BACHELOR’S THESIS COMPUTING SCIENCE

RADBOUD UNIVERSITY NIJMEGEN

The covariance matrix adaptation evolution strategy (CMA-ES) as a
method for fitting biological agent-based models

Author: Daily supervisor:
Julius Benjamins dr. Inge Wortel
51022533

First assessor:
dr. Johannes Textor

Second assessor:
Prof. (dr. ir.) Arjen de Vries

August 3, 2022

Abstract

Biological agent-based models (BABMSs) are a great tool in research to en-
code, test, and compare hypotheses on the biological data-generating pro-
cess. If the output of a model matches the real world data, this suggests
that the domain knowledge encoded in the model is sufficient to explain the
observed data.

To see if a model can reproduce a certain target dataset, the BABMs have
to be tuned, or fitted, in a specific way. This is essentially an optimization
problem, but one that comes with challenges like stochasticity and scaling
issues.

In this thesis, the covariance matrix adaptation evolution strategy (CMA-
ES) is proposed as a candidate for fitting BABMs. To avoid the great time
consumption that comes with complex models, the challenges were sim-
ulated using a simple model called the Beauchemin model that describes
T-cell movement in the lymph node. CMA-ES was able to fit a single pa-
rameter of this model with only small variance between the solutions. This
variance increased a small amount for fitting two parameters.

The two parameters of this model were fitted most accurately using
Restart-CMA-ES, a strategy for CMA-ES where it gets restarted after ter-
mination, and problem rescaling, where the parameters got rescaled to fit
in a significantly smaller range.

This problem rescaling also proved to counteract the scaling problems
caused by the case where parameters live on vastly different scales. After
logarithmically rescaling the problem, the solutions generated by CMA-ES
were approximately the same for different scales and the base run where no
scaling was applied.

Hence, CMA-ES is an algorithm to be considered for fitting BABMs.

Contents

1 Introduction 3
2 Problem definition 5
2.1 CMA-ES. e 5
2.1.1 CMA-ES inner workings 6

2.1.2 CMA-ES for minimising the diagonal of a rectangle . 8

2.2 The Beauchemin model 11
2.2.1 The parameters of the Beauchemin model 11

2.2.2 Using the difference between mean square displace-
ments as the objective function for fitting the Beau-

chemin model oL 12
3 Research 16
3.1 Stochasticity in the Beauchemin model 16
3.2 Fitting the Beauchemin model 18
3.2.1 CMA-ES correctly fitting a single parameter 18
3.2.2 CMA-ES fitting two parameters shows discrepancies
between the target and actual values 21
3.2.3 CMA-ES unable to fit three parameters for the Beau-
cheminmodel oL, 26
3.3 Restart strategies for CMA-ES 27
3.3.1 Methods for restarting CMA-ES 27

3.3.2 Regular CMA-ES, Restart-CMA-ES and IPOP-CMA-

ES compared for fitting two parameters of the Beau-

cheminmodel 27
3.4 Scaling problemsin ABMs 28
3.4.1 CMA-ES unable to identify linearly scaled parameter

values 29

3.5 Rescaling variables oo 30

4 Methods 33
4.1 Python implementation of CMA-ES 33
4.2 Beauchemin simulations 34

4.3 MSD calculation L
4.4 Choosing parameters to optimise
4.5 Fitting single parameters oL
4.6 Scaling parameters using a wrapper function
4.7 Rescaling the problem

Discussion
5.1 Fitting more than two parameters using CMA-ES.
5.2 Additional scaling issueso
5.3 Choosing CMA-ES parameters
5.3.1 Choosing the initial coordinate
5.3.2 Choosing the initial sigma
5.4 Using the error distribution to evaluate solutions
5.5 Cost penalty of using Restart strategies for CMA-ES
5.6 Choosing when to rescale a problem
5.7 Analytically solving the Beauchemin model

Related Work
6.1 Stochastic gradient descent using the Adam algorithm

Conclusion

Appendix

A.1 Machine specifications
A2 CMA-ESOutput
A.3 Beauchemin parameter settings
Ad cmaes.py . .« . . oo
A5 run-beauchemin.R oL

Chapter 1

Introduction

In the field of bioinformatics, Agent-Based Models (ABMs) are a great tool
to simulate the behaviour of their real-world equivalent. This simulated data
can, for example, be used to encode, test, and compare hypotheses on the
biological data-generating process.

In this thesis we are interested in ABMs that simulate cell behaviour,
from here on called Biological ABMs (BABMs). An example of such a
BABM is the Beauchemin model [1]. The Beauchemin model describes
stochastic lymphocyte migration in tissue [2]. If there is data on actual cell
behaviour, the parameters of your BABM can be tuned to simulate the same
data, and to compose or corroborate hypotheses.

However, tuning the parameters for a model such as the Beauchemin
model to generate the desired output is quite difficult. This tuning is called
fitting, and ideally is not done by hand. Fitting is in fact an optimisation
problem, where there is a certain chunk of target data, a model that takes
parameters to generate new data and an objective function that compares
the target and newly generated data. The goal, minimization of the objective
function, or the difference between the target and generated data.

While there are algorithms that can be used to fit a model to simulate
desired output, these are not all suitable for fitting BABMs for multiple
reasons.

A toy example to help illustrate the problems that come with BABMs
could be the following. We want to minimise the diagonal of a rectangle
with the constraint of having an area as close to, but not exceeding, 100
metres. Here, the input parameters are a for the vertical sides and b for
the horizontal sides. Quickly, it can be seen that the solution would be
a = b= 10cm. Still, if we were interested in fitting this model, the objective
function f(a,b) should be minimised. This function has to constrain the
area to not exceed 100, as well as minimise the diagonal.

The first problem is that a lot of BABMs are stochastic. This means
that the output generated from a simulation can vary run-to-run even though

the input is the same. The toy model being stochastic could be caused by
measuring errors for the sides, resulting in a different area and diagonal each
run. This makes finding the optimal solution more difficult.

Secondly, there are usually several input parameters for these BABMs
that need to be fitted. This adds a layer of difficulty as opposed to fitting
only a single parameter. These parameters can e.g. influence each other.
For the toy example this is clear, while increasing one side of the rectangle,
the area will grow, which has consequences for the other side. Additional
to influencing each other, the parameters can live on different scales. For
the rectangle it can be that the a sides are measured in kilometres, while
the b sides are measured in millimetres. If the starting point of both the
sides would be 0, the optimisation method would first have to figure out the
correct scales for the parameters.

Finally, these models take an extensive amount of time to execute, adding
another inconvenience to the trial-by-trial process. As the model has to
be executed for each evaluation of the objective function, the optimisation
method has to be very efficient to reduce the time spent.

Ultimately, we need an optimization method that is able to deal with
all the mentioned problems. An interesting candidate for this is the Covari-
ance Matrix Adaptation Evolution Strategy, or CMA-ES. It is a method of
minimising an objective function that promises great performance [3]. This
algorithm is compelling for our purposes, as it is defined to be able to deal
with multi-parameter optimization problems. It has not been used to fit
BABMSs such as the Beauchemin model, making it interesting to see how it
will handle their problems.

In this paper, we will examine if the CMA-ES algorithm can be used to
fit data for stochastic BABMs, especially the Beauchemin model, that have
multi-parameter dependence, scaling problems and costly computations.

Chapter 2

Problem definition

To fit a BABM, there are three requirements. First pick a method for
optimisation. Second, the model that is to be fitted. Finally, an objective
function that will yield the difference between the target and simulation
data. This objective function is what will be minimised.

This chapter will describe how these requirements will be met for this
thesis, by giving the method for optimisation, the model to be optimised
and finally the objective function.

2.1 CMA-ES

The covariance matrix adaptation evolution strategy, or CMA-ES, is an
evolution strategy. These are methods of stochastic, or random, search to
minimize a certain objective function. Evolution strategies sample solutions
from a multivariate distribution, which gets updated each generation of the
algorithm. Naturally, the way this distribution is created and structured
has a significant impact on the total performance of the evolution strategy.
Covariance matrix adaptation is an approach of creating such a distribution
using a matrix that changes each iteration. Hence, CMA-ES was designed
to be the state-of-the-art application of evolution strategies to real-world
search problems [4].

A covariance matrix is a matrix that describes the covariance, or joint
coherence, of parameters. The covariance matrix in CMA-ES describes rela-
tion between parameters that are in the distribution of potential solutions,
where these solutions would minimise the objective function. With each
iteration, the goal of the new matrix is having solutions that have a higher
probability of being a good solution. Together with the distribution itself, it
keeps track of the corresponding mean, and a sigma value for each param-
eter. This sigma is the deviation of that mean, resulting in a range where
solutions can be sampled from.

CMA is very effective way of sampling new solutions, as variants of CMA-

ES were shown to outperform over 30 other algorithms for problems that
have difficult functions and large budgets [3]. This performance makes it a
compelling strategy to fit BABMs. In addition, there is no other research
about applying CMA-ES to biological ABMs such as the Beauchemin model,
so it is still unclear if it is able to deal with the stochasticity and multi-
parameter scaling problems, which is researched in this thesis.

2.1.1 CMA-ES inner workings

CMA-ES was proposed as an optimisation algorithm by Nikolaus Hansen et
al. [4]. Usage, documentation and mathematical foundation can all be found
the supplemental paper ”"The cma evolution strategy: A tutorial” [5]. The
information in this section is a brief summary of key points from that paper.

