦ f)(π · x) = g(f(π · x)) = g(π · f(x)) =
π · g(f(x)) = π · (g ◦ f)(x).

3.3 G-automata

In this section we will define G-automata, but before we do this, we extend
the concept of a language to G-sets. First, the definition of an alphabet is
extended as follows.

Definition 3.14. An alphabet A is an orbit finite G-set. A G-language is
an equivariant set L ⊆ A∗, where the group action on A∗ is the point-wise
action that was defined after Example 3.3

Definition 3.15. A nondeterministic G-automaton, denoted as G-NFA,
consists of a tuple (Q,A, δ, I, F), where

• Q is an orbit finite G-set of states.

13

• A is an orbit finite G-set called the alphabet.

• δ ⊆ Q×A×Q is an equivariant transition relation.

• I ⊆ Q is an equivariant subset of initial states.

• F ⊆ Q is an equivariant subset of final states.

The relation δ∗ ⊆ Q×A∗×Q is used for acceptance and is defined inductively
in the following way.

(q, λ, q) ∈ δ∗ for all q ∈ Q
(q, xw, p) ∈ δ∗ if (q′, w, p) ∈ δ∗ and (q, x, q′) ∈ δ, for q, p, q′ ∈ Q,w ∈ A∗ and x ∈ A.

We define acceptance in the same way as regular automata. We say a
word w ∈ A∗ is accepted by the automaton (Q,A, δ, I, F) if (qi, w, qf) ∈
δ∗ where qi ∈ I and qf ∈ F .

We wish to prove that the language accepted by a G-automaton is a
G-language, but to prove this, we must first prove that the relation δ∗ is
equivariant. We will do this after the following lemmas.

Lemma 3.16. Given G-set X with the group action G. If Y is a subset of
X and for all π ∈ G, π · Y ⊆ Y , then Y is equivariant.

Proof. Since π ·Y ⊆ Y for all π ∈ G, we also have π−1 ·Y ⊆ Y . By applying
π to both sides, we obtain Y ⊆ π · Y . Thus for all π ∈ G, π · Y ⊆ Y and
Y ⊆ π ·Y , which means exactly that Y = π ·Y and that Y is equivariant.

Lemma 3.17. If δ ⊆ Q× A×Q is the equivariant transition relation of a
nondeterministic G-automaton (Q,A, δ, I, F) and {(q, w, p) ∈ δ∗ | |w| ≤ n}
is equivariant, then {(q, w, p) ∈ δ∗ | |w| ≤ n+ 1} is equivariant.

Proof. We first prove that (q, xw, p) ∈ δ∗ implies π · (q, xw, p) ∈ δ∗ for all
x ∈ A, w ∈ An and π ∈ G.
So let us assume that (q, xw, p) ∈ δ∗ for some xw ∈ An+1. By definition of
δ∗, this implies that (q′, w, p) ∈ δ∗ and (q, x, q′) ∈ δ for some q′ ∈ Q. Because
{(q, w, p) ∈ δ∗ | |w| ≤ n} is equivariant by assumption, we can conclude that
also π ·(q′, w, p) = (π ·q′, π ·w, π ·p) ∈ δ∗ and π ·(q, x, q′) = (π ·q, π ·x, π ·q′) ∈ δ.
Then π · (q, xw, p) = (π · q, π · (xw), π · p) ∈ δ∗, by definition of δ∗.

Thus we now have that (q, xw, p) ∈ δ∗ implies π · (q, xw, p) ∈ δ∗. Us-
ing the assumption that {(q, w, p) ∈ δ∗ | |w| ≤ n} is equivariant, we have
π · {(q, w, p) ∈ δ∗ | |w| ≤ n + 1} ⊆ {(q, w, p) ∈ δ∗ | |w| ≤ n + 1} for all
π ∈ G. Use Lemma 3.16 to conclude that {(q, w, p) ∈ δ∗ | |w| ≤ n + 1} is
equivariant.

14

Corollary 3.18. If δ ⊆ Q×A×Q is the equivariant transition relation of
a nondeterministic G-automaton (Q,A, δ, I, F), then δ∗ is equivariant.

Proof. This follows directly from the condition that δ is equivariant and by
induction on Lemma 3.17

Since we required I, F to be equivariant, we can also show that the set
of words accepted by the G-automaton is also equivariant.

Theorem 3.19. The language accepted by a G-automaton is a G-language.

Proof. Suppose w is a word in the language L that is accepted by the G-
automaton, then we have (qi, w, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F . If we
apply π ∈ G to this tuple, we obtain π ·(qi, w, qf) = (π ·qi, π ·w, π ·qf). Since
I and F are equivariant sets, we have that π · qi ∈ I and π · qf ∈ F and since
δ∗ is equivariant, (π · qi, π ·w, π · qf) ∈ δ∗. Then by definition of acceptance,
π ·w is also in the language. We can now conclude that π · L ⊆ L. Because
we took arbitrary π ∈ G, by Lemma 3.16, L ⊆ A∗ is equivariant. Thus the
language accepted by a G-automaton is a G-language.

