
Bachelor thesis
Computing Science

Radboud University

Combining Knowledge From Pre-trained
Networks And Weight Agnosticism For

Evolving Transferable Models

Author:
Nadezhda Dobreva
s1033115

First supervisor/assessor:
Dr. Prof. Elena Marchiori

elena.marchiori@ru.nl

Second assessor:
Dr. Tom Claassen

tomc@cs.ru.nl

March 26, 2022



Abstract

Gaier and Ha [11] introduced the evolution of weight-agnostic neural networks (WANNs)
which can perform a task without the need for weight training. They also suggested the
possibility of evolving a WANN with high generalization ability across multiple domains. In
this thesis we determine whether the baseline WANN evolved as a classifier of handwritten
digits is already capable of performing more than one task. Furthermore, we propose a new
approach based on evolutionary algorithms that combines the original WANN method with
the knowledge of pre-trained networks to achieve higher generalizability. Our algorithm starts
from a pre-trained model, keeping only the sign of its weights, and evolves neural networks by
repeatedly pruning them. To ensure the increased performance on multiple tasks, the fitness
measure is calculated using joint evaluation.

We report a boost in generalization capability over multiple tasks: The accuracy on a clas-
sification task the original model was not trained on increases more than 3 times. However,
additional techniques (such as fine-tuning) are required to achieve high accuracy on more
than one task. The results indicate that our method produces networks that are significantly
better than the baseline WANN but still not good enough for performing multiple tasks.
Moreover, we conduct an ablation study to investigate the contribution of our algorithm’s
components. It shows that weight agnosticism and joint evaluation contribute to maintaining
a balance between the performances on the tasks. The compression achieved of our resulting
model also suggests the possibility of using our algorithm as a pruning technique.

Keywords: Machine Learning · Genetic Evolution · Weight Agnosticism · Network Pruning
· Generalization Ability



Contents

1 Introduction 3

2 Preliminaries 5
2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Basic Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Neural Architecture Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Network Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Evolving NNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Pruning NNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Related Work 10
3.1 Weight-Agnostic Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Network Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 GAs for Neural Network Pruning . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Standard Pruning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Multi-task and Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5.1 Multi-task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Generalizability of WANNs 14
4.1 WANN Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 WANN for Handwritten Digit Classification . . . . . . . . . . . . . . . . . . . 14
4.3 WANNs With Joint Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 The PADAWANN 17
5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 Network Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.2 Weight Agnosticism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.3 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.4 Creating The PADAWANN . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Preliminary Experiment Information . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.1 Initial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.3 Sign of the Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1



5.2.4 Feed-forward Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 PADAWANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.2 PADAWANN vs Pre-trained Networks . . . . . . . . . . . . . . . . . . 23
5.3.3 PADAWANN vs WANN . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.4 Generalization Over Unseen Tasks . . . . . . . . . . . . . . . . . . . . 26

5.4 Three-task PADAWANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5 10Letters-Net as Initial Network . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Ablation Study 31
6.1 Hyperparameter Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Weight Agnosticism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Joint Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3.1 Fitness Based Only on MNIST Accuracy . . . . . . . . . . . . . . . . 34
6.3.2 Optimized Mapping Between Domains . . . . . . . . . . . . . . . . . . 35

6.4 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Discussion 38
7.1 Sign of Weight Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 General vs Task-specific Structures . . . . . . . . . . . . . . . . . . . . . . . . 39
7.4 Weight Agnosticism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.5 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.6 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Conclusions 42

A Experiment Details 43
A.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B Additional Figures 46
B.1 PADAWANN Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.2 Discarding the Signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.3 Optimized Domain Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.4 3D-PADAWANN Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.5 Non-convolutional Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B.6 MNIST-Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.7 Without Weight Agnosticism . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.8 PADAWANN Evolved From 10Letters-Net . . . . . . . . . . . . . . . . . . . . 53
B.9 Hyperparameter Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2



Chapter 1

Introduction

Neural Networks (NNs) find applications in a myriad of problems and fields such as image
classification, natural language processing, content generation, etc. However, training the
weights and achieving the optimal model for a task is a very power-, time- and memory-
consuming process.

In their research, Gaier and Ha [11] evolve weight-agnostic neural networks (WANNs) in
which the architecture, not the weights, encodes the information needed for performing a
task. They use genetic evolution to search for the optimal structure by adding or removing
neurons and connections. The networks are evaluated by assigning a shared weight value to
the edges and measuring the accuracy. The research shows a WANN classifier that has 91%
accuracy on the MNIST dataset.

