BACHELOR THESIS
COMPUTING SCIENCE

Fia:

a

é\9 Ny
S

orrer

MiNe €

RADBOUD UNIVERSITY

Optimizing Kubernetes Cluster
Down-Scaling for Resource

Utilization
Author: First supervisor/assessor:
Joshua Steinmann prof. dr. Frits Vaandrager
51015908 F.Vaandrager@cs.ru.nl

Second assessor:
prof. dr. Sven-Bodo Scholz
svenbodo.scholz@ru.nl

March 31, 2022

Abstract

Kubernetes is a widely adopted technology today. One of its main advan-
tages is automatic deployment and even cluster scaling. The default proce-
dure for scaling down a cluster has some shortcomings and does not allow for
predictable behavior while decreasing the cluster size as much as possible.
While the default implementation works with per node resource utilization
thresholds to determine which nodes can be removed from the cluster, the
procedure proposed in this thesis makes use of thresholds set for the whole
cluster. These thresholds describe the maximal resource utilization that
should be present in the cluster after a scale-down. The notion of usable
resources is introduced to express the ratio of free resources in a cluster
state more precisely. The proposed down-scaler works towards decreasing
the cluster size as much as possible without violating any thresholds. While
a similar behavior can be reproduced using the default implementation and
overprovisioning, it does not work in all scenarios and involves complex ad-
ditional deployments.

Contents

Introduction

Kubernetes Concepts
2.1 MICroservices e e e e
2.2 Container Orchestration
2.3 Kubernetes Concepts
231 Pod
2.3.2 ReplicaSet
2.3.3 Pod Disruption Budget
2.4 Resources and labels,
2.4.1 Requests and limits
2.4.2 Units
243 NodeLabels.
2.5 Scheduler
2.6 Autoscaling
2.6.1 Horizontal Pod Autoscaler
2.6.2 Cluster Autoscaler (CA)

Shortcomings of the default scale-down procedure

An alternative down-scaling procedure
4.1 Theconcept L
4.2 Utility functions
4.2.1 Cluster capacity
4.2.2 Node and cluster requests
4.2.3 Daemon set requests
4.3 Usable resources and usable capacity
4.4 Candidate check oo
4.5 Evaluating candidates 0.
4.6 The complete procedure
4.7 Functions to be implemented
4.71 Bin-packingo
4.7.2 Removing Node from Cluster

4.8 The order of checks 20

5 Discussion 22
5.1 Differences to the default implementation 22
5.1.1 Thresholds, 22

5.1.2 General approach oL 22

5.2 Advantages of the proposed down-scaler 23
5.3 Advantages of the default down-scaler 23
5.4 Recreating the proposed behavior 23
5.4.1 Overprovisioning using the default CA 23

5.4.2 Recreating proposed behavior 24

5.4.3 Usein practice 24

6 Conclusions and Future Work 25

Chapter 1

Introduction

Kubernetes and containerization are widely adopted technologies. Kuber-
netes is a platform for managing and distributing containerized workloads
across multiple nodes. 31% of backend developers have used Kubernetes
in the past 12 months (based on data from December of 2021 [11]). Only
11% have never heard of it. The adoption in the industry is accompa-
nied by research efforts dedicated to improving the technology. One of the
biggest advantages of using Kubernetes is the automatic scaling of applica-
tion deployments or even the whole cluster to meet the computational power
required at any moment.

Related Work

Qiang Wu et al. [13] present a cluster auto-scaler that determines the opti-
mal cluster size based on the notion of Quality of Service (QoS). The QoS
is defined by the response time of user requests. Given a maximal desired
response time, the presented auto-scaler scales the cluster to not exceed
the desired response time, while keeping the cluster as small as possible.
The auto-scaler consists of four modules. The first one monitors the cluster
state while the second one decides the QoS threshold. Based on that the
third module computes the optimal cluster size and the fourth module then
adjusts the cluster size to match the optimal size.

Related work by Laszl6 Toka et al. [12] presents an auto-scaler that uses
machine learning to predict the computational load in the near future. Mul-
tiple forecast methods compete, and based on the current request dynamics,
the best method is given the lead. Based on the result, deployments are hor-
izontally scaled (explained in section 2.6.1) to meet the predicted load. The
influence on the cluster size is indirect as scaling deployments might result
in cluster up or down-scaling, but the cluster size is not adjusted directly.

Chapter 2

Kubernetes Concepts

2.1 Microservices

The concept of microservices is a software architecture design pattern.

The naive way of designing an application is to build all required features
into one monolithic service. Designing an application using the microser-
vices pattern enforces the separation of feature groups into distinct services.
These services mostly use network communication to provide the desired
functionality. More information on microservices can be found in the book
”Building Microservices” [9].

The relevant aspect of microservices for this thesis is their horizontal scal-
ability. It describes the process of increasing the processing capability of a
service by increasing the number of concurrent instances. The typical way
to deploy microservices is to use containerization. By using containers the
dependencies and service binaries are bundled in one image that can be
deployed using a container runtime like docker or containerd.

