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Abstract

In Evidence-Based Medicine (EBM), medical practitioners make use of the
best available evidence to make decisions about the care of each individual
patient. A large amount of this evidence is hidden in Randomized Con-
trolled Trials (RCTs). RCTs are considered to provide the purest amount of
evidence for a potential causal connection between a medical intervention
and a measured outcome. This evidence is hidden in the papers describing
these RCTs.

The PICO (Population, Intervention, Comparator and Outcome) elements
give a lot of information about the trial and can be used in many subse-
quent automation tasks. Automatic PICO element extraction using NLP
techniques can aid EBM practitioners substantially.

In this thesis, we will look at the extraction of the PIO elements subdivided
into 16 more granular entities. Here the I and C class are both encapsulated
in the I class. We show the potential of using transformer models for this
task of detailed PIO extraction by showing that it outperforms the current
best-performing model by a large margin. Afterwards, we show that the
model still seems to benefit from more data by showing that data saturation
has not been achieved yet. Finally, we perform a detailed error analysis and
address systematic errors and common mistakes, which should guide how
new abstracts should be selected and annotated.
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Chapter 1

Introduction

Knowing whether a certain medical intervention has a desired outcome is
crucial for determining the right intervention for a patient. Using the best
evidence available to make the decision about the treatment of patients is
at the core of Evidence-Based Medicine (EBM).

A SR (Systematic Review) of RCTs (Randomized Controlled Trials) is consid-
ered to provide the largest amount of evidence for medical decision making.
This evidence is hidden in the lengthy papers describing the RCTs. These
papers are time-consuming to analyse and also costly since they have to be
analysed by medical professionals due to the technicality and complexity
of the texts. On top of that, the number of RCT studies and SRs published
in the top 30 contributing countries has been increasing between 1995 and
2015 [1]. By (partially) automating this process, time will be saved and it
will allow for faster incorporation of new knowledge into the knowledge
base for EBM.

The identification of the elements of the PICO (Population, Intervention,
Comparator and Outcome) framework in abstracts of RCT studies could
play an important role in identifying the important elements of a study,
assisting in selection procedures of studies for a SR and it could play an
important role in large scale automation systems.

In this research we will focus on the extraction of the PIO elements subdi-
vided into a total of 16 sub-categories for more detailed identification. The
Comparator (C) and the Intervention (I) elements are both encapsulated
into the I class. A short sample span annotated with some of these detailed
PIO elements can be found in figure 1.1.



We have compared the efficacy of & aspirin 1I: prug in

comparison to a ‘ placebo 1: control for the prevention of

Figure 1.1: Sample span of text annotated with detailed labels.

The research question that we will be answering in this thesis is:

How can spans of text containing detailed PIO elements be extracted from RCT
studies to speed up systematic reviews and facilitate Evidence-Based Medicine
(EBM)?

In the process of answering this question we will answer the following
sub-questions:

e How well do transformer-based models perform on entity extraction
of detailed PIO values on RCT studies in comparison to earlier at-
tempts?

e To what extent does the accuracy measurement of the model reflect
the usefulness of the output to medical professionals?

e How to sample additional RCT abstracts for annotation to improve
the classifier?

¢ In what way can data be annotated more effectively to improve the
classifier?

To answer these questions, we will first look at existing work on PIO extrac-
tion and other relevant literature. Afterwards, we will train a transformer
model for this entity extraction task. We will report on the results of this
model and compare it against earlier attempts to see the potential a trans-
former model has on this task.

With the resulting model, we will then perform an analysis. In this analysis
we will first explore whether data saturation has been achieved. We will
train the model on training sets of different sizes and inspect whether the
model still seems to benefit from additional data or if a plateau has been
reached on the performance of the model and thus no benefit is gained from
adding additional data.



Secondly, we will perform an error analysis to look for ways in which
new data should be selected and annotated. For the error analysis we will
create our own evaluation method. We do this because evaluating against
what is considered to be the ground truth for the task, does not fully rep-
resent the usefulness of the output to medical professionals. In this error
analysis we will look for systematic errors and their possible cause, what
types of mistakes the model makes and the severity of those types of errors
to medical professionals.



Chapter 2

Literature review

In this literature review we will first give an overview of larger scale systems
with the goal of (partially) automating systematic reviews and what role
PICO extraction plays here. Then we will look at previous work on the
task of PICO extraction and the EBM-NLP dataset that we will be building
on in this research. Lastly, we will look at models that were previously
used for this task (Linear Regression, Conditional Random Fields and Long
short-term memory networks). Finally, we will look at transformer models
to better understand the benefits a transformer model could have over the
previously trained models on this task.

(Semi-)Automated SR

For the task of (partially) automating SR we will review two different sys-
tems: Evidence Inference and RobotReviewer.

Evidence Inference

In two papers by DeYoung et al [2] [3], a task called Evidence Inference was
introduced. This task consists of two parts:

1. Identifying spans of text containing PICO elements in a RCT study

2. Determining the effect of the Intervention to the Outcome for a certain
Population in comparison to the Comparator.

The papers showed the complexity of the task with f1-scores of around 0.52
on a BERT pipeline for the full task. The fl-scores for the same model with
the correct PICO spans already marked, is around 0.77. This significant dif-
ference in scores shows the importance of correct PICO element extraction
out of RCT studies in the performance of larger automation systems.



RobotReviewer

The RobotReviewer system [4] takes the automation one step further and
has additional components that also perform a risk of bias review to analyse
the quality of the study and determine whether the given text is actually
a RCT study. The system also extracts other relevant information like
sample sizes and key findings of the study in addition to the standard PICO
elements.

Trialstreamer

A recent addition to the RobotReviewer system was the Trialstreamer
database [5] which automatically updates itself by adding new RCT studies
from PubMed and the International Clinical Trials Registry Platform of the
World Health Organization to the database. The RobotReviewer system is
then run on this database to extract all the information. Such large scale
automation systems could be very beneficial for EBM but the output of
the individual components are often too inaccurate to fully automate this
process. In this research we will look at the PICO extraction component
and look for improvements.

PI(C)O extraction

In the domain of PICO element extraction there are two different approaches
to classify the entities in a text: Sentence classification and Named Entity
Recognition (NER) of the PICO entities. Often theIand C class are combined
into a single I class. We will refer to this as PIO extraction. We first look at
current work in the area of sentence classification of the PI(C)O elements.