The approach in [11] avoids the expensive weight-training process, significantly lowers the
space required to store a network and results in a model with a strong inductive bias that is
easy to fine-tune into even better performance by e.g. using transfer learning. An alternative
method to overcome the aforementioned issues is using the knowledge from a pre-trained neu-
ral network. For image classification tasks in particular, many neural network architectures
pre-trained on datasets such as ImageNet are publicly available and used in practice.

Gaier and Ha suggest the possibility of evolving a WANN in a way that enables using it for a
multitude of tasks. This is the starting point of our research. Although related to multi-task
learning, our goal is to explore whether weight-agnostic networks are more generalizable than
models obtained by a standard training procedure, and how to improve the baseline WANN.

Firstly, we investigate whether WANNs generalize better to related domains than pre-trained
neural networks. Specifically, we are interested if a WANN evolved for classifying the MNIST
digits has a higher accuracy on a subset of the EMNIST Letters dataset than a neural network
that was trained on MNIST. Therefore, we compare MNIST WANN achieved by [11] and a
simple model pre-trained for MNIST classification. Moreover, we evolve another WANN for
classifying both MNIST and 10 classes of EMNIST Letters to gauge whether joint evaluation
helps increase the WANN’s generalizability.

Next, we explore whether combining the WANN approach with the use of pre-trained neural
networks is a more effective method for evolving a WANN than the original one. Thus, we

3



propose reversing the algorithm: Start from a pre-trained network and, retaining only infor-
mation on the sign of its weights, search for a “good” sub-network using a genetic algorithm
(GA) that prunes the task-specific parts of its structure. The fitness of the GA evaluates the
performance of a network in a weight-agnostic way by jointly measuring its accuracy on two
classification tasks (MNIST and 10 classes of EMNIST Letters). The resulting network we
call Pruning-Attained Domain- And Weight-Agnostic Neural Network (PADAWANN).

Finally, since our proposed algorithm is related to network compression via pruning, we also
compare its performance with standard pruning techniques.

We perform an extensive set of experiments and comparative analysis on WANN, WANN
with joint task evaluation, PADAWANN and pruning strategies. Furthermore, an ablation
study on PADAWANN is conducted to assess the added value of each of its components. Our
results can be summarized as follows:

• Both the WANN model evolved using MNIST and the one evolved using joint evaluation
do not generalize well to more than one task: They have high accuracy on one dataset
and random guessing level accuracy on the other. This indicates that weight-agnostic
NNs do not directly generalize to related (as considered by us) tasks.

• Our PADAWANN has higher performance than WANN on both datasets, showing that
combining pre-trained networks and weight-agnostic evolution is beneficial. However,
this approach also does not produce highly generalizable NNs. Furthermore, that gen-
eralizability extends only to the tasks used in the evolution of the model.

• PADAWANN has 3.3x higher accuracy on the 10-letter data than the NN pre-trained on
MNIST and lower accuracy on MNIST. But when the fitness consideres only the accu-
racy on MNIST, PADAWANN almost matches the pre-trained network’s performance.

• The model pre-trained on MNIST also performs better on MNIST than WANN and
models obtained using network pruning. However, WANN, PADAWANN and the mod-
els created via pruning are much smaller than the pre-trained network. Note that
WANN does not use information about the pre-trained model since it grows an archi-
tecture starting from a very small one.

• Although PADAWANN’s accuracy on MNIST is 5% lower than models obtained by L1-
norm pruning, it is 13% higher than the MNIST accuracy of randomly pruned models.

Our results indicate that the ability to perform multiple tasks of weight-agnostic networks is
not achievable using the baseline approach [11]. We show an improvement in generalization
capability by combining weight agnosticism with knowledge from pre-trained networks which
scales well when more than two tasks are used. However, even when data from multiple
tasks is used to guide the search, finding an NN architecture with high generalization ability
remains a challenging task. It is important to note that our conclusions are within the specific
proof of concept experiment using MNIST and a subset of EMNIST Letters.

The rest of this paper is organized as follows: First, in Chapter 2 we introduce the core
concepts and theory that we build on in this thesis. Chapter 3 shows what methods other
researchers have already tried and tested. Chapters 4 through 6 are dedicated to the exper-
iments we conduct and their results. Lastly, a discussion of our findings and directions for
further work are presented in Chapter 7, and our conclusions are summarized in Chapter 8.

4



Chapter 2

Preliminaries

In this chapter we introduce the fundamental concepts and terminology this thesis works with
and builds on. We focus on Neural Networks (NNs), network pruning, network architecture
search (NAS) and genetic algorithms (GAs).