2.2 Container Orchestration

Deploying an application as a collection of microservices implies that a mul-
titude of containers needs to be deployed and managed. Container orches-
trators, like the most prominent one Kubernetes, take care of this task.
Google describes it as follows: ”Google Cloud Platform provides a homoge-
nous set of raw resources via virtual machines (VMs) to Kubernetes, and
in turn, Kubernetes schedules containers to use those resources. This de-
coupling simplifies application development since users only ask for abstract
resources like cores and memory, and it also simplifies data center oper-
ations.” [8] Google continues to explain that Kubernetes also takes care
of (inter-container) networking and persistent storage. For this thesis, the
most relevant feature of Kubernetes is automatic scaling. The important
terminology and the different concepts of autoscaling will be described in

the following paragraphs.

2.3 Kubernetes Concepts

The following sections in this chapter are largely based on and frequently
cite the official Kubernetes documentation [5].

2.3.1 Pod

Pods are the smallest deployable units of computing that you can create and
manage in Kubernetes. A pod is a group of one or more containers, with
shared storage and network resources, and a specification for how to run
the containers. A pod’s contents are always co-located and co-scheduled,
and run in a shared context. A pod models an application-specific ”logical
host”: it contains one or more application containers which are relatively
tightly coupled. In non-cloud contexts, applications executed on the same
physical or virtual machine are analogous to cloud applications executed on
the same logical host. While pods provide more functionality in theory they
are mostly used as a wrapper around a single container.

2.3.2 Replica Set

A replica set’s purpose is to maintain a stable set of replica pods running at
any given time. As such, it is often used to guarantee the availability of a
specified number of identical pods. To do so, a replica set has a replication
count and a template for the pod. Pods can be created based on the template
or removed to match the replication count. Each pod can only be part of one
replica set. Pods running on a node that fails get the state ” Unknown” and
are not counted as running replications. As a result, the replica set creates
new pods on healthy nodes to reach the desired count of replications.

2.3.3 Pod Disruption Budget

A pod disruption budget specifies the desired minimum number of running
instances of a pod in the ready state. This feature is useful for highly
available applications as the pure amount of pods running the service is
not enough to ensure availability. Pods in the creation or startup stage are
counted by a replica set, but cannot provide their service yet. Pod disruption
budgets ensure that the number of ready replications does not fall below the
specified threshold by voluntary disruptions. A voluntary disruption is every
operation on the cluster that is performed on purpose and causes a pod to be
rescheduled. Host node failure obviously is not a voluntary disruption. Pod
disruption budgets can be defined in terms of relative and absolute values
for the minimum of available or the maximum of unavailable pods.

2.4 Resources and labels

The following sections explain the notion and units of resources as well as
the concept of node labels.

2.4.1 Requests and limits

For each container requests, as well as limits can be specified for resource
types. The most common resource types are CPU and RAM. For scheduling
only the resource requests and limits of pods are relevant. Those are spec-
ified as the sum of requests and limits of all containers in the pod for each
individual resource type. (Remember that pods are the smallest deployable
unit of Kubernetes.) A request ensures that the particular resource is avail-
able for use by the pod. Hence the scheduler will not schedule another pod
on a node the resources of which are already requested by running pods
even though the current resource utilization might be low. The term ”re-
quest” is misleading in the way that the request is nothing that is granted
or rejected, but more like a constraint for scheduling. If a request is set,
the resources are always reserved if they are available and if the resources
are not available the pod cannot be scheduled. A limit makes sure that the
pod does not use more resources than the specified amount. If a container
exceeds its memory limit, it might be terminated. If it is restartable, it
will be restarted, as with any other type of runtime failure. If a container
exceeds its memory request, its pod will likely be evicted whenever the node
runs out of memory. A container might or might not be allowed to exceed
its CPU limit for extended periods of time. However, it will not be killed for
excessive CPU usage. Setting resource requests and limits is a best practice
to ensure that each pod has sufficient resources available, but also does not
use more resources than it should. Misconfiguration or bugs might lead to
excessive resource usage by a single pod otherwise [6]. This thesis assumes
that all pods have resource requests specified for CPU and RAM.

2.4.2 Units

Limits and requests for CPU resources are measured in cpu units. One
cpu, in Kubernetes, is equivalent to 1 vCPU/Core for cloud providers and 1
hyperthread on bare-metal Intel processors. Fractional requests like 0.5 are
allowed, but the unit "millicpu” (m) is preferred as requests smaller than
1m are not allowed. A CPU request of 0.2 equals a request of 200m. Limits
and requests for memory are measured in bytes. You can express memory
as a plain integer or as a fixed-point number using one of these suffixes: E,
P, T, G, M, K. You can also use the power-of-two equivalents: Ei, Pi, Ti,
Gi, Mi, Ki.

