
Bachelor thesis
Computing Science

Radboud University

Formalizing the C preprocessor

Author:
Alexander Wolters
s1022959

Daily supervisor/assessor:
Dr. Freek Wiedijk
freek@cs.ru.nl

Second supervisor/assessor:
Dr. Robbert Krebbers

mail@robbertkrebbers.nl

January 14, 2022

Abstract

There have been a number of formalizations which model the C program-
ming language, as defined by its ISO standard documents, but in general,
such models simply take the C preprocessor as given.
In this thesis, we present a model of a simplified version of the C preproces-
sor and investigate how such a model can be used to prove the correctness
of statements involving both preprocessing and language-level requirements,
using a minimal toy language in place of C.

Contents

1 Introduction 3
1.1 Related Work . 4
1.2 Overview . 4

2 Behaviour of the C preprocessor 6
2.1 Examples . 6

3 A toy language 10

4 Notation 12
4.1 Sets and Types . 12
4.2 Lambda functions . 13
4.3 Partial functions . 13
4.4 Updating . 13

5 Formal grammars 14
5.1 Common non-terminals . 14
5.2 Before expansion . 15
5.3 After expansion . 15

6 Preprocessing function 17
6.1 Wrapper and main function 19
6.2 Object Macro . 20
6.3 Function-Like Macro . 20
6.4 Text Line . 20
6.5 Auxiliary functions . 23
6.6 Example: Simple macro derivation 23

7 Interpretation 26
7.1 Unparsing function . 26
7.2 Processing Function . 28
7.3 Evaluation . 28

8 Correctness of the expansion process 31

1

9 Predicates over the state(s) 35

10 Discussion 38
10.1 Expansion to other directives 38
10.2 Expansion to C . 39

A Common.hs 43

B PreProcess.hs 44

C PostProcess.hs 47

2

Chapter 1

Introduction

Ever since it became a major language (see [1]), there have been several
formalizations of the behaviour of the C language (or at least parts of it) as
defined in the C standard ([2],[3],[4],[5],[6], among others).
However, those papers generally just assume the C preprocessor and the
standard header files as a given, or relegate it to future work.
As such, the questions that we want to consider in this thesis are these:

1. How can we model the behaviour of the C preprocessor, specifically of
the macro replacement directives?

• And how can we do this with as little state as possible to simplify
proofs?

2. (How) can we use this model to prove the correctness of program and
header files?

In this thesis, we only consider files without condition macros, and instead
focus on presenting a mathematical model of a simplified version of the
C preprocessor. This simplified version only includes macro replacement
directives and omits conditionals, include directives and anything else the
C preprocessor usually does. While this is only one aspect, it serves as a
basis to build upon, especially with regard to verification of C header files.
The model uses as its core idea a transformation of lines to other lines, with
as little state as possible being carried between lines. The output of this
model is a list of tokens which form a program. In this thesis, the program
is not a C program, but rather is written in a toy language, but this is
irrelevant, as the preprocessor is largely language-agnostic (except for the
definition of what is a token, and the model can cope with adding to that
definition just fine).
This is a first step towards building a model of the full preprocessor, which
is important as it is required to prove the formal correctness of C programs
that include preprocessor directives, which in practice is true of most large-
scale programs, but to the best of my knowledge, no such model exists at

3

this point in time. Such a model would also allow the formal verification
of C header files, which form an essential part of the C ecosystem, but are
typically merely assumed to be correct.

1.1 Related Work

As already mentioned, there has been little interest in the C preprocessor in
academic work so far. Indeed, there is only one work that I am aware of that
investigates the difficulties that arise from this additional step in compiling
a C program.
Kästner et al. [7] have investigated the challenges of proving statements over
code for all values of conditional macros, and while they do acknowledge the
problems that arise from the combination of conditionals with macro expan-
sion, their solution builds on a pre-existing compiler to handle the macro
expansion itself, and they do not consider this a focus of their work. Conse-
quently, their work, while interesting in itself, is no help if one wishes to have
a model hat can be written in a proof assistant, as this thesis aims to achieve.

1.2 Overview

We first go over some preliminary knowledge, which consists of select exam-
ples of the behaviour of the C preprocessor in chapter 2, an explanation of
the toy language in chapter 3 and some notation used in this thesis in chap-
ter 4. Then we give the formal grammar of our languages before and after
the preprocessing step in chapter 5. After that, we give the functions for the
preprocessing (chapter 6) and the evaluation (chapter 7) of our language,
the former of which is the answer to the first research question. Finally,
we consider how to show the correctness of our model in chapter 8 and an-
swer the second research question in chapter 9, before we finish up with our
overall conclusions and a discussion on expandability of the model and its
applicability to C in chapter 10. A large-scale overview of this thesis in a
picture is given in fig. 1.1.

4

Figure 1.1: Large-scale overview of the thesis

5

Chapter 2

Behaviour of the C
preprocessor

For a full description of the C preprocessor and all its directives, please refer
to [8], with particular attention to sections 5.1.1.2 and 6.10.
Here, I merely give some examples to give the reader a general understanding
of the directives from the standard that are formalized in this thesis.

2.1 Examples

As the preprocessor is primarily a transformation over lines, the examples
are given in a similar style, with the left side being the input line and the
right side the output resulting thereof. As some lines do not give any output,
the corresponding lines on the right side will be left blank.
Horizontal lines are used to separate examples from each other, consider
each block between horizontal lines to be entirely unrelated to any other
such block.

6

#define A B

A B

#define A B

#define B C

A C

B C

#define B C

#define A B

A C

B C

#define A(X) X

A(2) 2

#define A(X) X + 2

A(3) 3 + 2

#define A(X) 3

A(2) 3

#define B(X) 2 + X

#define A B

A(2) B(2)

B B

#define A(X) X,Z

declare f(A(Z)); declare f(Z,Z);

Note that this is not legal in the toy language,

but that is irrelevant to the preprocessor.

#define ZERO(X) const X = 0;

ZERO(z) const z = 0;

A A

#define A B

#define A B

#define B A

A A

B B

7

#define A B

#define B C

#define C A

A A

#define A(X,Y) X + Y

A(2,

3) 2 + 3

#define A(X,Y) X + Y

A(2,

#define B C

3) 2 + 3

A(2, A(2,

#define A(X,Y) X + Y

3) 3)

As not all macro definitions are legal, I also give some examples of legal
and illegal macro definitions, but they can all essentially be summed by this
quote from the C standard: “An identifier currently defined as an object-
like macro shall not be redefined by another #define preprocessing directive
unless the second definition is an object-like macro definition and the two
replacement lists are identical”([8], 6.10.3.2), and similarly for function-like
macros.
Legal:

#define A B

#define A B

#define A(X) X

#define A(X) X

#define A(X) X

#define A(Y) Y

#define A(X,Y) X + Y

#define A(Y,X) Y + X

Note that the last two cases are technically illegal according to the stan-
dard as well. This is the one corner case where this thesis does not quite
follow the standard and is slightly more permissive instead.