2.1 Neural Networks

Artificial Neural Networks (ANNs, or simply NNs) are computer systems inspired by biological
neural networks, and more specifically by the way neurons in the brain receive, process and
transmit signals to each other via their synapses. NNs mimic this behaviour using nodes
connected by edges. The transformation happening at each artificial neuron is dictated by
an activation function which defines how the weighted sum of the inputs is turned into an
output, and helps the network learn complex patterns. The artificial neurons are usually
aggregated into multiple levels. When that is the case, the network is called a Deep Neural
Network.

2.1.1 Basic Functionality

The input neurons in the first layer receive the “raw” input signal. They process and possibly
transform it and then send it to the neurons of the next layer, which also process and pass
on the signal. This procedure repeats until it reaches the last layer, where it is transformed
one last time by the activation functions of the output neurons that generate the NN’s result.
The weight value assigned to an edge defines how important a connection is. Thus, while
the signal is being transmitted between neurons, those weights can increase or decrease its
strength. In other words, the weight values encode most of the information needed for the
network to perform its task. The structure of the network also contributes to its performance,
but we will go into more details on this later.

This process of taking in an external input, processing it, and producing output is called
forward propagation. Most often training an NN consists of letting the network do the task
in question, evaluating its performance, and then performing the so called back propagation.
This operation involves going backwards from the output layer towards the input layer and
adjusting the weights of the edges according to the calculated error information. These few

5



steps are repeated until the error is minimal. A set of training data is used for learning the
best values of the weights, while the evaluation is done on a previously unseen test set.

One measure of the NN’s performance is accuracy – the portion of correctly classified samples.
We can compare the performance of two classifiers by applying a test of significance. The
statistical McNemar test [28] is commonly used for this purpose [9, 29]. The p-value is
calculated based on the number of samples one classifier got wrong and the other got right.
If p < 0.05 the idea of the two models having equal performance is rejected, making them
significantly different.

An example network is presented in Figure 2.1. Its layers are fully-connected meaning that
every node from one layer is connected to every node from the next. This is a characteristic
of its topology. A neural network’s topology refers to the way its neurons are connected and
it is crucial for the network’s performance. “Structure” and “architecture” are often used as
synonyms for topology.

Figure 2.1: The structure of a simple deep neural network for classification.

Depending on their intended use, there are different types of neural networks. A classifier is
a model whose task is to take a sample and identify which category, out of a set of possible
ones, it belongs to. For instance, an NN which takes in a picture of an animal and as result
decides what type of animal is depicted is a classifier. Just like in this example, we will focus
solely on networks that classify images.

2.1.2 Convolutional Neural Networks

The preferred model for image classification tasks currently is the Convolutional Neural Net-
work (CNN). It is a neural network that takes images as an input and learns their most
important aspects and features to develop the ability to tell them apart. It is capable of

6



capturing spatial and temporal dependencies [13][Ch.9], which is necessary for image classifi-
cation.

The input of a CNN is an image (or in technical terms, data with three dimensions: height,
width, number of channels that corresponds to the color scale). Each neuron processes data in
a specified receptive field of the image. The neurons are ordered in layers in such a way that
enables it to first detect simple patterns and in the subsequent layers increasingly complex
ones. To illustrate, we present an example with the MNIST digit 8 (fig. 2.2a), which a CNN
is trying to classify. The neurons in the first layer identify the patterns occurring on their own
slice of the image (fig. 2.2b). The subsequent layers look for more complicated shapes that
occur on a bigger part of the image, using the findings of previous neurons (fig. 2.2c). Only
after identifying circles in the upper and lower half of the image, the convolutional network
classifies the input as class ‘8’. Note that the aforementioned example shows how features can
be learned, but it is rarely the case that CNNs pick up on clear human-recognized patterns
and instead come up with alternative ways to discriminate inputs.

(a) A sample from
the MNIST dataset.

(b) A single neuron looking for
patterns in its receptive field.

(c) Searching for more complex
patterns in the image.

Figure 2.2: Processing MNIST digit 8.

This procedure is accomplished with the help of the convolutional layers which are not used
in typical NNs. This layer performs the dot product between the receptive field of a neuron
and a set of learn-able parameters (kernel) [13][Ch.9]. A collection of kernels is called a filter.

2.2 Neural Architecture Search

Neural Architecture Search (NAS) is a method for creating an NN’s architecture automatically
instead of manually by a human (which is a rather time-consuming process, prone to mistakes).
Although in some cases NAS is used for finding optimal weights, usually NAS focuses on the
neurons, their connections and distribution into layers. Some research deals solely with the
structure and even disregards the weights completely by keeping them constant, or sampling
them randomly [11, 20, 30].