2.4.3 Node Labels

In Kubernetes, every object can be labeled. In the context of this thesis
only node labels are relevant. A label is defined in terms of a key/value pair
and can be used to express relevant differences in hardware for example. A
cluster containing different types of nodes might have labels to express the
differences in accelerators or drive types. Node type A might have especially
fast SSDs, while node type B has a focus on the size of RAM. The according
labels might look like this:

Node type A: { disk-type: nvme, memory-size: medium }

Node type B: { disk-type: sata-ssd, memory-size: large }

To ensure that pods housing workloads that benefit from special hardware
run on the appropriate nodes there are required and preferred node (anti-
)affinities as well as node selectors. A node selector requires the scheduler
to place the pod on a node that has a certain label. Required node (anti-
)affinity is essentially the same thing, while preferred node (anti-)affinity
expresses a preference only. It does not prevent the pod to be scheduled on
a node having or not having a certain label. Preferred node (anti-)affinities
can also have a weight to balance multiple of the kind. A pod running an
in-memory database might have a required node affinity for { memory-size:
large } to not block all RAM on a node of a different kind. On the other
hand, a pod running an application that needs a fast scratch disk might
have a preferred node affinity for { disk-type: nvme } as the application can
also run with slower disks without harming the cluster. The faster disks are
preferred however to allow the application to run faster.

2.5 Scheduler

A scheduler watches for newly created pods that have no node assigned. For
every pod that the scheduler discovers, the scheduler becomes responsible
for finding the best node for that pod to run on. The default kube-scheduler
selects a suitable node in two steps. The first step, the filtering step finds
the set of nodes where it’s feasible to schedule the pod. In the second step,
the scoring step, the scheduler ranks the remaining nodes to choose the most
suitable pod placement.

2.6 Autoscaling

Autoscaling is the automatic process of increasing or decreasing the compu-
tational capacity of a cluster or an application deployment.

2.6.1 Horizontal Pod Autoscaler

The horizontal pod auto-scaler adjusts the pod replication count of a replica
set based on observed resource utilization. To allow scaling based on the
desired resource metric a desired per pod utilization value needs to be set.
The utilization value can be absolute or relative. The desired replication
count is then computed using the following formula.

desiredReplicas = [currentReplicas(currentMetricV alue/desiredM etricV alue)]

The current metric value is the average of all running pods. Only pods in
the ready state are used for the computation.

2.6.2 Cluster Autoscaler (CA)

The CA’s task is to adjust the size of the cluster in order to meet the cur-
rent resource requirements. The assumption is that the cluster runs on a
set of node groups. Within a node group, all nodes have identical hardware
specifications.

In case a new pod cannot be scheduled because it for example requests more
CPU or RAM than is available on any of the current cluster nodes, the scale-
up routine is triggered. The routine checks if adding a node to any of the
node groups allows the previously unschedulable pod to be scheduled. If
one node group suits the needs a node is added to that group. If multiple
node groups meet the requirements one is selected by instance price or more
sophisticated criteria.

In case a current cluster node’s CPU and RAM is utilized below a certain
threshold the scale-down routine is triggered. The CA scans the cluster for
underutilized nodes every 10 seconds (this interval can be changed). A node
is considered underutilized if the sum of CPU and RAM requests of all pods
running on the node is less than a certain percentage of the node’s available
resources. The default utilization threshold is 50%, but it can be adjusted.
For every underutilized node, the CA checks whether all pods running on
the node can be rescheduled on other nodes. The check uses the first fit
decreasing bin-packing approximation algorithm to check whether the pods
could be scheduled on other nodes. Pods, that do not need to be resched-
uled in case the node is removed, are excluded from the check. The CA
also checks whether the node has a scale-down disabled annotation which
prevents the node from being removed. If the node’s utilization stays below
the threshold for 10 minutes (this time can be configured) and all its pods
can be rescheduled the node is removed from the cluster. The procedure de-
scribed is the default, but there are quite some cases that stop the removal
of a node. The most relevant include pods that are part of the control plane
of Kubernetes and do not have a pod disruption budget set or generally
pods that have a pod disruption budget that currently does not allow the

pod to be terminated. There might also be other factors like pods requiring
node labels that currently cannot be satisfied by any other node.

More information on Kubernetes can be found in the official documenta-
tion [5].

Chapter 3

Shortcomings of the default
scale-down procedure

The following sections describe the shortcomings of the default CA’s scale-
down procedure and their implications for resource utilization in Kubernetes

clusters.

Due to the fact that only nodes which are uti-
lized below a specified threshold are considered for
removal, the default scale-down procedure poten-
tially misses many opportunities for scaling down
the cluster. This fact can be illustrated using Fig-
ure 3.1. In the example, each node has 4 CPU cores
and 8 gigabytes of RAM. Node 4 has a ”green” label
and pod F has a required node label affinity for the
7green” label. This fact is indicated by the green
color. The default scale-down procedure only con-
siders node 4 to be removed as all other nodes have
a resource utilized more than 50%. When trying to
schedule pod F on a different node the procedure
ends as no other node has the ”green” label. If the
utilization threshold is increased to 80%, then node
1 and node 2 are considered for removal. Node 1
can in fact be removed as pod A can be resched-
uled on node 4. The same holds for node 2 as pod
B can be rescheduled on node 3 and pod C can
be rescheduled on node 4. There is no metric that
determines which of the nodes should be removed