8

I also give some examples of illegal definitions where macros are redefined
differently than they were:

#define A B

#define A C

#define A B

#define A(X) X

#define A(X) X

#define A B

#define A(X,Y) X + Y

#define A(Y,X) X + Y

#define A B

#define C A

#define C B

#define A(X,X) X

9

Chapter 3

A toy language

The toy language that is used in this thesis as the target of the preprocessor
is a very simple language. The full grammar is given in section 5.3, but in
short, a program is a list of statements, and there are only three types of
statements: Function declarations, definitions, and constant definitions.
The following example illustrates each of these three in turn:

declare f(y);

define f(x) = ((5 + x) * 3);

const c = f(2);

In this example, the value of the constant c is 21. As the language is
not very complex, it is expected that the meaning of any expression is easy
enough to determine for anyone with experience with any C-like language.
However, some things are not permitted, so the next two examples would
be invalid programs:

define f(x) = ((5 + x) * 3);

define f(x) = ((5 + x) * 3);

const c = 12;

const c = 13;

Note that it does not matter if the second definition is the same as the
first or different, no function or constant may be defined twice.
It is allowed, however, to declare a function multiple times, even with dif-
ferent parameter names (But parameter names must be unique, even for
declarations):

declare f(x);

declare f(y);

Of course, the number of parameters must be the same, so this would be
forbidden:

10

declare f(x);

declare f(x, y);

And a function must be defined if it is to be used, though there is no restric-
tion on the order of the two, so while this is no forbidden, the value of c is
not defined until a definition for f is given (note that this example would be
valid even without the function declaration):

declare f(x);

const c = f(5);

The following example is not forbidden, but it will never be possible to
evaluate the constant c:

const c = (c + 1);

Indeed, any constant or function definition that refers back to itself is legal,
but in general, the value of such a constant or function cannot be used,
unless there is a multiplication with zero involved:

const c = (0 * d); define f(x) = (x * f((x - 1)));

Note that even though the constant d does not exist yet, the evaluation
of c is possible, as what is written on the right hand side does not matter.
Also, since f(0) = 0, the function f always returns 0, and not the factorial
of it’s input, as one may assume.
This example also demonstrates that it is legal for an expression to contain
a constant name that is not yet introduced, as long as the name is defined
when it is evaluated.

11

Chapter 4

Notation

4.1 Sets and Types

Wherever this thesis uses symbolic notation to represent the type for some
function or value, the following symbols always have the same meaning:

• Given some type X, [X] stands for a list of elements of type X, which
may have repetitions, is well ordered and has variable length (unlike
tuples).
There are also several constructors for and functions on lists, which
have the same meaning as the versions in the Haskell standard library
if nothing else is explicitly mentioned.

• Given some type X, we use X? to represent a type that could be called
“possibly X”, that is, a type which is either really a X or nothing at
all, which we denote as ⊥. (This type is analogous to Haskell’s Maybe
datatype [9] and Java’s Optional class [10].)
Given an element x ∈ X?, we can write x↓ to express that x ∈ X, and
we can write x↑ to express that it is ⊥.

• B stands for the set of Boolean values, that is B = {T,F}, where
the symbols T and F represent the Boolean values true and false,
respectively.

• Σ stands for the set of valid identifiers, which is a letter or underscore
followed by any number of letters, digits and underscores. Identifiers
are printed in monospace.

• T stands for the set of tokens, as defined in the grammar in section
3.1.1.

12

4.2 Lambda functions

As there are several higher-order functions in this thesis, and it is not useful
to give a name to each function, we may wish to pass in as arguments to
them, we make use of lambda functions as a shorthand notation. In this
document, they are written as such: λx, y. x+ y, which denotes a function
that takes two inputs and returns the sum of those inputs.
Note that this notation does not include types, they can be inferred from
the context where the lambda function is given.

4.3 Partial functions

In this thesis, partial functions are sometimes used where no reasonable
definition would exist for some input to a function, or to represent some
kind of error state (For example, trying to redefine a macro constant with a
different value). In this case, the type of the function is written as f : A ⇀ B,
where A and B are types.
In such a case, we write f(x) ↓ to represent that f is defined for input x,
and we write f(x)↑ to represent that f is not defined for input x.
We also define the special function σ, which is not defined for any input,
and therefore can match any function type. (Much as the empty set can be
a set of any type.)

4.4 Updating

We use the notation of f [a 7→ b] for some (possibly partial) function f :
A → B and some values a ∈ A, b ∈ B to represent a new (possibly partial)
function, which gives the same result as f for all inputs, except for input a,
for which it gives b.
We use the same notation for lists as well, but here, a is a natural number,
and the meaning is that the a’th element of the list is set to b, with all the
other elements unaltered.

13

Chapter 5

Formal grammars

We give formal grammars for our languages, both for before and after the
macro expansion. Terminals are given in typewriter font, whereas non-
terminals are given in italics. Subsequent indented lines indicate alternative
definitions. λ represents the empty string.

5.1 Common non-terminals

ArgumentList:
Identifier
Identifier , ArgumentList

Token:
Identifier
IntegerLiteral
(one of)

+ - * / () ; = ,

Identifier:
Letter
Identifier Letter
Identifier Digit

Letter:
(one of)

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

IntegerLiteral:
IntegerLiteral Digit
Digit

14

Digit:
(one of)

0 1 2 3 4 5 6 7 8 9

Note that Identifier is effectively the same as identifier is in the C stan-
dard, though, for simplicity, we do not use universal characters.

5.2 Before expansion

File:
λ
Line \n File

Line:
TokenList
MacroLine

TokenList:
λ
Token TokenList

MacroLine:
#define Identifier TokenList
#define Identifier(ArgumentList) TokenList

5.3 After expansion

Program:
λ
Statement Program

Statement:
FuncDecl
FuncDefn
ConstDefn

FuncDecl:
declare Identifier (ArgumentList) ;

FuncDefn:

15

define Identifier (ArgumentList) = Expression ;

ConstDefn:
const Identifier = Expression ;

Expression:
(Expression BinOp Expression)

IntegerLiteral
Identifier
Identifier (ExpressionList)

ExpressionList:
Expression
Expression, ExpressionList

BinOp:
(one of)

+ - * /

16

Chapter 6

Preprocessing function

The preprocessing function turns a File with macros into a File that only
consists of TokenLists. To define this function, we create several sub-
functions, one for each type of possible line, which are then combined into
one overarching function. This function is only a partial function, it is un-
defined if the File would not be legal to write according to the restrictions
laid out in the C standard (e.g. redefining a macro with a different value).
Symbolically, the “main” function for this step has the type prepro : File ⇀
File.
For brevity, we define two types that we use throughout this section to avoid
giving the expanded version each time:

• M stands for the set of macro mappings, which store the macro defi-
nitions.
Such a mapping is a partial function that maps macro names to in-
formation about the number of arguments (if any) and their replace-
ments. If the macro takes arguments (i.e. the first element of the
tuple is greater than 0), it is a function like macro. In this case, the
replacement may contain non-negative integers, which represent the
places where the arguments should be substituted. Symbolically:

M = Σ ⇀ (N× [T ∪ N])

• S stands for the state related to the expansion of function-like macros.
This state must be preserved between lines, as macro arguments may
span multiple lines.
Such a mapping is a 6-tuple of multiple different types, namely

S = {0, 1, 2} × N× [[T]]× P(T)× T ? × N

Some explanation is in order as to the meaning of those tuple mem-
bers: The first member is always 0, 1 or 2, and it represents the state

17

Figure 6.1: State diagram for S

that the preprocessor is in, which is used in gathering the arguments
for function-like macros. Refer to fig. 6.1 for a reference of what each
state means.
The next integer is the number of arguments still remaining to be read
in the current function-like macro, and each sub-list of the double list
in the third member represents what is gathered so far for those argu-
ments.
The fourth member, the set of Tokens, is there to store the macros
that were already expanded in recursive expansion to avoid infinite
loops.
The fifth member is the name of the function-like macro we are cur-
rently working on. The name is required to do the macro replacement,
and is not present if we are not currently gathering any macro argu-
ments.
The sixth member keeps track of the parentheses depth, as macro ar-
guments may themselves contain opening and closing parentheses, and
we would otherwise be unable to determine whether a closing paren-
theses is intended to be part of the parameter or to end the parameter
list.

18

Since giving all the definitions in one big expression would be difficult to
read, we split the input up into different cases: The two kinds of MacroLines
and the case for TokenList, and we dispatch based on the type of line in
prepro, together with some minor input preprocessing.
A Haskell version of all the functions in this section is also given in annexes
A and B.