Different methods have been proposed for optimizing a network’s architecture. One commonly
used approach for NAS is deploying algorithms that evolve the structure (such as Genetic
Algorithms, which will be explained in depth in section 2.4) [4, 45, 41, 40]. Pruning (section
2.3) can also be utilized for architecture search especially when whole filters are removed [49],
because the pruned architecture is more important for the model’s efficacy than the leftover

7



weights [25]. Moreover, a combination of pruning and GAs has also been considered [3, 12].

2.3 Network Pruning

Neural Networks typically have a large amount of parameters which makes them memory
intensive. Furthermore, training NNs can be computationally heavy. That is because the
process requires repeatedly doing 1) a forward pass with memorizing the floating point values
of millions of weights and activation functions, and 2) back propagation where they are all
adjusted. It also involves thousands of data samples. Because of those factors and limited
hardware resources and computing power, training is a slow process for large architectures
and training data.

A model is overfitting if the accuracy achieved on training samples is high, but once tested
on unseen samples, its accuracy drops. This occurs when the network does not generalize
well because it has introduced more parameters and is searching for more features than
needed, or uses more complicated approaches to identifying a feature than are necessary [19].
Consequently, an overfitting model has poor performance when tested on unseen samples.
Furthermore, because of the unnecessary additional connections, it needs more computational
power and storage space. One way to mitigate this problem is reducing the complexity of the
model.

Network Pruning is a method for simplifying and sparsifying a neural network by removing
redundant branches. The purpose of pruning is to increase the speed of the network and
decrease its storage size. Moreover, network pruning can positively affect the NN’s perfor-
mance. It helps the model generalize better [42, 32] and avoid overfitting. This is because
the removed redundant edges are typically ones formed on the basis of extremely specific
occurrences in the training data which are not representative of the data’s features.

One approach, unstructured pruning, is to find the least important connections and prune
them individually [16, 17, 14, 5]. A frequently utilized technique is L1-Norm unstructured
pruning, where the edges with smallest absolute weights are considered “least important”
and removed. Structured pruning, on the other hand, is about pruning groups of edges and
neurons (whole filters) together at once [2, 26, 23]. Pruning can be done as part of a two-step
process where removing connections is followed by retraining the network. The two steps can
even be repeated multiple times in an iterative manner. Another way to prune a network is
using a Genetic Algorithm [18, 46].

2.4 Genetic Algorithms

A Genetic Algorithm (GA) is a method for solving optimization problems [38]. The GA takes
an initial population of candidate solutions to a problem (called individuals) and evolves them
towards better solutions. The individuals have a set of properties (or genes) which the GA
alters towards improvement as they are passed from one generation to the next.

GAs are based on the principle of evolution and natural selection [38]. The fittest individuals
according to a fitness measure are selected for passing on their characteristics to the next
generation. Sometimes two individuals are used for the creation of a new one – an operation
called crossover. One-point crossover is when a random point on the parents’ genes is chosen

8



and the child inherits all genes up until that point from one parent and all after it from the
other. Another type is uniform crossover, in which every gene can be inherited from each
parent with equal probability.

When it comes to creating the new population, a frequently used strategy is elitism. It allows
the best individuals from a generation to pass on to the next one without modification in order
to preserve their genes and increase the convergence speed [1]. Culling, on the other hand,
removes the most inferior solutions from the population to create space for better individuals.
Mutation is another characteristic of evolutionary algorithms; There is a pre-defined chance
that a individual’s genes will undergo a random change. This strategy allows for completely
random parameter values to be introduced. It also ensures genetic diversity and that the GA
does not get stuck in a local minimum or maximum (i.e. finding a solution that is fitter than
the ones nearby, but possibly worse than solutions at a greater distance in the search space).

2.4.1 Evolving NNs

A GA can be deployed on an initial population of neural networks to evolve a network structure
that is best fit to performing a certain task [43]. This method of evolving an NN architecture,
and possibly weight values, already has a lot of dedicated research [31, 33, 44]. In that case
the genes are the network’s parameters: number of neurons per layer, number and types of
layers, number of edges and their weight values, activation functions of neurons.

In the initialization of the algorithm a population of sparse and simple neural networks is
randomly generated. Next, they are evaluated on a task using the fitness function which
summarizes how close this individual is to accurately doing its task. Based on the scores,
only the highest-ranking networks are selected for “reproduction” to create a new generation.
The new individuals share most of the features of their parents. The possible mutations are
of the form of adding a new connection, or neuron, or a whole layer or filter (in the case of
CNNs). An activation function can possibly also be changed.

The GA can be terminated based on a termination criterion, for instance: once a network
with accuracy above a certain threshold is found; after a number of iterations; if the successive
populations no longer produce better results than the ones before them; etc.

