
Bachelor thesis
Computing Science

Radboud University

Comparing shallow autoencoders
to normalization, standardization
and PCA as preprocessing step for

outlier detection

Author:
Gijs Thuis
s4490444

First assessor:
Prof. Data Science, Tom

Heskes

t.heskes@science.ru.nl

Second assessor:
Dr. Data Science, Twan van

Laarhoven
Twan.vanLaarhoven@ru.nl

Daily supervisor:
PhD student/candidate Roel

Bouman

roel.bouman@ru.nl
June 28, 2022

Abstract

We compare normalization, standardization, PCA and shallow autoencoders
as preprocessing step for outlier detection. All used outlier detection tech-
niques are hyperparameter tuned and their performance is evaluated using
AUC-ROC scores and 4-Fold cross validation. For both lower and higher di-
mensional datasets, PCA generally show better results compared to shallow
autoencoders. Additionally, both autoencoders and PCA do not outper-
form robust standardization or normalization as preprocessing method in
the OD pipeline, on both lower and higher dimensional data. Therefore
we do not suggest to use shallow autoencoders as preprocessing method for
outlier detection.

Contents

1 Introduction 3

2 Preliminaries 6
2.1 Preprocessing methods . 6

2.1.1 Normalization . 6
2.1.2 Standardization . 6
2.1.3 Principal Component Analysis 7
2.1.4 Autoencoders . 8

2.2 Outlier detection methods . 11
2.2.1 kNN for outlier detection 11
2.2.2 Local Outlier Factor 12
2.2.3 Isolation Forest . 12

2.3 Evaluation metrics . 12
2.3.1 ROC-AUC . 12

3 Research 13
3.1 Methods . 13

3.1.1 Outlier Detection Pipelines 15
3.1.2 Evaluation Metric . 15
3.1.3 Hyperparameter Tuning 16

3.2 Results . 18
3.2.1 Lower dimensional data sets 18
3.2.2 Higher dimensional data sets 19

3.3 Discussion . 21
3.3.1 Number of datasets 21
3.3.2 Autoencoder depth . 21
3.3.3 OD techniques . 22
3.3.4 Evaluation metric . 22
3.3.5 Supervised evaluation 23

4 Related Work 24

5 Conclusions 25

1

A Appendix 29
A.1 Tables . 29
A.2 Code . 31

2

Chapter 1

Introduction

Outlier detection refers to the problem of finding patterns in data that do
not conform to expected behavior[7]. Another often citated definition for
outliers is Hawkins’[15] where an outlier is identified as ”an observation
which deviates so much from other observations as to arouse suspicions that
it was generated by a different mechanism”. It is a critical topic in machine
learning.[8]

The interest in accurate outlier detection stretches across various application
domains, of which examples follow shortly. Often outliers are of particular
interest, where identifying them is an end goal in itself and sometimes outlier
detection is used as a preprocessing step, where outliers may be irrelevant
noise and thus should be removed during data cleaning. Some examples of
the former include fraud detection[3], health supervision[24] and hydropower
generation plant monitoring[2]. This shows that outlier detection has soci-
etal and commercial value.

A complicating factor for accurate outlier detection is the curse of dimen-
sionality, which existence was first introduced by Bellman [5]. It refers to
the problem occuring in cases where data is too high dimensional, for other-
wise sufficient machine learning techniques, to accurately model data. For
outlier detection the curse of dimensionality appears in cases where the data
is too high dimensional for an outlier detection method to catch onto the
underlying defining outlier patterns or nature of the data to which one can
ascribe the outliers to. It is this problem of dimensionality that we partly
try to address in this thesis.

The way of trying to overcome the curse of dimensionality is by reducing the
number of dimensions. PCA (Principal Component Analysis) is regularly
and successfully used to reduce the number of dimensions of input spaces.
There are a lot of examples, but some are Kaya et al.[16] who use PCA prior

3

to clustering for brain tumor segmantation, Al-Bahri et. al.[4] who apply
PCA as preprocessing step for image recognition and feature extraction and
Sheinker[23] who leverages PCA for detection of visually obscured ferromag-
netic objects.
Still it does not always provide a suitable means when used prior to outlier
detection methods. As indicated by Harrou[14], PCA based approaches of-
ten tend to miss small or moderate anomalies.

In this thesis we investigate whether or not autoencoders can be a replace-
ment for PCA as dimensionality reduction technique in the outlier detec-
tion pipeline (and also compare them to normalization and standardization,
again as dimensionality reduction technique). The reason for believing in
this alternate approach is that autoencoders are capable of catching non-
linear patterns, whereas PCA is not. The first to introduce autoencoders
were Rumelhart et al.[21] It becomes more common to believe in autoen-
coders as a feasible dimensionality reduction technique as can be seen by the
growing interest in them, as stated by San Martin et al. [22] We cover the
theoretical differences between PCA and autoencoders in the preliminary
sections(2.1.3 and 2.1.4).

To expand on the ground for believing that autoencoders could be a fea-
sible preprocessing technique for outlier detection, especially when applied
on high-dimensional data, we briefly introduce their core mechanisms. The
main task for autoencoders is to reconstruct a given input to output, while
constraining the dimensionality using a bottleneck layer. An autoencoders
tries to do so by first encoding the input space into a lower dimensional -
latent - space and then decoding this bottleneck representation into input
space again. This decoding phase exists to prove that, after the encod-
ing transformation, crucial substructures existing within the input space
are kept intact in the denser bottleneck representation and are also more
prominent as the space is smaller. In this smaller bottleneck representation,
outliers may stand out more, as they would not adhere to the key struc-
tures leveraged by the autoencoder to reduce dimensions. The used outlier
detection techniques should now be more accurate in identifying outliers.