There are many variants of CMA-ES. For this thesis, the most commonly
used version, (f/ iy, A)-CMA-ES was chosen.

Population size and the Mean

In (u/pw, A)-CMA-ES, X is the population size, and denotes the amount
of solutions that will be sampled in each iteration of the algorithm. p is
the number of best solutions from the A sampled ones that will be used to
dictate solutions subsequent iterations. A gets calculated according to the
following equation:

A=4+ [3nn] (2.1)

Here, n is an integer that can be chosen by the user. Increasing the value
of A improves the global search capability at the cost of time consumption
and consequently convergence speed. A good choice for n can be the amount
of parameters that are being fitted. Using A, p gets calculated:

w=[A/2] (2.2)
The X\ solutions get sampled from the multivariate normal distribution:
N (m,*C) (2.3)

Here, C is the covariance matrix that gets updated using covariance matrix
adaptation, as briefly discussed in the previous section. Sigma (o) is the
step-size, or deviation. m is the current mean, solutions are expected to lie
within o of this mean. Each parameter that is fitted has its own mean and
o, which dictates their values.

The p best search points out of the A sampled possibilities will determine
the mean for the next generation (g + 1) of search points. This calculation

is a weighted average of the u selected points:
“w
mlgth) — Zwlxlgj_l (2.4)
i=1

The actual value of a solution is denoted by x;.5, or solution ¢ out of A. These
weights w are larger for solutions that are better, so that these solutions have
a greater impact on calculation of the new mean. These can be calculated
as described in Equation 49 in [5].

Step-size control in CMA-ES

Together with the covariance matrix C', the step-size o controls the overall
scale of the distribution where solutions will be sampled from (Equation
2.3).

If this step-size is too large, the distribution will be too broad, making it
hard to pinpoint exact solutions. If the step-size is too little, the distribution
will be too narrow, making CMA-ES not consider solutions outside of the
distribution, which may result in sub-optimal solutions.

This step-size gets updated in a way to shift the scale towards better
solutions. This update is done based on the previous solutions, which are
kept in an evolution path. This path saves the steps that were made in
previous iterations, with their corresponding length and direction.

There are three cases in which the evolution path may be present (Fig-
ure 2.1). These three cases are compared to an expected length, which is
the result of independently taken, and therefore uncorrelated, steps (Figure
2.1, middle). It means that the same ground cannot be covered by bigger or
smaller steps. If step are correlated, they point in the same direction, and
can be replaced by one large step (Figure 2.1, right). If steps are uncorre-
lated, they cancel each other out, and have to be replaced by smaller steps
to prevent that (Figure 2.1, left).

= | A

Figure 2.1: Three evolution paths (successive hollow-tipped arrows) with six
equally-sized steps (bold-tipped arrow) but drastically different path lengths
(image from [5]).

e The first case is where the length of the evolution path is short (Figure
2.1, left). The single steps cancel each other out, meaning that the
algorithm is close to a potential solution. It has narrowed down a
specific region which has to be explored by small steps. In this case o
has to be decreased.

e The second case is where the length is in the desired situation (Figure
2.1, middle). The steps are uncorrelated. The steps cannot be replaced
by larger or smaller steps. In this case o can stay the same.

e The third case is where the length if long (Figure 2.1, right). The
single steps are all somewhat in the same direction. Rather than using
small steps to cover the ground, one large step would be more efficient.
In this case o has to be increased.

This scheme is used to update o. This natural language can be converted
in to the formula:

Ino@t) = ng® 4 & P -1 (2.5)
ds \ EIIN(0,T)]] '

Here, p((,g) is the evolution path at generation g, making Hpt(,ngl)H is the

expected path for the next generation. This gets compared to E||N(0,I)||,
the Euclidean norm of the AV(0,I), which will result in the expected, desired,
path length. Then there is the learning rate for o, ¢, (< 1), and a damping
parameter d, (=~ 1). Together, they dictate how drastically o gets updated
each iteration.

It can be seen that if the current path, and expected path are the same,
the new sigma will be the same as the old one. Furthermore, if the path
length is smaller, oY) will be smaller. If the path length is longer, o(9+1)
will be larger.

2.1.2 CMA-ES for minimising the diagonal of a rectangle

Now that the theoretical base for CMA-ES has been established in the pre-
vious sections, a simple implementation can be made. The goal of this
implementation will be solving the rectangle toy-problem from the intro-
duction. This toy-problem of course has an analytical solution, a = b = 10,
but still will help illustrate how CMA-ES works, and prepares us to take on
a real problem later on.

First, CMA-ES needs an objective function. In this case it is simply
100, which was the area constraint, minus the current area a - b. This gets
squared to lay emphasis on the difference between the constraint and actual
values. Additionally, we want to take into account the diagonal that was to
be minimised. A larger diagonal should give a higher error, and vice versa.

The diagonal denoted as D can simply be calculated using the Pythagorean
Theorem, D = v/a? + b2. This results in the following formula.

Error = (100 — (a- b)) + D (2.6)

Given an initial coordinate (xg, yo) and initial standard deviation oy,
CMA-ES will find the parameters that minimize this objective function.

After 100 iterations, CMA-ES has solved this minimisation problem,
giving a &~ b ~ 10, with the minimal error being 14.14 = /102 + 102, or the
smallest diagonal possible for an area of 100 (Figure 2.2).

In the beginning of the optimisation process, the range of parameter
values that are being generated have a considerable wider range than later
on in the process. This implies that the ¢ values for both parameters are
still relatively large as compared to the end of the process, and CMA-ES is
still highly shifting the mean each iteration. This fact is confirmed by the
bottom two graphs of describing the course of the o values.

Although CMA-ES performs well for this toy-problem, it certainly was
not a challenge to begin with. In the next section a BABM will be introduced
that will be optimised by CMA-ES. This BABM will be used throughout
this thesis to simulate problems of other, more complicated, BABMs.

a (Best Value: 9.998087268407012) b (Best Value: 9.99839154228756)

N
S

-
G

Parameter value
Parameter value
"
s

4!
o W
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
Error (Best Value: 14.1409)
10000
8000
L
= 6000
[
>
e
2 4000
=
w
2000
0
0 20 40 60 80 100
Iteration
Sigma value of a Sigma value of b
4.0
5
35
3.0 4
25
v CU 3
220 =
b 2
15 2
1.0
1
0.5
0.0 0
0 20 40 60 80 100 0 20 40 60 80 100
lteration lteration

Figure 2.2: CMA-ES correctly fitting the parameters a and b, getting the
most optimal solution for the rectangle toy-problem. The top two graphs
show how the values of a and b change over-time. Here, the green lines
denote the current mean CMA-ES has for the parameters. It shows that the
mean for both parameters settled around the value 10. From that mean,
using the deviation o, new solutions will be generated, as shown by the
pink dots. The green lines in the top-two plots is generated using locally
weighted scatterplot smoothing (LOWESS). Each iteration, A = 6 solutions
are generated, and g = 3 solutions are take in to account to calculate the
new mean. The middle graph shows the value of the objective function
dropping as the iterations go on. The bottom two graphs show the course
of the o value for the parameters. Upon finding the best mean value, it
will lower the sigma as described in the previous section. Seemingly, this
happens around iteration 60. From there, o will get as close to 0 as possible
to get the best solution for this problem.

10

2.2 The Beauchemin model

The BABM that will be studied and fitted in this thesis is the Beauchemin
model. A model that describes T-Cell movement in the lymph node as
proposed by Beauchemin et al. [1].

This model itself is not intrinsically interesting to be fitted. Namely, it
has an analytical solution, meaning that given a certain output, the corre-
sponding input can simply be calculated [2]. Still, this model is great for
sketching how CMA-ES will tackle certain problems that other, more com-
plex, BABMs face. It can be used as a tool to simulate problems without
having to do the costly computations that come with other BABMs.

Thus, while fitting the Beauchemin model is not the greatest challenge
by itself, it can be used as a device to predict how CMA-ES will handle
more complex and costly BABMs.

2.2.1 The parameters of the Beauchemin model

In the Beauchemin model, cells alternate between moving and pausing.
These get dictated by the three parameters of the model.

Firstly, t .. dictates the time a cell receives to perform a straight-line
walk. Secondly, vy, denotes the speed at which the cell performs the ran-
dom walk. Finally, ?pquse defines how long a cell may rest between the
straight-line walks. Within this pause, the cell randomly picks a new di-
rection, from there on repeating this process until a certain time limit gets
reached.

These three parameters will be of main interest in this thesis, as the goal
is to fit simulated tracks (Figure 2.3) that closely resemble target data of
interest. To judge if a simulation output "matches” the target, a properly
defined objective function is necessary.

11

dim2

Figure 2.3: To illustrate what the Beauchemin model generates, a simulation
of 10 cells/tracks was executed. Every coloured line resembles the path
that an individual cell has travelled. These paths were simulated using the
parameters t free = 2.0, Vfree = 18.8 and tpguse = 0.5

2.2.2 Using the difference between mean square displace-
ments as the objective function for fitting the Beau-
chemin model

To optimize and find the target parameters, the optimizer needs an ob-
jective function that can be minimized. For the Beauchemin model, the
difference between mean squared displacements of the simulated and target
data can be used. Namely, the mean squared displacement is a commonly
used method for describing cell trajectories.