PICO sentence classification

Sentence classification of PI(C)O elements has seen some promising re-
sults. A LSTM model trained on abstracts achieved f1-scores of around 0.82
for the PIO elements [6]. Another study [7] applied a transformer-based
model to the same problem and achieved fl-scores of around 0.88. The
limitations with sentence classification however, is that sentence level clas-
sification does not provide information that is detailed enough for complex
QA systems or summarization tasks. On top of that, subsequent steps in
SR automation systems could benefit greatly from more detailed annotated
PI(C)O elements.

PICO-NER

We now look at PICO extraction as a NER task where each token in a text
gets a PICO entity or a None entity assigned to it. At first, due to a lack of



labeled data, only smaller datasets existed or larger datasets were derived
through distant supervision which resulted in noisy labels [8]. To overcome
this problem the EBM-NLP dataset was introduced.

EBM-NLP

The EBM-NLP dataset was introduced in an accompanying paper to provide
a large labeled dataset for the task [9]. The dataset consists of 5000 abstracts
from PubMed which were primarily sampled on three subjects: Cancer,
autism and cardiovascular diseases. These subjects were chosen to capture a
high amount of common conditions. The sampled abstracts were annotated
with spans of text containing PIO elements. 4800 of those annotations
were annotated by crowd workers and 200 were annotated by medical
professionals. After identifying the PIO elements, the annotators were
also asked to sub-divide the PIO elements in more fine-grained entities.
After filtering out abstracts that described non-RCT studies or were missing
data, 4641 abstracts remained. The full list of the fine-grained categories
and the counts for each category in the used development set (10% of the
crowd workers” annotations) can be found in figure 2.1. Along with the
dataset, the authors also provided two baseline models for the task: A
Logistic regression (LR) model and a Conditonal Random Field (CRF). The
authors also created a leaderboard (https://ebm-nlp.herokuapp.com/)
which includes additional models for the task. At the time of writing, those
models are another LR model and a Bidirectional LSTM-CRF network.

Hierarchy chart PIO elements training set

= Population = Intervention = Outcome

Condition, 34110
Mental, 15898

Adverse [\, 1.1, | PaIn,
Physical, 65819 effects, 5383 | 3231 | 3036

Sample size,
6116

Figure 2.1: Hierarchy plot of the PIO sub-categories together with their counts in the develop-
ment set.


https://ebm-nlp.herokuapp.com/

Models

Now we will look at the existing models trained on the task and see what
advantages a transformer model could give over these models.

Logistic regression

Logistic regression [10] models predict the probability of an outcome based
on the feature vector that is given to the model. It does this by multiply-
ing the feature vector by a weight vector and adding a bias term. If the
probability for a class is over a certain threshold, it predicts this class. The
weight vector and bias term are trained through an optimization algorithm
like gradient descent. For handling text (NLP), obtaining feature vectors is
often not trivial and you have to manually generate input values from the
text. Features often include POS (part of speech) tags, n-grams, character
information (e.g. number of special characters or capital letters) and more.

Conditional Random Fields

In a 2001 paper by Lafferty et al. [11] Conditional Random Fields (CRFs)
were introduced. A CRF simply applies logistic regression to sequential
data and makes use of the fact that the predictions of the model depend on
each other. In NLP, this is useful because context carries a lot of information
about the meaning of a word or sentence.

LSTM

LSTM [12] is a type of Recurrent Neural Network (RNN) architecture. Just
like CRFs, RNNs make use of the dependencies between the models” out-
put. A big difference however, between RNNs and CRFs is that RNNs can
find non-linear relations and scale much better to larger contexts. As a
result RNN networks often perform much better than CRFs.

One of the limitations of standard RNN architectures is that long term
dependencies often get lost. LSTMs solve this by having input gates, out-
put gates and forget gates. These gates allow the cells in the network to
keep or drop information from its context. As a result, LSTM can capture
both long term and short term dependencies and outperforms the standard
RNN architectures.

Bidirectional LSTM-CRF

A bidirectional LSTM runs the input both from beginning to end and end
to beginning. Because of this, it can capture both dependencies to the left
in the sequence of input but also to the right.



A Bidirectional LSTM-CREF [13] is simply a Bidirectional LSTM with a CRF
layer on top. This CRF layer makes use of additional features like POS tags
and token-level information (e.g. special characters, capitalization). For
POS tagging and NER tasks, this model seems to outperform the regular
Bidirectional LSTM and LSTM-CRF models by a small margin. However,
this model does require you to manually generate input features for the
CRF layer.

Transformer models

LSTM networks and its variants still come with some limitations. Some of
these limitations are solved by transformer models [14].

The first limitation is that in order to capture the dependencies, input se-
quences have to be processed input by input. As a result, training can not be
done in parallel which increases training time vastly. Transformer models
pass all arguments of the sequence at once so computations can be done in
parallel.

Another limitation in the LSTM network, is that in order to get information
about dependencies that occurred much earlier or much later in the se-
quence, many computations have to be made. During these computations,
information loss can occur. In transformer models you have something
called a self attention layer which has direct access to the dependencies.
By solving these limitations, transformers have been shown to outperform
LSTM networks in many tasks.

For the task of detailed PIO extraction, no transformer had yet been trained.
We believe models for this task can greatly benefit from the improvements
a transformer gives in comparison to the Bidirectional LSTM-CRF model
which is the current best-performing model for this task. That is why we
will now look at an implementation of a transformer model and report on
the results.



Chapter 3

Model

For the task of detailed PIO extraction we use spaCy 3.1’s en_core_web_Ig
pipeline based on RoBERTa with a built-in NER component and customize
this NER component by changing the entities to match the detailed PIO
entities and then fine-tuning the existing NER component on the EBM-NLP
dataset.

The EBM-NLP dataset contains a total of 4641 abstracts with detailed an-
notations for all the sub-categories (figure 2.1). An example of such an
annotated abstract can be found in Appendix A. 4457 of the abstracts were
annotated by selected crowd-workers and 184 abstracts were annotated by
medical professionals. Due to the complexity of the annotation task, the an-
notations of the medical professionals are used as a test set for more reliable
results. This is also in line with the way the models to which we compare
the transformer-based model were evaluated. As a validation set, the first
10% of the training set was set aside.