6.1 Wrapper and main function

The function prepro, with the type as given above, is only a wrapper func-
tion that sets up the arguments to the real main function, dispatch. This is
necessary to keep the type of the function clean, but the additional infor-
mation is needed for the actual preprocessing work.
We therefore define:

prepro : File ⇀ File

prepro(f) = dispatch(f, σ, (0, 0, [], ∅,⊥, 0))

dispatch : File×M × S ⇀ File

dispatch(λ,m, s) = λ

dispatch(#define i t \n f,m, s) = r′ \n dispatch(f,m′, s′)

where r′ := unlistify(r)

where (m′, s′, r) := om(m, s, i, tlisitfy(t))

dispatch(#define i (a) t \n f,m, s) = r′ \n dispatch(f,m′, s′)

where r′ := unlistify(r)

where (m′, s′, r) := fm(m, s, i, alisitfy(a), tlisitfy(t))

dispatch(t \n f,m, s) = r′ \n dispatch(f,m′, s′)

where r′ := unlistify(r)

where (m′, s′, r) := tl(m, s, tlisitfy(t))

unlistify : [T] → TokenList

unlistify([]) = λ

unlistify(t : ts) = t unlistify(ts)

We also give a function which turns a file into list of tokens, which is a
necessary step to parsing it as a program. This function is only partial,

19

because it is impossible to turn a MacroLine into a list of Tokens, and the
function is only intended to be called on the output of prepro, anyways.

rmvlines : File ⇀ [T]

rmvlines(λ) = []

rmvlines(t \n f) = tlisitfy(t)++rmvlines(f) iff t ∈ TokenList

6.2 Object Macro

This case is relatively simple, as we only need to transform the TokenList
into a proper list of tokens and store that in the state, making sure not to
overwrite a previous macro.

om : M × S × Σ× [T] ⇀ M × S × [T]

om(m, s, i, r) = (m[i 7→ (0, r)], s, []) iff m(i)↑ ∨ m(i) ̸= (0, r)

6.3 Function-Like Macro

This case is not quite so simple, so we introduce an intermediate variable to
keep the final equation legible:

fm : M × S × Σ× [Σ]× [T] ⇀ M × S × [T]

fm(m, s, i, a, r) = (m[i 7→ res], s, []) iff m(i)↑ ∨ m(i) ̸= res

where res := (len(a),map(λt. repind(a, t), r))

6.4 Text Line

We handle a text line by creating a simple state machine (fig. 6.1) and then
transforming that state machine into a series of equations that describe the
behaviour of the macro expansion process.
We first remove the requirement to always carry along the mapping function,
as it is never changed and would unnecessarily complicate the definition even
further.

tl : M × S × [T] ⇀ M × S × [T]

tl(m, s, t) = (m, s′, t′) where (s′, t′) := tlr(m, s, t)

20

We first define the tlr function, and then give the auxillary functions, fol-
lowed by explanations for each equation in English afterwards.

tlr : M × S × [T] ⇀ S × [T]

tlr(m, (0, 0, [], u,⊥, 0), []) = ((0, 0, [], u,⊥, 0), []) (1)

tlr(m, (0, 0, [], u,⊥, 0), t : ts) = (s, t : r) (2)

where (s, r) := tlr(m, (0, 0, [], u,⊥, 0), ts)

iff t ∈ u ∨m(t)↑

tlr(m, (0, 0, [], u,⊥), t : ts) = (s, tlr(m, (0, 0, [], {t} ∪ u,⊥, 0), e)++r) (3)

where (s, r) := tlr(m, (0, 0, [], u,⊥, 0), ts)

iff t /∈ u ∧m(t)↓ ∧m(t) = (0, e)

tlr(m, (0, 0, [], u,⊥, 0), t : ts) = tlr(m, (1, n, repeat([], n), u, t, 0), ts) (4)

iff t /∈ u ∧ s(t)↓ ∧s(t) = (n, r) ∧ n ̸= 0

tlr(m, (1, n, ls, u, t, 0), (: ts) = tlr(m, (2, n, ls, u, t, 0), ts) (5)

tlr(m, (2, n, ls, u, t, 0), , : ts) = tlr(m, (2, n− 1, ls, u, t, 0), ts) iff n ̸= 1 (6)

tlr(m, (2, 1, ls, u, t, 0),) : ts) = (s, expand(s, ls, u, t)++r) (7)

where (s, r) := tlr(m, (0, 0, [], u,⊥, 0), ts)

tlr(m, (2, n, ls, u, t, d), ct : ts) = tlr(m, (2, n, lsm, u, t, d+ dd), ts) (8)

where lsm := ls[nt− n 7→ append(ls[nt− n], ct)],

(nt, r) = m(t), dd =

1 iff ct = (

0 otherwise

expand : M × [[T]]× P(T)× T ⇀ [T]

expand(m, ls, u, t) = tlr(m, (0, 0, [], {t} ∪ u,⊥, 0), flatten(map(repl int(ls), r)))

where (n, r) := s(t)

flatten : [[T]] → [T]

flatten([]) = []

flatten([] : bs) = flatten(bs)

flatten((a : as) : bs) = a : flatten(as : bs)

21

repl int : [T] → (T ∪ Z) → T

repl int(ls)(i) = ls[i] iff i ∈ N
repl int(ls)(t) = t iff t ∈ T

Explanations

(1) This is the easiest case: An empty line remains just that, no expansion
can take place.

(2) If we already expanded the current token we leave it alone to avoid
infinite replacement loops, and if the token is not defined to have any
replacement, then it also stays verbatim.

(3) If the token is a known macro, and the first entry of the tuple is 0,
then it refers to a constant macro, we then expand that macro, and
possibly any further macro names that result from the expansion, and
prepend that expansion to the expansion of the rest of the line.

(4) If we encounter a macro which we know to refer to a function macro,
we set up the parameters accordingly, as is mentioned in the state
diagram: Store the name of the macro that we are collecting arguments
for, keep track of how many arguments we still expect to find and set
the state to 1 to await the opening parenthesis that must follow this
macro name.

(5) This case is also rather straight-forward, in state 1, we only want to
see an opening parenthesis, anything else is not allowed, and we then
process the next token(s) in state 2.

(6) If we encounter a comma in state 2 and with no more pending open
parentheses pairs, this means that we have reached the end of one
argument and are about to encounter the start of another. This is not
permitted if we only expected one more argument, as this would mean
that we gave to many arguments to a macro.

(7) A closing parentheses is only allowed to close the argument list once
we gathered all the necessary arguments, and if there is no pending
open parenthesis in the current argument. We then do the expansion,
including any recursive macro expansion resulting therefrom, using the
aptly named expand function, and continue on with the remainder of
the line.

(8) If we encounter any other token than a comma or a closing parentheses,
then we consider it part of the macro arguments, and consequently add
it to the appropriate sublist of the 5th argument. In addition, if the
token is an opening parenthesis, then we keep track of that so we

22

know when we find it’s closing counterpart rather than the end of the
argument list.

6.5 Auxiliary functions

Following are the definitions of the functions that were used above, but not
defined.

tlistify

The function tlistify turns the syntactical element TokenList into the corre-
sponding list of tokens.

tlistify : TokenList → [T]

tlistify(λ) = []

tlistify(t tl) = t : tlistify(tl)

alisitfy

The function alistify turns an ArgumentList into a list of Identifiers, without
allowing any duplicates.

alistify : ArgumentList ⇀ [Σ]

alistify(a) = alistify′(a, ∅)
alistify′ : ArgumentList× P(Σ) ⇀ [Σ]

alistify′(a, s) = a : [] iff a /∈ s

alistify′((a,al), s) = a : alistify′(al, {a} ∪ s) iff a /∈ s

repind

This function is mapped over a Token list, replacing each element that is in
the input list by its index and otherwise leaves it alone.

repind : [Σ]× T → T ∪ Z
repind(a, b) = index(a,b) iff index(a, b)↓
repind(a, b) = b iff index(a, b)↑

6.6 Example: Simple macro derivation

To aid the understanding of the process described by the functions above, we
go through a simple example involving a function-like macro step-by-step.
The example that we use is

23

#define X(A,B) A + B

X(2,3)

or #define X(A,B) A + B\n X(2,3)\n λ.
We start by applying prepro to this, and then evaluate each function in turn.