Definition 3.20. A deterministic G-automaton, also called G-DFA, is a
non-deterministic G-automaton, where the definition of δ and I is changed
to:

• δ : Q×A→ Q is an equivariant transition function.

• the set of initial states is the equivariant singleton {q0}.

Example 3.21. Let us return to the example automaton we introduced at
the beginning of this chapter. Let our group be the subgroup of Sym(N),
where for all bijections, even numbers are sent to even numbers. A G-DFA
(Q,N, δ, {q0}, {n ∈ N | n is even }) that accepts the language L = {nw ∈
N+ | n ∈ N where n is even} is then given by:

q0

0

1

0

1

N

N

Note that we can represent our automaton as above. If δ(q0, 0) = 0, then
δ(q0, n) = n for all even n, by equivariance of δ. And since 0 is a final state,
n is also a final state, for even n, because F is equivariant.

15

Example 3.22. We now give a G-DFA (Q,N, δ, {q0}, F) that recognises the
language

L = {w ∈ N∗ | there exist different i, j, k ∈ N where |w|i > 0, |w|j > 0, |w|k > 0

and for all n ∈ N different from i, j, k : |w|n = 0}

in the equality symmetry. Where the set of states Q is:

Q ={q0, q1}
∪ {{n} | n ∈ N}
∪ {{n,m} | n ∈ N,m ∈ N}
∪ {{n,m, k} | n ∈ N,m ∈ N, k ∈ N},

,the set of final states is: F = {{n,m, k} | n ∈ N,m ∈ N\{n}, k ∈ N\{n,m}}
and the group action on q0, q1 is: π ·q0 = q0 and π ·q1 = q1. The group action
on the other states, is the element-wise action. We make sure that we have
read three different letters before we reached a final state. Note that n,m, k
can really be any number in N as long as they are different. We could thus
have chosen 1,2 and 3 to represent n,m and k in the G-DFA below.

q0 {n} {n,m} {n,m, k}

q1

n m

n

k

n,m

N \ {n,m, k}

n,m, k

N

16

Chapter 4

2DFA

In this chapter, we define 2DFA and show that they are expressively equiva-
lent to DFA using a construction as in [6]. We also prove the Myhill-Nerode
theorem to give the reader some intuition for this construction.

4.1 Defining 2DFA

A regular DFA can only go through the input word in one direction, namely
from left to right. But there is also the concept of a 2DFA where every
transition can be to the left or right. We will first introduce this automaton
and then after, show that it accepts the same languages as a regular type of
DFA.

Definition 4.1. A 2DFA is a tuple (Q,Σ, δ, q0, F), where

• Q is a finite set of states,

• Σ is a finite alphabet,

• q0 is the initial state,

• F ⊆ Q is a set of final states,

• and δ : Q×Σ→ Q×{L,R} is a transition function that can also state
if we move to the left after it has read a letter in the alphabet

The symbol R refers to a move to the right and L to a move to the left.

We will represent the current configuration of a 2DFA as an element of
Σ∗QΣ∗, where wqw′ means that the input was ww′ and we are currently
in state q reading the first letter of w′. We use this notation to be able to
represent moves of a 2DFA. We will write wqxw′ ` wxpw′ to indicate that
the second configuration follows from the first.

17

Assume w,w′ ∈ Σ∗, q ∈ Q and x, y ∈ Σ.

wqw′ is a final configuration if w′ = λ.

wqxw′ is a final configuration if w = λ and δ(q, x) = (p, L).

wqxw′ ` wxpw′ if δ(q, x) = (p,R).

wyqxw′ ` wpyxw′ if δ(q, x) = (p, L).

The first final configuration is because we are not reading a letter and the
second final configuration is because we fall off the left side of the tape. To
simplify the definition of acceptance, we will introduce some notation. We
will write c1 `∗ cn for configurations c1 and cn if we have c1 ` c2 ` · · · ` cn.

Definition 4.2. A word w is accepted by the 2DFA (Q,Σ, δ, q0, F) if we
have q0w `∗ wqf for some qf ∈ F . So the language that the 2DFA accepts
is defined by the set L = {w ∈ Σ∗ | q0w `∗ wqf}.

To show how a 2DFA works, we will give an example. The example 2DFA
is formally given by M = ({q0, q1}, {0, 1}, δ, q0, {q1}) where δ is defined by:
δ(q0, 0) = (q1, R), δ(q0, 1) = (q0, L), δ(q1, 1) = (q1, R) and δ(q1, 0) = (q0, L).
Note that this 2DFA shows the three behaviours. It will fall off the tape for
the word 1, not terminate for the word 00 and accept the word 01:

q01

q000 ` 0q10 ` q000 ` 0q10 . . .

q001 ` 0q11 ` 01q1.