The mean squared displacement (MSD) denotes the mean deviation of,
in this case, a cell from a certain reference point at a certain time t. The
parameters discussed in the previous section influence how a cell migrates
over time, and thus influencing the MSD. For each of these tracks that a cell
creates, subtracks can be created of a certain length t. For every subtrack,
the deviation can be calculated. The result is a curve that can be used in
the objective function (Figure 2.4).

12

—— Current

10° 10! 107
dt

Figure 2.4: An MSD curve for the Beauchemin model generated with pa-
rameters t e = 2.0,V free = 18.8 and tpqyuse = 0.5.

These curves of a Beauchemin output can be compared to the target, by
comparing MSD values at several times dt, giving the following equation:

AMSD(t) = MSDtarget(t) - MSDcurrent(t) (27)

This Aprsp(t) gets calculated, and subsequently squared to emphasize
the difference, at multiple times (tg,t1,...,t,). Finally, the mean of these
squared values is calculated:

1
Error = — Aprsp(t)? 2.8
2 D (Burso (1) (23)
A problem that the MSD of the Beauchemin model experiences is that
the MSD values at a low t (e.g. 5) are significantly smaller than at a later ¢
(e.g 6000). This difference in scale results in the later values overshadowing
the nuances of the smaller values. To prevent this from happening, the MSD
values first will be logged before calculating the difference Ay;gp to bring
the values to the same scale. Changing the previous formula to calculate

Apsp(t) (Equation 2.7) to:

Ansp(t) =1log(MSDyarger(t) + 1) —log(MSDeyrrent(t) + 1) (2.9)

Additional to the log, a ’+1’ is there to prevent negative values.

Another challenge that arises while using MSDs, is that MSDs calculated
at later times are based on less data compared to MSDs at earlier times.

This data in our case is the number of subtracks of a track generated by a
cell (Figure 2.5).

13

—— Target MSD
Number of subtracks
103 4

102 4

10! 4

10° 10! 107

track At=1 At=2 At=3

Figure 2.5: The top graph shows the number of subtracks vastly drops for
MSD values calculated at higher At values, hence those later MSDs can
be considered less accurate than MSDs calculated at lower At values. The
bottom figure shows the number of subtracks that can be made from the
‘track’ (left) is lower at a higher At. Higher Ats yield longer subtracks that
consist of shorter subtracks with lower Ats. The lower the At, the more
combinations of subtracks there are. There is only one subtrack that can
be constructed from ’track’ with At = 3, while there are three that can be
made with At = 1.

When there is a relatively high amount of subtracks for a certain At,
the MSD will be calculated with more data, and will thus be more accurate
compared to MSDs calculated with less subtracks. To value the MSDs that
were calculated with more subtracks, weights are introduced.

subtracksiarget(t) + subtrackscuyrrent(t)

w(t) = 5 (2.10)

The weight can simply be the number of subtracks available at a certain
time t. Because two simulations are being compared, the average number of
subtracks available between those simulations at a certain time will be used
(Equation 2.10).

14

109 4

To calculate the final error, the mean of these squared and weighted
Aprsp(t) values is calculated:

Error = %Z(AMSD(t)2 ~w(t))

ln

t=0

(2.11)

This formula is used to calculate the error between two MSD curves and
judge their similarity, with the goal to fit the Beauchemin model (Figure

2.6).

Error: 2.189

— Target
Current

T
10°

T
10!
dt

T
10?

Error: 0.0219

— Target
Current

10°

T
10!
dt

Figure 2.6: log-log plot of two MSDs of Beauchemin simulation. Left, the
"Target’ curve was created using the parameters tfrec = 2.0, Vfree = 18.8
and tpquse = 0.5, and the 'Current’ curve with the parameters ¢y... = 1.0,
Viree = 9.4 and tpquse = 0.5 resulting in a relatively high error. Right, it
shows two MSD curves created with the exact same parameters, ¢ ... = 2.0,
Viree = 18.8 and tpquse = 0.5, consequently having a very low error.

Now, having this objective function, all three requirements as introduced
in this section are satisfied. The Beauchemin model is ready to be optimised
using CMA-ES, with the MSE of the MSD as objective function. In the next

section, this will be put to work.

15

T
10?

Chapter 3

Research

3.1 Stochasticity in the Beauchemin model

A major problem when fitting BABMSs, is that many of these models are
stochastic. Stochasticity entails that even with the same input for a model,
the output can still be different. For the Beauchemin model, this means that
simulations with the same tfcc, Ve and tpquse may still simulate different
tracks (Figure 3.1).

/
50

dim2
dim2

60

Figure 3.1: Two Beauchemin simulations generated with the same parame-
ters, tfree = 2.0, Vppee = 18.8 and tpquse = 0.5.

A model being stochastic makes it difficult to determine the solution to
an optimization problem. Even if CMA-ES stumbles on the precise param-
eters by which the target simulation was generated, there most certainly
remains a discrepancy between the outputs.

16

Mean error between replicates:0.01494
80

70
60
50

40

Density

30
20

10

0.00 0.02 0.04 0.06 0.08 0.10
Error Value

Figure 3.2: A normal distribution of errors of 250 Beauchemin simulation
runs, all with the same initial parameters t free = 2.0, Vfree = 18.8 and tpquse
= 0.5. This shows the discrepancies between runs with the same input data,
and stresses the difficulty when fitting this model.

CMA-ES makes a distribution of where it expects to find good solutions,
with a certain deviation o. With stochastic models, it will result in this
distribution ending with a broader range, in other words having a higher o.
Where it is expected that non-stochastic problems with a well-defined error
function, like the rectangle problem, end with a ¢ that is practically 0. It
would be an anomaly if the optimisation process for the Beauchemin model
would as well.

Besides the noise created by the output of the Beauchemin model, CMA-
ES is noisy by itself. Particularly, CMA-ES stochastically samples solutions
from its distribution. This inherent stochasticity has a part in the final
noisy distribution of error as well, as the algorithm will likely find different
solutions each run.

17

3.2 Fitting the Beauchemin model

As mentioned, the Beauchemin model has three parameters of interest,
tfrees Ufree and tpause (Section 2.2). The goal in this section is to retrieve
those based on a certain dataset.

Instead of using an actual dataset, for which the parameters are then
unknown, we can simulate a new dataset for each optimisation run using
target parameters to establish a ground truth. In that way, the target
parameters can be directly compared to the parameters obtained by a CMA-
ES optimisation run.

In a real-world scenario, this is of course not the case. One would only
have dataset where the parameters have to be retrieved for, and no ground
truth. This luxury gives us the opportunity to test if CMA-ES is functioning
properly, and able to find back these parameters based on the error function
as defined in chapter 2.

We will start by fitting a single parameter, as this should be straightfor-
ward for CMA-ES (wishful thinking).

3.2.1 CMA-ES correctly fitting a single parameter

To test whether CMA-ES is able to fit the Beauchemin model, we start with
the simplest case of fitting a single parameter. The parameter that will be
fitted in this experiment is ..., with a goal value of 2.0.

CMA-ES is ran for 100 iterations to generate the final result.

The algorithm is able to get very close to the target value of 2.0 with
the final solution being 2.05 after 100 iterations (Figure 3.3). As has been
established, the stochasticity makes it difficult to retrieve the exact target
value (Section 3.1).

18

t_free (Best value: 2.0548) Error (Best value: 0.008)
14

12

w
=3 10
[} —_—
3 5 0.8
3] g
o 2 =z
£ @ 0.6
o S
£ 0.4
0.2
R
0 0.0
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration

Sigma value of t_free

12

1.0

0.8

Value
o
[+2]

0.4
0.2

0.0

0 20 40 60 80 100
Iteration

Figure 3.3: Results of CMA-ES fitting a single parameter ¢ ... with an initial
point (zp) = (0.1), and an initial o9 = 0.5. The value of A is set to 6, and the
value of i to 2. Both the error value (top-right) and o (bottom) quickly drop
to around 0, implying it has found the correct mean. This is also reflected
in the parameter value stabilising at 2 after around 20 iterations (top-left).

For good measure, another CMA-ES run gets initialized The target value
for ¢ free will now be 18.5.

19

t_free (Best value: 18.5661) Error (Best value: 0.001)
N 2.5

2.0
15

1.0

Parameter value
15
Log (MSE)

0.5

0.0

0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration

Figure 3.4: Results of CMA-ES fitting a single parameter t ... with target
tfree = 18.5. The initial point (zg) = (0.1), and the initial 6y = 0.5. The
value of A is set to 6, and the value of y to 2. CMA-ES is able to find the
target value with within 100 iterations.

CMA-ES is again able to find the parameter value with great accuracy
(Figure 3.4). It is expected that the further a target value is from the initial
value, the longer it will take the algorithm to obtain the value. This can
be explained by the fact that CMA-ES first has to find the correct mean of
the search space. The further the search space is, the longer it will take to
reach it.

This begs the question that, if targets are extremely far away from the
initial coordinate, can they still be found? This scaling issue is explored in
section 3.4.

To outline how CMA-ES performs over several runs, the same optimi-
sation process is ran for 20 times, all with the same target value for ¢, e
being 2.0.