Results

The accumulated results of the model for the PIO classes can be found
in table 3.1. We compare our results to the baseline models provided in
the original paper and the best-performing models on the leaderboard
(https://ebm-nlp.herokuapp.com/) for this task. We also provide the
results for a naive baseline model where we simply always guess the most
frequently assigned entity from the training set (O: Physical). The individual
scores for each different entity on the transformer model can be found in ta-
ble 3.2. The code, data, step by step instructions and information about the
used hyperparameters can be found on the following GitHub page: (https:
//github.com/Lukevanl/Thesis_PIO_Extraction/tree/master).
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Model Precision | Recall | Fl-score
Most Common Entity 0.06 0.27 0.09
LogReg - Baseline 0.46 0.27 0.34
LogReg - Leaderboard 0.3 0.47 0.36
CREF - Baseline 0.54 0.33 0.41
LSTM-CRF - Leaderboard | 0.64 0.38 0.46
Transformer 0.56 0.50 0.53

Table 3.1: Weighted precision, recall and f1-score of transformer model in comparison to the
leaderboard and a baseline model all evaluated on the same test set.

Entity Precision | Recall | Fl-score
P: Age 64.15 66.58 | 65.34
P: Condition 80.66 2444 | 3751
P: Sample size 77.39 67.79 | 72.27
P: Sex 25.53 75.00 | 38.10
I: Control 65.75 43.44 | 52.32
I: Drug 70.67 65.20 | 67.83
I: Educational 47.01 38.46 | 42.31
I: Other 0.00 0.00 0.00
I: Physical 21.35 51.63 | 30.21
I: Psychological 0.00 0.00 0.00
I: Surgical 21.58 41.04 | 28.29
O: Adverse effects | 53.47 2917 | 37.75
O: Mental 67.20 2597 | 37.46
O: Mortality 67.53 68.42 | 67.97
O: Other 54.57 36.35 | 43.63
O: Pain 71.03 59.38 | 64.68
O: Physical 56.01 63.30 | 59.43

Table 3.2: Precision, recall and f1-score of transformer model on each separate entity evaluated
on the test set

Looking at the results, we see that the model outperforms the existing Lo-
gistic Regression and Bidirectional LSTM-CRF models on the leaderboard
with a difference of 0.17 and 0.07 on the fl-score respectively. We also see
that there seems to be a correlation between the amount of instances for
an entity and the fl-score (figure 3.1). There are some exceptions to this
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rule when the entity is easier to assign. For example, the entities P: Sample
Size and P: Age have a high fl-score despite a low entity count. This can
be explained by the simplicity of assigning these two entities since they are
both often numbers. The correlation of elements with higher entity counts
having higher fl1-scores can be caused by class imbalance and/or by data
saturation not having been achieved.

F1-score of the trained model plotted
against the count for each entity

80,00
P:Sample size
70,00 O:MortSIitv 1:Drug
°
.Dk: :Age
O:Paine < O:Physical
60,00 °
I:Control
50,00
° I:Educational O:0ther
= [ ] .
° J .
$ 40,00 P:S€%.Adv effectsO:Mental B:Condition
a3 o e ° °
w . I:Physical
1:Surgical
30,00
20,00
10,00

1:Psychological

0,00
0,00 10000,00 20000,00 30000,00 40000,00 50000,00 60000,00 70000,00

ther

Entity count in training set

® Population Interventions  ® Outcomes

Figure 3.1: Scatter plot of the F1-score on the test set plotted against the count for each entity
in the training set.
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Chapter 4

Data saturation

In the previous section we showed that there seemed to be a correlation
between the f1-score and the count of an entity in the trained model (figure
3.1). To see whether this correlation was caused by data saturation not hav-
ing been achieved, we have run the model on 20%, 40%, 60%, 80% and 100%
of the training data with the same early stopping conditions as the original
model. The only modification that was made was to the eval_frequency
hyperparameter which determines after how many iterations the model
gets evaluated on the development set. This value was changed with re-
spect to the percentage of the training set to compensate for the decreasing
size. So eval_frequency is 200 for 100% of the training set, 160 for 80% etc.

The weighted precision, recall and fl-score of the model on the test set
for the different training sizes can be seen in figure 4.1. The individual
f1-scores of each entity for the different training set sizes can be found in
figure 4.2. The entities in these figures are sorted on the entity counts in the
training set. We validated the models on the test set since the labels of the
test set are of higher quality and there is no feedback loop going back into
the model so we do not overfit to any of the characteristics of the data in
the the test set.

13
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Figure 4.1: Precision, Recall and F1-score on the test set for models trained on different sizes

for the training set.

Fl-scores of all entity types sorted by decreasing
counts for different training set sizes

Scores

Entity type

Fl-score 20% Fl-score 40% =Fl-score 60% EFl-score 80% ®EF1-score 100%

Figure 4.2: F1-scores for each entity evaluated on the test set trained on different training set
sizes sorted in decreasing order on the count of each entity.

These figures show us that the model still benefits from more data. In figure
4.1 we see an upwards trend for the combined metrics when the training
size increases and in figure 4.2 we can see that in most elements with low
and high entity counts, more data increases the fl-scores. This holds for
the entities that are easier to assign like P: Sample Size and P: Age but also
for the more complex entities like many of the interventions. In conclusion,
the model could benefit substantially from more labeled data.

To determine how new RCT studies should be sampled and annotated,

we first take a closer look at the type of errors the model makes by per-
forming an error analysis. In the error analysis we will look for systematic
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errors our model makes on samples of the development set. We do this
by first comparing the output of the model to the used ground truth using
the models” confusion matrix. Afterwards, we point out problems with the
ground truth and create a ranking of different types of errors which we use
to perform a detailed evaluation of the model by hand to get a better idea
of the type and severity of the errors that are being made.

15



Chapter 5

Error analysis

To know what type of errors the mode makes, we first create the confusion
matrix (figure 5.1) on the development set. Because of the high class im-
balance which is primarily caused by the None class, we take the logarithm
of each number in the confusion matrix to generate the heatmap for the
confusion matrix (figure 5.2).