The language this 2DFA accepts is L = {01n | n ∈ N}.

q0 q1

1,L

0,R

1,R

0,L

4.2 Myhill-Nerode

We can simulate an arbitrary DFA by a 2DFA by converting all transitions
to right transitions, which means that languages that DFAs accept can also
be accepted by 2DFAs. The converse is also true: Given a 2DFA, we can
construct a DFA that accepts the same language. To get some intuition
before we begin with the construction, we will first look at how we can
partition words with respect to an DFA, using a concept from Myhill-Nerode.

18

Take a language L over Σ. Then the Myhill-Nerode equivalence relation
x =L y if defined by xz ∈ L if and only if yz ∈ L for all z ∈ Σ∗. Note that
this is indeed an equivalence relation:

xz ∈ L if and only if xz ∈ L (4.1)

(xz ∈ L if and only if yz ∈ L) =⇒ (yz ∈ L if and only if xz ∈ L) (4.2)

(xz ∈ L if and only if yz ∈ L) and (yz ∈ L if and only if az ∈ L)

=⇒ xz ∈ L if and only if az ∈ L (4.3)

Theorem 4.3. (Myhill-Nerode) A language L over Σ can be accepted by a
DFA if and only if =L has finitely many equivalence classes.

Proof. ” ⇐= ”
We need to show that L can be accepted by a DFA. To achieve this, we
create the following DFA M = (Q,Σ, δ, q0, F).

• Q = {[w]=L | w ∈ Σ∗}

• δ is defined by δ([w]=L , x) = [wx]=L

• q0 = [λ]=L

• F = {[w]=L | w ∈ L}

The things left to prove are now that δ is well-defined and that M accepts
exactly L. Let us first prove that δ is well-defined. So we have to show
that w =L w′ implies wx =L w′x for all x ∈ Σ. Suppose w =L w′, then
wv ∈ L ⇐⇒ w′v ∈ L for all v ∈ Σ∗. Now take x ∈ Σ. Then (wx)v ∈
L ⇐⇒ (w′x)v ∈ L, since w(xv) ∈ L ⇐⇒ w′(xv) ∈ L. Thus we can
conclude that w =L w

′ implies wx =L w
′x for all x ∈ Σ, which implies that

δ is well-defined.
We now prove that M accepts exactly L. Note that [[λ]=L , w] `∗M [w]=L .
Thus if w ∈ L, then [w]=L ∈ F , which implies that w is accepted by M .
And because for all w′ ∈ [w]=L , we have wv ∈ L ⇐⇒ w′v ∈ L for all
v ∈ Σ∗, we can take v = λ, which gives us: wλ ∈ L ⇐⇒ w′λ ∈ L. This
means that w′ ∈ L and that M accepts precisely L.

” =⇒ ”
Suppose L is accepted by a DFA M = (Q,Σ, δ, q0, F). We can now make an
equivalence relation =M defined as w =M w′ if w and w′ halt in the same
state of M . We first note that L is the union of all words that halt in a final
state and that L is thus a finite union of some equivalence classes.

Now suppose w =M w′. Then [q0, w] `∗M [qi, λ] and [q0, w
′] `∗M [qi, λ] for

some qi ∈ Q. This also implies [q0, wv] `∗M [qi, v] `∗M [qj , λ] and [q0, w
′v] `∗

[qi, v] `∗M [qj , λ] for all v ∈ Σ∗ and some qj ∈ Q dependant on v. Thus if
w =M w′ then also wv =M w′v for all v ∈ Σ∗. Since L was a union of these
equivalence classes, we also have that wv ∈ L ⇐⇒ w′v ∈ L for all v ∈ Σ∗

19

because wv halts in the same state as w′v. Thus our w and w′ are also
equivalent with respect to =L. We can now conclude that [w]=M ⊆ [w]=L .

So the results obtained so far are that L is a finite union of some equiva-
lence classes and that that [w]=M ⊆ [w]=L for all w ∈ Σ∗. We can now con-
clude that every equivalence class [w]=L is not empty, since [w]=M ⊆ [w]=L

for all w ∈ Σ∗. But because there were a finite amount of equivalence classes
with respect to =M , there must also be a finite amount of equivalence classes
=L, again since [w]=M ⊆ [w]=L . Thus we can end our proof by concluding
that =L has finitely many equivalence classes.

Before we look at how this theorem can help with our construction, let us
first look at a step from the theorem in an example. Consider the following
DFA. If we end up at the same state, when computing two different words,
for instance the words 101 and 00111 in the automaton below. Then this
implies that they are also in the same equivalence class, since:

[q0, 101w] `∗M [q1, w] `∗M [q1, λ] ⇐⇒ [q0, 00111w] `∗M [q1, w] `∗M [q1, λ].

q0 q1

1

0

1

0

The proof of the Myhill-Nerode theorem uses the property that [w] = [w′]
implies [wx] = [w′x] to use the equivalence classes as states. We wish to
achieve a similar concept where we would have a finite amount of equivalence
classes that satisfy [w] = [w′] =⇒ [wx] = [w′x], because this would allow
for a simple construction of the DFA that will accept the same language as
a given 2DFA.