prepro(#define X(A,B) A + B\n X(2,3)\n λ)

= dispatch(#define X(A,B) A + B\n X(2,3)\n λ, σ, (0, 0, [], ∅,⊥, 0))

= λ\n dispatch(X(2,3)\n λ, σ[X 7→ (2, [1, +, 2])], (0, 0, [], ∅,⊥, 0)) (1)

= λ\n 2 + 3\n dispatch(λ, σ[X 7→ (2, [1, +, 2])], (0, 0, [], ∅,⊥, 0)) (2)

= λ\n 2 + 3\n λ

The equal signs in the two numbered equations need some justification to
show that they satisfy the equations for dispatch.
Regarding the first one, that is according to the third equation for dispatch,
we need to show that

fm(σ, (0, 0, [], ∅,⊥, 0), X, [A, B], [A, +, B]) = (σ[X 7→ (2, [1, +, 2])], (0, 0, [], ∅,⊥, 0), λ)

To show this, we first calculate the value of res from the equation for fm:

res = (length([A, B]),map(λt. repind([A, B], t), [A, +B])

= (2, [1, +, 2])

(We collapse the calculation of the length and the index replacement, as that
would add a lot of highly trivial steps, without aiding in understanding.)
We then see that m(res) ↑ holds, so the condition is fulfilled and we can
apply the equation for fm, and get the result written above.

We now need to justify the second numbered equals sign, which involves
the fourth equation of dispatch. Therefore we need to show that

tl(σ[X 7→ (2, [1, +, 2])], (0, 0, [], ∅,⊥, 0), [X, (, 2, ,, 3,)]) =

(σ[X 7→ (2, [1, +, 2])], (0, 0, [], ∅,⊥, 0), [2, +, 3])

24

We start with tlr(σ[X 7→ (2, [1, +, 2])], (0, 0, [], ∅,⊥, 0), [X, (, 2, ,, 3,)]), and go
through the steps from there.

tlr(σ[X 7→ (2, [1, +, 2])], (0, 0, [], ∅,⊥, 0), [X, (, 2, ,, 3,)])

= tlr(σ[X 7→ (2, [1, +, 2])], (1, 2, repeat([],2), ∅, X, 0), [(, 2, ,, 3,)])
= tlr(σ[X 7→ (2, [1, +, 2])], (1, 2, [[], []], ∅, X, 0), [(, 2, ,, 3,)])
= tlr(σ[X 7→ (2, [1, +, 2])], (2, 2, [[], []], ∅, X, 0), [2, ,, 3,)])
= tlr(σ[X 7→ (2, [1, +, 2])], (2, 2, [[2], []], ∅, X, 0), [,, 3,)])
= tlr(σ[X 7→ (2, [1, +, 2])], (2, 1, [[2], []], ∅, X, 0), [3,)])
= tlr(σ[X 7→ (2, [1, +, 2])], (2, 1, [[2], [3]], ∅, X, 0), [)])

= (σ[X 7→ (2, [1, +, 2])], expand(σ[X 7→ (2, [1, +, 2])], [[2], [3]], ∅, X)++[])
= (σ[X 7→ (2, [1, +, 2])], tlr(σ[X 7→ (2, [1, +, 2])], [[2], [3]], (0, 0, [], {X},⊥, 0),

flatten(map(repl int([[2], [3]]), [1, +, 2])))++[])

= (σ[X 7→ (2, [1, +, 2])], tlr(σ[X 7→ (2, [1, +, 2])], [[2], [3]], (0, 0, [], {X},⊥, 0),

flatten([[2], [+], [3]]))++[])

= (σ[X 7→ (2, [1, +, 2])], tlr(σ[X 7→ (2, [1, +, 2])], [[2], [3]], (0, 0, [], {X},⊥, 0), [2, +, 3])++[])

= (σ[X 7→ (2, [1, +, 2])], 2 : tlr(σ[X 7→ (2, [1, +, 2])], [[2], [3]], (0, 0, [], {X},⊥, 0), [+, 3])++[])

= (σ[X 7→ (2, [1, +, 2])], 2 : + : tlr(σ[X 7→ (2, [1, +, 2])], [[2], [3]], (0, 0, [], {X},⊥, 0), [3])++[])

= (σ[X 7→ (2, [1, +, 2])], 2 : + : 3 : tlr(σ[X 7→ (2, [1, +, 2])], [[2], [3]], (0, 0, [], {X},⊥, 0), [])++[])

= (σ[X 7→ (2, [1, +, 2])], 2 : + : 3 : []++[])

= (σ[X 7→ (2, [1, +, 2])], [2, +, 3])

And from the definition of tl, which adds the m back to the tuple, we can
see that we got where we needed to get.
However, this derivation also shows that the macro expansion process re-
quires a lot of small step function applications, and so any proof involving it
are best only done by automatic proof assistant systems. (You may notice
that the above list of equations is not entirely precise, as I do several minor
function expansions and tuple member extractions implicitly between steps,
but otherwise, the derivation would be even longer, and no easier to read.)

25

Chapter 7

Interpretation

Once the pre-processing step has concluded, we are left with a list of tokens,
which may conform, and be parseable according to, the grammar set out in
section 1.3.
The parser for this is not defined explicitly, but rather, we define a function
that turns a Program into a list of tokens, and define the parsing function
as the inverse of that function, and leave it undefined if there is no Program
that could turn into a given list of tokens, which means that the output of
the pre-processing step is not a valid program.
We also give a processing and an evaluation function which together deter-
mine the value of any constant or function in the program.
A Haskell version of all the functions in this section is available in Appendix
C.

7.1 Unparsing function

We write the unparsing function as {{x}}, where x is some syntactical el-
ement that is being turned into a list of tokens. Note that we omit the
concatenation and cons operators for clarity, they are present in the Haskell

26

source files if one wishes to see them.

{{s p}} = {{s}}{{p}}

{{declare i (a);}} = declare{{i}}({{a}});
{{define i (a) = e; }} = define{{i}}({{a}})={{e}};

{{const i = e; }} = const{{i}}={{e}};

{{(e1 + e2)}} = ({{e1}}+ {{e2}})
{{(e1 - e2)}} = ({{e1}} − {{e2}})
{{(e1 * e2)}} = ({{e1}} ∗ {{e2}})
{{(e1 / e2)}} = ({{e1}}/{{e2}})

{{l}} = l

{{i}} = i

{{i(l)}} = {{i}}({{l}})

{{e, l}} = {{e}},{{l}}

{{i, a}} = {{i}},{{a}}

where the letters used for the variables indicate the type of syntactical ele-
ment:

• a is used for ArgumentLists

• e is used for Expressions

• p is used for Programs

• i is used for Identifiers

• l is used for ExpressionLists

• s is used for Statements

27

7.2 Processing Function

We write the processing function for a single statement as s
t−→ s′ to mean

that reading the statement t in state s produces a new state s′.
The type of this state is henceforth denoted as P , which is a shorthand
notation for

P = Σ ⇀ ([Σ],Expression?)

Expression is defined in section 1.1.3.
The meaning of this function is as follows: If the value of the function for an
Identifier is not defined, it means that no constant or function declaration
by that name is known.
If it is defined, and the list is empty, then the second member of the tuple
must be an Expression, and this represents a constant definition.
Otherwise, the members of the list represent the names of function parame-
ters, and the second member is either the Expression which forms the body
of the function in it’s definition, or it is ⊥, in which case the function was
only declared, but not defined.
Symbolically, we therefore write the type of this function as:

P
Statement−−−−−−→ P

s
declare i (a);−−−−−−−−−−→ s iff s(i)↓ ∧ len(alistify(a)) = len(s(i)1)

s
declare i (a);−−−−−−−−−−→ s[i 7→ (alistify(a), 0)] iff s(i)↑

s
declare i (a) = e ;−−−−−−−−−−−−−−→ s[i 7→ (alistify(a), e)]

iff s(i)↑ ∨(len(alistify(a)) = len(s(i)0) ∧ s(i)1 = 0)

s
const i = e ;−−−−−−−−→ s[i 7→ ([], e)] iff s(i)↑

Given this definition, we also define the function that takes an entire Program
and a state to mutate and gives back the state after reading that entire
Program. Symbolically, we write the type of this function as:

P
Program
=====⇒ P

s
λ
=⇒ s

s
t p
==⇒ s′′ where s

t−→ s′ and s′
p
=⇒ s′′

7.3 Evaluation

We give three distinct functions for evaluation, all of which return a natural
number:

28

1. The first of the three functions evaluates constants, and it is denoted
as [[c]]s, for some constant name c and state s.