Cluster State 1

cpu: Pod A
= | 3000m /4000m
§ CPU: 3000m
= RAM:
AGI8G RAM: 4G
CPU: Pod B Pod C
o~ | 2200m /4000m
g CPU: 2000m CPU:200m
- RAM:
2G/8G RAM: 1G RAM: 1G
CPU: Pod D Pod E
© | 2200m /4000m
3 CPU: 1500m CPU: 500m
2 RAM:
6.5G/8G RAM: 4G RAM: 25G
CPU: Pod F
< | 500m /4000m
§ CPU: 500m
= RAM:
2G/8G RAM:. 2G
Figure 3.1: Cluster
State 1

first, but assuming that the pods are rescheduled according to the default
first fit decreasing bin packing algorithm, the resulting cluster state would
be like pictured in 3.2. When optimizing for resource utilization cluster state
2 seems optimal as the cluster size is reduced as much as possible. From

10

Cluster State 2
CPU: Pod D Pod E Pod B
@ | 4000m /4000m
3 CPU: 1500m CPU: 500m CPU: 2000m
2 RAM:
7.5G/8G RAM: 4G RAM: 25G RAM: 1G
CPU: Pod F Pod A Pod C
< | 3700m /4000m
§ CPU: 500m CPU: 3000m CPU: 200m
= RAM:
7GI8G RAM: 2G RAM: 4G RAM 1G

Figure 3.2: Cluster State 2

an operational perspective, the cluster state might not be desirable as it
leaves no room for scaling any of the pods up horizontally except for pod
C. In the case that any other pod would need to be replicated to deal with
a peak load, a new node would have to be added to the cluster. Adding
a node to the cluster can take multiple minutes, so the advantage of quick
horizontal scaling would be lost. Hence picking a low utilization threshold
potentially misses out on opportunities for scaling down, while picking a
higher utilization threshold might remove too many nodes.

11

Chapter 4

An alternative down-scaling
procedure

The following sections present a conceptually different down-scaling proce-
dure that allows the CA to detect more opportunities for scaling the cluster
down while keeping enough free resources to allow for quick horizontal de-
ployment scaling.

4.1 The concept

The new down-scaler mainly relies on a total cluster utilization threshold.
This threshold is defined in terms of both a CPU utilization and a RAM
utilization percentage. The proposed down-scaler aims to remove the most
expensive node possible from the cluster while guaranteeing that no resource
is utilized above the set threshold. To give even stronger guarantees the
notion of usable free resources is introduced to ensure that any resource
unit considered free by the utilization percentage is actually available to
be used by a pod. Examples and detailed explanations are given in the
following sections.

4.2 Utility functions

This section describes some simple utility functions needed for the down-
scaler.

4.2.1 Cluster capacity

The function capacity is used to obtain the resource capacity of the overall
cluster. This capacity is just the sum of the individual capacities of all nodes
in the cluster.

12

1: function capAcITY(Cluster)
Require: Cluster = {Node}
Ensure: Returned tuple has the sum of CPU and RAM capacity of all
nodes in the cluster
copu <0
cram <0
for all Node(Id,Capacity(cpu,ram), Pods) € Cluster do
CCPU ¢ CcpU + cpu
CRAM € CRAM + Tam
end for
return (ccpy, CrAM)
end function

4.2.2 Node and cluster requests

The function requests is used to obtain the sum of resources requested by
pods running on a particular node or on the whole cluster. The variant
which takes a cluster as the argument gets the sum of requests for each
node in the cluster and sums those to obtain the value for the whole cluster.

13

1: function REQUESTS(Node)
Require: Node = (Id, Capacity, Pods)
Ensure: Returned tuple has the sum of CPU and RAM requests of all pods
running on the node
rcpy < 0
TrRAM < 0
for all Pod(Id, Requests(cpu,ram),Conditions) € Pods do
TCPU < TcpU + Cpu
TRAM $ TRAM +ram
end for
return (rcpy, "RAM)
end function

10: function REQUESTS(Cluster)

Require: Cluster = {Node}

Ensure: Returned tuple has the sum of CPU and RAM requests of all pods
running on the cluster.

11: ropy < 0

12: rpam <— 0

13: for all Node € Cluster do

14: (cpu, ram) < requests(Node)
15: rCcpyU < TCpPU + Cpu

16: TRAM < TRAM + ram

17: end for

18: return (rcpy, TRAM)

19: end function

4.2.3 Daemon set requests

The function daemon_set_requests returns the sum of requests made by
pods running on the passed node, which are part of a particular type of
deployment. This type is the daemon set. It defines a pod and a type of
nodes to schedule one instance of the pod on each node that has the specified
type. Hence such pods are bound to the node they run on and they do not
need to be rescheduled in case the node is removed from the cluster.