None |94833 | 1325 | 2034 | 1168 | 464 | 550 | 312 | 391 | 207 | 115 | 127 | 192 | 219 | 143 | 46 | 120 | © 0
IDrug | 1435 | 3642 | 48 0 0 %9 0 0 0 20 0 3 0 0 0 0 0 0
O:Physical | 2204 | 32 |4781 | 96 | 136 | 16 | 150 | 4 0 0 25 1 102 0 11 1 0 0
P:Condiion | 1642 | 13 [ 38 | 1573 | M 4 2 50 | 52 0 0 % | 10 4 6 28 0 0
O:Mental | 527 1 51 5 | 895 | 2 56 2 0 0 0 0 6 8 0 1 0 0
I: Physical | 815 42 23 4 0 695 1 0 o 3 o 92 2 22 0 0 o o
O: Other | 1283 26 44 2 60 24 695 0 o o " 6 3 n 4 0 L] L]
P Age | 78 0 1 8 0 0 o | a3 2 0 0 0 0 0 0 0 0 0
P:S.size | 229 3 L] 5 0 L] 0 4 408 o L] 3 0 0 0 13 L] L]
I: Control | 262 | 92 0 0 0 2 0 0 0o |2 | 0 1 0 7 0 0 0 0
O: Mortality | 102 0 10 0 0 0 12 0 0 0 | sa8 0 a 0 0 0 0 0
I Surgical | 337 | 15 5 29 0 73 0 0 0 0 o 330 | o 0 0 0 0 0
O Adv eff. | 141 o | 107 0 0 0 1 0 0 0 7 0 | 418 0 2 0 0 0
I:Educat. | 618 | 2 7 3 1 8 0 3 0 2 3 2 0 | a3 0 0 0 0
QO Pain | 129 1 22 0 19 o 12 0 0 0 10 o 8 0 235 0 o o
P: Sex 7 0 L] o 0 L] 0 1 3 o L] L] 0 0 0 o3 L] L]

I Psychol 89 13 o 0 0 54 0 0 0 3 o o 0 36 0 0 1
|- Other | 181 1 1 1 0 64 0 0 o o L] 0 12 0 0 L] L]
S - AN A A L

s} o = o] - o =

Figure 5.1: Confusion matrix of the detailed PIO entities for the development set. The entities
are sorted by the entity counts in decreasing order in the development set.

16



40
None AN EEEN
: orug EEEEEEEEEEEEEEEE

0: Physical . ..

P: Condition

||

0: Mental ..
- Physical ..
0 Other .
P Age III

P 5. size

O: Pain

P- Sex .
I: Psychol. ..
I Other .

MNone

EZ3% 3
- B

¢z 2
Q @ U.I

m
o
=
=]
=R
O Mental .- .-. ..-

O: Other

o A

O: Pain
P: Sex

oo

P: 5. size

=
@
=
b=l
<<
o

P: Condition
Q: Mortality

Figure 5.2: Heatmap of the detailed PIO entities where the log is taken for each count in
the development set. The entities are sorted by the entity counts in decreasing order in the
development set.

In the confusion matrices we see that very few mistakes are made where a
token was assigned a P, I or O element but the actual entity was an element
of a different PIO class entirely. Mistakes between the different classes in
the PIO elements are slightly more common but still relatively rare. Instead,
the most common mistakes that are made, are false positives (FPs) and false
negatives (FNs) on the None class. Of the 19684 total errors 17472 (= 89%)
are made on the None class. Of the errors on the None class, 7413 were cases
where the model assigned some PIO class while the None class should have
been assigned and 10059 of the errors were cases where the model assigned
the None class while one of the PIO classes should have been assigned.

After manually inspecting some of the output of the model and the an-
notations we considered to be the ground truth, we noticed that evaluating
on the ground truth does not always give a good indication about the ac-
tual usefulness of the output of the model for its purpose. To show this,
consider the (made up) span annotated with what we consider to be the
ground truth in figure 5.3a. The same span could be annotated using many
different strategies while losing little to no information. For example, in
figure 5.3b and 5.3c we annotate with maximal and minimal spans respec-
tively. For some applications, these maximal or minimal annotations might

17



be considered better. However, we can see that the f1-score is considerably
lower for annotations b and ¢ because we consider annotations a to be the
‘ground truth” which our model evaluates against.

Intravenous | Immunoglobulin I: Drug Therapy I: Drug ( 1I:Drug IVIg 1I: Drug ) I: brug compared to a | placebo I: Control
(a) Ground truth: Precision= 100, Recall = 100, F1-score = 100

Intravenous I: Drug Immunoglobulin I: Drug Therapy I: Drug ( I: Drug IVIg 1I: Drug ) 1I: brug compared to a | placebo I:

(b) Maximal spans: Precision= 77, Recall = 100, F1-score = 87

Intravenous | Immunoglobulin I: brug Therapy (IVIg) compared to a | placebo I: Control injection for -children aged .

(c) Minimal spans: Precision= 100, Recall = 40, F1-score = 57

Figure 5.3: Span of text annotated with the ground truth (a), maximum spans (b) and minimum
spans (c) together with the precision recall and f1 scores of the annotations evaluated against
the ground truth (a).

To get a better overview of the type of mistakes the model makes, we first
subdivide the types of errors into 10 classes which are ranked on what we,
after a discussion with a medical professional, have determined to be from
most to least critical:

1. Annotation completely missing causing the loss of critical information
Annotation was too short causing the loss of critical information

Entity assigned where none should have been

= w N

Entity assigned where another entity should have been of a different
PIO element

5L

Annotation was too long causing the inclusion of irrelevant tokens

6. Annotation completely missing causing the loss of less critical infor-
mation

7. Entity assigned where another entity should have been of the same
PIO element

8. Annotation was too short causing the loss of less critical information

9. Annotation was too long causing the inclusion of less important to-
kens

10. Repetition of entity missed

18



In general we consider false negatives (FN) to be more critical than false
positives (FP) because from a clinical perspective, it is often better to include
non-important information than to miss important information.

We also make a distinction between information that we consider to be
critical like the measured outcomes (e.g. level of stress) and less critical
information like the way the outcome was measured (e.g. questionnaire).
We give repetitions a low rank (type 10) if it was assigned at some stage
but missed later on. We do this, because very little information is gained
if it is annotated a second or third time. If all the occurrences of a certain
P, I or O entity were missed they are all assigned a type 1 error. If an error
can be assigned to multiple types, we always assign the lowest type of error.