It is because of the previous that we come to the following hypothesis.
We suspect that for all used outlier detection techniques, autoencoders as
preprocessing method outperform normalization, standardization and PCA
as preprocessing method. The outlier detection methods that are used in-
clude LOF, IFOR and kNN for outlier detection(The full forms of the ab-
breviations for OD techniques are given in table 3.2).

Notably, this research is to some extent exploratory. Therefore the hypoth-
esis, while being formulated strongly, should be a mere guide for examining
whether or not autoencoders show promising signs for being a preprocessing

4

technique for outlier detection. Preprocessing for outlier detection is not a
new research domain and so the extent to which this research can be la-
beled exploratory is limited. Nevertheless, autoencoders are not often used
as preprocessing technique. Hence the label exploratory. Autoencoders are
more often used as an outlier detection technique directly. This is shown
by the considerable amount of research where autoencoders, or in some
cases, variational autoencoders (VAE) are leveraged for outlier detection.
Some examples are Gonzalez et al. [11], who succesfully use both basic and
variational autoencoders to model anomalous behavior, such as wandering
through the house, by electrical consumption by elderly in elderly homes
and show better results for VAE’s and Mujkic et al.[19], who leverage several
autoencoder architectures for detecting anomalous functioning agricultural
vehicles. Ultimately, the conclusion will be indicative of whether or not we
believe further investigation of autoencoders as preprocessing technique for
outlier detection is necessary.

After defining the research question and hypothesis, we now further de-
marcate the frame of this research by briefly introducing the environment
in which the performance of combinations of preprocessing techniques and
outlier detection techniques is evaluated. The used outlier detection tech-
niques use unsupervised learning. LOF, IFOR and kNN do not use outlier
labels when modeling the data. But we have outlier labels and still use
them to evaluate the performance of each preprocessing-detection combi-
nation. We use hyperparameter tuning to find the set of hyperparameters
for which the the combination models the outliers most accurately. As the
evaluation of the model performance uses the outlier labels and we pick the
best performing combination according to this evaluation, the model train-
ing is supervised. Conclusively, we use unsupervised outlier detection and
supervised training.

5

Chapter 2

Preliminaries

This chapter contains some introductory knowledge about machine learning
principles and techniques which are used in the research. First we introduce
the preprocessing methods, specifically addressing PCA and autoencoders.
Then we describe the basics of the methods of outlier detection being used.
And after that we explain how the used performance metric, which is used
to assign scores to the performance of pipelines (i.e. combinations of pre-
processing methods and outlier detection methods, where each combination
contains one from both) on specific data sets, works.

2.1 Preprocessing methods

2.1.1 Normalization

Let us normalize a feature vector x =
[
x1 . . . xn

]T
, where n is the number

of samples in x. Then for all i ∈ {1, ...n} the normalized value vi is given
by:

vi =
xi −min(x)

max(x)−min(x)

When normalization is applied on a full matrix (representative of a dataset),
then the formula is applied on above on all feature vectors in the matrix.

2.1.2 Standardization

Like normalization, standardization is a means of feature scaling. Let us

standardize a feature vector x =
[
x1 . . . xn

]T
where n is the number of

samples in x. Let σ denote the standard deviation of x and µ denote the
mean value of x. Then for all i ∈ {1, ...n}, the standardized value vi is given
by:

vi =
xi − µ
σ

6

2.1.3 Principal Component Analysis

Principal component analysis[20] is a technique that computes the principal
components (PC’s) from a given matrix. PC’s are linear combinations that
capture variability. When applied, PCA constructs principal components in
descending order of the extent to which they capture variability (another
way to put ”capture variability” is: explain information) from a given input
matrix. For each PC this is done by means of a projection on a linear combi-
nation of the original variables. Each principal component is orthogonal to
all previous PC’s. There are as much PC’s as features, but as PCA reduces
the number of dimensions only a smaller fraction is kept.

Given an input space X :

X =

x11 . . . x1P

...
. . .

...

xN1 . . . xNP

PCA transforms X to another matrix Z where the shape is N × P , equal
to the one of X.
Each columnar vector is a principal component of input space X.

1. For each column vector we compute the mean and put this result in
one mean vector: x = 1

n

∑n
i=1 xi

2. Define a N×P mean matrix X = x1n

3. Compute the mean centered matrix: Y = X −X Note: We mean
centered X because we want to ensure the vector columns are zero
mean gaussians for the next steps.

4. Decompose Y into singular values Y = UΣV T where the columns of
U are left singular vectors and the columns of V are right singular
vectors of Y . They also form the orthonormal bases of On the diag-
onal of Σ we find the singular values for Y . For the shapes of the
decomposed matrix we have:

• U : n× d
• Σ : d× d
• V T : d× p

5. Compute principal components Z = UΣ, where:

7

Z =

z1P . . . z1P

...
. . .

...

zN1 . . . zNP

The first vector (z1) in this matrix represents the first principal component
and is the component capturing the most variance. For the i-th principal
component we have:

zi =
[
z1i . . . z1P

]
Notably, in step 3, 4 and 5 we made mere linear transformations, and PCA
can thus be characterized as a projection method. This is important for for
our research, as the transformations made in PCA are all linear.

Historically, PCA was previously been executed by means of eigendecompo-
sition (by computing eigenvalues and eigenvectors), but nowadays the more
general singular value decomposition (SVD) approach is common.