14

1: function DAEMON_SET_REQUESTS(Node)
Require: Node = (Id, Capacity, Pods)
Ensure: Returned tuple has the sum of CPU and RAM requests of all pods
which are part of a daemon set running on the node.
rcpy < 0
TrRAM < 0
for all Pod(Id, Requests(cpu,ram),Conditions) € Pods do
if part_of_daemon_set(Pod) then
TCpPU < TCPU + CpU
TRAM <= TRAM +ram
end if
end for
10: return (rcpy, "RAM)
11: end function

4.3 Usable resources and usable capacity

The notion of usable units of resources is introduced to have a metric that
represents the possibility of scheduling more pods on the cluster better than
the simple sum of free resources in the cluster. The example shown in
figure 4.1 demonstrates that well. The sum of free resources would be CPU:
2600m and RAM: 6.5G. This sum gives the impression that for example
another instance of pod B could be scheduled to run on the cluster without
a problem. Looking at the actual nodes it becomes clear quickly that this is
not the case. Not even a single pod can be added to node 2, as there is no
RAM available to any additional pod. Node 1 has some CPU units available,
but no typical pod will be able to use 6.5G of RAM while only having 200m
of CPU available. To handle the two examples of free, but unusable resources
two kinds of usability thresholds are introduced. ”Usability thresholds” is
abbreviated with UT in the pseudo-code due to space constraints.

The first one is the minimal amount of CPU and RAM that needs to

Usable resources example
CPU: Pod A Pod B
| 3800m/4000m
2 CPU: 1800m CPU: 2000m
= RAM:
15G/8G RAM: 0.5G RAM: 1G
CPU: PodC Pod D
z 1600m / 4000m
3 CPU: 1400m CPU: 200m
= RAM:
8G/BG RAM: 4G RAM: 4G

Figure 4.1: Usable Resources Example

15

be free on a node to allow any pod to be scheduled on the node. If there
typically is no pod that uses less than 0.1G of RAM for example, then a
good threshold could be 0.09G for RAM, as any node that has less RAM
than this threshold defines cannot run any additional pods. If a node has
less CPU or less RAM than defined, all of its free resources are considered
unusable. The resources that are already in use are considered usable.

The second type of usability threshold is defined in terms of resource
to resource ratios. In the example, pod A has the maximal CPU to RAM
request ratio. It requests 3.6 times more CPU than RAM. Hence 3.6 would
be a good maximal CPU to RAM ratio in this example. The pod with the
maximal RAM to CPU request ratio is pod D with a ratio of 20.

To conclude suitable usability thresholds for the example given in figure
4.1 could be:

e mincpy = 100m
° minRAM =0.9G
e maxrcpu2rAM = 3.6

e maxrram2opu = 20

To get the free usable RAM for node 1 the minimum of freegay and
freecpy * marganocpy is taken. In this case, the RAM to CPU ratio
would lower the usable free RAM to 4G even though there are 6.5G free on
the node. The function usable_capacity, which takes a node as a parameter,
performs the calculations described above for individual nodes based on
provided usability thresholds. The function, which takes a cluster as an
argument, gets and sums the usable capacity of all nodes in the cluster.

16

1: function USABLE_CAPACITY (Node, UsabilityT hresholds)
Require: UsabilityThresholds = (mincpy, Mingan, MaTopPU2RAM , MATRAM2CPU)
Ensure: Returned tuple has the sum of usable CPU and RAM units of the
node.
(repu, TrRAM < requests(Node)
(freecpu, freeran) < capacity(Node) — requests(Node)
if freecpy < mincpy or freepan < mingapy then
return (0,0)
end if
usablecpy < min(freecpy, freeran * maxcpuaranm) + ropu)
usablepaps < min(freeran, freecpu * marganecru) + TRAM)
9: return (usablecpy,usablegan
10: end function

11: function USABLE_CAPACITY(Cluster, UT)
Require: Cluster = {Node}
Ensure: Returned tuple has the sum of usable CPU and RAM units of the

cluster
12: (’LLCPU, uRAM) — (0, 0)
13: for all Node € Cluster do
14: (ucpu,uram) < (ucpu,uranm) + usable_capacity(Node, UT)
15: end for
16: return (ucpy, URAM)

17: end function

4.4 Candidate check

To determine which nodes are possibly suitable for removal from the cluster,
a simple check is performed for each node. This check determines whether
removing the node’s resource capacity from the cluster, while preserving the
requests of the pods running on the node, leads to a cluster state in which
any of the utilization thresholds is violated. The requests made by pods
that run on the node and are part of a daemon set are subtracted from the
current sum of requests in the cluster. If the check fails for a particular
node it is guaranteed that the node cannot be removed from the cluster. On
the other hand that does not imply that the node can be removed from the
cluster. The function candidate_check performs this check for a given node.

17

1: function CANDIDATE_CHECK(Cluster, Node, Thresholds)
Require: Thresholds = (tcpu,tram)
Ensure: Returns false if removing the node from the cluster is guaranteed
to violate the utilization thresholds
2 (repu,TrRAM) < requests(Cluster) — daemon_set_requests(Node)
3 (copu, cram) < capacity(Cluster) — capacity(N ode)
4: return ropy/copy < topu and TRAM/CRAM < trAM
5: end function

All nodes that pass this first check are added to the candidate list to-
gether with the current time. All nodes that do not pass the check are
removed from the candidate list. This task is performed by the function
update_candidates.