2. The second function is used to evaluate functions. It is denoted as
[[f]]ls, for some function name f , state s and a list of natural numbers
l, which represent the function parameters.

3. The third function evaluates expression, and it is denoted as [[e]]ps, for
some expression e, state s and a function from Identifiers to natural
numbers to represent the parameter context (when the expression is
part of the definition of a function).

These functions are only partial functions, as there is no sensible result to
be given in certain instances, such as a constant that is not defined or a
function with the wrong name of parameters.

[[c]]s = [[s(c)1]]
σ
s iff s(c)↓ ∧ s(c)0 = []

[[f]]ls = [[e]]l
′ ⊗ l
s iff s(f)↓ ∧ len(l′) = len(l)

where (l′, e) := s(f)

[[(l + r)]]ps = [[l]]ps + [[r]]ps

[[(l − r)]]ps = 0 iff [[l]]ps ≤ [[r]]ps

[[(l − r)]]ps = [[l]]ps − [[r]]ps iff [[l]]ps > [[r]]ps

[[(l ∗ r)]]ps = [[l]]ps ∗ [[r]]ps
[[(l/r)]]ps = ⌊[[l]]ps/[[r]]ps⌋iff [[r]]ps ̸= 0

[[(l/r)]]ps↑ iff [[r]]ps = 0

[[il d]]ps = 10 ∗ [[il]]ps + [[d]]ps

[[0]]ps = 0 and similarly for the other digits

[[i]]ps = p(i) iff p(i)↓
[[i]]ps = [[i]]s iff p(i)↑

[[f(l)]]ps = [[f]]map(λa. [[a]]ps ,l)
s where e = [e] and e, l = e : l

We also give the definition of an auxiliary function that is used in the defini-
tion of the evaluation function. This function takes two lists and gives back
another function, which goes through the two lists in lockstep, returning
the current element of the second list if the argument matches the current
element of the first list, and is undefined when it reaches the end of either
list.
As that is a rather abstract description, consider the example

f = ([1, 2, 3]⊗ [1, 4, 9])

29

Then, f(1) = 1, f(2) = 4, f(3) = 9, and for all other inputs, f is undefined.

⊗ : [a]× [b] → (a ⇀ b)

(a : as)⊗ (b : bs) = λc.

b iff a = c

(as⊗ bs)(f) iff a ̸= c

[]⊗ bs = σ

as⊗ [] = σ

30

Chapter 8

Correctness of the expansion
process

There are some properties that we would like for the expansion process itself
to have: For one, we would like all the examples in section 2.1 to give the
same outputs in our model. Of course, the identifiers in those examples were
arbitrary, so we would wish to generalise, e.g. the first example as:

∀x, y ∈ T, prepro(#define x y \n x) = λ \n y

While it would certainly be possible to write this down in some proof check-
ing system, such as Coq, proving that this holds is merely a matter of
repeatedly applying function definitions. As such, this kind of proof is not
particularly interesting, although it does serve as a good sanity check, espe-
cially to diagnose any errors if such are present. Also, doing this for all the
examples would add at least 15 pages of dense function derivations, and the
chance for error is far too high to do so by hand.
Far more interesting are properties of the functions themselves. For exam-
ple, we would expect that applying prepro to a file more than once should
not change anything, i.e. prepro is idempotent, as there are no macros left
in the output. Formally, we would write this as

∀f ∈ File, prepro(prepro(f)) = prepro(f)

Lemma 8.0.1. Every Line in the output of the prepro function is a Token-
List.

Proof.

1. As the prepro function is defined in terms of dispatch, we prove that
every Line in the output of the dispatch function is a TokenList.

2. We prove this by induction on the first argument of dispatch.

31

3. Base case: The first argument of the dispatch function is λ.

4. Then the output is also λ. Therefore, there are no lines in the output,
and the lemma holds vacuously.

5. Inductive case 1: The first argument of the dispatch function is a
TokenList l followed by a File f .

6. Inductive Hypothesis: Every Line in dispatch(f,m, s) is a TokenList,
for all m and s.

7. To show: Every Line in dispatch(l \n f,m, s) is a TokenList, for all m
and s.

8. dispatch(l \n f,m, s) = r′ \n dispatch(f,m′, s′)
where r′ := unlistify(r)
where (r,m′, s′) := tl(m, s, tlisitfy(t))

9. According to the definition of unlistify, r′ is a TokenList.

10. According to step 6, every line in dispatch(f,m′, s′) is a TokenList.

11. From 9 and 10 it follows that 7 holds.

12. Inductive cases 2 and 3: If the first argument is either type of Macro-
Line followed by a file, steps 6-11 hold by the same construction.

13. From 4 and 11, it follows by induction that the claim in 1 holds.

14. Therefore, as the output of dispatch is precisely the output of prepro,
it follows that the lemma holds.

Lemma 8.0.2. ∀t ∈ [T], tlr(σ, (0, 0, [], ∅, 1, 0), t) = (((0, 0, [], ∅, 1, 0)), t)

Proof.

1. Proof by induction on t.

2. Base case: t = [].

3. By definition of tlr in equation 5.1, tlr(σ, (0, 0, [], ∅, 1, 0), [])
= ((0, 0, [], ∅, 1, 0), []). Therefore, the lemma holds in the base case.

4. Inductive case: t = e : l for some Token e and some TokenList l.

5. Inductive hypothesis: tlr(σ, (0, 0, [], ∅, 1, 0), l) = ((0, 0, [], ∅, 1, 0), l)

6. Then, tlr(σ, (0, 0, [], ∅, 1, 0), e : l) = ((0, 0, [], ∅, 1, 0), e : l) by using the
induction hypothesis in equation 5.2, which applies because σ(e) ↑.
Therefore, the inductive case holds.

32

7. From 3 and 6 it follows that the lemma holds.

Lemma 8.0.3. ∀t ∈ TokenList, unlistify(tlistify(t)) = t

Proof.

1. Proof by induction on tl.

2. Base case: tl = λ.

3. By definition of tlistify and unlistify, unlistify(tlistify(λ)) = λ, so the
lemma holds in this case.

4. Inductive case: tl = tr for some Token t and some TokenList l.

5. Induction hypothesis: unlistify(tlistify(r)) = r

6. Then, unlistify(tlistify(tr)) = unlistify(t : tlistify(r)) by definition of tlis-
tify.

7. We apply the definition of unlistify, and get unlistify(t : tlistify(r)) =
tunlistify(tlistify(r)).

8. We apply the induction hypothesis to that and get tunlistify(tlistify(r)) =
tr.

9. Therefore, the lemma holds in the recursive case.

10. From 3 and 9, the lemma holds in all cases by induction.

Theorem 8.0.4. ∀f ∈ File, prepro(prepro(f)) = prepro(f)

Proof. For brevity, let g refer to prepro(f) for the rest of this proof.

1. Proof by induction on the structure of g.

2. Base case: g = λ. Then, by the definitions of prepro and the first
definition of dispatch, prepro(g) = λ, and so the theorem holds.

3. Induction hypothesis: Let g = l \n h. Then, prepro(h) = h

4. Inductive case 1: g is a MacroLine (either type) followed by another
File.

5. In this case, as g is an output of prepro, we have a contradiction with
lemma 8.0.1, therefore, the Theorem holds in this case.