2.1.4 Autoencoders

Autoencoders are a specific type of neural networks, which are trained to re-
construct given input, after representing it compactly in its bottleneck layer,
which is the middle layer. Typically autoencoders have k layers, where k ≥ 3
and k is odd. The first layer has n neurons. The next n−1

2 layers have less
neurons than their predecessor and after that the final n−1

2 layers each have
more neurons than their predecessor. The decrease in neurons per layer
towards mirror the increase in neurons per layer away from the bottleneck
layer.

The first n−1
2 layers of the full autoencoder is called the encoder, the final

n−1
2 layers together is called the decoder and as we saw the layer inbetween

the bottleneck layer. Furthermore, the first is also called input layer, the
last layer output layer and every layer inbetween hidden layers.

A generic neural network architecture representation for 5 layers is pre-
sented in Figure 2.1.

8

x
(1)
1

x
(1)
2

x
(1)
3

x
(1)
4

x
(1)
5

x
(1)
n

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
m

h
(3)
1

h
(3)
p

h
(4)
1

h
(4)
2

h
(4)
3

h
(4)
m

y
(5)
1

y
(5)
2

y
(5)
3

y
(5)
4

y
(5)
5

y
(5)
n

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

input layer output layer

bottleneck layer

Figure 2.1: Illustrative image of the layer architecture of an autoencoder,
consisting of 5 layers. Neurons are denoted by either x (input neuron), h
(hidden neuron) or y (output neuron). The superscript denotes the layer
in which the neuron is located and the subscript the index position in that
layer. For the layer lengths we have n > m > p. In this case the bottleneck
layer is the second hidden layer. Its layers are defined by:

x1 := {x(1)1 , x
(1)
2 , ..., x

(1)
n }

h2 := {h(2)1 , h
(2)
2 , ..., h

(2)
m }

h3 := {h(3)1 , h
(3)
2 , ..., h

(3)
p }

h4 := {h(4)1 , h
(4)
2 , ..., h

(4)
m }

h5 = {y(5)1 , y
(5)
2 , ..., y

(5)
n }

Then these autoencoder components are indentified by their layers:

encoder:= {x1, h2}
decoder:= {h4, y5}

bottleneck layer := {h3}

9

In the outlier detection pipeline, the first half of autoencoders, the en-
coder, is used for preprocessing. Before the encoder is extracted out, the
weights between all layers in the autoencoder are trained. This is done by
minimizing the reconstruction loss using a optimization method, e.g. gradi-
ent descent. The reconstruction loss is computed by a loss function. This
reconstruction loss or error defines how accurate the decoder decodes the
bottleneck representation back into the given input. After extracting the
encoder (and thus its weights) from the autoencoder, the application of the
encoder on a data set is a means for nonlineair dimensionality reduction,
which makes it potentially suitable for preprocessing.

In neural networks, each neuron contains a numerical value. Neurons in
the input layer are, by definition, assigned values provided by the input.
Subsequently, we define the values for neurons in all next layers. The value
of the i-th neuron in the j-th layer, which is of length n will be defined.
Given is the length m of the (j − 1)-th layer. Also given is the activation

function σ. Then, the the neuron value a
(j)
i defined by equation 2.1 and 2.2.

a
(j)
i = σ(wi,1 · a(j−1)

0 + wi,2 · a(j−1)
1 + ...+ wi,1 · a(j−1) + b) (2.1)

a
(j)
i = σ(

m∑
k=1

wk,1 · a
(j−1)
k + b) (2.2)

where wq,r defines the weight between the q-th neuron in the (j−1)-th layer
and the r-th neuron in the j-th layer.

Notably, in equations 2.1 and 2.2, we put the symbol ‘a‘ in a
(i)
j to express

the value of a neuron, not knowing if it occurs in the input layer, any hidden
layer or the output layer. Furthermore for the whole j-th layer we define its
neuron values by equations 2.3 and 2.4:

a(j) =

a
(j)
1
...

a
(j)
n

 = σ

w1,0 . . . w1,m

...
. . .

...

wn,0 . . . wn,m

a
(0)
1

...

a
(0)
n

 + b

(2.3)

a(j) = σ(W(j−1)a(j−1) + b) (2.4)

10

2.2 Outlier detection methods

2.2.1 kNN for outlier detection

kNN is known for its use in classification and regression. First we briefly
discuss how kNN classification works, after which we explain how an alter-
ation of the algorithm is used for outlier detection.

Using the kNN classification algorithm to classify any data point p in a
data set S, the class labels of all other data points in S are known and used
to determine a class for p. A distance metric is used defining the distance
between each pair of data points. All pairwise distances between p and any
other point in S are computed and the data points are ordered in ascending
order of pairwise distance. The k first elements in that list are called the k
nearest neighbors. Then p is assigned to the class that is present most often
among these k nearest neighbors.

The kNN outlier detection algorithm (kNN OD) has a whole different pur-
pose than kNN for classifcation as they have a different type as output.
kNN OD computes outlier scores instead of determining class membership
assignments. Assume we want to compute the outlier score (a score between
0 and 1 expressing outlierness of a data point) of a data point p in data set
S. Similar to kNN for classification, the k data points in S being the nearest
to p are computed. Again, this is done by ordering all other datapoints in S
on pairwise distance to p, and then collect the first k. Three main methods
exist to assign outlier scores and they all use the pairwise distances of the k
nearest neighbors of p in S. The first method is to take the absolute distance
to the k-th neighbor. The second method is to take the mean among the k
nearest neighbors. And the third is to take the median value among the k
neighbors.