Now we evaluate the output of the model by hand using the ranked types
of errors described above. The evaluation process is separated into two
rounds:

1. Sample the 10 abstracts from the development set that have a mini-
mum of 100 words, a maximum of 500 words and the highest ratio of
FNs for the PIO elements. Now we evaluate the resulting 10 abstracts
by hand.

2. Randomly sample two abstracts for each of the intervention classes
(except for Control) which have that intervention as main intervention.
We again filter out abstracts with fewer than a 100 words or more than
500 words. Wee use the gained insights from round 1 and a discussion
with a medical professional to annotate the resulting 12 abstracts.

Round 1

For round 1, we have decided to sample based on the ratio of FNs of all the
PIO classes (including the None class) in the abstracts. We sample on the
ratio of FNs because FNs are a type of error that is common and we also
consider this type of error to be more critical than FPs. At first this only
returned very short abstracts. Therefore, we removed abstracts with fewer
than a 100 words (the average length of an abstract is about 271 words).
We also removed abstracts with more than 500 words to make the sample
more representative. During the evaluation process we keep track of the
following information:

e The number of errors of each type in each abstract for every PIO
element.

e The subject of each abstract. Most sampled RCT studies in the EBM-
NLP dataset were either about cardiovascular diseases, cancer or

19



autism. We keep track of the subject to see whether the sample was
representative.

e The main intervention class of each abstract.
e Common mistakes and other abnormalities found during the evalua-
tion process.
Results and discussion round 1

The results of the types of errors in round 1 can be found in figure 5.4 and
the subjects and main interventions can be found in figure 5.5 and 5.6. All
the individual evaluations, the subjects, main interventions and the full
texts of all sampled abstracts of round 1 can be found on GitHub https:
//github.com/Lukevanl /Thesis_PIO_Extraction/tree/master/roundl.

Stacked counts of each type of error in round 1
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Figure 5.4: Stacked bar chart of counts for each type of error for all PIO elements for the
abstracts of round 1.
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Figure 5.5: Counts main interventions round 1.  Figure 5.6: Counts subjects round 1.

Figure 5.4 tells us that severe type 1 errors are still very common in the
sampled abstracts. Type 10 errors (missed repetitions) are also common
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especially in interventions where abbreviations and subsequent occurrences
of interventions often get missed. In figure 5.5 we see that the sampled
abstracts mostly contain types of interventions which are less common in
the dataset (see figure 2.1) like Psychological and Educational. Figure 5.6
shows us that the sampled abstracts for round 1 have subjects that are often
not one of the three common subjects (autism, cancer and cardiovascular
diseases). The full dataset was sampled with an emphasis on those three
subjects with the goal of sampling a high amount of common conditions.
Since the 10 sampled abstracts were selected on the highest ratio of false
negatives (FN), the poor performance on these abstracts could be caused by
the model not properly generalizing to uncommon subjects and/or types of
interventions.

Common mistakes and abnormalities

During the evaluation process we also kept track of common mistakes and
abnormalities in the output of the model and looked for possible causes.
To classify whether valuable information was lost with those mistakes, we
used the insights from a medical professional through a discussion. It is
also important to note that whether something is important to annotate
depends on the task the PIO elements are used for and thus it is hard to
classify something as a ‘valuable’ mistake. So we try to look for mistakes
that would be considered valuable for a wide range of possible applications
for which the PIO elements could be used.

Population

In the population class, most errors were made on the P: Condition class
because it is by far the most common class and because of the difficulty of
this entity compared to the other population entities. This extra difficulty
arises due to the fact that P: Sample size, P: Age and P: Sex all have very
limited domains (e.g. only numbers or only one of the sexes) while the P:
Condition entity can comprise a much wider variety of values.

There also was a surprising amount of errors in the P: Sample size class.
Sample sizes of the RCT studies regularly occur in the format (n = x) or
(N = x) where x is the sample size. N describes the sample size of the entire
population while n describes the sample size of the subgroups. Sample
sizes in these formats were often missed by the model and only sometimes
annotated despite having a very standard structure which should be easy
for the model to detect. If we look at the crowd annotations of the devel-
opment set, we see that these sample sizes were annotated very irregularly.
Sometimes all the samples sizes in these formats were annotated, sometimes
only the samples sizes of the entire population and sometimes neither were
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annotated. The model seems to copy this irregular behaviour.

The sample sizes of the subgroups do not carry much information for physi-
cians. They do however, provide information that can be used for assessing
the risk of bias in the RCT study. The sample size of the entire population
on the other hand, provides important information for physicians because
a larger sample size allows for a more precise estimate of the results for the
intervention applied in the RCT study. And thus, if a sample size is larger,
a RCT study carries more value because it has a smaller margin of error.

We suggest, when annotating additional data, to provide clear instruc-
tions for the annotators on which of these sample sizes to annotate in order
to increase the consistency of the model’s output for these instances. For
many tasks, solely identifying the sample size of the entire population is
sufficient.

Interventions

The most errors were made on the intervention class in the samples ab-
stracts. Type 1, type 2 and type 10 errors were all common. Common
mistakes include missing abbreviations describing interventions, missing
subsequent occurrences of the same intervention and also missing a single
intervention at every occurrence in the text causing a lot of errors for the
same one mistake. The wrong intervention class also gets assigned quite
often (type 7 error). On top of that, information about how interventions
were applied (e.g. intravenously) often gets included in the annotations.
In the instructions, the annotators are instructed to not annotate this in-
formation. However, in the annotations it was quite regularly included
causing the model to replicate this behaviour. In the sampled abstracts,
the intervention annotations were often the most difficult class to evaluate
because of the high complexity of the class and the medical expertise that
is sometimes required to properly assign the correct type of intervention.
This complexity can also be the reason why the model frequently makes
mistakes on these classes in the sampled abstracts.

Besides that, types of interventions that were less common in the dataset
(e.g. Psychological and Educational) were overrepresented in the sample
while the two most common classes (Drug and Psychical), despite account-
ing for about two-thirds of the intervention class, only appeared once as
main intervention in the ten sampled abstracts. The subjects of the ab-
stracts also mostly included subjects which were not in the three common
subjects (autism, cancer and cardiovascular diseases) on which the dataset
was primarily sampled. So the large number of errors in the sample could
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be caused by a lack of labeled data for the uncommon interventions, poor
generalization to subjects outside of the sampled subjects or the model is
not able to fully capture the high complexity of the task.