6. Inductive case 2: g is a TokenList followed by another File.

33

7. Then, by the definitions of prepro and the last definition of dispatch,
and by lemma 8.0.2, we have that prepro(g) = dispatch(l \n h, σ, (0, 0, [], ∅, 1, 0)) =
unlistify(tlistify(l)) \n dispatch(h, σ, (0, 0, [], ∅, 1, 0)).

8. By applying the definition of prepro backwards, we rewrite that as
prepro(g) = unlistify(tlistify(l)) \n prepro(h).

9. We then apply lemma 8.0.3 and get prepro(g) = l \n h = g, so the
Theorem holds in the inductive case.

10. From 2, 6 and 10, we conclude by induction hat the theorem holds in
all cases.

Result: Each line stays the same when applying prepro again, by induc-
tion on lines. Note: IH must include both the equality of the lines and that
the state and mapping are default/empty. Just the equality would not do.

34

Chapter 9

Predicates over the state(s)

We can now come back to our second research question of proving the cor-
rectness of C files with preprocessing macros.
We express the correctness requirements on a file with predicates over that
file, such as “The file shall define a constant or constant macro called
CHAR BIT with a value of at least 8.” (cf. [8], 5.2.4.2.1) This cannot simply
be a predicate over any one state, for two reasons: For one, the macro and
the program constants are kept in two separate states. And secondly, we
wish to make sure that the definition is only added in the file, not previously
present.
To be able to define such predicates properly, we need to define a function
that gives us access to the preprocessing mappings after the file has been
preprocessed. We therefore define this function prepro′ as follows. Note that
this is exactly the same as prepro in section 6.1, except that it passes the
mapping back as well.

35

prepro′ : File ⇀ File×M

prepro′(f) = dispatch′(f, σ, (0, 0, [], ∅, 1, 0))

dispatch′ : File×M × S ⇀ File×M

dispatch′(λ,m, s) = (λ,m)

dispatch′(#define i t \n f,m, s) = (r′ \n r′′,m′′)

where (r′′,m′′) := dispatch′(f,m′, s′)

where r′ := unlistify(r)

where (m′, s′, r) := om(m, s, i, tlisitfy(t))

dispatch′(#define i (a) t \n f,m, s) = (r′ \n r′′,m′′)

where (r′′,m′′) := dispatch′(f,m′, s′)

where r′ := unlistify(r)

where (m′, s′, r) := fm(m, s, i, alisitfy(a), tlisitfy(t))

dispatch′(t \n f,m, s) = (r′ \n r′′,m′′)

where (r′′,m′′) := dispatch′(f,m′, s′)

where r′ := unlistify(r)

where (m′, s′, r) := tl(m, s, tlisitfy(t))

Then, we need to consider four separate states, the Program that would
result from it’s expansion, and the intermediate list of Tokens to express
the above predicate on some given File f :

∀m,m′ ∈ M, ∀s, s′ ∈ P,∀p ∈ Program,∀t ∈ [T],

((prepro’(f,m)0 = t ∧ {{p}} = t ∧ prepro’(f,m)1 = m′ ∧ s
p
=⇒ s′

∧ expand(m, [[CHAR BIT]], ∅, CHAR BIT)↑ ∧ s(CHAR BIT)↑) =⇒
([[expand(m′, [[CHAR BIT]], ∅, CHAR BIT)]]σs′ ≥ 8

∨[[CHAR BIT]]s′ ≥ 8))

As it can be seen that even this relatively simple predicate leads to a rather
complex formula, and writing such a formula out fully should be done only
as rarely as possible to avoid errors, I therefore introduce various higher-
order functions that produce predicates over a File, such as the one above.

36

We then write this higher-order function like this:
(The name is an abbreviation for Macro Constant or Constant Predicate.)

MCCP : (Σ× (N → B)) → (File → B)
MCCP(i, f) = ∀m,m′ ∈ M,∀s, s′ ∈ P,∀p ∈ Program, ∀t ∈ [T],

((prepro’(f,m)0 = t ∧ {{p}} = t ∧ prepro’(f,m)1 = m′ ∧ s
p
=⇒ s′

∧ expand(m, [[i]], ∅, i)↑ ∧ s(i)↑) =⇒
(f([[expand(m′, [[i]], ∅, i)]]σs′) ∨ f([[i]]s′)))

And then we can write the above example as

MCCP(CHAR BIT, λv. v ≥ 8)

However, other requirements may set multiple constants in relation to each
other. For example, it may be required that UCHR MAX = 2CHAR BIT − 1 must
hold (cf. [8], 5.2.4.2.1). For this, we define another higher-order function,
which also provides a function that maps Identifiers to natural numbers:

MCCAP : (Σ× (N× (Σ ⇀ N) → B)) → (File → B)
MCCAP(i, f) = ∀m,m′ ∈ M,∀s, s′ ∈ P,∀p ∈ Program,∀t ∈ [T],

((prepro’(f,m)0 = t ∧ {{p}} = t ∧ prepro’(f,m)1 = m′ ∧ s
p
=⇒ s′

∧ expand(m, [[i]], ∅, i)↑ ∧ s(i)↑) =⇒
(f([[expand(m′, [[i]], ∅, i)]]σs′ , v(m′, s′)) ∨ f([[i]]s′ , v(m

′, s′))))

v : M × P → (Σ ⇀ N)

v(m, s)λi.

[[expand(m, [[i]], ∅, i)]]σs iff m(i)↓

[[i]]s iff m(i)↑

And we can then write the above requirement as

MCCAP(UCHAR MAX, λv, f. v = 2f(CHAR BIT)−1)

37

Chapter 10

Discussion

10.1 Expansion to other directives

The C standard specifies a number of other preprocessing directives besides
macro expansion, such as conditional directives (#if, #ifdef,...) and
source file inclusion, among others. (For a full list see [8], 6.10.) In addition,
there are also the # and ## operators in macro replacement lists, which were
also not considered in this thesis. However, to model the full C preproces-
sor, all of this needs to be included as well. Therefore, I will now briefly
discuss how each of the directives and features could be added to the model,
without giving any explicit equations for this.

• For the conditional directives, one needs to define the evaluation func-
tion for the conditions, which is trivial if one has the syntax tree
corresponding to the constant expression. In addition, one must also
keep track of how many nested if groups one is in, both those that
should be skipped and those that should not.
This could be achieved by adding two more integers to the state that
is carried between lines, one for each kind of nesting (which I shall
call s and c), such that if one is currently in a group that should be
skipped(s > 0), all #if and #ifdef directives just increase s by one,
and all #endif directives decrease it by one.
And if the current group should not be skipped (s = 0), then any
#if and #ifdef directives increase either s or c y one, depending on
whether the condition is true, and all #endif directives decrease c by
one. This is only a rough outline, but it should serve as a starting
point for anyone who wishes to expand this model.

• Regarding file inclusion, the standard only prescribes that a file name
might need to undergo macro expansion before it can be included, but
leaves everything else implementation-defined. This means that in a

38

model, we can only fall back to a “magic function” that maps the
filename onto a File, and act as though the lines of that File had been
in our original File instead of the inclusion directive.

• The # operator is easily added to the model by modifying the type of
the state M to also allow negative numbers to represent parameters
that should be stringified, and adapting the repl int function to per-
form this process, but that is not a particularly large effort, though it
requires string literals to be a meaningful concept, which is why it was
not done in this thesis. The ## operator is also not difficult to model,
the largest difficulty here will be in determining whether something is
a valid preprocessing token.

• The #undef directive is trivial to implement as a modification of the
macro mapping state, it was not done in this thesis solely to keep the
model as simple as possible.

• Keeping track of line numbers is possible by adding another integer to
the state passed between lines that is incremented each time, and a
special case should be added to the definition of tlr to make sure that
the macro LINE always expands to the current line number. Then,
the implementation of the line control directive is merely to change
this additional integer as indicated by the argument to the directive.