Although the kNN OD algorithm is now finished, one might want to make a
binary classification (i.e. identify outliers and inliers). In this case a thresh-
old value can be used to part these two classes. Let I ⊆ S denote the set of
inliers, and O ⊆ S the set of outliers. Now for a given threshold value θ, the
data points from set S do have set membership according to ’equation’ 2.5.

∀x ∈ S

{
x ∈ I, if σ(x) ≤ θ
x ∈ O, otherwise

(2.5)

11

2.2.2 Local Outlier Factor

Local outlier factor, or LOF, is a distance based approach to anomaly de-
tection. It is a local method. LOF calculates a score for each data point
that resembles the extent to which it is irregular, compared to its neighbors.
For each data point a local density estimation is computed. It uses the dis-
tances to its neighbors for the density and compares the density with these
neighbors. If the local density estimation of a data point is substantially
lower than the local density estimations of its neighbors, it is classified as
outlier. Various variables are important for any good application of LOF.
Firstly, to find a proper way of establishing that two data points are neigh-
bors. Secondly, the choice of distance measure to use. Third, the choice
of density diffentiation when comparing to neighbors and thus determining
which are actual outliers. kNN is often used in LOF for obtaining the neigh-
bors of data points. Here picking a suiting k is key. It differs from KNN
in the sense that the outlier score in kNN is determined directly from the
distance to the k nearest neighbor where in LOF the outlier score is based
on a comparison of the density measure to the ones of its neighbors. LOF
was first introduced by Breunig et al.[6]

2.2.3 Isolation Forest

The isolation forest approach to outlier detection tries to isolate atypical
data points. To isolate an observation, first it partitions the dataset and
then randomly selects an attribute and a split value for that attribute and
splits the partitions based on that. As outliers tend to be isolated quicker
than the normal data points, they are recognized by having a small number
of splits before isolation (at a small depth of the tree). Isolation Forest as
an approach to anomaly detection was initially proposed by Liu et al.[18]

2.3 Evaluation metrics

2.3.1 ROC-AUC

ROC-AUC is an evaluation metric that represents the area under the curve
of the receiveing operating characteristic. The true positive rate(TPR is
plotted against the false positive rate(FPR). This ROC curve gives insight
in the course between TPR and FPR while the cut-off threshold for obser-
vations to be classified inlier or outlier changes. The ROC-AUC then is the
area under this curve. As the TPR and the FPR are both in the range [0, 1],
the ROC-AUC value also is in the range [0, 1]. A random classifier has a
baseline of 0.5.

12

Chapter 3

Research

3.1 Methods

We are in the process of finding out whether autoencoders can outperform
PCA, normalization and standardization as preprocessor method for outlier
detection. To do so we build pipelines consisting of preprocessing method(s)
and an outlier predictor. Stratified K-fold cross is used for validation and hy-
perparameter tuning for pipeline optimization. Features without variability
(having 0 variance) are removed beforehand. Figure 3.1 displays the outlier
detection process that has been used.

13

Input data

Remove zero variance features

Preprocessor

Outlier detector

Outlier scores

AUC-ROC score

OD Pipeline

Inliers Outliers

Figure 3.1: Illustration of the outlier detection process from input to evalu-
ation of the outlier detection pipeline. For all data points an outlier score is
computed. From these scores, and the outlier labels we compute the AUC-
ROC score for a pipeline. We directly evaluate by means of the AUC-ROC
score and the dashed nodes only display that a binary classification could
be made from the outlier scores, given a threshold value, but also that we
do not explicitly do this. Nevertheless, when computing AUC-ROC scores
for OD pipelines, classifying outliers and inliers needs to be done multiple
times.

14

3.1.1 Outlier Detection Pipelines

Outlier detection pipelines used in this research are built by combining each
of the preprocessors with each of the outlier detection methods. All 12
pipeline combinations are built where the preprocessing methods are given
in Table 3.1 and the outlier detectors in Table 3.2. Notably we use robust
standardization. This is standardization as explained in section 2.1.2 with
two adjustments. First, the median is removed. Secondly, the mean and
standard deviation used to standardize are computed over a subrange of the
input data. In our case, the used subrange is the interquartile range.

Table 3.1: This table displays the used preprocessing methods and their
abbreviations.

Robust Standardization + Principal Component Analysis Stand-PCA

Robust Standardization + Autoencoder Stand-AE

Robust Standardization Stand

Normalization Norm

Table 3.2: This table displays the used outlier detection methods and their
abbreviations.

Local Outlier Factor LOF

Iolation Forest IFOR

K-Nearest Neighbor Outlier Detection kNN

3.1.2 Evaluation Metric

The predictor assigns an outlier score to each sample x in the test set where
the outlier score σx ∈ [0, 1]. To evaluate preprocessing methods we use a
metric to score pipelines in which these preprocessing methods are embedded
in. We compute the area under the receiver operating chareristic (ROC-
AUC) by using the predicted outlier scores. We use 4-fold cross validation
and compute the average performance over the 4 determined ROC-AUC
scores. For each fold the ROC-AUC score is computed by predicting the
performance of the hyperparameter tuned model on the outer holdout fold.
The hyperparameter tuned model is selected by training on two of the three
inner folds and estimating the performance on the inner hold-out fold.