Outcomes

Considering the Outcome classes are the most common classes by quite a
large margin, the model seems to perform quite well on this PIO element.
The model does however have the highest amount of type 1 errors on this
element. These errors mainly come from the same outcomes being missed
in all occurrences of the text or long spans of text describing an outcome
that were missed in its entirety which amount to a large number of errors
for a single missed span.

Type 8 errors are also quite common. For these errors the main outcome is
captured but the span was too short. As a result the model misses infor-
mation that would be considered less critical for most tasks. For example,
in the span adherence to prescribed medicine the word adherence describes
one of the outcomes which would be considered critical information and
the remainder of the sentence describes for what event the outcome was
measured. This information might be relevant for some tasks but would in
general not be considered a critical error.

In the sampled abstracts, there was no clear pattern in the errors of the
Outcome class nor do we see any systematic errors that could easily be
solved.

Round 2

For round 2 we look at the differences in errors between abstracts with main
interventions that have a high entity count (e.g Drug) and interventions that
have a low entity count (e.g Psychological). We do this, by randomly sam-
pling for each intervention class, two abstracts which has that intervention
as the main intervention (except for Control since it is never the main inter-
vention). Then after evaluating the abstracts by hand just like in round 1,
we compare the types of mistakes that are being made between the differ-
ent abstracts. Again, we filter out abstracts with fewer than a 100 words or
more than 500 words to only consider abstracts that are representative of
the dataset.

We also excluded the abstracts that were already sampled in round 1. This
does introduce a bias especially towards the uncommon interventions since
most abstracts in round 1 had those intervention as main intervention and
thus, some of the worst performing abstracts of those interventions are fil-
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tered out.

As a heuristic for the initial sampling, we considered the most common type
of intervention to be the main intervention. After the initial sampling, four
abstracts were resampled because they either described non-RCT studies
or the most frequent assigned intervention was not the actual main inter-
vention.

In the evaluation process of round 2 we use the insights from round 1
about what should be classified as a mistake to evaluate the newly sam-
pled abstracts more accurately. We keep track of the same information
as in round 1 but now, we also keep track of the total number of correct
entities for each PIO element so that we can calculate the precision, recall
and fl-scores and compare the results of our evaluation against the crowd
annotations.

Results and discussion round 2

All the individual evaluations, the subjects, main interventions and the
full texts of all final sampled abstracts of round 2 can be found on GitHub
(https://github.com/Lukevanl /Thesis_PIO_Extraction/tree/master/
round2)

The results of the types of errors in round 2 can be found in figure 5.7.
The evaluation metrics for each PIO class can be found in figure 5.8.

Stacked counts of each type of error in round 2
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Figure 5.7: Stacked bar chart of counts for each type of error for all PIO elements for all the
abstracts of round 2 combined.
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Evaluation metrics of the PIO elements
from the error analysis
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Figure 5.8: Evaluation metrics for the P, | and O elements resulting from the error analysis.

Figure 5.7 tells us that FNs (Type 1, 2, 6, 8 and 10 errors) are far more com-
mon than FPs (Type 3, 4, 5, 7 and 9 errors) in the sampled abstracts for all
the PIO elements. Especially type 1 and 10 errors are still very common.
As a consequence, the recall scores are considerably lower than the preci-
sion scores for all three PIO elements as illustrated in figure 5.8. The most
mistakes were made on the Intervention class despite only being the sec-
ond most frequent class after Outcome. Very few mistakes are made on the
Population class. Especially the precision score (=0,979) for the population
class is very high.

In figure 5.9 we can see the types of errors for each abstract grouped by their
main intervention. Here we see that most types of errors seem to appear
consistently for all the different types of interventions and the performance
only decreases slightly for interventions with lower entity counts. Only
type 7 errors (correct PIO element but incorrect fine-grained element) seem
to mostly occur in types of interventions with low entity counts which can
be explained by class imbalance because the model is more likely to guess
frequent classes since it is more often correct. This results in a larger number
of type 7 errors for the interventions with a low count. We also see that the
Other intervention type performs quite poorly especially on the outcomes.
Because of the small sample however, this can also quite possibly be caused
by chance.
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In figure 5.10 we can see the fl-scores for each abstract grouped by their
main intervention for each separate PIO element. This figure again shows
that the model seems to generalize quite well to abstracts with uncommon
types of interventions. Only the fl-score of the Intervention class drops
drastically for the Other and Psychological classes. However, this can again
be explained by class imbalance because both of these classes have very low

counts (see figure 2.1).
o 5 - o
'_%
£
o
o

F1-score
-

P I

0,9
0,8
0,7
0,6
04
0,3
0,2
0,1
0
a — o o o — o a — o

Drug Physical Educational Surgical Other Psychological
Main intervention

Combined I

O I
Combined I
Combined N

Combined
Combined

Figure 5.10: Number of each type of error for each subject separated by the PIO classes.

We also compared the evaluation metrics of our own evaluation against
the evaluation on the ground truth. In figure 5.11 and 5.12 we can see the
precision and recall scores for each abstract and the combined scores.
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compared to dataset annotations. compared to dataset annotations.

Figures 5.11 and 5.12 show that both the precision and recall of the evalu-
ation against the crowd annotations is lower than the evaluation done by
hand on the error analysis. This means that the crowd annotations include
a large amount of annotations that we deem to be FPs which result in lower
precision scores for the model but also misses information that we consider
to be valuable resulting in a higher number of FNs and thus lower recall
scores for the model. As a result, the model will be likely to partially adopt
this annotation strategy and replicate those errors.

Conclusions round 1 and round 2

In round 1 we saw that there seemed to be very few systematic errors.
The systematic errors that did occur were most likely caused by irregular
annotations. These irregularities can be reduced by providing additional
instructions for the crowd workers or aggregating the results over a higher
amount of workers. We also saw that the model seemed to perform worse
on abstracts with uncommon subjects and main interventions.