1: function UPDATE_CANDIDATES(Cluster, Candidates, Thresholds)
Require: V(node,time) € Candidates,node € Cluster
Ensure: Candidates contains only nodes which pass the candidate check

2 for all Node € Cluster do

3 if candidate_check(Cluster, Node, Thresholds) then

4 if (Node,*) ¢ Candidates then

5: Candidates < Candidates + (Node, current_time)
6: end if

7 else

8 Candidates <— Candidates — (Node,)

9 end if

10: end for

11: end function

4.5 Evaluating candidates

In this step, not all candidates that are on the candidate list are evaluated.
To prevent momentary fluctuations of resource usage from triggering a scale-
down of the cluster, a delay value is used. Only if a candidate is on the list
for a longer time than the delay specifies, it is processed further. Now for
all applicable candidates, an attempt is made to reschedule all pods, that
are running on the node that is evaluated, on other nodes of the cluster.
Pods that are part of a daemon set are not rescheduled. The resulting
cluster states that are invalid, which means they contain pods that could
not be rescheduled, are not processed any further. For all the valid resulting
states the utilization ratio of usable resources is computed. This value is
defined by dividing the sum of all requests in the cluster state by its usable
capacity. Finally, all nodes that can be removed from the cluster without

18

producing a cluster state that has a higher usable resource utilization ratio
than specified by the thresholds are considered final candidates. At this
point, it is guaranteed that any one of the final candidate nodes can be
removed from the cluster.

1: function PROCESS_CANDIDATES(Cluster, Candidates, Thresholds, Delay,UT)
Require: Cluster = {Node}, Thresholds = (tcpu,tranm)
Ensure: Any one of the nodes in the returned list of nodes can be removed
from the cluster without violating any thresholds

2: ResultStates < {}

3: for all (Node, time) € Candidates do

4: if current_time — time > Delay then

5: ResultStates — ResultStates +
(Node, bin_pack(Cluster, Node))

6: end if

7 end for

8: final_candid < {}

9: for all (Node, ClusterState) € ResultStates do

10: if valid(ClusterState) then

11: (copu, cram) < usable_capacity(ClusterState, UT)

12: (repu,TrAM) < requests(ClusterState)

13: if ropy/copu < topu and rranv/cram < tray then

14: final_candid < final_candid + Node

15: end if

16: end if

17: end for

18: return final_candid

19: end function

4.6 The complete procedure

The complete procedure first updates the candidate list (section 4.4) to
then process the candidates that continuously are candidates longer than
the delay specifies (section 4.5). If there are final candidate nodes, the
most expensive is chosen to be removed from the cluster. The notion of
cost is subject to the concrete implementation of the procedure. It could
for example express the monetary cost or the environmental (CO?) cost of
running the node. After the removal of the chosen node is completed, the
procedure is repeated.

19

1: function DOWN_SCALING_ALGORITHM(Cluster, Thresholds, Delay, UT)
Require:
Ensure: Whenever nodes can be removed from the cluster without violating
the thresholds, the most expensive node possible is removed.
Candidates < {}
while True do
update_candidates(Cluster, Candidates, Thresholds)
FinalCandidates < process_candidates(Cluster, Candidates, Thresholds, Delay, UT)
if FinalCandidates # {} then
NodeToBeRemoved < most_expensive(FinalCandidates)
remove_node(NodeToBeRemoved)
end if
10: end while
11: end function

4.7 Functions to be implemented

4.7.1 Bin-packing

The bin-packing algorithm can be implemented in different ways. The multi
constraint bin-packing problem is a subject treated in scientific literature.
It is NP-hard, but there are heuristics to find a good, but not the optimal
solution quicker [1]. For this special application, there are not only the
CPU and RAM dimensions but also additional constraints like pod disrup-
tion budgets and node labels which need to be respected. The bin_pack
function is assumed to be present and to return the cluster state resulting
from removing the given node from the given cluster. All pods that need
to be rescheduled when the node is removed are placed on the remaining
nodes. If pods cannot be rescheduled that is noted and the resulting cluster
state is considered invalid. The algorithm can be implemented similar to the
existing bin-packing implementation of the default cluster auto-scaler [2].

4.7.2 Removing Node from Cluster

The remove function makes the appropriate Kubernetes API calls do drain
the node, which means removing all pods from the node. After that, the
node is removed from the cluster by an additional API call. The same
functionality can be found in the default cluster auto-scaler implementation.

4.8 The order of checks

The order of checks is chosen to minimize computational cost while giving
as many guarantees about cluster states as possible. This section refers

20

to the pseudo-code of the down_scaling_algorithm. The first check that is
performed by the function call in line 4 has linear complexity. It serves as
a filter to discover nodes that cannot be removed from the cluster because
their removal leaves the cluster with too few resources no matter what bin-
packing result is obtained. For each node found here with a linear check
the following steps do not need to be conducted. Bin-packing is performed
next within the function called in line 5. It is the computationally most
expensive step. The complexity of the algorithm depends on the actual
implementation. The high cost is accepted because it is necessary to find
possible scale-down opportunities. Lastly, still within the function called in
line 5, a linear check is performed to give additional guarantees about the
resulting cluster states.