15

3.1.3 Hyperparameter Tuning

Hyperparameter tuning is a machine learning technique which selects the
best model based on hyperparameter optimization. Hyperparameters are
model parameters which are not trained within a model itself but still im-
pact the structure and behaviour of a model and thus its performance. Ex-
amples include distance metrics and number of layers in a neural network.
The values for these parameters are given beforehand. The model is partly
predefined and restricted by them. We use the gridsearch method to tune
hyperparameters. We use gridsearch for hyperparameter tuning. When
gridsearch is applied to tune hyperparameters, all possible combinations of
provided hyperparameters are used exhaustively and the performance of
each pipeline configuration is evaluated.

We apply hyperparameter tuning on pipelines. As pipelines consist of one
or multiple preprocessing method(s) and a outlier detection method, each
pipeline configuration gets hyperparameters used in the preprocessing method(s),
as well as hyperparameter used in the OD method. The hyperparameter set-
tings that we use are given in Table A.2.

For an image representation of the folding process for hyperparameter tun-
ing, see Figure 3.2 First, an outer split is made. There is one test fold and
k − 1 outer train folds. Then the outer train split gets split into k − 2 in-
ner train folds and a inner test fold. For each combination that follows from
the sets of hyperparameters the performance is tested on this inner test fold.

Each of the k − 1 folds in the outer training split is used for cross vali-
dation in the gridsearch. This results in k hyperparameter tuned models
that are different and they each are tested on the outer test fold. It is with
this test that we assign the AUC-ROC score of the OD pipeline. In the end
we have k resulting ROC AUC values that come from 4 different models.

16

Outer split 1 f1 f2 f3 f4

Inner split 1.1 f1 f2 f3 f4

Inner split 1.2 f1 f2 f3 f4

Inner split 1.3 f1 f2 f3 f4

Outer split 2 f1 f2 f3 f4

Inner split 2.1 f1 f2 f3 f4

Inner split 2.2 f1 f2 f3 f4

Inner split 2.3 f1 f2 f3 f4

Outer split 3 f1 f2 f3 f4

Inner split 1.1 f1 f2 f3 f4

Inner split 1.2 f1 f2 f3 f4

Inner split 1.3 f1 f2 f3 f4

Outer split 4 f1 f2 f3 f4

Inner split 1.1 f1 f2 f3 f4

Inner split 1.2 f1 f2 f3 f4

Inner split 1.3 f1 f2 f3 f4

k=4

Outer test fold

Outer test fold

Inner test fold

Inner train fold

Figure 3.2: An illustration of the splits and folds used during the hyperpa-
rameter tuning process.

17

3.2 Results

In this section the results are presented and discussed in two phases, one
for lower dimensional and one for higher dimensional data. Stripplots are
used to visualize the results. In the plots, the dots displaying the AUC-ROC
scores for the standardization + autoencoders method have a horizontal line
crossing them to augment it and make it easier to compare the score with
scores for other preprocessing methods. A table with all the AUC-ROC
scores in one view is given in Appendix A.1.

3.2.1 Lower dimensional data sets

Here we see three stripplots with AUC-ROC scores for three lower dimen-
sional data sets. These three data sets, Breastw, Cardio and Thyroid have
9, 21 and 6 faetures respectively. Comparing the scores for outlier detection
pipelines with PCA and scores of outlier detection pipelines with autoen-
coders, by looking at the right of each figure, we see that most times PCA
performs better and in some cases even seem to perform much better than
autoencoders.

Figure 3.3: Stripplot of the AUC-
ROC scores for the used OD pipelines
applied to the Breastw dataset.

Figure 3.4: Stripplot of the AUC-
ROC scores for the used OD pipelines
applied to the Breastw dataset.

18

Figure 3.5: Stripplot of the
AUC-ROC scores for the used
OD pipelines applied to the
Thyroid dataset.

For example, PCA outperforms autoen-
coders considerably for IFOR on Cardio,
and Thyroid. Also for LOF on Thyroid

PCA performs much better. The perfor-
mance by autoencoders+IFOR is particu-
larly bad, as it scores much worse than
the two benchmark methods normalization
and standardization. On none of the three
data sets autoencoders are part of the best
performing OD pipeline. Where autoen-
coders based OD pipelines perform mostly
worse than standalone standardization, OD
pipelines with PCA are also not an improve-
ment upon them. Finally, we observer that
in general these figures display that PCA
performs better than autoencoders as pre-
processing step on lower dimensional data.

3.2.2 Higher dimensional data sets

Here we see plots for scores of the three data
sets, Musk, Arrhythmia and Speech which
have 166, 274 and 400 faetures respectively.

Comparing autoencoder with PCA we see for Musk that IFOR perform
better if PCA is used a preprocessing step compared to autoencoders as
preprocessing step. kNN and LOF show comparable results. In the context
of this data set being higher dimensional it is remarkable that the scores
for Isolation forests are best for the benchmark methods normalization and
standardization. The initial hypothesis was that dimensionality reduction
techniques, PCA and Autoencoders, would proof to be favourable. Here
should be noted that isolation forest is known to do well on higher dimen-
sional data, when compared to distance based metrics, like LOF and kNN.
The same pattern holds for IFORs and kNN on the Speech sets, where we
also see the dimensionality reduction techniques perform worse.

19

Figure 3.6: Stripplot of the AUC-ROC scores for the used OD pipelines
applied to the Musk dataset.

Figure 3.7: Stripplot of the AUC-
ROC scores for the used OD pipelines
applied to the Arrhythmia dataset.

Figure 3.8: Stripplot of the AUC-
ROC scores for the used OD pipelines
applied to the Speech dataset.