20

Distribution of solutions generated by CMA-ES

— Goal value t_free (2.0}
24

2.2

2.0

1.8

16

t free

Figure 3.5: Distribution of results of 20 CMA-ES runs fitting the single
parameter tr... with target ts... = 2.0. For every run, a new target is
simulated. The distribution does show some variation between solutions,
though most are within 0.2+ of the target value.

The variance shown in the distribution (Figure 3.5) are caused as a result
of two reasons, both coming down to stochasticity. First the stochasticity in
the Beauchemin model itself. Solutions with other values than tt... = 2.0
can still generate the same output resulting in a low error. Additionally,
CMA-ES is an evolution strategy, which by definition is stochastic. This
means that CMA-ES will find different solutions from run-to-run. Some-
times, it will find better solutions than previous runs, and sometimes it will
find solutions that are worse.

In conclusion, the results do show variance between solutions, but this
is expected due to stochasticity. On average, CMA-ES is able to find the
correct value with a fairly low error, indicating it was able to match the
MSD curve of the target.

3.2.2 CMA-ES fitting two parameters shows discrepancies
between the target and actual values

Now that it has been shown that CMA-ES is able to fit a single parameter of
the Beauchemin model with fair accuracy, we move on to fit two parameters.

This is expected to be more difficult, as both parameters influence the
final outcome of the simulation. Hence, CMA-ES has to find the balance
between the parameters, not favouring fitting one over the other.

The two Beauchemin parameters that will be fitted are t ... and vspce.
The process was ran 100 iterations to obtain the final result.

21

t free (Best value: 2.6764) v_free (Best value: 17.14)
30
25
20

15

Parameter value
Parameter value

10 '_.'

0 24 48 12 96 120 0 24 48 12 96 120
Iteration Iteration

Error (Best value: 0.0005)
3.0

N
n

—~ 2.0
w
wn
=15
g
=10
0.5
0.0
0 20 40 60 80 100 120
lteration
Sigma value of t_free Sigma value of v_free
10
7
6
8
5
6
o o 4
=2 =2
g g
4 3
2
2
1
0 0
0 24 48 12 96 120 0 24 48 72 96 120
lteration Iteration

Figure 3.6: CMA-ES simulation with (xo,y0) = (0.1,0.1), o9 = 0.5, A =
6, and ;4 = 3. It finds values for the two fitted parameters, with an error
of 0.0005 compared to the target data, that was simulated with parameters
tfree = 2.0 and vypee = 18.8. The o values for both parameters show fluctu-
ation, indicating difficulty finding the exact region of solutions. Later in the
process they do drop down and stabilise, as also reflected in the parameter
values that finally settle to generate the final result.

22

MsD

The final values of this optimisation run are not far off the target values
(Figure 3.6), though still some room to the actual target parameter values
remains.

The difference in MSDs almost completely disappeared during the opti-
misation process, in line with the small error (Figure 3.7). Still, some small
differences remain, likely due to the stochasticity of both CMA-ES and the
model.

Error: 20.8419

—— Target
Current

Error: 0.0197

—— Target
Current

100 4

10 10? 10 10?

Error: 0.0005

—— Target ”~

Current .

10% 4

MsD

10! 4

10° 10! 10?

Figure 3.7: The MSD curves of the target simulation and a current simula-
tion. Top-left illustrates the MSD curve of a solution in the first iteration
being far off the target. Top-right shows an MSD curve which was created
in iteration 60, already being significantly closer to the target. Finally the
bottom shows the MSD curve of the best solution found, with the values
tfree = 2.6764 and vypee = 17.14.

This also shows that even with a solutions that does not precisely match
the target parameters, the error can still be extremely low. Again, caused
by stochasticity. The solutions generated almost the exact MSD curve as
the target, even though the parameter values were not the same.

23

To test the robustness of the algorithm, a distribution of parameter
values of 30 CMA-ES optimisation runs with the same target values, fcc
= 2.0 and vy = 18.8 was created (Figure 3.8).

Distribution of solutions generated by CMA-ES

—— Goal value t_free (2.0)
40 — Goal value v_free (18.8)

35
30
25

20

$e o

o o'de

-
w
ses® 3
a8, 4!

t free v_free

Figure 3.8: Distribution of results of 30 CMA-ES runs, fitting the two pa-
rameters fpce and vy, with target ¢y, = 2.0 and vy, = 18.8. The values
go in the right direction, but there are still some outliers. This indicates that
the current implementation is not robust enough to reliably get good solu-
tions.

The values for both parameters look to go into the right direction, but
several outliers remain. This is especially the case for ¢.... This indicates
that the current method is not robust enough.

A first thought as to where it might be going wrong, could be that the
algorithm has not converged yet at the end of the run. Still, it reached the
maximum iteration of 100 and prematurely terminated.

Looking at a specific run where it underestimated vy, it shows the the
parameters did stabilise to a fixed value towards the end of the run (Figure
3.9, top two graphs), indicating the algorithm had converged.

24

t free (Best value: 2.9355) v_free (Best value: 13.8549)

]
o]

S 20 -
© ©
> . >
g5 5
2 . 2
£ k £
© 10 ' o
s . o
© ©
a ._ a
5 3
o | ¥
0 24 48 12 96 120 0 24 48 12 96 120
Iteration Iteration
Error (Best value: 0.0189)

4.0

35

3.0
w25
(%]
Z 20
o
S15

10
0.5
0.0

0 20 40 60 80 100 120
Iteration

Figure 3.9: Results of CMA-ES fitting the two parameters t ... and vy ee
with targets tfree = 2.0 and vypee = 18.8. It underestimated vy,e. in this
case. The value for both parameters has converged at the end of the run,
indicating that the process was finished, and these were the best values
CMA-ES could find.

A second thought could be that CMA-ES settled down for a solution
too quickly. The error value 0.0189 (Figure 3.9, bottom) seems low, but
compared to the previous run where the solution is closer to the target with
a corresponding error of 0.0005, it is significantly higher. This indicates
that CMA-ES is settling for less. It narrows down the search space too
early, resulting in sub-optimal solutions. The idea of opening up this search
space again is explored in section 3.3 by the introduction of CMA-ES restart
strategies.

To summarize, CMA-ES was able to fit two parameters of the Beau-
chemin model to go in to the right direction. Still, there remained variance
between the solutions and target. Some variance is expected due to stochas-
ticity, but looking at the results for bad runs, the error is significantly higher,
possibly indicating a problem in the current strategy.

25

3.2.3 CMA-ES unable to fit three parameters for the Beau-
chemin model

The results of fitting two parameters for the Beauchemin model shows
promise, as the values go in to the right direction. The main issue that
remains is robustness.

To build further upon this, we tried fitting three, or all, Beauchemin
parameters. Here, the robustness is evaluated again, to see any shifts as
compared to fitting two parameters.

Distribution of solutions generated by CMA-ES

— Goal value t_free (2.0) . Values from double fitting
—— Goal value v_free (18.8) ® Values from triple fitting
Goal value t_pause (0.5)

30

.
20 o .,
e
-3
H
3
10 : “
" <
) .
Il‘m-ﬂ‘ B L. -ngl

0 S386sannansss®

t free v_free t pause

Figure 3.10: Distribution of 30 CMA-ES runs, all with (zg,y0,20) =
(0.1,0.1,0.1), g = 0.5, A = 6, and u = 3. The three target parameters
were tfree = 2.0, Ufree = 18.8 and tpquse = 0.5. Side-by-side with the solu-
tions generated by fitting two parameters. While the solutions seem to go in
to the right direction for tf... and ¢y, they both have a lot more outliers
compared to fitting two parameters. Moreover, the range of solutions for
both vf,ee and t.c. has broadened. Then, the range of values for t,quse is
also very wide. This shows that fitting three parameters of the Beauchemin
model is not very accurate.

The solutions generated by CMA-ES for the triple-parameter fitment
show more variance as compared to fitting two parameters (Figure 3.10).
This indicates that fitting three parameters is less robust than fitting two
parameters, and not very accurate.

From these results it can be concluded that CMA-ES is not able to ac-
curately fit all of the three Beauchemin parameters.

This finding is consistent with the finding of Textor et al. that there are

infinitely many combinations of ¢p4use and vy,ee that output the same MSD
for a fixed tfyee [2].

26

Thus, using the mean square displacement for fitting the Beauchemin
model, it is infeasible to accurately fit these three parameters. Consequently,
two parameters will be fitted for them rest of the experiments.

3.3 Restart strategies for CMA-ES

A problem that arose while trying to fit two Beauchemin parameters, is that
the values for ¢ narrowed down too early. Consequently, CMA-ES settles
for a sub-optimal solution. To prevent this from happening, CMA-ES could
be restarted where the previous run left of, as proposed by Auger et al [6].
The og for the restart will be the original og of the first run, ’opening up’
the search space again from a new initial coordinate that is the solutions
from the previous run.

3.3.1 Methods for restarting CMA-ES

Two CMA-ES restart strategies will be reviewed in this section, Restart-
CMA-ES and TPOP-CMA-ES.

The first strategy, Restart-CMA-ES, entails simply starting CMA-ES
again with the initial values being the solutions of the previous run. The o
for each restart, is the o from the initial run.

Building forth upon Restart-CMA-ES, IPOP-CMA-ES (Increased POP-
ulation) is introduced [6]. Here, CMA-ES starts searching again from the
solution obtained from the previous run, while also increasing the popula-
tion size A by a factor 2, as in line with the literature. This increases the
chance of CMA-ES of finding good solutions, as there are more candidates
being generated.