• As regards the error, pragma and null directives, they all likely should
simply be treated as no-ops, as we are interested in the behaviour of
the result of preprocessing, and these directives do not alter it, except
for the floating point directives, which must be somehow preserved
into the C program (as they follow it’s block structure), presumably
using some sort of non-syntactical marker that is left in place of the
pragma directive.

10.2 Expansion to C

As mentioned in the introduction, the preprocessor is agnostic with regard
to its target language, up to the definition of what constitutes a token. As
such, expanding the model of the preprocessor to target C merely requires
expanding this part of the grammar and does not require any change to the
definitions.
On the other hand, the toy language used in this thesis is rather far removed
from C, and so one may expect the predicates to test file correctness are not
very useful anymore after the transition. However this is only somewhat
correct: While the evaluation function will certainly become far more com-
plex, and will also need to contend with the type system, the general model
of those predicates is still sound as long as the outputs of a function depend

39

only on it’s inputs.
This is not the case for all standard functions, such as strtok, but it is true
of most functions in the standard library, and in any case, the result type
of the evaluation function can be modified to also include a new program
state if an evaluation does change the state.
In conclusion, while the transition from our toy language to C as a target
language does certainly require some changes, I am confident that the basic
structure and model presented in this thesis will form a solid foundation to
build on for any future work in this direction.

40

Bibliography

[1] TIOBE Software popularity index. https://www.tiobe.com/

tiobe-index/.

[2] Sandrine Blazy and Xavier Leroy. Mechanized semantics for the clight
subset of the c language. Journal of Automated Reasoning, 43(3):263–
288, 2009.

[3] Andrew W. Appel and Sandrine Blazy. Separation logic for small-step
cminor. In Klaus Schneider and Jens Brandt, editors, Theorem Proving
in Higher Order Logics, pages 5–21, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[4] Valery A Nepomniaschy, Igor S Anureev, and AV Promskii. Towards
verification of c programs: Axiomatic semantics of the c-kernel lan-
guage. Programming and Computer Software, 29(6):338–350, 2003.

[5] Xavier Leroy and Sandrine Blazy. Formal verification of a c-like memory
model and its uses for verifying program transformations. Journal of
Automated Reasoning, 41(1):1–31, 2008.

[6] Robbert Jan Krebbers. The C standard formalized in Coq. PhD thesis,
Radboud Universiteit Nijmegen, 2015.

[7] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian
Erdweg, Klaus Ostermann, and Thorsten Berger. Variability-Aware
Parsing in the Presence of Lexical Macros and Conditional Compilation.
SIGPLAN Not., 46(10):805–824, oct 2011.

[8] ISO/IEC. C standard working draft N2731 (likely to be formalised as
ISO/IEC 9899:2023). http://open-std.org/jtc1/sc22/wg14/www/

docs/n2731.pdf.

[9] University of Glasgow. Haskell2010 Reference, Data.Maybe,
2010. https://hackage.haskell.org/package/base-4.16.0.0/

docs/Data-Maybe.html.

41

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
http://open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf
http://open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf
https://hackage.haskell.org/package/base-4.16.0.0/docs/Data-Maybe.html
https://hackage.haskell.org/package/base-4.16.0.0/docs/Data-Maybe.html

[10] Oracle Corporation. Java SE 17 & JDK 17 Reference,
java.util.Optional<T>, 2021. https://docs.oracle.com/en/java/

javase/17/docs/api/java.base/java/util/Optional.html.

42

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html

Appendix A

Common.hs

1 module Common where

import qualified Data.Set as Set

5 type Token = [Char]

type Identifier = [Char]

data TokOrInt = Token Token | Int Int deriving (Eq, Show)

data TokenList = Lambda | C Token TokenList

data ArgumentList = Arg Identifier | CA Identifier ArgumentList

10
instance Show ArgumentList where

show (Arg a) = a

show (CA a al) = a ++ ", " ++ show al

15 alistify :: ArgumentList -> [Token]

alistify a = alistify’ a Set.empty

where

alistify’ (Arg a) s = [a]

alistify’ (CA a al) s =

20 if Set.member a s

then error "Duplicate Argument name"

else a : alistify’ al (Set.insert a s)

43

Appendix B

PreProcess.hs

1 module PreProcess (Line (OM, FM, TL), emptyState) where

import Common

import Data.List (elemIndex)

5 import Data.Maybe (fromJust, isJust, isNothing)

import qualified Data.Set as Set

data Line = OM Token TokenList | FM Token ArgumentList TokenList |

TL TokenList

10 data File = FileEmpty | FileCons Line File

data StateInt = ZERO | ONE | TWO

type Mapping = Token -> Maybe (Int, [TokOrInt])

15
type State = (StateInt, Int, [[Token]], Set.Set Token, Token, Int)

prepro :: File -> File

prepro f = dispatch f emptyState (ZERO, 0, [], Set.empty, "1", 0)

20
rmvlines :: File -> [Token]

rmvlines FileEmpty = []

rmvlines (FileCons (TL t) f) = (tlistify t) ++ (rmvlines f)

25 dispatch :: File -> Mapping -> State -> File

dispatch FileEmpty m s = FileEmpty

dispatch (FileCons (OM i t) f) m s = FileCons (TL (foldr C Lambda

r)) (dispatch f m’ s’)

where

(m’, s’, r) = om m s i (tlistify t)

30 dispatch (FileCons (FM i a t) f) m s = FileCons (TL (foldr C

Lambda r)) (dispatch f m’ s’)

where

44

(m’, s’, r) = fm m s i (alistify a) (tlistify t)

dispatch (FileCons (TL t) f) m s = FileCons (TL (foldr C Lambda r)

) (dispatch f m’ s’)

where

35 (m’, s’, r) = tl m s (tlistify t)

om :: Mapping -> State -> Token -> [Token] -> (Mapping, State, [

Token])

om m s i l = (modMapping m i (0, map Token (l)), s, [])

40 fm :: Mapping -> State -> Token -> [Identifier] -> [Token] -> (

Mapping, State, [Token])

fm m s i a l = (modMapping m i res, s, [])

where

res = (length a, map (repind a) (l))

45 tl :: Mapping -> State -> [Token] -> (Mapping, State, [Token])

tl m s t = (m, s’, t’) where (s’, t’) = tlr m s t

tlr :: Mapping -> State -> [Token] -> (State, [Token])

tlr m s@(ZERO, 0, [], u, "1", 0) [] = (s, [])

50 tlr m s@(ZERO, 0, [], u, "1", 0) (t : ts) =

if Set.member t u || isNothing (m t)

then (s, t : snd (tlr m s ts))

else

if n == 0

55 then (fst (tlr m s ts), snd (tlr m (ZERO, 0, [], Set.

insert t u, "1", 0) r) ++ snd (tlr m s ts))

else tlr m (ONE, n, replicate n [], u, t, 0) ts

where

r = filterTokens r’ --if n==0, this will be the same list, but

this satisfies the types.