For moves to the right (x,R), we already have that [w] = [w′] =⇒
[wx] = [w′x]. We might encounter a problem with a left transition however,
because we may end up in a different state where the words from the same
equivalence class show different behaviour. Consider the automaton below.

20

q0 q1 q2

q3

q4

0,R

1,R

0,L

1,L

0,R

1,R

0,R

1,R

0,R

1,R

Although we would link q1 with the equivalence class {0, 1} when using
the relation =M , we see that it is not true that 0 =L 1 because 0 and 1 have
different behaviour later on in the automaton: we are able to move to the
left and look at the 0 and 1 again, as seen in state q2. This means that the
earlier implication w =M w′ =⇒ wx =M w′x does not hold anymore for
x ∈ Σ. It would be useful for the upcoming construction to come up with
an equivalence relation, for which w =M w′ =⇒ wx =M w′x holds again.
To achieve this, consider the following.

4.3 2DFA equivalence

We construct, given a 2DFA (Q,Σ, δ, q0, F), functions τw : Q∪{q̄} → Q∪{0},
where q̄ and 0 are fresh symbols. This function tells us a lot about the
behaviour of the given 2DFA. The function tells us if we ever move one
letter to the right and if so, in which state we end up. The output of q̄ tells
us if we will have ever moved through the word and if so, in which state we
end up.

For all w ∈ Σ∗ and x ∈ Σ, τwx is defined by:

τwx(q) =

p if wqx `∗ wxp

0 otherwise

τwx(q̄) =

p if q0wx `∗ wxp

0 otherwise

Note that we can determine if wqx `∗ wxp, since we can determine if we
have fallen of the tape or have entered a loop.

If we consider w and w′ to be equivalent if τw = τw′ , we have an equiv-
alence relation over words that end up in the same state when reading the

21

first letter from the right. We now wish to prove that τw = τw′ implies
τwx = τw′x for x ∈ Σ, to prove that a transition function is well-defined if
we use τw as input. So let us now prove the implication.

Lemma 4.4. For 2DFA (Q,Σ, δ, q0, F), w ∈ Σ+ and x ∈ Σ, τw = τw′ implies
τwx = τw′x

Proof. We will first prove that τwx(q) = τw′x(q) for q ∈ Q if τw = τw′ and
secondly that τwx(q̄) = τw′x(q̄) if τw = τw′ .

Suppose τw(q) = τw′(q) for all q ∈ Q . If state q contains a transition
(x,R), we have wqx ` wxp and w′qx ` w′xp which imply τwx(q) = p =
τw′x(q). If state q contains a transition (x, L), we have that since τw = τw′ ,
the values τwx(q) and τw′x(q) will be the same.

Now also suppose τw(q̄) = τw′(q̄). We can now use the just proven
statement ∀q ∈ Q[τw(q) = τw′(q)] =⇒ ∀q ∈ Q[τwx(q) = τw′x(q)] to prove
τwx(q̄) = τw′x(q̄). If τw(q̄) = 0, then τwx(q̄) is also 0, since we will never
even look at x. If τw(q̄) = p, then τwx(q̄) = τwx(p) = τw′x(p) = τw′x(q̄). We
can now conclude the desired τw = τw′ =⇒ τwx = τw′x.

The result of this Lemma shows that we can indeed use this equivalence
relation in a construction similar to that of Myhill-Nerode theorem. We will
now give the construction and prove that 2DFA and DFA accept the same
languages.

Theorem 4.5. 2DFA’s and DFA’s accept the same languages.

Proof. As said before is the conversion from DFA to 2DFA quite simple
because we can transform the transitions into right transitions. This would
formally look as follows.

Take an arbitrary DFA M = (Q,Σ, δ, q0, F). Now make 2DFA M ′ =
(Q,Σ, δ′, q0, F), where δ′(q, x) = (δ(q, x), R). Because a transition in a DFA
is always a transition to the right, M ′ accepts the same language as M .

We now prove the other inclusion. Take an arbitrary 2DFA M =
(Q,Σ, δ, q0, F) We use the functions τw, that were introduced above, as
states with the same idea as the Myhill-Nerode theorem.

We now construct our DFA M ′ = (Q′,Σ, δ′, q′0, F
′), where

• Q′ = {q′0} ∪ {τw | w ∈ Σ+}

• δ′(q′0, x) = τx and δ′(τw, x) = τwx, with x ∈ Σ, w ∈ Σ+

• q′0 is a new starting state that did not occur in Q and

• F ′ = {τw | τw(q̄) = qf for some qf ∈ F}.

22

Note that because τw are functions from Q∪{q̄} to Q∪{0}, we have |Q′| ≤
1 + (|Q|+ 1)|Q|+1. So the set of states is finite even though the set of words
is infinite. Also note that the transition function is well defined on these
states by Lemma 4.4. We can see that by induction we have δ′∗(q′0, w) = τw.
Thus we have now that:

w is accepted by M

⇐⇒ q0w `∗ wqf for some qf ∈ F (By the definition of acceptance.)

⇐⇒ τw(q̄) = qf for some qf ∈ F (By the construction of τw.)