21

Chapter 5

Discussion

5.1 Differences to the default implementation

5.1.1 Thresholds

The first key difference between the default down-scaler and the proposed
procedure is the resource utilization thresholds. The default implementation
works with a threshold that determines the single node resource utilization
ratio. If a node’s resource utilization is below the threshold, it is consid-
ered for removal. The proposed procedure works with a threshold that
determines the maximal desired cluster resource utilization ratio. While the
default implementation uses the threshold to guard the entry of the proce-
dure for individual nodes, the proposed procedure uses the threshold to give
guarantees about the cluster state after a node is removed.

5.1.2 General approach

The default down-scaler performs bin-packing attempts similar to the pro-
posed down-scaler if nodes are utilized below the threshold for the amount
of time specified by the delay. If this attempt is successful for a particular
node, the node is instantly treated as a final removal candidate. If there are
multiple, only one is chosen, but one final candidate is instantly removed
from the cluster without performing additional checks. The proposed down-
scaler works towards not exceeding the cluster utilization threshold while
decreasing the cluster size as much as possible. All nodes are considered
for removal, but if an easy check can determine, that their removal will vi-
olate the threshold, no bin-packing attempt is made. For all other nodes,
the attempt is made and the resulting cluster state is evaluated to find out
whether it violates the threshold. Only nodes that can be removed without
violating any threshold are considered final removal candidates.

22

5.2 Advantages of the proposed down-scaler

The main advantage of the proposed down-scaler is the fact that the thresh-
old value has a direct influence on the cluster state after removing a node.
Removing underutilized nodes, like the default implementation, seems rea-
sonable from a naive view as they do not seem to be needed. However, there
are no guarantees that there are enough free resources in the cluster to scale
a deployment horizontally to cope with a peak load after a node is removed.
As quick and automatic deployment scaling is one of the key advantages of
Kubernetes, setting an aggressive down-scaling threshold is dangerous in the
default down-scaler. There is guesswork involved to determine which down-
scaling threshold leads to which resulting cluster states as shown in chapter
3. To ensure production without unpredictable performance fluctuations,
very conservative down-scaling thresholds need to be chosen. This results
in many missed down-scaling opportunities. The proposed down-scaler al-
lows the definition of maximal resource utilization that is allowed to result
from the removal of a node. That inherently also defines a minimal ratio of
unused resources. The desired ratio of free resources needed can be chosen
directly and is not required to include a big safety margin. All possible
opportunities for scaling down the cluster can be found and executed.

The proposed down-scaler is also conceptually closer to the general ap-
proach of abstracting away from the single node used by Kubernetes. Pod
deployments, networks, and storage for example are all defined on a cluster
and not on a single node level.

5.3 Advantages of the default down-scaler

The default down-scaler takes a conceptually more simple approach to de-
termine which node can be removed from the cluster. The simplicity has the
advantage that the basic concept can be understood more easily and thereby
lowers the barrier of meaningful use. Another positive aspect is that using
the default utilization threshold of 50%, the down-scaler does not remove
highly utilized nodes and thereby triggers fewer rescheduling events.

5.4 Recreating the proposed behavior

5.4.1 Overprovisioning using the default CA

The official documentation of Kubernetes [3] tackles the shortcomings of the
Cluster Autoscaler 3 using a mechanism called overprovisioning. Pause pods
with a low priority are used as dummy pods to make requests for resources.
If a real workload needs to be scheduled, but not enough resources are
available, a low priority dummy pod is evicted and the workload takes their
resources. Now the pause pod needs to be rescheduled, but not enough

23

resources are available. A cluster scale-up is triggered. In case of a cluster
scale-down, the dummy pods guarantee that some free resources remain in
the cluster as all the dummy pods, running on a node to be removed, need
to be rescheduled.

The number of dummy pods and their resource requests can be defined
using absolute values. It is also possible to manage these values using the so-
called Horizontal Cluster Proportional Autoscaler pod [4], which allows the
values to be adjusted relative to the cluster size and the number of CPU cores
available in the cluster. The use of an additional pod for automatic scaling
and the dummy pod deployment itself make overprovisioning a complex
task.

5.4.2 Recreating proposed behavior

The behavior of the proposed down-scaling procedure can be recreated us-
ing the default down-scaling implementation and dummy pods. The down-
scaling threshold can be set to 100% so every node is considered for removal
in each iteration of the down-scaler. Dummy pods are dynamically scaled
to request a certain percentage of the available resources. Removal of a par-
ticular node can then only happen if all workload pods and all dummy pods
running on it can be rescheduled on other nodes. The dummy pods need to
be rescheduled in their current configuration even though their amount and
value of requests might change after the cluster is scaled down. In a cluster
that only contains one node type, this problem can be resolved by adjusting
the parameters of the dummy pod deployment to reflect the required free
resources for the cluster state after a single node is removed. If the cluster
contains nodes of different types the mentioned solution does not work as
the cluster resource capacity after the removal of a node depends on the
type of the node that is removed. This makes clear, that this approach is
not a replacement for the alternative down-scaling procedure proposed in
this thesis.