In round 2 we looked at the differences between more common types of
interventions and less common ones. By comparing the different types
of errors we saw little difference between the different interventions. The
performance only seemed to decrease slightly for abstracts which had in-
terventions with lower counts. Only the performance on the intervention
class decreased drastically due to class imbalance on interventions with
lower entity counts. This especially affected the number of type 7 errors. To
reduce this class imbalance, one may try to sample additional abstracts on
subjects that have these uncommon types of interventions. We also saw that
the evaluations against the ground truth resulted in much lower precision
and recall scores than the evaluation of our error analysis showing some of
the inaccuracies of the crowd annotations.
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Chapter 6

Conclusion

In this research, we looked at the research question “How can spans of text
containing detailed PIO elements be extracted from RCT studies to speed up sys-
tematic reviews and facilitate Evidence-Based Medicine (EBM)?". Before we
could answer this question we looked at four sub-questions.

First, we looked at the sub-question “How well do transformer-based models
perform on entity extraction of detailed PIO values on RCT studies in compari-
son to earlier attempts?”. To answer this question, we trained a transformer
model and saw the potential of using a transformer model on the task of
detailed PIO extraction with the model outperforming the existing models
by a large margin. We also explored the data saturation and saw that the
model still seemed to benefit from additional data.

We then explored how useful the output of the model is to medical pro-
fessionals by answering the sub-question “To what extent does the accuracy
measurement of the model reflect the usefulness of the output to medical profes-
sionals?”. Here we saw that the used metrics do not always give a good
representation of the usefulness of the output.

Next, we performed an error analysis with our own evaluation method to
better capture the usefulness of the output and to answer the sub-questions
“How to sample additional RCT abstracts for annotation to improve the classi-
fier?” and “In what way can data be annotated more effectively to improve the
classifier?” by looking for improvements in the annotation and sampling
process. We highlighted systematic errors, common mistakes and looked
at the type and severity of the mistakes that were made. We also analysed
the differences between interventions with high entity count and low entity
count and saw that the model seemed to generalize quite well. Only the
score of the intervention classes reduced drastically due to class imbalance.
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With these answers to our sub-questions we answer our main research
question “How can spans of text containing detailed PIO elements be extracted
from RCT studies to speed up systematic reviews and facilitate Evidence-Based
Medicine (EBM)?" by saying that transformer models present much poten-
tial for extracting detailed PIO elements out of RCT studies. We also saw
that the classifier could still improve even further from additional data and
from more consistent annotations to reduce systematic errors and common
mistakes. However, in the error analysis we also saw that there were still a
large number of critical errors. As aresult, valuable information gets missed
and thus, the model is not consistent enough to fully automate systematic
reviews and some form of human verification is still required.

In future research one could explore whether pre-trained models on sci-
entific texts like sciBERT provide better results than the currently used
spacy pipeline based on RoBERTa. One could also explore how well the
model generalizes to abstracts that have subjects that were not in the three
subjects (cancer, cardiovascular diseases, autism) on which the dataset was
primarily sampled.

29



Bibliography

[1] P. Fontelo and F. Liu, “A review of recent publication trends from top
publishing countries,” Systematic Reviews 2018 7:1, vol. 7, pp. 1-9, 9
2018.

[2] E.Lehman,J. DeYoung, R. Barzilay, and B. C. Wallace, “Inferring which
medical treatments work from reports of clinical trials,” in Proceedings
of the North American Chapter of the Association for Computational Lin-
guistics (NAACL), pp. 3705-3717, 2019.

[3] J. DeYoung, E. Lehman, B. Nye, I. J. Marshall, and B. C. Wallace,
“Evidence inference 2.0: More data, better models,” 2020.

[4] L. J. Marshall, J. Kuiper, E. Banner, and B. C. Wallace, “Automating
biomedical evidence synthesis: RobotReviewer,” Proceedings of the Con-
ference of the Association for Computational Linguistics (ACL), vol. 2017,
pp. 7-12, July 2017.

[5] I.J. Marshall, B. Nye, J. Kuiper, A. Noel-Storr, R. Marshall, R. Maclean,
F. Soboczenski, A. Nenkova, J. Thomas, and B. C. Wallace, “Trial-
streamer: A living, automatically updated database of clinical trial
reports,” Journal of the American Medical Informatics Association, vol. 27,
pp- 1903-1912, 12 2020.

[6] D.Jinand P.Szolovits, “PICO element detection in medical text vialong
short-term memory neural networks,” in Proceedings of the BioNLP 2018
workshop, (Melbourne, Australia), pp. 67-75, Association for Compu-
tational Linguistics, July 2018.

[7] L. Schmidt, J. Weeds, and J. P. T. Higgins, “Data mining in clinical trial
text: Transformers for classification and question answering tasks,”
2020.

[8] B.C.Wallace, J. Kuiper, A. Sharma, M. Zhu, and I. ]. Marshall, “Extract-
ing pico sentences from clinical trial reports using supervised distant
supervision,” J. Mach. Learn. Res., vol. 17, p. 4572-4596, jan 2016.

30



[9] B. Nye, J. J. Li, R. Patel, Y. Yang, I. J]. Marshall, A. Nenkova, and
B. C. Wallace, “A corpus with multi-level annotations of patients, in-
terventions and outcomes to support language processing for medical
literature,” ACL 2018 - 56th Annual Meeting of the Association for Com-
putational Linguistics, Proceedings of the Conference (Long Papers), vol. 1,
pp- 197-207, 6 2018.

[10] D.R. Cox, “The regression analysis of binary sequences,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 20, no. 2, pp. 215-
232, 1958.

[11] J. Lafferty, A. Mccallum, E. C. N. Pereira, and F. Pereira, “Conditional
random fields: Probabilistic models for segmenting and labeling se-
quence data,” pp. 282-289, 2001.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, p. 1735-1780, nov 1997.

[13] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF models for
sequence tagging,” 2015.

[14] A.Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing Sys-
tems, NIPS"17, (Red Hook, NY, USA), p. 6000-6010, Curran Associates
Inc., 2017.

31



Appendix A

Appendix

Local injection of | bupivacaine I:brug after rubber band ligation of _: prospective, randomized study.