Both strategies will serve the purpose of ’opening up’ the search space
again. Where the previous ranges ended, the next CMA-ES iteration started
from, finding more optimal solutions.

3.3.2 Regular CMA-ES, Restart-CMA-ES and IPOP-CMA-
ES compared for fitting two parameters of the Beau-
chemin model

The two restart strategies as discussed were applied to the optimisation
problem of fitting two Beauchemin parameters, and compared to regular
CMA-ES.

Restart-CMA-ES shows a shift to a lower overall distance from solutions
to the target compared to regular non-restart CMA-ES. IPOP-CMA-ES
shows a similar shift compared to Restart-CMA-ES.

IPOP-CMA-ES performed the best, as its solutions are generally closest
to the target. At the same time, due to the increased population size the
time consumption was the greatest as well. It increases with O(n?) for each

27

Distance

restart, as every A in the population needs a function evaluation. Whilst the
population size is exponentially increasing, the time spent will be as well.

Distance from solutions to target

—— Mean value of solutions

14

12

10

8
L]
6 .
.
4 .
H
e 3
ale
2 . = %
. s
Regular CMA-ES Restart CMA-ES IPOP-CMA-ES

Figure 3.11: Distances from solutions to target coordinate (2.0, 18.8) for
three CMA-ES strategies compared. All run with (zo,yo) = (0.1,0.1), o9 =
0.5, A = 6, and p = 3. It shows IPOP-CMA-ES generates the solutions
closest to the target, but only marginally better compared to Restart-CMA-
ES. Both Restart strategies outperform the regular non-restart CMA-ES in
generating solutions close to the target parameter.

For Restart-CMA-ES, the time spent will only increase O(n) for every
restart, as A does not change.

Summarizing, restart strategies show a great increase in performance
compared to regular CMA-ES. Of course this performance comes with a
time-consumption penalty, that is the most drastic with IPOP-CMA-ES.

From here on, Restart-CMA-ES will be used for optimisation in this
thesis. The reason being better performance as compared to regular non-

restart CMA-ES, but not as huge of a performance penalty as compared to
IPOP-CMA-ES.

3.4 Scaling problems in ABMs

Biological agent-based models often have multiple parameters that direct
their output. These parameters can have varying ranges that are drastically
apart from each other. This makes optimisation very hard as opposed to
dealing with parameters that live in the same region.

To go back to the rectangle problem, this problem can be simulated by
the idea that one side would be measured in kilometres, whereas another

28

side is measured in millimetres. As has been established, the ideal solutions
for that problem was to create a rectangle of 10 x 10 metres. Using those
other scales, the rectangle would be 0.01 (kilometres) X 10.000 (millimetres),
yielding the solution @ = 0.01 and b = 10000. Such great divergence in
scales can occur in BABMs. Hence, we tested how CMA-ES responds to
such scaling issues in the model to be fitted.

3.4.1 CMA-ES unable to identify linearly scaled parameter
values

To examine if CMA-ES is able to handle parameters that exhibit these scal-
ing problems, two parameters of different scales are optimised. The values
will not simply be chosen to lie far apart. Instead, the same target values
(2.0,18.8) of previous experiments will be used, where the first parameter
gets scaled using a wrapper function. In this way, the experiments can be
directly compared, as the Beauchemin parameters, and thus the target, re-
main the same. The only penalty that the scaled parameters receive is the
distance between the starting point and the target, as those are of course
further away.

Restart-CMA-ES will be used to fit the parameters. To scale the pa-
rameters a division is used. Three scaling values, 10, 100 and 1000, are
compared to establish the influence.

Distance from solutions to target

5 | —— Mean value of solutions
4
.
%
; 2
5 1
ﬁ L]
© —_—
o 2 .’.
(s]
- [J
a
]
1 p
< .
.
0
No scaling 10x Scaling 100x Scaling 1000x Scaling

Figure 3.12: Restart-CMA-ES fitting differently scaled parameters. This
process is run for 2 restarts with oy = 0.5 for each run. The initial coor-
dinate (zo,yo0) is set to (0.1,0.1), with A\ = 6 and p = 3. The distances of
the solutions to their target coordinate increase as scaling becomes more ex-
treme. This shows that parameters having vastly different scale is a problem
for CMA-ES. The more extreme the scaling difference is, the further away
the solutions will be from the target.

29

When the extremity of scaling increases, the worse the solutions gener-
ated by CMA-ES will become (Figure 3.12).

This may be caused by the fact that the target coordinate is increasingly
further away, resulting in sigma increasingly being 'too small’. The solution
is not in the search space, even after several o-updates. In contrast, the
solution for the other parameter that is of lower scale, is being found in the
search space after a few updates. This will mean that the error is getting
lower, resulting in the sigma lowering, consequently a more narrow search
space and CMA-ES ultimately settling for a sub-optimal solution.

Although tempting, o9 cannot simply be made larger to solve this. It
requires upfront knowledge about the solution to set the og in a way that the
solution can be reached within a few iterations, which is simply not there in
a real-world scenario. Trivially, if g would be infinitely large, the solution
will always be in the search space. Doing this though, will make it very hard
for CMA-ES to narrow down the final search space, again resulting in not
being able to find the precise solution.

The same reasoning goes for the initial coordinate. If the initial coordi-
nate is closer to the target, the probability of CMA-ES finding the solution
quicker is simply higher. Again, up front knowledge about the solution is
necessary to choose a good initial coordinate, which is not always available.

3.5 Rescaling variables

An idea to counteract these scaling problems, is to re-scale the parameters
of this problem in its entirety. This will enforce parameters to be on the
same scale, even if not originally the case. Thus, giving the possibility of
the initial coordinate and o(being favourable for both parameters.

A simple logarithmic scaling function can be used, as proposed here [7]
(Equation 3.1). This will map most values to be in the range [0, 10], where
previously the range [0, 101°] was necessary for that.

fla) =107 (3.1)

This function will be called before calling the objective function. This
would mean that if the target parameters of a Beauchemin simulation would
be t free = 20000.0 and v e = 18.8, CMA-ES would have to find log 20000.0 =
4.3 and log18.8 = 1.27. As opposed to the previous scaling experiments,
these target values are feasible to be in the search space after a few iterations.

The same scaling experiments are executed again, but now using the
rescaling function.

30

Log distance

Distance from solutions to target

—— Mean value of solutions
6 Rescaled
Not Rescaled

No Scaling 10x Scaling 100x Scaling 1000x Scaling

Figure 3.13: Restart-CMA-ES fitting differently scaled parameters com-
pared to scaled parameters after problem rescaling. This process is run
for 2 restarts with o9 = 0.5 for each run. The initial coordinate (xg,yp) is
set to (0.1,0.1), with A = 6 and u = 3. Rescaling the problem so that the
parameters are on the same scale shows the distance between the generated
solutions and the target remain the same for each of the scaling runs. Even
for the base run, where the target parameters are relatively close to each
other, the solutions generated after rescaling improve. Between the rescaled
solutions, the mean is almost the same for different scales, indicating no
performance penalty if the parameters live on different scales. Hence, it
can be concluded that rescaling the problem is a great solution to counter
parameter that live on vastly different scales, or even improve performance
on problems where these scale differences are not huge.

Problem rescaling proves to have a giant impact on the performance of
CMA-ES (Figure 3.18). For BABMs where it is expected that parameters
are on different scales, it can be used to improve performance. Moreover, it
even improved performance in the 'No Scaling’ run where parameters where
not far of each other. This can be explained by the fact that the solutions
tiree = 2.0 and vype. = 18.8 are further apart from each other than the
rescaled values t ... = log 2.0 ~ 0.3 and v = log18.8 =~ 1.27.

When target values are closer to each other as well as to the initial
coordinate, the correct values for both parameters can be reached within
only a few iterations. From there on, CMA-ES only has to narrow the
search space.

Besides, the deviation from the target values gives a greater penalty in
the rescaled version. Whereas a positive deviation of 2 from t f,... would give

31

4 in the non-rescaled version, it would give 10%3+2 = 200 in the rescaled ver-

sion. This will quickly make the ¢ values drop and get a very narrow search
space. If the target value was 2000, it would require an enormous amount
of iterations to even get close, if searching started from 0.1.

In conclusion, rescaling the problem shows a great improvement in solu-
tions, even for the base run where the parameters were not far of each other.
If rescaling will narrow the range of solutions, it is expected to improve the
performance, as the solutions for both parameters are to be reached in only
a few iterations.

32

Chapter 4

Methods

4.1 Python implementation of CMA-ES

To implement CMA-ES, Python was the language of choice, as there already
is an existing Python library [8].

For both the implementation of the rectangle problem and the Beau-
chemin model, a simple skeleton was used to build forth upon (Listing 5.1).

def run_cma(initial_values , target, sigma_0):
es = cma.CMAEvolutionStrategy (initial_-values , sigma_0)

while not es.stop():
solutions = es.ask()
scores = [f(target, solution) for solution in solutions]
es.tell (solutions, scores)

Listing 4.1: Python skeleton for CMA-ES

This CMA-ES implementation makes use of an ’ask-and-tell’ interface,

where the optimizer gets asked to generate A coordinates (stored in solutions).

These will then be evaluated by executing the objective function f to obtain
the error value for each of the samples.