5.4.3 Use in practice

Mentions of the overprovisioning method in publications [10] [7] indicate
that the method is used in practice to tackle the shortcoming of the default
down-scaler. In real-world applications, the method also has distinct advan-
tages including the possibility to make requests for custom resources like IP
addresses [10].

24

Chapter 6

Conclusions and Future
Work

This thesis presents an alternative down-scaling procedure that can find
more opportunities for scaling Kubernetes clusters down than the default
implementation. While the default implementation is not able to give guar-
antees about the cluster state after issuing a scale-down operation, the pro-
posed procedure ensures that user-defined resource utilization ratios are not
exceeded. It even ensures that only resource units, which can be used to
run pods, are considered as free resources for computing the utilization ra-
tio. The workaround to overcome the shortcomings of the default imple-
mentation, which is presented in the official Kubernetes documentation,
implies that there is awareness for the problems in the community. While
the presented workaround has real-world advantages it does not resolve the
shortcomings of the default implementation in all cluster scenarios. The
simplicity of specifying thresholds and a delay value used by the proposed
down-scaler makes the procedure accessible. The workaround, on the other
hand, needs an additional complex deployment which results in a higher
barrier of entry.

The following steps describe possible future work that builds on the ideas
presented in this thesis. The notion of usable resources can be applied to
an up-scaling procedure as well to form a complete cluster auto-scaler. A
working implementation needs to be created for real-world testing. The the-
oretical advantages of the presented down-scaler need to be verified. This
can be done by comparing real-world test results to the default implementa-
tion and related work like the previously mentioned QoS-based auto-scaler
[13]. While CPU and RAM are the basic resource requests of concern in a
Kubernetes cluster, the proposed cluster auto-scaler can be extended to also
be aware of other types of resources like IP addresses or storage bandwidth.
Different approaches like machine learning, which is already applied to hor-
izontal pod auto-scaling [12], can be applied to cluster scaling as well. The

25

resulting implementations can be tested and compared to find the optimal
solution for the problem of cluster auto-scaling in Kubernetes.

26

Bibliography

1]

Roberto Aringhieri, Davide Duma, Andrea Grosso, and Pierre Hosteins.
Simple but effective heuristics for the 2-constraint bin packing problem.
Journal of Heuristics, 24:1-13, 06 2018.

Project contributors. binpacking_estimator.go. https:
//github.com/kubernetes/autoscaler/blob/master/cluster-
autoscaler/estimator/binpacking_estimator.go. Accessed:
2022-03-27.

Project contributors. Cluster autoscaler - frequently asked ques-
tions. https://github.com/kubernetes/autoscaler/blob/master/
cluster-autoscaler/FAQ.md. Accessed: 2022-03-21.

Project contributors. Horizontal cluster-proportional-autoscaler
container. https://github.com/kubernetes-sigs/cluster—
proportional-autoscaler/blob/master/README.md. Accessed:
2022-03-21.

Project contributors. Kubernetes concepts. https://kubernetes.io/
docs/concepts. Accessed: 2022-03-21.

Sandeep Dinesh. Kubernetes best practices: Resource requests and
limits. https://cloud.google.com/blog/products/containers-
kubernetes/kubernetes-best-practices-resource-requests-
and-limits. Published: 2018-05-11, Accessed: 2022-03-21.

Hasham Haider. Kubernetes autoscaling in production:
Best practices for cluster autoscaler, hpa and vpa. https:
//www.replex.io/blog/kubernetes-in-production-best-
practices-for-cluster-autoscaler-hpa-and-vpa. Published:
2019-12-05, Accessed: 2022-03-21.

Craig Mcluckie. Containers, vms, kubernetes and vmware.
https://cloudplatform.googleblog.com/2014/08/containers-
vms-kubernetes-and-vmware.html. Published: 2014-08-25, Accessed:
2022-03-21.

27

[9]
[10]

[11]

[12]

[13]

Sam Newman. Building microservices. OReilly Media, 2015.

Michael Seiwald. Cluster overprovisioning in kubernetes. https:
//medium.com/scout24-engineering/cluster-overprovisiong-
in-kubernetes-79433cb3edOe. Published: 2019-07-30, Accessed:
2022-03-21.

SlashData. The state of cloud native development. https:
//www.cncf.io/wp-content/uploads/2021/12/Q1-2021-State-
of-Cloud-Native-development-FINAL.pdf. Published: 2021-12,
Accessed: 2022-03-21.

Laszl6 Toka, Gergely Dobreff, Baldzs Fodor, and Baldzs Sonkoly. Ma-
chine learning-based scaling management for kubernetes edge clusters.
IEEE Transactions on Network and Service Management, 18(1):958—
972, 2021.

Qiang Wu, Jiadi Yu, Li Lu, Shiyou Qian, and Guangtao Xue. Dynam-
ically adjusting scale of a kubernetes cluster under qos guarantee. In
2019 IEEE 25th International Conference on Parallel and Distributed
Systems (ICPADS), pages 193-200, 2019.

28