2.4.2 Pruning NNs

A GA can be used for pruning neural networks as well [18, 46]. This process is almost the
inverse of evolving NNs, although it uses the same genes and also aims to produce a network
with optimal performance (but sparser than the initial one).

The usual approach is taking a pre-trained network and creating an initial population out
of it by copying it multiple times and pruning some part of the structure from each copy.
The individuals are evaluated with the fitness function and only the best performing ones are
chosen to create the next generation. The networks of the new population share most of the
features of their parents, but some part of the architectures are pruned to make the networks
simpler. Once again, the GA can be terminated based on multiple termination criteria.

9



Chapter 3

Related Work

In this chapter, we describe the state-of-the-art research already done for generalizing net-
works, pruning methods, and topology search using GAs.

3.1 Weight-Agnostic Neural Networks

Weight-agnostic neural networks (WANNs) form the core of our research. A WANN [11] is
a model, the architecture of which contains all the necessary information for performing a
given task and can carry it out even without training the weights.

Gaier and Ha [11] describe how to evolve a WANN: They start with a random population
of sparse networks with no hidden nodes, run NEAT (a GA explained in more depth in the
next subsection) on them, evaluate the networks based on their performance with a random
distribution of weight values, and create the new population out of the fittest models. In
this setting, NEAT is used for structure optimization. It modifies the network by inserting a
node, adding a connection or changing the activation function. The evaluation is done using
several tests with different shared weight values, and calculating the mean performance by
averaging its results over all those tests.

The paper achieves models which perform tasks impressively well without any weight-training.
One of the resulting networks scores around 82% accuracy on the MNIST dataset with ran-
domly initialized weights, and 92% when the weight values are chosen to be the best perform-
ing ones [11]. The outcomes of this research indicate that the topology of NNs contributes to
their performance, and not only their weights.

Furthermore, Gaier and Ha suggest evolving weight-agnostic NN models for multiple tasks.
However, they do not conduct any experiments to investigate whether the baseline WANN
has this property.

3.2 Network Evolution

Genetic Algorithms, like NEAT, are used in a lot of research and generally follow the typical
structure of a GA described in section 2.4, but differ in the choice of fitness function, and
method of selection and mutation of networks.

10



NEAT (NeuroEvolution of Augmenting Topologies) is a widely used algorithm for genetic
evolution which can optimize the structure and the weights of a neural network [39]. The
modifications of the architecture and the weights happen separately, thus the algorithm can
be easily utilized for optimizing either or both. However, it can be used only on feed-forward
networks without convolutional layers.

Fang et al. work with convolutional neural networks in their research [10], where they use
a GA-based method to evolve network structures. The weights of the initial networks are
derived using weight inheritance from a genotype string with all bits set to 1 which gets
fully trained in the beginning (a baseline). Then the individuals are partially trained and
evaluated. Tournament selection is used: Two by two, chosen at random, the networks are
compared and the ones that perform better are selected for crossover and, possibly, mutation.
The individuals are then re-evaluated and the process of selection, crossover and mutation
is repeated. At each generation, the weights of an individual are inherited from the baseline
instead of its parents. The best model obtained by Fang et al. is tested on multiple datasets,
to assess its generalization ability and efficiency of reuse. Its accuracy is only about 0.6% less
than the state-of-the-art when it comes to CIFAR-10 and SVHN, and 2% less for CIFAR-100.

Real et al. implement a GA in another way [31]: During each evolutionary step, two by
two, models are chosen from the population and compared based on their accuracy on a
validation set. The worse one is immediately removed from the population, while the better
one gets modified by a mutation. This new network gets trained and becomes part of the new
generation. The research uses a large number of mutations, including altering the learning
rate, resetting the weight values, inserting or removing a layer, changing the filter size on a
random convolution, altering the number of channels in a convolution. The result of Real et
al.’s research are two models with performance on CIFAR-10 and CIFAR-100 comparable to
the hand-designed architectures of state-of-the-art models.

A very different approach to creating the new generation is shown in [40]. Suganuma et
al. create a random parent individual, train it, and create an offspring population by applying
mutations on it. The children are trained and the parent is also mutated. The individual
with the highest fitness out of the parent and children is selected as the new parent and then
a new offspring population is created.

3.3 GAs for Neural Network Pruning

The method we propose in this thesis can be seen as a population-based stochastic approach
for pruning neural networks using a genetic algorithm. GAs have been utilized for NN pruning
for decades now, as seen in Hancock’s work [18]. In his research in 1992 he shows that
using a GA to prune connections in an ANN can improve its performance and increase its
generalization ability on unseen data. Creating a highly generalizable network is also the focus
of Bebis and Georgiopoulos. They propose combining pruning and a GA, and using a fitness
function which actively encourages the reproduction of networks with high generalization
performance [3]. This research, however, focuses solely on feed-forward neural networks.