Finally, after getting the results from the evaluation, the optimizer will
be told the results of that evaluation. The p coordinates that gave the
best score, in other words the lowest error, will be used to compute the
distribution of samples for the next iteration.

To initialize the optimizer, it receives an initial coordinate that has to be
at least 2-D', a target coordinate with the same dimension and a oy value.

!This library does not support 1-D fitting out-of-the-box, but can be implemented with
a workaround as explained in section 4.5.

33

4.2 Beauchemin simulations

To execute Beauchemin simulations, 2 predefined functions from celltrackR
were used [9]. The first, beaucheminTrack (), computed a Beauchemin track
of a single cell. The second, simulateTracks(), was used to simulate mul-
tiple of those Beauchemin tracks. Besides the three parameters that were
discussed (t free; Vfree and tpause), there are several more parameters that are
not of interest for the optimisation process. Every simulation will be ran
with those parameters set to the same values (see Appendix A.3 for exact
settings). The three variables that are worth mentioning are ng.qers, that
dictate how many cells are generated, tg;,, that describes how long a cell
may move in total, and tge, Which is the interval that states when cell
positions are measured.

The larger tg;;, will be, the longer a Beauchemin simulation will take.
Longer Beauchemin simulations naturally result in a slower optimisation
process, but do give greater precision as more data is generated.

The same goes for the n4rqcks, the more tracks, the more data, but more
costly computations as there are more cells to be simulated.

Finally, increasing tq.;:q will yield greater precision in final MSD cal-
culation, as when cells are measured more often, more data points will be
available, even when the t4;, and ng.qcs do not change. Contrarily, it is not
of use making tge, extremely small (lower than 0.1 for example), as a cell
will not travel great distance in such small time periods, resulting in only
small changes per time point.

Naturally, the sweet spot of these parameters have to be found for the
optimisation process. By trial-and-error, these were finally set to tg;,, = 20,
tgeita = 0.1 and nypqers = 10, as these proved to give the best results while
also not resulting in incredibly lengthy simulations.

4.3 MSD calculation

To calculate the MSD of the Beauchemin simulations that were used to
calculate the error, the function squareDisplacement from celltrackR was
used (Listing 4.2) [9]. Here, tracks denotes an R dataframe containing a
time ¢, and both an z and y for every cell in a Beauchemin simulation. The
R-function aggregate will apply squareDisplacement to every track.

The tracks themselves are the output of a Beauchemin simulation as
described in section 4.2.

aggregate (tracks , squareDisplacement (), FUN="mean”)

Listing 4.2: MSD calculation using the squareDisplacement function from
celltrackR

34

4.4 Choosing parameters to optimise

The parameter that were repeatedly chosen to optimise for the Beauchemin
model, were tfree = 2.0, vfree = 18.8 and tpguse = 0.5. The reason be-
ing that these were the default parameters for the model as set in the
celltrackR library. Additionally, these parameters found to generate out-
put that matched real-world data the best [2].

4.5 Fitting single parameters

This implementation of CMA-ES needs at least a 2-D vector, or in other
words, 2 starting parameters. When only trying to fit one, we can supply
the optimizer with a dummy parameter that returns a high penalty upon
deviating from its starting value. This penalty is added to the error value.

This method was used to fit the single parameter t .. (Section 3.2.1).
In reality, there was another parameter in play that was set to 0.05 (vfpee
in Figure 4.1). Deviating from that value added an error of 10 to the error
value.

t_free (Best value: 2.0548) v_free (Best value: 0.0042)
4 = 175
1.50
=]
w 125
>

@ 100
3

[
£ 075
©

Parameter value
N

g
& 050
0.25

0 - 0.00
0 20 40 60 80 100 0 20 40 60 80 100
lteration lteration

Figure 4.1: Results of CMA-ES fitting a single parameter ty..., using a
dummy parameter to assert a 2-D starting point. Deviation from vfyee =
0.05 returned a penalty for the error values, forcing CMA-ES to fit it to be
around that value.

4.6 Scaling parameters using a wrapper function

To execute the scaling experiments of this thesis, a wrapper function that
transforms the parameter function is necessary. This wrapper is called before
the values generated by CMA-ES go to the objective function.

In practice, division was used, where the denominator depends on the
scale. To scale a parameter by a value of 100, the value generated by CMA-
ES gets divided by 100, so that the target is of a scale 100 larger.

35

Hence, if CMA-ES has a target value of 5, and generates that value of 5,
the wrapper makes it % = 0.05. This value goes to the objective function,
resulting in a large error. In other words, CMA-ES actually has to generate

the value 500, as in that way % = 5 will go to the objective function.

This method of scaling was chosen, as opposed to just choose e.g. 500
as target value for the Beauchemin model, so that we can directly compare
performance on several scales. If we would pick another target value for each
scale, the output of the model would be different, adding another factor to
the performance of CMA-ES. This would make it harder to distinguish if a
shift in solutions is a result of a different target dataset, or the difference in
scales of the parameters.

4.7 Rescaling the problem

The problem rescaling was done in a similar fashion as the scaling of pa-
rameters. The rescaling function was called on the CMA-ES value before
calling the objective function.

When both rescaling a problem and also scaling a single parameter,
the problem rescaling function has to be called before the single parameter
scaling function. Otherwise, the final values will not be on the same scale
as was the goal of rescaling function.

This means that if CMA-ES were to generate the value ¢, it would be
logarithmically scaled giving 10? (Equation 3.1). Then, if the value was to
be scaled to get it to a different scale from another parameter, e.g. 100x, it

10¢
would be 100

36

Chapter 5

Discussion

5.1 Fitting more than two parameters using CMA -
ES

The Beauchemin model only has three parameters, whereof only two could
be fitted. Contrarily, the majority of interesting BABMs have more than
two parameters. Naturally, fitting more than two parameters is possible,
CMA-ES was even tested with dimensions up to 640 [10].

The main challenge with BABMs is defining an error function that takes
into account all parameters to be fitted. A problem with the Beauchemin
model was that the MSD is underdefined to fit three parameters, as several
combinations give the same output.

Of course, it is also up to the user what they want CMA-ES to do. The
MSD for fitting three Beauchemin parameters could well be used, if the only
goal was to find some triplet that generates the target MSD. If the goal was
to find the exact parameter that target was generated with, it would not be
robust.

If the goal is to retrieve the exact parameters a certain dataset was cre-
ated with, the objective function has to be well-defined in order to distin-
guish between parameters. This is yet another challenge for fitting BABMs,
as this can prove to be difficult.

5.2 Additional scaling issues

In this thesis, linear scaling issues were explored. In practise, these scaling
issues can also be non-linear. A realistic problem is plateaus, where a change
in parameter value does not, or only marginally, change the output. Here,
there is only a small region where a parameter exercises its activity.

This poses a considerable challenge for CMA-ES, as if the output does
not change, the algorithm will converge, thinking it has found a solution.

37

The proposed solution for this is rescaling the problem as explored, to-
gether with a oy value so that every solution within the range, e.g. [0, 10],
is able to be reached within only a few iterations. Additionally, a large pop-
ulation size can be chosen to increase the chance of finding the area where
the parameter lives.

This experiment has to be done in the future to determine if CMA-ES
is able to handle these plateaus.

5.3 Choosing CMA-ES parameters

5.3.1 Choosing the initial coordinate

Following [5], if the optimum is expected to lie within the search space [a, b]",
the initial coordinate can be chosen uniformly random to be in this space.

For the experiments that were done in this thesis, the initial coordinate
was always (0.1, 0.1). If the goal coordinate is (2.0, 18.8), it means that this
initial coordinate favours the first target value, as it is simply closer. Ideally,
an initial coordinate that is favourable for each parameter is necessary. In
this thesis, no upfront knowledge about the target output was presumed,
and thus the initial coordinate remained the same.

In real-world experiments though, it could happen that there is some
upfront knowledge that points in the right direction of the target coordinate.
This information should then be used, as performance might increase.

5.3.2 Choosing the initial sigma

The only constraint given to the value of o, is that it is in IR~q.

It is advised to choose a value for oy so that the solution is expected
to lie within about zg £+ 3 - 09, with xo being the initial coordinate [5]. To
enforce this, problem scaling as explored can be a very useful tool.

In this thesis, the influence of different values for oy was not studied, but
is expected to influence the performance.

5.4 Using the error distribution to evaluate solu-
tions

In section 3.1, the stochasticity of the Beauchemin model was illustrated
using an error distribution, comparing several datasets generated with the
same parameters (Figure 3.2).

The variance shown in this distribution indicates that users should inter-
pret results with some caution. By only looking at a single run that almost
precisely generates the target solution, users may think the optimisation
method is flawless. On the other hand, solutions that are further away from

38

the actual target parameters can also give an output that matches the target
dataset, as a result of stochasticity.

This raises the question if every optimisation run should be done multiple
times. While this would give more certainty about what the 'right’ parame-
ters are (Figure 3.5, 3.8, 3.10), it will be a huge performance penalty, which
cannot be afforded with very complex, time-consuming, models. Besides,
this distribution might shift depending on the parameters used to create it.

What could be an option, is generating an error distribution with the
solution received by CMA-ES. Multiple simulations can be ran with that
solution, and be compared to the target dataset. Depending on the dis-
tribution, it can be evaluated if the solution was plausible, or still overall
generates a too high of an error compared to what would be expected.