20

3.3 Discussion

Contrary to our expectations, our research does not suggest that autoen-
coders provide a feasible way of preprocessing data for outlier detection.
Therefore the hypothesis is rejected. We discuss this rejection in sections
3.3.1 and 3.3.2. After that, we defend why we used the OD techniques and
evaluation metric we used, in sections 3.3.3 3.3.4. Finally, we discuss the
supervised context in which we evaluate the performance of OD pipelines in
section 3.3.5.

3.3.1 Number of datasets

Although we have found some implications that autoencoders are probably
not a feasbile preprocessing method for outlier detection, we have to admit
there is some uncertainty in those conclusions. From the results shown we
can not derive that the differences are significant. We only used 6 datasets,
3 lower and 3 higher dimensional. Therefore we can not be sure the implica-
tions of the results, in the way they are formulated, generalize across more
datasets and in particular across data sets with different types of distribu-
tions and dimensionality.

3.3.2 Autoencoder depth

The autoencoders used have a rather small number for the bottleneck layer.
The depth of the autoencoders is low. We can therefore not be sure that
our conclusion generalizes across deeper autoencoders.

Partly, the reason for picking a small bottleneck layer is, although we
use gpu acceleration for performance enhancement, it still costs significant
computing time to train one individual model. As we perform hyperparam-
eter tuning for picking the right hyperparameters for each pipeline, we have
to train a lot of possible configurations and training time becomes quite
extensive. For example, let’s look at an autoencoder model with kNN as
the final step in the pipeline. For the autoencoder we define 2 activation
functions, 3 different values for the branching factor and 2 different values
for the bottleneck index layer. Then for the kNN parameter set we have
30 values for k, 3 ways of computing the outlier score (mean, largest and
median distance of or towards k nearest neighbor(s)) and 2 distance met-
rics. All this together comes down to (2*3*2)*(30*3*2) = 2175 models to
be trained within a single inner fold. As we do 4-fold crossvalidation on
the outer split and inside have 3 inner folds for hyperparameter tuning, this
amounts to 4*3*2175=26100.
A last remark on autoencoders used for OD. They might not be an improve-
ment as preprocessing step for outlier detection, but autoencoders, either
basic or variational, may be a good fit as direct outlier detection method.

21

3.3.3 OD techniques

We have evaluated the performance of three outlier detection techniques.
These were kNN, IFOR and LOF. We selected these techniques on basis
of the comparative work of Bouman[1]1. Bouman compares 18 outlier de-
tection techniques on 34 multivariate datasets. In this comparison, kNN
overall performs best. On the subset of datasets, for which outlier detec-
tion techniques designed to find local outliers, generally score better, an
IFOR derived method (EIF, extended isolation forest) performs best. For
the ”global” subset of datasets, COF performs best. Since these methods
perform best, we use kNN and IFOR. We also use LOF. We use LOF in-
stead of COF. LOF is similar to COF as outlier detection technique in the
sense that they are both local methods, both comparing some local density
estimations to the local density estimations of data points nearby. COF
is a variation on LOF, and they differ in the way they find the k nearest
neighbors used for the local density estimation. COF makes use of chain
distance as local density estimation. kNN and LOF leverage local density
estimations and IFOR takes a total different approach. Therefore we cover
multiple bases.

3.3.4 Evaluation metric

Picking ROC-AUC as outlier detection scorer is based upon the conclusions
about the metric in the work of Zimek et al.[25] In their survey, advocate
using ROC-AUC as it inherently makes up for the class imbalance problem
because it not only plots the true positive rate against the false positive
rate, but does this while increasing the threshold at which observations are
classified as outlier versus inlier.In the context of the class imbalance prob-
lem, ROC-AUC is a sensible metric choice for evaluation of outlier detection
models. Paraphrasing Zimek, ROC-AUC is the best we have but this does
not make it perfect.
In many cases specificity and sensitivity are not equally important. For ex-
ample, in the domain of medical screening we can accept false positives, as
it ”only” results in stress and more medical costs for further investigation.
False negatives however could do a lot bigger harm as not treating the illness
can inflict increased suffering and worse. As indicated by Halligan et al.[13]
ROC-AUC does not differ between specificty and sensitivity and therefore
is not always a suitable metric for outlier detection. Although there are
concerns with the metric, we think the benefits outweigh the costs and use
it as our evaluation metric.

1submitted for peer review

22

3.3.5 Supervised evaluation

For assigning scores to outlier detection pipelines on a data set the average
ROC-AUC score over the folds is used. For each split a the best scoring
model on that split is used to predict on the held out fold. This pushes
the score upward a bit, compared to scoring all parameter settings for a
given split on the data and selecting the average best performing set of
parameters over all splits for the final predicted score. On the contrary, we
use a hold out fold twice (one in the outer split and once in the inner split)
and that has a negative impact on the score. Subsequently, the context in
which outlier detection models are evaluated is one in which we pick the best
performing configuration for each OD pipeline and evaluate its performance
on the hold out set. This makes our evaluation of OD pipelines a supervised
learning approach. If, for all OD pipelines, the average performance over all
configurations of an OD pipeline was used to evaluate its performance, then
the evaluation would be unsupervised. We may assume that our choice for
best perfomer affects our results.

23

Chapter 4

Related Work

David and Clark[10] review preprocessing for network intrusion detection.
They identify that faeture scaling techniques normalization and stardization
are being used often.Furthermore, they observe that some of the papers they
review apply PCA to reduce the number of dimensions.