⇐⇒ τw ∈ F ′ (By construction of F ′.)

⇐⇒ δ′∗(q′0, w) ∈ F ′ (Because δ′∗(q′0, w) = τw.)

⇐⇒ w is accepted by M ′ (By the definition of acceptance.)

We have now obtained a DFA that accepts exactly the same language as
the given 2DFA, thus we can conclude that a DFA’s and 2DFA’s accept the
same languages.

Example 4.6. We now show the construction on the example 2DFA after
Definition 4.2. There are 33 functions from {q0, q1, q̄} to {q0, q1, 0}, but we
won’t be using every function because we remark the following. We cannot
have τw(q0) = 0 = τw(q1) for some w ∈ Σ+ because we move to the right
in q0 if we are reading a 0 and we move to the right in q1 if we are reading
a 1. We can also not have the state q0 as output since it does not have
any incoming right transitions. This all leaves us with the following possible
functions.

f(q0) f(q1) f(q̄)

1 0 q1 0

2 0 q1 q1

3 q1 0 0

4 q1 0 q1

5 q1 q1 0

6 q1 q1 q1

In our construction we only use the above functions if it is equal to τw
for some w ∈ Σ+. We now look at which words correspond to the above
functions.

1. τw(q0) = 0 indicates that the 2DFA with input w either does not
terminate or walk of the left side of the tape. We can only walk off the
tape if we have only 1’s. This criterion also corresponds to the other
values, so w ∈ 1+

23

2. τw(q0) = 0 indicates again that w contains only 1’s. Now τw(q̄) = q1
indicates that the words is accepted by the 2DFA. This is however not
possible since the word contains only 1’s and we have seen that the
language accepted by the 2DFA is {01n | n ∈ N}. So this function is
not part of our construction.

3. τw(q0) = q1 and τw(q1) = 0 indicate that w ends on a 0. τw(q̄) = 0
indicates that the word is not accepted, which must mean that there
are two or more 0’s in w or that there are one or more 1’s. Thus we
must have w ∈ {0, 1}+0.

4. We have again that w must end on a 0. The word is accepted in q1,
so the only option is that w = 0.

5. τw(q0) = q1 indicates that the word contains a 0 and τw(q1) = q1
indicates that it ends on a 1. The word is not accepted, so there
again must be another 0 or 1 left the the 0. This all means that
w ∈ {0, 1}+01+.

6. We again have that the word ends on a 1 and contains a 0. Since the
word is accepted, we must have w ∈ 01+.

Note that we have indeed obtained a partition of Σ∗.
We can now easily make the state diagram of the resulting DFA that

accepts the same language as the 2DFA after Definition 4.2. We can also
see that the automaton below is not minimal, so our construction does not
necessarily give a minimal automaton.

q′0

τ1 τ00

τ0

τ001

τ01

0

1

1

0

0

1

0
1

0

1

0

1

24

Chapter 5

G-2DFA

In this chapter, we combine the notions of 2DFA and G-DFA to define a G-
2DFA. We explore if these G-2DFAs accept the same languages as G-DFAs
using the functions τw that we introduced in Section 4.3.

Definition 5.1. A G-2DFA is a tuple (Q,A, δ, {q0}, F), where

• Q is an orbit finite G-set of states.

• A is an orbit finite G-set called the alphabet.

• δ : Q × A → Q × {L,R} is an equivariant transition relation, where
the group action on {R,L} is the identity.

• {q0} ⊆ Q is an equivariant subset of initial states.

• F ⊆ Q is an equivariant subset of final states.

Acceptance is defined the same as in Definition 4.2. A word w is accepted
by the G-2DFA (Q,Σ, δ, {q0}, F) if we have q0w `∗ wqf for some qf ∈ F .

Example 5.2. Let us now look at an exampleG-2DFA (Q,N∪{∗}, δ, {q0}, {q5})
that accepts the language L = {∗wx∗ | w ∈ N∗, x ∈ N and |w|x > 0}. The
set of states in the automaton below is Q = {q0, q1, q2, q4, q5, q6}∪{{x} | x ∈
N} and G = Sym(N).

25

q0 q1 q2 {x}

q4q5q6

∗, R

N, R

N, R

∗, L x, L

∗, R

N ∪ {∗}, L

x,R

∗, R

A \ {∗}, R

A,R

A,R

If we wanted to make a G-DFA that accepts the same language as above,
we could try to remember all the letters we have encountered as sets in our
state. This would mean that the word ∗123432 ends up in state {1, 2, 3, 4}.
Since words can have all different letters, for all lengths, we will not have
an orbit finite amount of states, by an argument very similar to Example
3.7. This means that this specific construction will not work. The language
above cannot be accepted by a G-DFA by a version of the Myhill-Nerode
theorem for G-DFA’s. We could, however, construct the following G-NFA
that accepts L.

q0 x (x, x) q1 q2
∗

N

x

N

x ∗

The set of states in the G-NFA above is Q = {q0, q1, q2} ∪ {x ∈ N} ∪
{(x, x) | x ∈ N}, where the group action is π · qi = qi for 0 ≤ i ≤ 2 and the
point-wise action of Sym(N) for the other states.