Another work on feed-forward networks is given by Garcia-Gimeno et al., who prune via a
GA, with aim to create an ANN for microbial growth prediction in food [12]. The mutations
of the networks are in the form of connection pruning, which is a strategy we utilize as well.

11



The fitness function aims to both increase the generalizability and reduce the number of edges.
Thus, comparing two networks with similar performance will result in picking the sparser,
less complex one. The study shows that pruning using a GA is a very effective method.

A more recent research by Yang et al. focuses on CNNs [46]. The proposed algorithm selects
the K top scoring individuals of the population to reproduce the next generation. Crossover
is performed on the K networks, two by two: The better scoring model passes on its “genes”
as they are and essentially gets copied into the new generation. The worse network’s genes
are used for creating a new network, but there is a 50% chance of a gene to be replaced by
one of the better model’s. Pruning is performed on all networks except the one with highest
performance (the elite). Finally, the new generation is retrained and the process is repeated.

Yang et al. achieve an outstanding reduction in computation of an MNIST classifier at the
price of a very small decrease in accuracy (less than 0.15% drop). Although impressive, the
research does not test the generalization ability of the resulting model to other tasks.

3.4 Standard Pruning Techniques

In contrast with population-based stochastic network pruning, standard pruning techniques
involve a single network. The NN is pruned by the application of pruning operators.

The most common way to prune a network is described by Han et al. [17]. First, the network
is fully trained. Then the connections within the network are assessed and the ones deemed
unimportant are pruned1. Finally, to make up for the loss of accuracy due to deleted parts
of the structure, the model is retrained. The last two steps can be repeated multiple times.
Han et al. show that this method can remove millions of edges without any accuracy loss
[17] on a LeNet-52 model for MNIST classification. Since we evolve our networks in a weight
agnostic manner, we do not make use of pruning which relies on the weight values. Instead,
we conduct random unstructured pruning.

Li et al., on the other hand, showcase the usage of structured pruning, which involves removing
filters of CNNs that are identified as having small effect on the output accuracy [23]. For each
convolutional layer, they prune the filters with the smallest sum of absolute kernel weights
and the corresponding kernels. A new kernel is created and the remaining kernel weights are
copied to the new model. They achieve an impressive speed up and no drop in the network’s
accuracy after pruning 50% of six convolutional layers of VGG-163.

Most pruning techniques are similar to the described ones [24], although some have modifica-
tions. [22] proposes that the pruning of the network happens right after initialization, before
training has taken place. Instead of fine-tuning the network, [25] reinitializes and retrains
it entirely after every pruning pass. Pruning edges and pruning whole channels can also be
combined into the so called mixed pruning [47]. Yang et al. show that this approach leads
to a higher than the other methods compression of the original model: They achieve 90%
compression of LeNet-5 (for MNIST classification) with only 0.18% accuracy drop.

1This is the basic idea behind L1-norm pruning, in which the weights with smallest absolute value (thus,
the ones that contribute the least) are removed.

2A pioneering 7-level CNN first proposed in 1998 [21].
3VGG-16 is a large and commonly used CNN for image classification [37].

12



3.5 Multi-task and Transfer Learning

The method we propose uses a pre-trained neural network to create a population of networks
the pruning of which is guided by a fitness measure based on their accuracy on the original
task (MNIST) or on multiple tasks (MNIST and 10 EMNIST letters). In the latter setting,
this approach can be viewed as the intersection of multi-task and transfer learning.

3.5.1 Multi-task Learning

Multi-task learning is concerned with building and training NNs with the purpose of being
used for performing a diverse set of tasks. One way to create a multi-tasking network is via
hard parameter sharing. [6] describes the usual network structure achieved with this strategy:
There are a few task specific output layers while the rest are shared for all tasks. The model
is trained on all of the tasks so that the shared layers encode information about all of them
and there is a minimal risk of overfitting. Based on the desired task, the data is processed by
a different set of output layers.

A different approach is presented in [7] and [50]. Using joint training, they create highly
generalizable neural networks that can perform multiple tasks. The model learns the data
information by looping over multiple tasks: A random task is selected, a random sample is
taken and used for evaluation, the error is back-propagated, and this process is repeated.
[7] does not deal with convolutional neural networks since it focuses on Natural Language
Processing. However, [50] shows that this approach is useful for CNNs: By jointly training a
VGG model, they achieve accuracy of more than 60% on four separate scene-centric datasets.