Chen et al.[9] leveraged a KNN-model to classify outliers in the Wisconsin
Breast Cancer dataset and retrieved full coverage (100%) of the 39 prede-
fined set of outliers with a cut-off of 14% where 8% were predefined to be
outliers. They do not mention specific preprocessing techniques that they
have applied but remove some malignant instances from the set and thus
remove some of the outliers preceding model training.

Zimek et al.[25] identify a dichotomy of outlier detection methods when
it comes to addressing data in high dimensional Euclidean space. For the
definition of outliers one class does consider subspaces and the other does
not. In the same survey they explain that some methods exclusively need
normalization and some OD methods would be too biased to certain features
when standardization is not applied. This would happen in cases where a
single or a few value(s) in a feature are a lot greater than the other, effec-
tively dominating the scale.

Ahmed et al.[2] use three outlier detection methods. These are FBOD
(Feature Bagging for Outlier Detection, Lazarevic and Kumar[17], SOD
(Subspace Outlier Detection) and LOF. By means of the latter Ahmed et
al. indentify two important threshold values for the hydropower generation
plants anomalies, being oil temperature and bearing harmonics values.

24

Chapter 5

Conclusions

We have applied PCA and autoencoders as preprocessing step for three out-
lier detection methods on six OD benchmark data sets. On data sets with
a low number of dimensions, PCA mostly outscores autoencoders slightly
and in a few cases considerably. Autoencoders, again in most cases, perform
worse than the benchmark methods normalization and robust standardiza-
tion.

On data sets with a high number of dimensions, we see that isolation forests
perform better when they are preceded by PCA instead of being preceded
by autoencoders. Contrary to our expectations the dimensionality reduc-
tion methods are often outperformed for all three tested outlier detection
methods, by standardization and normalization. Finally we conclude that,
PCA often outperforms autoencoders.

Considering the prior, we reject the hypothesis that autoencoders outper-
form normalization, standardization and PCA as preprocessing step for out-
lier detection. Our work does not suggest that the capacities of autoencoders
as preprocessing method for outlier detection provide a bright future. Nev-
ertheless, we suggest that the performance of autoencoders as preprocessing
step for outlier detection are further investigated in future research. Also,
in order to gather more certainty on the poor performance of shallow au-
toencoders as preprocessing step for outlier detection, we suggest that our
used method is applied on more datasets in future research.

25

Bibliography

[1] A comparison of anomaly detection methods, 2022.

[2] Imtiaz Ahmed, Aldo Dagnino, Alessandro Bongiovi, Yu Ding, 2018
IEEE 14th International Conference on Automation Science, and Ger-
many 2018 Aug. 20 . 2018 Aug. 24 Engineering (CASE) Munich. Outlier
Detection for Hydropower Generation Plant, pages 193–198. 2018 IEEE
14th International Conference on Automation Science and Engineering
(CASE). IEEE, 2018.

[3] Mohiuddin Ahmed, Abdun Naser Mahmood, and Md. Rafiqul Islam.
A survey of anomaly detection techniques in financial domain. Future
Generation Computer Systems, 55:278–288, 2016.

[4] Ibtisam Mohammed Al-Bahri, Sallam Osman Fageeri, Aiman Moyaid
Said, and G. Mary Amirtha Sagayee. A comparative study between pca
and sift algorithm for static face recognition. In 2020 International Con-
ference on Computer, Control, Electrical, and Electronics Engineering
(ICCCEEE), pages 1–5, 2021.

[5] Richard E Bellman. Adaptive control processes. In Adaptive Control
Processes. Princeton university press, 2015.

[6] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg
Sander. Lof identifying density-based local outliers. ACM SIGMOD
Record, 29(2):93–104, 2000. 93.

[7] Banerjee A. Chandola, V. and V. Kumar. Anomaly detection: A survey.
acm comput. surv. 41. volume 3, pages 1–58, 2009. Article 15 (July
2009).

[8] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly de-
tection: A survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[9] Yumin Chen, Duoqian Miao, and Hongyun Zhang. Neighborhood out-
lier detection. Expert Systems With Applications, 37(12):8745–8749,
2010. 8745.

26

[10] Jonathan J. Davis and Andrew J. Clark. Data preprocessing for
anomaly based network intrusion detection: A review. Computers Se-
curity, 30(6):353–375, 2011.

[11] Daniel Gonzalez, Miguel A. Patricio, Antonio Berlanga, and Jose M.
Molina. Variational autoencoders for anomaly detection in the be-
haviour of the elderly using electricity consumption data. Expert Sys-
tems, 39(4), 2022.

[12] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding
structure with randomness: Stochastic algorithms for constructing ap-
proximate matrix decompositions. 2009.

[13] Steve Halligan, Douglas G Altman, and Susan Mallett. Disadvantages
of using the area under the receiver operating characteristic curve to
assess imaging tests: a discussion and proposal for an alternative ap-
proach. European radiology, 25(4):932–939, 2015.

[14] Fouzi Harrou, Ying Sun, and Sofiane Khadraoui. Amalgamation of
anomaly-detection indices for enhanced process monitoring. Journal of
Loss Prevention in the Process Industries, 40:365–377, 2016. 365.

[15] Douglas M Hawkins. Identification of outliers, volume 11. Springer,
1980.

[16] Irem Ersöz Kaya, Ayça Çakmak Pehlivanlı, Emine Gezmez Sekizkardeş,
and Turgay Ibrikci. Pca based clustering for brain tumor segmentation
of t1w mri images. Computer Methods and Programs in Biomedicine,
140:19–28, 2017.