The first state already assumes the number that will occur multiple times
in the word. Suppose this number is n. Then state q1 will only be reached
if the letter n has occurred twice already and if the last letter was an n.

We extend the Myhill-Nerode equivalence relation from Theorem 4.3 to
infinite alphabets. In this thesis we will not give a proof. The proof can be
found in [1].

Theorem 5.3. Myhill-Nerode theorem for G-sets. Assume A is an orbit
finite G-set and L ⊆ A∗ a G-language, then the following statements are
equivalent.

• {[w]=L | w ∈ A∗} is orbit finite.

26

• L is recognised by a G-DFA.

Let us return to the G-2DFA and give an infinite amount of orbits with
respect to the Myhill-Nerode equivalence relation.

The set {∗1, ∗12, ∗123, ∗1234, ∗12345, . . . } contains elements with dis-
joint orbits with respect to the Myhill-Nerode equivalence relation. To see
this, take different x and y with x, y ∈ {∗1, ∗12, ∗123, ∗1234, ∗12345, . . . }, π, π′ ∈
Sym(X) and consider π ·x and π′ ·y. Without loss of generality assume that
|π′ ·y| > |π ·x|. Then π′ ·y contains a letter that is not in π ·x. Call this letter
k. This means that (π · x)k∗ /∈ L = {∗wx∗ | w ∈ N∗, x ∈ N and |w|x > 0}
and (π′ · y)k∗ ∈ L.

Because {∗1, ∗12, ∗123, ∗1234, ∗12345, . . . } has an infinite amount of el-
ements in different orbits, {∗wx∗ | w ∈ N∗, x ∈ N and |w|x > 0} cannot be
accepted by a G-DFA. We can thus conclude that G-DFAs and G-NFAs do
not accept the same languages and that G-NFAs can accept more languages
that G-DFAs.

5.1 From G-2DFA to G-DFA

Let us now return to the construction used for DFA and 2DFA equivalence
and look at when the construction works and why it fails for G-DFA, when
using the following group action.

π · τw = τπ·w

To use this group action, we have to prove that it is well defined, thus
that if τw = τw′ for w,w′ ∈ A+, we have for all π ∈ G that π · τw = π · τw′ .

To show this, we will show that the group action determines the function
as follows:

π · τw = x 7→ π(τw(π−1 · x)).

Lemma 5.4. Given G-2DFA (Q,A, δ, {q0}, F), if τwx(q) = p for w ∈ A∗, x ∈
A and p, q ∈ Q, then π · τwx(π · q) = π · p.

Proof. Suppose τwx(q) = p for w ∈ A∗, x ∈ A and p, q ∈ Q, then this
means by construction of τwx that wqx `∗ wxp. Thus there are a number
of transitions taken to get from wqx to wxp, where each transition is of the
form δ(pi, y) = (pj ,M) with y a letter in wx and M ∈ {L,R}. Then by
equivariance of δ, we also have

δ(π · pi, π · y)

= π · δ(pi, y) (Equivariance of δ.)

= π · (pj ,M) (Assumed value.)

= (π · pj ,M). (Group action on tuple.)

If we use induction on the number of transitions, this implies that π · τwx(π ·
q) = π · p

27

Note that this corresponds to the function x 7→ π · (τwx(π−1 · x)) before
the Lemma, since π · q 7→ π · (τwx(π−1 · π · q)) = π · τwx(q) = π · p.

Theorem 5.5. The group action π·τw = τπ·w is well-defined, where w ∈ A+.
Thus τw = τw′ implies τπ·w = τπ·w′

Proof. We first note that applying the group action to a transition does not
change the direction and that the length of a word does not change when
applying the group action.

Suppose w ∈ A∗, x ∈ A and τwx(q) = 0. Then there are two cases:

• When starting with the configuration wqx, we walk of the left side
of the tape. Since the length of the word does not change nor does
the direction of each transition, when applying the group action, we
must also walk of the left side of the tape when starting with the
configuration π · wπ · qπ · x.

• When starting with the configuration wqx, we do not walk of the left
side of the tape and at each point of the computation, the number of
right transitions taken is always less than or equal to the number of left
transitions taken. This means that we will never reach a configuration
wxp for some p ∈ Q. Since the length of the word does not change nor
does the direction of each transition, when applying the group action,
we do still not walk of the left side of the tape and at each point of
the computation, the number of right transitions taken is always less
than or equal to the number of left transitions taken.

We can thus conclude that τwx(q) = 0 implies τπ·(wx)(π · q) = 0.
Now suppose that τwx(q̄) = p for some p ∈ Q, which by construction

means that q0wx `∗ wxp. Because each ` corresponds to a transition and
δ is equivariant, q0wx `∗ wxp implies π · q0π · (wx) `∗ π · (wx)π · p. Where
π · q0 = q0 by definition. Thus τwx(q̄) = p implies τπ·(wx)(q̄) = π · p.