This again comes with a performance penalty, but does not require CMA-
ES to fit the model multiple times, what will take the most time.

It is up to the users and their purpose to assess if the performance penalty
is affordable.

5.5 Cost penalty of using Restart strategies for
CMA-ES

Restart strategies for CMA-ES proved to increase the accuracy of the gen-
erated solutions for the Beauchemin model considerably. In contrast, there
is a big downside with these strategies, the increased time consumption.

For IPOP-CMA-ES, the time consumption increases with O(n?) for ev-
ery restart. A single iterations of a standard CMA-ES run for the fitting
the Beauchemin model with A = 6, or 6 function evaluations per iteration,
takes around 4 seconds (using the specifications as provided in Appendix
A.1). For 120 iterations this means that a non-restart CMA-ES run takes
around 8 minutes. For 2 restarts this means 8 + 16 + 32 = 56 minutes in
total.

Recall that the reason why the Beauchemin model was chosen, is because
it is a relatively cheap computation. There are BABMs out there that can
take up to hours to simulate. Doing A of those computations per CMA-
ES iterations is of course already extremely costly, exponentially increasing
those computations is not realistic (assuming users do not want to wait
weeks for an optimization process to finish).

In conclusion, for low-cost simulations such as the Beauchemin model
Restart /TIPOP-CMA-ES can be considered as an option for optimisation,
as the increased time consumption is still manageable as opposed to high-
cost BABMSs. Namely, the solutions generated by the algorithm do seem to
improve using restart strategies. It should be evaluated by the user whether
this penalty can be afforded or if it will become too costly.

39

5.6 Choosing when to rescale a problem

Rescaling the problem was shown to be a powerful method for handling
parameters that live on different scales. It also proved to result in similar
results for the base run, where the parameters did not live on very different
scales. This begs the question when to rescale a problem.

In practise, rescaling a problem the way it was done in this thesis ensures
that the values generated by CMA-ES do not have to go outside of the range
[0, 10]. If values are in that range regardless, then rescaling would have no,
or a negative effect. If values are outside of it though, rescaling would have
the benefits as explained. Even if it is uncertain were the target values are
going to be, the problem can be rescaled to be sure. While rescaling will
maybe will not improve performance, it will only decrease it if the rescaling
results in a large range of solutions.

Thus, rescaling of the problem can always be done, and will improve
performance if the range of solutions gets narrowed down by rescaling. As
seen by the scaling experiments, the larger the difference in ranges before and
after rescaling, the larger the performance increase. Of course it depends
on the expected parameter values what kind of scaling can be used. No
negative values can be generated using the rescaling method as described in
this thesis. For the Beauchemin model, negative values for these parameters
are not possible. If working with a BABM that does take negative values,
another rescaling method has to be composed.

5.7 Analytically solving the Beauchemin model

As mentioned in section 2.2, the Beauchemin model can be solved analyti-
cally. The expected MSD can be calculated ([2], proposition 12):

1
3 t>tg
EHDZ(t)” :2Mt—2Mtfree X 3 3 9 free
slo) —(6) + ay) t<t
3 tfree tfree tf’ree free
(5.1)

With M being the motility coefficient ([2], Equation 2):

M = (Ufree X tfree)z (52)

G(tfree + tpause)
This formula can be used to calculate the squared displacement at a spe-
cific time ¢. Moreover, given a certain squared displacement, the parameters
can be retrieved. In this way the solutions generated by the optimisation

process can be compared to solutions generated by this formula.

40

An experiment that was not done in this thesis, is using this formula
to determine the difference in stochasticity caused by CMA-ES versus the
Beauchemin model.

During this experiment, parameters are used to generate a target dataset.
The MSD will be calculated from that dataset, and from there the corre-
sponding parameters using the analytical formula. These parameters will
likely be different from the parameters used to generate the dataset, due to
stochasticity of the model.

Then, using CMA-ES, the parameters for the dataset can again be re-
trieved.

Finally, comparing the analytically derived parameters and the param-
eters generated by CMA-ES. The discrepancies between these parameters
are directly caused by the algorithm itself, and not the stochasticity of the
model.

41

Chapter 6

Related Work

6.1 Stochastic gradient descent using the Adam
algorithm

Another algorithm that could be used for fitting BABMs is Adam [11].
Adam is a method for stochastic optimization.

It is a method for gradient based optimization, meaning it moves through
the gradient of objective function values, in search of a local minimum.

Like CMA-ES, Adam keeps track of moving average, which are estimates
of the mean and the variance from that mean.

In contrast to CMA-ES, Adam computes individual learning rates for
each parameter of the objective function, which changes during the process
of optimization. These rates can be compared to the o values of CMA-ES,
in the sense that these are also kept for individual parameters to determine
their course. These rates are then directly used to update the parameters:

(9(—9,5_1—05'7?%/(’LA)t—I-G) (61)

Here, 0 is the parameter that is getting updated. ¢ is the timestep
that increases by one each iteration. « is the stepsize, together with the 1st
moment vector m and the second moment vector v it updates the parameter,
The first moment vector contains the moving averages of the gradient which
themselves are the estimates of the mean and the variance from that mean.
The second moment vector v is the squared version of m. Lastly, € is there
to prevent division by zero.

The main difference looking at this parameter update, is that it is not
stochastic. The value of the parameters, and finally the solutions, are re-
trieved by a strict calculation, and not stochastic sample from a distribution.

CMA-ES has the arguable downside that it is stochastic, resulting in
noise of the solutions that is inherent to its computation. Adam, does not
have this downside, and given a certain target dataset, should always get
the same solutions.

42

It would be very interesting to see a comparative study between these

algorithms, to see how they perform next to each other, especially for fitting
BABMs.

43

Chapter 7

Conclusion

In this thesis, it was evaluated if CMA-ES is a good option for fitting
BABMs.

Out of the box, the algorithm was able to fit single parameter problems
with decent accuracy. This accuracy decreased while fitting two parameters
for the Beauchemin model. The solutions went in to the right direction,
but displayed small discrepancies compared to the target. These deviations
from the target values can in some extent be explained by stochasticity of the
model used, and CMA-ES by itself. Fitting three Beauchemin model heavily
reduced the accuracy of the two parameters that were previously fitted,
additionally not being able to fit the third parameter with good precision.
This result confirmed the findings by Textor et al, that there are more
triplets for this model that give the same output.

To improve the solutions generated by CMA-ES for fitting the Beau-
chemin model, two restart strategies were introduced. These had the pur-
pose of ’opening up’ the search-space again after finding a solution in a
previous run, subsequently having the ability to find better solutions. IPOP-
CMA-ES proved to give the best results, but also the greatest performance
penalty, as time consumption increased by O(n?) for each restart. Restart-
CMA-ES was chosen for the remaining experiments, as it gave better so-
lutions than regular CMA-ES, but did not have as big of a performance
penalty as IPOP-CMA-ES.

The Beauchemin model was then used to simulate the scaling problem
that other BABMSs might experience. Here it was reviewed if CMA-ES was
able to handle target parameters that lived on vastly different scales.

Using Restart-CMA-ES, the solutions increased to be less accurate as
this scale-difference increased. To combat this inaccuracy, problem rescaling
was introduced.

In this way, the parameters were brought down to the same scale, so
that g and the initial coordinate did not disfavour a parameter, making
it hard to find it. The solutions generated by Restart-CMA-ES for the

44

rescaled problems improved enormously, as the solutions generated for the
same scaling experiments all had the same accuracy as the run without
differently scaled parameters.

It still has to be evaluated how much the stochasticity of CMA-ES in-
fluences its final solutions, and how much different values for the CMA-ES
hyperparameters influence its performance. Furthermore, the Beauchemin
model has an analytical solution. The next step is to apply CMA-ES on a
more complex model that experiences the problems that were simulated in
this thesis. It will be interesting to see how CMA-ES performs in real-world
situations, where there is no ground truth available.

While there still remains research to be done on using CMA-ES for
fitting BABMs, the findings in this thesis show great promise for taking on
optimisation challenges to come.

45

Bibliography

1]

[10]

C. Beauchemin, N. M. Dixit, and A. S. Perelson, “Characterizing t cell
movement within lymph nodes in the absence of antigen,” The Journal
of Immunology, vol. 178, no. 9, pp. 5505-5512, 2007.

J. Textor, M. Sinn, and R. de Boer, “Analytical results on the beau-
chemin model of lymphocyte migration.,” 2013.

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pogik, “Comparing
results of 31 algorithms from the black-box optimization benchmarking
bbob-2009,” pp. 1689-1696, 07 2010.

N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Fwvolutionary Computation, vol. 9,
pp. 159-195, 06 2001.

N. Hansen, “The cma evolution strategy: A tutorial,” 2016.

A. Auger and N. Hansen, “A restart cma evolution strategy with in-
creasing population size,” in 2005 IEEE Congress on Fvolutionary
Computation, vol. 2, pp. 1769-1776 Vol. 2, 2005.

N. Hansen, “Cma-es source code,” Jun 2011.

Y. A. Nikolaus Hansen and P. Baudis, “Cma-es/pycma on github,”
February 2019. https://github.com/CMA-ES/pycma.

I. M. Wortel, A. Y. Liu, K. Dannenberg, J. C. Berry, M. J. Miller, and
J. Textor, “Celltrackr: An r package for fast and flexible analysis of
immune cell migration data,” Immunolnformatics, vol. 1-2, p. 100003,
2021.