Just (n, r’) = m t

60 tlr m (ONE, n, ls, u, t, 0) ("(" : ts) = tlr m (TWO, n, ls, u, t,

0) ts

tlr m (ONE, n, ls, u, t, 0) ts = (s’, t : ts’) where (s’, ts’) =

tlr m (ZERO, 0, [], Set.empty, "1", 0) ts

tlr m (TWO, 1, ls, u, t, 0) ("," : ts) = error "Comma to end

argument list?"

tlr m (TWO, n, ls, u, t, 0) ("," : ts) = tlr m (TWO, n - 1, ls, u,

t, 0) ts

tlr m (TWO, 1, ls, u, t, 0) (")" : ts) = (s’, (expand m ls u t) ++

ts’) where (s’, ts’) = (tlr m (ZERO, 0, [], u, "1", 0) ts)

65 tlr m (TWO, n, ls, u, t, d) (ct : ts) = tlr m (TWO, n, lsm, u, t,

if ct == "(" then d + 1 else d) ts

where

lsm = replaceIndex ls (nt - n) ((ls !! (nt - n)) ++ [ct])

Just (nt, r) = m t

45

70 flatten :: [[a]] -> [a]

flatten [] = []

flatten ([] : bs) = flatten bs

flatten ((a : as) : bs) = a : flatten (as : bs)

75 replInt :: [[Token]] -> TokOrInt -> [Token]

replInt ls (Int i) = ls !! i

replInt ls (Token t) = [t]

expand :: Mapping -> [[Token]] -> Set.Set Token -> Token -> [Token

]

80 expand m ls u t = snd (tlr m (ZERO, 0, [], Set.insert t u, "1", 0)

(flatten (map (replInt ls) r)))

where

Just (n, r) = m t

replaceIndex :: [a] -> Int -> a -> [a]

85 replaceIndex (a : as) 0 r = r : as

replaceIndex (a : as) n r = a : replaceIndex as (n -1) r

filterTokens :: [TokOrInt] -> [Token]

filterTokens [] = []

90 filterTokens ((Token t) : ts) = t : filterTokens ts

tlistify :: TokenList -> [Token]

tlistify Lambda = []

tlistify (C t tl) = t : tlistify tl

95
repind :: [Token] -> Token -> TokOrInt

repind a b =

if isJust (elemIndex b a)

then Int (fromJust (elemIndex b a))

100 else Token b

emptyState :: Mapping

emptyState t = Nothing

105 modMapping :: Mapping -> Token -> (Int, [TokOrInt]) -> Mapping

modMapping m t r t’ =

if isJust (m t) && m t /= Just r

then error "Redefining existing macro!"

else if t == t’ then Just r else m t’

46

Appendix C

PostProcess.hs

1 module PostProcess (eval, File (..), Statement (..), Expression

(..), ExpressionList (..), BinOp (..)) where

import Common

import Data.Map ((!))

5 import qualified Data.Map as Map

import Data.Maybe (isJust)

type PState = Map.Map Identifier ([Identifier], Maybe Expression)

10 data File = FS Statement | FC Statement File

data Statement = FDecl Identifier ArgumentList | FDefn Identifier

ArgumentList Expression | CDefn Identifier Expression

data Expression = LIT Integer | IDENT Identifier | FUNC Identifier

ExpressionList | BI Expression BinOp Expression

15
data ExpressionList = ELS Expression | ELC Expression

ExpressionList

data BinOp = PLUS | MINUS | TIMES | OVER

20 instance Show File where

show (FS s) = show s

show (FC s f) = show s ++ "\n" ++ show f

instance Show Statement where

25 show (FDecl i al) = "declare " ++ i ++ "(" ++ show al ++ ");"

show (FDefn i al e) = "define " ++ i ++ "(" ++ show al ++ ") = "

++ show e ++ ";"

show (CDefn i e) = "const " ++ i ++ " = " ++ show e ++ ";"

instance Show Expression where

47

30 show (LIT i) = show i

show (IDENT i) = i

show (FUNC i el) = i ++ "(" ++ show el ++ ")"

show (BI l PLUS r) = "(" ++ show l ++ "+" ++ show r ++ ")"

show (BI l MINUS r) = "(" ++ show l ++ "-" ++ show r ++ ")"

35 show (BI l TIMES r) = "(" ++ show l ++ "*" ++ show r ++ ")"

show (BI l OVER r) = "(" ++ show l ++ "/" ++ show r ++ ")"

instance Show ExpressionList where

show (ELS e) = show e

40 show (ELC e el) = show e ++ ", " ++ show el

class Unparseable u where

unparse :: u -> [Token]

45 instance Unparseable File where

unparse (FS s) = unparse s

unparse (FC s f) = unparse s ++ unparse f

instance Unparseable Statement where

50 unparse (FDecl i al) = ["declare", i, "("] ++ unparse al ++ [")"

,";"]

unparse (FDefn i al e) = ["define", i, "("] ++ unparse al ++ [")

", "="] ++ unparse e ++ [";"]

unparse (CDefn i e) = ["const", i, "="] ++ unparse e ++ [";"]

instance Unparseable Expression where

55 unparse (LIT i) = [show i]

unparse (IDENT i) = [i]

unparse (FUNC i el) = [i, "("] ++ unparse el ++ [")"]

unparse (BI l o r) = "(" : unparse l ++ unparse o ++ unparse r

++ [")"]

60 instance Unparseable ExpressionList where

unparse (ELS e) = unparse e

unparse (ELC e el) = unparse e ++ [","] ++ unparse el

instance Unparseable BinOp where

65 unparse PLUS = ["+"]

unparse MINUS = ["-"]

unparse TIMES = ["*"]

unparse OVER = ["/"]

70 instance Unparseable ArgumentList where

unparse (Arg a) = [a]

unparse (CA a al) = [a, ","] ++ unparse al

eval :: File -> Integer

75 eval f = evalC "main" (processF f Map.empty)

48

processF :: File -> PState -> PState

processF (FC s f) os = processF f (processS s os)

processF (FS s) os = processS s os

80
processS :: Statement -> PState -> PState

processS (CDefn i e) os =

if Map.member i os

then error ("Attempted to redefine constant: " ++ i ++ "!")

85 else Map.insert i ([], Just e) os

processS (FDecl i a) os =

if Map.member i os

then

if length al == length (fst (os ! i))

90 then os

else error ("Function declaration with wrong number of

paramenters: " ++ i ++ "!")

else Map.insert i (al, Nothing) os

where

al = alistify a

95 processS (FDefn i a e) os =

if Map.member i os

then

if length al == length (fst (os ! i))

then

100 if isJust (snd (os ! i))

then error ("Tried to redefine function" ++ i ++ "")

else Map.insert i (al, Just e) os

else error ("Function definition with wrong number of

paramenters: " ++ i ++ "!")

else Map.insert i (al, Just e) os

105 where

al = alistify a

evalC :: Identifier -> PState -> Integer

evalC i s =

110 if Map.member i s

then

if null is

then evalE e s Map.empty

else error ("Tried to evaluate constant as function: " ++

i ++ "!")

115 else error ("Tried to evaluate unknown constant: " ++ i ++ "!"

)

where

(is, Just e) = s ! i

evalF :: Identifier -> PState -> [Integer] -> Integer

120 evalF i s a =

49

if Map.member i s

then

if length is == length a

then evalE e s (Map.fromList (zip is a))

125 else error ("Tried to evaluate function with wrong number

of arguments: " ++ i ++ "!")

else error ("Tried to evaluate unknown function: " ++ i ++ "!"

)

where

(is, Just e) = s ! i

130 evalE :: Expression -> PState -> Map.Map Identifier Integer ->

Integer

evalE (BI l PLUS r) s m = evalE l s m + evalE r s m

evalE (BI l MINUS r) s m = max 0 (evalE l s m - evalE r s m)

evalE (BI l TIMES r) s m = evalE l s m * evalE r s m

evalE (BI l OVER r) s m = evalE l s m ‘div‘ evalE r s m

135 evalE (LIT i) _ _ = i

evalE (IDENT i) s m =

if Map.member i m

then m ! i

else evalC i s

140 evalE (FUNC i es) s m = evalF i s (map (\e -> evalE e s m) (

elistify es))

elistify :: ExpressionList -> [Expression]

elistify (ELS e) = [e]

elistify (ELC e es) = e : elistify es

50

	Introduction
	Related Work
	Overview

	Behaviour of the C preprocessor
	Examples

	A toy language
	Notation
	Sets and Types
	Lambda functions
	Partial functions
	Updating

	Formal grammars
	Common non-terminals
	Before expansion
	After expansion

	Preprocessing function
	Wrapper and main function
	Object Macro
	Function-Like Macro
	Text Line
	Auxiliary functions
	Example: Simple macro derivation

	Interpretation
	Unparsing function
	Processing Function
	Evaluation

	Correctness of the expansion process
	Predicates over the state(s)
	Discussion
	Expansion to other directives
	Expansion to C

	Common.hs
	PreProcess.hs
	PostProcess.hs