If we combine our results with Lemma 5.4, have see that the function
τwx completely determines the function τπ·(wx). Thus if τw = τw′ , then
π · τw = π · τw′ for all π ∈ G. We can now conclude that our group action is
well-defined.

Theorem 5.6. For an arbitrary G-2DFA M = (Q,A, δ, {q0}, F), there ex-
ists a G-DFA that accepts the same language if the set {τw | w ∈ A+} is
orbit finite, where the group action on τw is π · τw = τπ·w.

Proof. Take G-2DFA M = (Q,A, δ, {q0}, F). We define the deterministic
G-automaton M ′ = (Q′, A, δ′, {q′0}, F ′) the following way, where τw are the
same τw as in theorem 4.2.

• Q′ = {τw | w ∈ A+}

28

• δ′(τw, x) = τwx

• q′0 is a new state.

• F ′ = {τw | τw(q̄) ∈ F}

We define the group action on q0 as π · q′0 = q′0, since {q′0} needs to be
equivariant. Lemma 4.4 still holds, so τw = τw′ implies τwx = τw′x. This
means again that our δ′ is well defined. We have given a well-defined group
action on Q′, so Q′ is a G-set. The alphabet A is the same, so still is an
orbit finite G-set. We also see that δ′ is equivariant:

π · δ′(τw, x)

= π · τwx (definition of δ′)

= τπ·(wx) (group action on τw)

= τπ·wπ·x (point-wise action on words)

= δ′(π · τw, π · x).

The initial states {q′0} is an equivariant set because π · q′0 = q′0 by con-
struction. The set of final states F is also equivariant because the language
accepted by M is equivariant:

τw ∈ F ′

⇐⇒ τw(q̄) ∈ F (By construction of F ′.)

⇐⇒ q0w `∗ wqf for some qf ∈ F (By construction of τw.)

⇐⇒ w ∈ L (By acceptance of M.)

⇐⇒ π · w ∈ L (Since L is a G-language.)

⇐⇒ q0(π · w) `∗ (π · w)qf for some qf ∈ F (By acceptance of M.)

⇐⇒ τπ·w(q̄) ∈ F (By construction of τw.)

⇐⇒ τπ·w ∈ F ′ (By construction of F ′.)

Thus we have obtained that Q′ is a G-set and, by our assumption that the
set {τw | w ∈ A+} is orbit finite, Q′ is also orbit finite. We have also
obtained that δ′, {q′0} and F are equivariant. The only thing left to prove is
now that M ′ accepts the same language as M .

w accepted by M

⇐⇒ q0w `∗ wqf for some qf ∈ F
⇐⇒ τw(q̄) ∈ F
⇐⇒ τw ∈ F ′

⇐⇒ δ′∗(q′0, w) ∈ F ′

⇐⇒ w is accepted by M ′.

29

Thus there exists a G-DFA that accepts the same language as a G-2DFA
M = (Q,A, δ, {q0}, F) if the set {τw | w ∈ A+} is orbit finite.

5.2 Orbit infinite examples

The last theorem means that the construction does work if the set {τw |
w ∈ A+} is orbit finite, but this is not always the case, as we will see in the
following G-2DFA.

Example 5.7. TheG-2DFA below accepts the language L = {∗d0d1 . . . dn∗ |
dk ∈ N, di 6= dj for k ∈ N and i 6= j} in the equality symmetry. We define
the group action on qi as π · qi = qi for all π ∈ G and 0 ≤ i ≤ 5 and the
group action on ∗ is also π · ∗ = ∗ for all π ∈ G. The alphabet A is N∪ {∗}.

The G-2DFA walks through the word until the letter ∗. It then checks
if the last unchecked letter occurs another time in the word. If this is the
case, we end up in q5 and do not accept the word. If there are no letters
occurring twice in between the two ∗, we eventually take the transition from
q2 to q3 and reach a final configuration in q4.

q0 q1 q2 q3

{∗, n}{n}q5

q4
∗, R

N, R

N, R

∗, L ∗, R

n, L

N, R

∗, R

A,R

A,R

n,L

A \ {n}, R
∗, R

N \ {n}, L

n,R

Let us now look at a subset that shows that {τw | w ∈ A+} is not orbit
finite for this G-2DFA. Take the subset {1, 12, 123, 1234, 12345, . . . } ⊆ A∗

and take two words w,w′ ∈ {1, 12, 123, 1234, 12345, . . . }, where w 6= w. Now
assume, without loss of generality, that the length of w is greater than the
length of w′. Note that this implies that w contains a letter that does not
occur in w′. Even if we take a permutation π ∈ G and apply it to w′, w still
must contain a letter that does not occur in π · w′. Let us cal this letter k.
Then τw′({k}) = 0 and τw({k}) = q5

30

Because we can for each permutation π ∈ G, find a {k} ∈ Q such that
τw({k}) 6= τπ·w′({k}), we can conclude that τw′ and τw are in different orbits.
Since this holds for every two words in {1, 12, 123, 1234, 12345, . . . }, we can
conclude that the construction does not work, since {τ1, τ12, τ123, τ1234, τ12345} ⊆
Q = {q′0} ∪ {τw | w ∈ A+} is not orbit finite.