[17] Aleksandar Lazarevic and Vipin Kumar. Feature bagging for outlier
detection. In Proceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, KDD ’05, page
157–166, New York, NY, USA, 2005. Association for Computing Ma-
chinery.

[18] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest.
In 2008 Eighth IEEE International Conference on Data Mining, pages
413–422, 2008.

[19] Esma Mujkic, Mark P. Philipsen, Thomas B. Moeslund, Martin P.
Christiansen, and Ole Ravn. Anomaly detection for agricultural ve-
hicles using autoencoders. Sensors (Basel, Switzerland), 22(10), 2022.

[20] Karl Pearson. Liii. on lines and planes of closest fit to systems of points
in space. The London, Edinburgh, and Dublin philosophical magazine
and journal of science, 2(11):559–572, 1901.

27

[21] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. nature, 323(6088):533–
536, 1986.

[22] Gabriel San Martin, Enrique Lopez Droguett, Viviane Meruane, and
Marcio das Chagas Moura. Deep variational auto-encoders: A promis-
ing tool for dimensionality reduction and ball bearing elements fault
diagnosis. Structural Health Monitoring, 18(4):1093, 2019. 1093.

[23] Arie Sheinker and Mark B. Moldwin. Magnetic anomaly detection
(mad) of ferromagnetic pipelines using principal component analysis
(pca). Measurement Science and Technology, 27(4), 2016.

[24] Arijit Ukil, Soma Bandyoapdhyay, Chetanya Puri, and Arpan Pal. Iot
healthcare analytics: The importance of anomaly detection. In 2016
IEEE 30th International Conference on Advanced Information Net-
working and Applications (AINA), pages 994–997, 2016.

[25] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on
unsupervised outlier detection in high-dimensional numerical data. Sta-
tistical Analysis and Data Mining, 5(5):363–387, 2012. 363.

28

Appendix A

Appendix

A.1 Tables

A
rr
hy
th
m
ia

B
re
as
tw

C
ar
di
o

M
us
k

Sp
ee
ch

T
hy
ro
id

A
ve
ra
ge

Norm-IFOR 0.67 0.59 0.95 0.96 0.58 0.96 0.78

Norm-KNN 0.67 0.55 0.47 0.48 0.66 0.95 0.63

Norm-LOF 0.66 0.46 0.54 0.49 0.49 0.50 0.52

Stand-IFOR 0.69 0.66 0.87 0.96 0.53 0.96 0.78

Stand-KNN 0.64 0.63 0.64 0.57 0.57 0.96 0.67

Stand-LOF 0.61 0.46 0.56 0.53 0.55 0.68 0.57

Stand-PCA-IFOR 0.68 0.66 0.78 0.76 0.48 0.94 0.72

Stand-PCA-KNN 0.70 0.63 0.62 0.54 0.49 0.96 0.66

Stand-PCA-LOF 0.56 0.48 0.60 0.59 0.51 0.73 0.58

Stand-AE-IFOR 0.64 0.61 0.54 0.64 0.50 0.82 0.63

Stand-AE-KNN 0.70 0.65 0.58 0.51 0.49 0.92 0.64

Stand-AE-LOF 0.60 0.50 0.59 0.62 0.54 0.57 0.57

Table A.1: AUC-ROC scores with all pipeline combinations in the rows and
datasets as columns

29

Method Hyperparameter Hyperparameter sets

Norm Norm norm [’l2’]

Norm copy [True]

Stand Stand scaling [True]

Stand with centering [True]

Stand quantile range [(25.0, 75.0)]

PCA PCA n components [2,4,6,8,10]

PCA random state random state*

AE AE act [’sigmoid’, ’relu’]

AE frac [1/3,1/2,2/3]

AE bttl [2,3]

IFOR IFOR n estimators [1000]

IFOR max samples [128,256]

IFOR max features [1.0]

IFOR bootstrap [True,False]

IFOR random state random state*

LOF LOF n neighbours [10,...,30]

LOF metric distanceMetrics*

KNN KNN n neighbours [10,...,30]

KNN method [”mean”, ”largest”, ”median”]

KNN metric distanceMetrics*

Table A.2: Overview of all hyperparamater settings used for hyperparameter
tuning in this research. * random state and distance metric values can be
found in table A.2.AE frac defines the fraction of neurons each layer left to
the bottleneck layer has as a fraction of its predecessor. AE bttl defines the
bottlneck layer. If AE bttl = 2, the second layer is the bottleneck layer.
AE act is the activation function for the neurons in the autoencoder. We
always used Adam as optimizer for training of the autoencoders.

30

Parameter set name Parameter set value(s)

random state 1173838490

distanceMetrics [”manhattan”, ”euclidean”]

Table A.3: Helper table for sets that are used multiple times in A.2. ran-
dom state is used as a seed for folding but when comuting SVD it may be
the case that not the full exact SVD is computed. Computing the exact full
SVD is the default, but Halko et al.[12] is used in cases where the number
of features and samples exceed 500 and more than 80% of the input features
is kept, since this method is more efficient.

A.2 Code

Code is written in python. We use the packages scikit-klearn, tensorflow and
keras. The sklearn library GridsearchCV is used for hyperparameter tuning
of Pipelines (scikit-learn objects) which consist of preprocessors (transform-
ers) and outlier detection methods (fitters). For the autoencoder we wrote
our own estimator by subclassing the CustomModel of Keras neural net-
works. We implemented the methods

set params () , get params () and c lone ()

properly so that GridsearchCV actually tests for different parameters such
that it sets the parameters to new, to be tested, values.

31