Mallya et al. present yet another method for creating a multi-task image classification network
out of an initial “backbone” one, by learning different masks per task [27]. They learn binary
masks (1 when 0 it should take part in classifying the current dataset and 0 otherwise) in a
differential fashion and optimize for each task. The research uses a pre-trained network as
their backbone and trains it for multiple new tasks which results in masks that are applied
on the backbone to get it to work on other datasets.

3.5.2 Transfer Learning

Transfer Learning (TL) is a technique in machine learning in which a model trained on one
dataset is re-purposed for another (similar) dataset. It works best if the original data used
for learning has general features and the two data distributions are similar [48]. The trained
model is usually modified as follows: Most of its layers are “frozen” (the weight values are
kept) and the last few layers together with the classification one are retrained on the new task.
This technique is especially useful when the data available for a particular task is minimal
and using such little data on its own for training the model risks overfitting.

Transfer learning has proven to give CNNs for image classification and recognition tasks a
performance boost. For instance, [36] shows that training a CNN on the generic dataset
ImageNet, and then applying transfer learning in order to use the model for medical image
classification leads to state-of-the-art performance. Han et al. also display the merits of
transfer learning for tasks with very limited datasets: they train a CNN on large datasets to
give it a general structure then very successfully make it work on small datasets [15]. Other
research confirms the usefulness of transferring features for CNNs [35, 8, 34].

13



Chapter 4

Generalizability of WANNs

In this chapter we investigate the generalization ability of the WANNs to multiple tasks. We
use the algorithm proposed in [11].

4.1 WANN Algorithm

First, we present a high level description of the WANN algorithm.

1. An initial population of minimal topologies is created. All of them have only an input
and an output layer.

2. The networks are evaluated in multiple rollouts. At each rollout, a different single
shared weight value is assigned to the connections and the performance of the networks
is determined by their cumulative cross entropy loss.

3. Using tournament selection, the algorithm chooses networks probabilistically to create
the next generation. Out of two models with similar fitness, the sparser one is chosen.

4. The individuals are varied with one of the following mutations: inserting a neuron,
adding a connection, or changing an activation function.

5. If the maximum number of iterations is reached, stop. Otherwise, go back to step 2.

Throughout the evolution the networks become increasingly complex and perform better. For
the image classification setting specifically, the algorithm makes use of elitism and culling,
but does not utilize crossover. The shared weight values used for evaluation are from the set
{−2,−1,−0.5, 0.5, 1, 2}.

4.2 WANN for Handwritten Digit Classification

Gaier and Ha evolve a feed forward deep weight agnostic network with 762129 non-zero edges
and 873 neurons, spread into 22 layers. The champion network has 91% accuracy on the
MNIST dataset1. The resulting WANN has different performance depending on the shared

1They conduct a series of tests, most of them on reinforcement learning, but the classification test is done
on MNIST.

14



weight value given to its edges which leads to the suggestion of using it in the following
manner: “Each weight value of the network can be thought of as a distinct classifier, creating
the possibility of using one WANN with multiple weight values as a self-contained ensemble.”
[11, p.8]. Furthermore, they state the possibility of developing a WANN encoding information
about many different tasks “that can easily be fine-tuned for a particular downstream task
in its environment later on” [11, p.9].

We are interested by these prospects and what they could mean for the further development of
multi-tasking and highly generalizable networks. Thus, we investigate whether the baseline
WANN approach is already sufficient for creating such network that can perform multiple
tasks. We evaluate the accuracy of the WANN evolved as an MNIST classifier on another
dataset: 10 classes from EMNIST Letters2. We choose EMNIST Letters because of its relative
simplicity and we believe it to be somewhat related to MNIST.

The implementation of WANN and its results are publicly available3 for reproducing the
experiments. We extend the code to include calculating and logging a network’s accuracy
and enable tests on EMNIST Letters4.

The obtained results are displayed in Table 4.1.

-2 -1 -0.5 0.5 1 2

MNIST 90% 91% 81% 82% 89% 88%

EMNIST

10 Letters
6% 7% 6% 8% 7% 9%

Table 4.1: The accuracy of the champion MNIST WANN on the MNIST test dataset and the
10-letter EMNIST subset dataset for the 6 different shared weight values.

WANN has a very high accuracy (91%) on MNIST when its shared weight value is −1.
However, we can see that its accuracy on 10Letters is below random guessing no matter the
assigned shared weight value. Therefore, evolving the model in a weight-agnostic way on its
own does not increase its generalization ability and fails to obtain a network with multiple
skills.

4.3 WANNs With Joint Evaluation

The low accuracy on a dataset the model has never seen before is to be expected. Because
of that, we modify the genetic algorithm to asses a network’s fitness based not only on the
performance of the network on MNIST, but also on the first 10 classes from EMNIST Letters.
We call this adapted fitness evaluation joint evaluation and the resulting model – JointWANN.