Note that if we take this set {1, 12, 123, 1234, 12345, . . . } and add a ∗
before each word: {∗1, ∗12, ∗123, ∗1234, ∗12345, . . . }, we also obtain a set
that can be used to show that the language L = {∗d0d1 . . . dn∗ | dk ∈
N, di 6= dj for k ∈ N and i 6= j} cannot be accepted by the Myhill-Nerode
theorem for G-sets.

We can now also use this counterexample to show that it is not true that
the set {τw | w ∈ A+} is orbit finite if a G-2DFA that accepts the language
L can be accepted by a G-DFA.

q7 q8

q1 q2 q3

{∗, n}{n}q5

q4

N, R

∗, R

A,R

N, R
∗, L ∗, R

n, L

N, R

∗, R

A,R

A,R

n,L

A \ {n}, R∗, R

N \ {n}, L

n,R

The G-2DFA above uses the G-2DFA of Example 5.7 for words that are
already not going to be in the language. This allows us to create a G-2DFA
that accepts an easy language, but where the set {τw | w ∈ A+} is not orbit
finite. We can see that the language that the G-automaton above accepts is
L = {nw | n ∈ N and w ∈ A∗}, which can be accepted by the G-DFA below.
We can thus conclude that the statement “The set {τw | w ∈ A+} is orbit
finite if a G-2DFA that accepts language L can be accepted by a G-DFA”
is not true.

31

q7 q8

q1

N, R

∗, R

A,R

A,R
.

A possible assumption is to require an automaton to be reachable. This
notion refers to automata, where each state can be visited with some com-
putation.

Definition 5.8. A G-2DFA (Q,A, δ, {q0}, F) is called reachable if for every
state q ∈ Q, there exist w,w′ ∈ A∗ such that q0ww

′ ` wqw′.

This assumption would not help improve the theorem, since the G-DFA
given above is reachable.

Suppose we have a G-2DFA (Q,A, δ, {q0}, F) that accepts language L.
We have seen with these examples that the implication

there exists a G-DFA that accepts L =⇒ {τw | w ∈ A+} is orbit finite

does not hold, even if the G-2DFA is reachable.

32

Chapter 6

Related Work

The main source of this thesis is [1]. This paper contains the notion of
G-automata, nominal sets and the Myhill-Nerode theorem for G-sets and
nominal G-sets. The language used to show that we cannot accept all lan-
guages with a G-DFA that a G-2DFA accepts also originates from this paper.

In this thesis, we combined the proof of expressive equivalence of 2DFA
and DFA used in [6] with the notion of G-2DFA from [1] to show that using
an extra condition, the construction from the proof still works for G-2DFA
and G-DFA. The language from [1] was then used as an counterexample
to show that the construction does not always work if the language can be
accepted by a G-DFA.

33

Chapter 7

Conclusions

In this thesis, we have seen what G-automata and 2DFAs are and how a DFA
can accept the same language as an 2DFA using a construction. Theorem
5.6 was our main result and showed that this construction for G-2DFA to
G-DFA works if the set {τw | w ∈ A∗} is orbit finite. Lastly, we showed that
the converse was not true and that the assumption that the G-2DFA was
reachable did also not cause the converse to be true.

7.1 Future work

A good extension to this thesis would be to improve Theorem 5.6, by proving
that there exists a G-DFA that accept the same language if and only if the
set {αw | w ∈ A∗} is orbit finite. This construction, with α, would ensure
that all function values have a purpose, since it occurs in a computation of
a word in the language, while this was not the case for τw.

αwx(q) =

p if wqx `∗ wxp and ∃w′ ∈ A∗ with q0wxw
′ `∗ wqxw′ `∗ wxw′qf for some qf ∈ F

0 otherwise

αw(q̄) =

p if q0w `∗ wp

0 otherwise

34

Bibliography

[1] Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata theory
in nominal sets. Log. Methods Comput. Sci., 10(3), 2014.

[2] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin,
and Claire David. Two-variable logic on words with data. In 21th IEEE
Symposium on Logic in Computer Science (LICS 2006), 12-15 August
2006, Seattle, WA, USA, Proceedings, pages 7–16. IEEE Computer So-
ciety, 2006.

[3] Frans Oort Hendrik Lenstra Jr. and Ben Moonen. Groepentheorie, 2014.
lecture notes. Radboud University.

[4] Michael Kaminski and Nissim Francez. Finite-memory automata. The-
oretical Computer Science, 134(2):329–363, 1994.

[5] Sheng Yu Andrei Paun. Implementation and application of automata.
Berlin, Heidelberg.

[6] Jeffrey Shallit. A Second Course in Formal Languages and Automata
Theory. Cambridge University Press, 2009.

[7] Thomas A. Sudkamp. An Introduction to the Theory of Computer Sci-
ence Languages and Machines. Pearson, 3 edition, 2006.

35