K. Varelas, A. Auger, D. Brockhoff, N. Hansen, O. A. Elhara, Y. Semet,
R. Kassab, and F. Barbaresco, “A Comparative Study of Large-scale
Variants of CMA-ES,” in PPSN XV 2018 - 15th International Con-
ference on Parallel Problem Solving from Nature, vol. 11101 of LNCS,
(Coimbra, Portugal), pp. 3-15, Sept. 2018.

46

[11] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2015. Published as a conference paper at ICLR 2015,
https://arxiv.org/abs/1412.6980.

47

Appendix A

Appendix

A.1 Machine specifications

All simulations and experiments were ran on a Pop!_OS virtual machine
with the following specifications.

Number of processors 4

] VT-x/AMD-V, Nested Pag-
Acceleration ing, KVM Paravirtualization
Video memory 128 MB
Graphics Controller VMSVGA

Figure A.1: Virtual machine specifications

Respectively run on a machine with the specifications list below.

Intel(R) Core(TM) ir-
Processor 7700HQ CPU @ 2.80GHz
2.81 GHz
RAM 16.0 GB
GPU NVIDIA GeForce GTX 1050
VRAM 2.0 GB

Figure A.2: Machine specifications

A.2 CMA-ES Output

Generally, using the specifications as established, it took CMA-ES around
4 seconds per iteration for A = 6, in other words, 6 function evaluations
(Section A.1, Listing A.1).

48

1 (3.w,6)—aCMA-ES (muw=2.0,w_-1=63%) in dimension 3 (seed=245440,
Sat Jun 25 22:32:16 2022)
Iterat #Fevals

oW N

1

S W N

8
10
12
15
18
21
24
27
30
33
37
41
45
49
54
59
64
69
74
80

6

12
18
24
36
48
60
72
90
108
126
144
162
180
198
222
246
270
294
324
354
384
414
444
480

4.
.470002e+01
.179875e+01
.646529e+01
403174 e+01
.768353e+01
.326296 e+00
.175103 e+00
.268088e—01
.253512e—02
.808623e—02
.372388e—02
.399808e—02
.289035e—02
.095228e—02
.832487e—02
.568301e—02
.955594e—02
.605863e—01
.178749e—01
.678890e—02
.370684e—02
.847523e—02
.323708e—02
.749566e—02
f—value = 6.749566e—02 4.683004e—02

DO N JUIO OO U] U g NWER &

final /bestever

incumbent solution:

f—value
193917e+01

10.796736594807856]
std deviation:
0.50753847959316438]

Listing A.1: Example of output generated by CMA-ES

axis
.0e400
.3e+00
.3e+4+00
.3e+00
.5e+00
.2e400
.8e+00
.9e+00
.9e+400
.4e+00
.1e400
.2e400
.2e+400
.3e+00
.2e400
.8e+00
.0e+00
.0e+400
.6e+4+00
.7e+00
.7e+00
.3e+01
.2e+401
.4e+01
.le+01

== = = OO Ot 00O Ut~ Ul W N e

ratio

ot

B UT RN NN o= = = NN RN = = =] Ol Ot

[20.119893597556953,

sigma
.08e—01
.12e—01
.26e—01
.09e—01
.10e—01
.17e—01
.37e+00
.65e+00
.92e400
.99e+00
.03e400
.56e+400
.80e+00
.90e400
.38e400
.47e+00
.15e400
.22e400
.72e+00
.76e400
.45e400
.11e400
.71le—01
.93e—01
7

10e—01

min&max std

5e—01
4e—01
4e—01
3e—01
4e—01
6e—01
1e+4-00
1e+00
4e+00
3e400
2e+00
1e+400
1e+4-00
1e+00
8e—01
8e—01
1e+00
1e+400
1e+400
1e+00
6e—01
4e—01
2e—01
le—01
2e—01

6e—01
6e—01
4e—01
4e—01
5e—01
9e—01
2e+00
2e+00
6e+00
4e+00
2e+00
2e400
2e+00
2e+00
1e4-00
2e+00
3e+00
2e4-00
3e400
3e+00
1e4-00
8e—01
3e—01
3e—01
4e—01

[0.7666149133064301, 0.42168548411579937,

49

GUUT UL AR WWWNONNNNNRFERFFEEFEFOODODODOOOOoOO

t [m:
:03.
:07.
:11.
:15.
:23.
:30.
:38.
:46.
:58.
:09.
:21.
:33.
:46.
:01.
:15.
:32.
:51.
(11,
:30.
:53.
:16.
:39.
:04.
:28.
:54.

15.58871758002261,

N O N WHENOOTULERDNOORFFJFUIJONKRJOOOn

1
2
3
3

1
5

6

A.3 Beauchemin parameter settings

This section contains the default parameters to run Beauchemin simulations
with.

Beauchemin Default Parameters
Parameter Value
Niracks 10

Lsim 20
Ldelta 0.1
Dpersist 0
Dbias 0.9
diThigs (0,0,0)
taxis mode 1
tfree 2.0
Ufree 18.8
Epause 2.0

A.4 cmaes.py

This section contains the Python function used to run CMA-ES, and Restart /TPOP-

CMA-ES.

import cma
import numpy as np

from plotcma import plotCMA, plotSigma

def run_cma(max_its, param_names, initial_values , sigma, popsize
no_of_params = len(initial_values)
error_values = []

Create a list for each to—be—fitted parameter that

holds the evolution of the sigma values, and

one for the coordinates

sigma_values = []

param_values = []

for i in range(no-of_params):
sigma_values.append ([])
param_values.append ([])

Create new CMA-ES object with target values defined
above and bounds between zero and infinite

es = cma. CMAEvolutionStrategy (initial_-values , sigma,
{’bounds’: [0, np.inf],
"popsize’: popsize})

50

i =1
while True:

Base check, change to preferred stop condition e.g.

error value, sigma value, etc.

if i > max_its:
print (?Maximum iterations reached”)
break

CMA ES part
solutions = es.ask()

scores = [eval_beauchemin (transform_params(s)) for s in

solutions |
es. tell (solutions , scores)
es.disp ()

Adding points for plotting the history of the

sigmas and the error.
sigmas = (es.result [6]).tolist ()
for j in range(no_of_params):
sigma_values|[j].append ([i, sigmas[j]])
for sol in solutions:
param_values[j].append ([i, sol[]j]])

Calculate best error of this iteration
err_val = np.amin(scores)

error_values.append ([i, err_val])
i4=1
es.result_pretty ()
plotCMA (param_values , param_names, error_values,

plotSigma (sigma_values , param_names)

return es.result [0], es.result[1]

Listing A.2: CMA-ES

result)

def ipop-cmaes(restarts , sigma, initial_values , max_its, popsize

, increase_pop):

values = initial_values
best_values = []
best_error = np.inf

for i in range(restarts):

res, err = run.cma(max_its=max_its, initial_values=

values , sigma=sigma, popsize=popsize)

if increase_pop:
popsize = popsize x 2

if err < best_error:
best_error = err

o1

best_values =

return best_values. to

res

list ()

Listing A.3: Restart/IPOP-CMA-ES

A.5 run-beauchemin.R

library (celltrackR)

no_of _tracks <— 10 # Number of tracks to

Get arguments from command—line

args <— commandArgs(traili

ngOnly = TRUE)

simulate

8 # Function that executes a single Beauchemin
simulation for its given parameters.
single _beauchemin_sim < function (sim_time, delta_t, p_persist,

9
10

11

p-bias,

_free ,

bias_dir _vector, taxis _mode,

v_free, t_pause) {

beauchemin _sim <— beaucheminTrack (
sim.time = sim_time, delta.t = delta_t,
p.-persist = p_persist, p.bias = p_bias,
bias.dir = bias_dir_vector, taxis.mode = taxis_mode,
t.free = t_free, v.free = v_free,
t.pause = t_pause

)

return (beauchemin _sim)

}

Function that runs the Beauchemin simulations

sim_time <— as.numeric (

5 # for NO_OF_TRACKS tracks.
; execute _beauchemin <— function (input, no_of_args) {

input [1])

delta _t <— as.numeric(input[2])

p-persist < as.numeric

(input [3])

p-bias <— as.numeric(input [4])

bias _dir < input [5]

taxis _mode < as.numeric(input[6])
t_free <— as.numeric(input[7])
v_free <— as.numeric(input [8])
t_pause < as.numeric(input[9])

Create the tracks for

the Beauchemin

beauchemin _tracks <— simulateTracks(

no_of _tracks,

single _beauchemin _sim
sim _time, delta_t,
p-persist , p_bias,

(

bias_dir _vector ,

92

simulation .

t

N o= O

SIS N BS BC e

13, B)

taxis mode, t_free, v_free, t_pause

)
)

Store the Beauchemin tracks as dataframe.
df _a <— as.data.frame(beauchemin_tracks)

Convert the previous dataframe into a dataframe

in the following format:

time cell_id cellkind x y connectedness

df b <— data.frame(
time = df_a$t, cell_id = df_aS$id, cellkind = "N/A” |
centroid x = df _a$x, centroid_y = df_a$y, connectedness
/A7

)

return (df_b)
}

df <— execute_beauchemin(args, length(args))
print (df, row.names = FALSE)

Listing A.4: R script to run Beauchemin simulations

93

— 77N