PURPOSE The aim of this study was to determine if local injection of = bupivacaine I:brug after hemorrhoidal banding causes a _ - - -
e o e Ovan  of o ssocied o Symelons o o

METHODS After _ _ patients were randomly assigned to receive a ' local I: Drug injection I: Drug of I:Drug bupivacaine I: Drug with
I: Drug 1:200,000 I: Drug epinephrine 1:brug , an injection I:Drug of 1:Drug normal I: Drug saline 1:brug , Or - _ - -
superior to each band. -was graded by the patient and by the study nurse within 30 minutes, and any _ _were recorded. At
intervals 6, 24, and 48 hours postbanding, the patient recorded - - _ - _ - - _
- _ _ while at home were recorded.

patients studied, 42 received = bupivacaine I Drug injection, 42 received _ - injection, and 31 received -

. In patients receiving | bupivacaine 1:prug compared with no injection, within 30 minutes postbanding there was a significant _ - -
graded by the patient (P = 0.000002) and by the nurse (P = 0.000005) and a significant reduction in _ _ _ (P =0.01)
and shaking (P = 0.008). However, in the = bupivacaine 1:brug group compared with the other two groups, at the intervals of 6, 24, and 48 hours postbanding there was no sustained reduction in the
In the week after banding, there was no difference between groups in symptoms of _ - _ -

ol Ui el lenion sl oyl 01 0 g 0Pl ool

COMNCLUSIONS | Bupivacaine I:Dbrug injection may be useful for reducing pain and associated symptoms long encugh to tolerate a trip home from the outpatient department but does not show a

RESULTS Of

sustained effect.

Figure A.1: RCT abstract annotated with detailed annotations from the EBM-NLP dataset.



Appendix B

Appendix

README.md of the GitHub page:
https://github.com/Lukevanl /Thesis_PIO_Extraction/tree/master

B.1 Thesis PIO element extraction on RCT studies

B.1.1 Repository content

In this repository you can find the project described in the thesis (The-
sis_v1.pdf). We provide the following information:

e Replication instructions for the model described in the thesis (see
replication instructions below)

e Code with which the scores for the naive baseline was calculated
(naivebaseline.py)

e Brief EDA on the dataset and the counts of each element in the training
set (eda.py and picocounts.xlsx)

e Results of round 1 and round 2 of the error analysis as described in
the thesis (read README.md in error_analysis folder for more infor-
mation)

e Results of exploring the data saturation (saturation.xlsx)

To replicate the data saturation numbers simply take the first 20%, 40%,
60%, 80% and 100% of the dataset and run the model with this data on
the same config file with just one modification: change the eval_frequency
hyperparameter inside the config.cfg file with respect to the percentage of
the training set to compensate for the decreasing size. So, eval_frequency
is 200 for 100% of the training set, 160 for 80% etc.

B.1.2 Dependencies:
e python 3.8.
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e spaCy version3.1.3 (pip install spacy==3.1.3) + en_core_web_lg pipeline
(python -m spacy download encoreweb_lg).

numpy version 1.18.5 (pip install numpy==1.18.5).

pandas version 1.0.5 (pip install pandas==1.0.5).

matplotlib version 3.2.2 (pip install matplotlib==3.2.2).

seaborn version 0.10.1 (pip install seaborn==0.10.1).

scikitlearn version 0.23.1 (pip install scikit-learn==0.23.1).

B.1.3 Table 1: All entities with their label inside the transformed
dataset.

P = Population, I = Intervention, O = Qutcome

| © | None |
| 1 | P: Age |
| 2 | P: Sex |
| 3 | P: Sample Size |
| 4 | P: Condition |
| 5 | I: Surgical |
| 6 | I: Physical |
| 7 | I: Drug |
| 8 | I: Educational |
| 9 | I: Psychological |
| 10 | I: Other |
| 11 | I: Control |
| 12 | 0: Physical |
| 13 | 0: Pain |
| 14 | O0: Mortality |
| 15 | O0: Adverse Effects |
| 16 | O0: Mental |
| 17 | 0: Other |
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B.2 Replication instructions main model:

B.2.1 1. Clone the repository

B.2.2 2. Unzip the’ebm_nlp_2 00.tar.gz’ file so you get the ebm_nlp_2 00
folder in the root directory.

B.2.3 3. Execute the prepare.sh script which prepares the data
by running the following files (could take up to a couple
minutes depending on your hardware):

loaddata.py:

This file first loads all the .tokens files which hold the tokenized texts and all
the .txt files which hold the full texts. The tokens and documents are stored
in seperate arrays together with the document ID for each document. Now
all the individual annotations are read into arrays. The dataset provides
individual annotations for every PIO element but since we want to have a
dataset where all entities are combined, we merge the annotations. We do
this by first making all the assigned labels distinct (see table 1) so that we
can uniquely identify each of the 17 elements (18 if you count the ‘None’
class).

reformdata.py:

Here we use the loaded data from the last file to apply some transformations.
Firstly, the model requires the annotations to provide the character indices
of the beginning and the end of all the annotated tokens instead of the
text of the tokens. Therefore, from the token-level annotations we generate
character-level annotations instead. Next, we match the annotations with
the corresponding texts and tokens using the document ID’s we stored.
Lastly, we map the numerical labels to the entity names enumerated in
table 1 so that the labels are more intuitive.

ner_pico.py:

After the previous steps the data is in the following format: [("None’, "Ef-
fect’), (‘None’, 'of’), ('I: Drug’, “aspirin’), ('None’, ‘for’), ('O: Outcome’,
"'headaches’)] Where the left element of each tuple is the entity and the
right element the token. We want to transform it into the following for-
mat: ['Effect of aspirin for headaches’, {entities: [(8, 14, 'I: Drug’), (18, 26,
‘O: Outcome’)]}] Here we have the full text on the left and all the entities
(excluding the "None’ class) with the character indices in a dictionary. This
was the original format for spacy version 2.x and can easily be converted
to the .spacy format used in spaCy 3.x. To get this result we first must
change the tokens by the character indices we generated in reformdata.py
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and filter out the ‘None’ instances. Now we make a tuple of the full text
and the dictionary containing the entities. Out of this format we can make
instances of spaCy’s ‘Doc” objects. All these ‘Doc” objects are stored in a
DocBin object. This DocBin gets stored in the .spacy format and now we
are ready to train our model with this .spacy file.

B.2.4 4. Execute the model.sh script inside the spacy_acc folder
which trains and evaluates the model and saves the model
in the output folder.

For training the model, the hyperparameters described in the config.cfg file
are used. The output can be seen in the file scores.txt after running the
script. Running this script could take up to a couple hours. If you have
a GPU available, you can add —gpu-id = 0 at the end of the spacy train
command to speed it up considerably.
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