We run the algorithm with the default GA hyperparameters to fully reproduce Gaier and Ha’s
experiment. The results of JointWANN are displayed in Table 4.2 but it is important to note

2We use only 10 classes from the original 26-class dataset so that there are no modifications to the produced
WANN structure needed. We simply take the first 10 classes to avoid cherry-picking.

3They can be found on the project’s official GitHub repository.
4The original code tests the networks on MNIST and only calculates the loss. All changes made to the

original WANN code are documented in our own repository.

15

https://github.com/google/brain-tokyo-workshop
https://github.com/nadiand/PADAWANN/tree/main/WANN-GA


that due to time limitations we only conduct one trial. The resulting model has 290521 edges
connecting 539 neurons into 10 layers. It is much simpler than WANN, but the GA converged
and stopped improving early on which could indicate that it fell into a local maximum.

-2 -1 -0.5 0.5 1 2

MNIST 9% 10% 11% 7% 6% 9%

EMNIST

10 Letters
62% 66% 51% 33% 57% 57%

Table 4.2: The accuracy of the JointWANN on the MNIST and 10-letters EMNIST test
datasets for the 6 different shared weight values.

As we can see, this JointWANN is performing overall worse compared to the WANN Gaier
and Ha evolve, with random-guessing level accuracy on one task and only 66% on the other.
It can be said that it is an adequate classifier of the 10 letters from EMNIST, but not an
MNIST one. We hypothesise that the EMNIST dataset is slightly more complex and because
of that the loss calculated from the performance on the 10 letters dominates the fitness.

Our results show that even when evaluated on more than one dataset, the WANN is unable
to encode information for more than a single task.

16



Chapter 5

The PADAWANN

Given the results of the previous chapter, indicating WANN is not as general as desired
on related tasks, in this chapter we investigate whether using knowledge from a pre-trained
network will improve the results. For this purpose, we reverse the evolutionary process:
While WANN grows an NN topology, we start from a pre-trained one to build a population
of architectures which then get pruned during the evolution.

5.1 Algorithm

5.1.1 Network Pruning

We evolve a PADAWANN from a model trained on an image dataset for classification. Thus,
the structure of the model used as a starting point already encodes information about the
features of visual data. This provides a head start in the search for a general model for image
classification. Moreover, there are already dozens of hand-crafted models for the purpose of
image classification and it is reasonable to make use of them instead of trying to recreate
them with no guarantee of achieving the same success.

We make use of unstructured pruning1. A single pruning step is performed on every model
chosen for creating the next generation. 0.025% of the network’s edges are randomly selected
for pruning with all edges from the convolutional and dense layers having an equal probability
of being picked. This parameter value of 0.025% was experimentally found to be fitting for
our problem.

5.1.2 Weight Agnosticism

The PADAWANN is evolved in a weight-agnostic way. We discard the pre-trained weights
(although we keep their signs) and initialize them to a shared weight value sampled from the
set {0.5, 1, 2}2. Training the model during the evolution with a shared weight value instead

1Using L1-norm pruning would be almost equivalent in the sense that the edges have a shared absolute
value and thus all of them will be considered equally important and have the same chance of being pruned.

2Those are the absolute values of the weights used by Gaier and Ha. We use the positive values only because,
as already mentioned, we keep the original weight signs meaning that we only set the weights’ absolute value.

17



of the pre-trained weights of the initial network is what guarantees the weight agnosticism of
the model.

Due to the fact that the weights are irrelevant, we do not update them via back-propagation.

5.1.3 Evolution

Our algorithm consists of the following steps:

1. Take a pre-trained model and create the initial population by copying it multiple times
and performing a single pruning step on each copy.

2. Remove the worst performing networks (culling a specified percentage of the population)
and copy the best performing ones to the next generation without modifying them
(elitism; preserving a specified percentage of the population).

3. Use tournament selection to pick which networks will create the next generation: Com-
parison is done between randomly chosen models, the number of which (i.e. the tour-
nament size) can be specified as an argument to the algorithm.

4. One-point crossover with user-determined probability p is carried out between two tour-
nament winners and the offspring is mutated. If no crossover happens, there is a single
tournament and the network with highest fitness is mutated.

5. Mutation with probability of 1 happens in the form of pruning. The type of pruning is
already explained in section 5.1.1.

6. If the maximum number of iterations is exceeded, stop. Otherwise, go back to step 2.

The fitness of the networks is calculated using the accuracies obtained via joint evaluation3.
For calculating the accuracy of a network on a certain dataset, we conduct multiple rollouts,
using a different shared weight value each time, and take the highest obtained accuracy score.

The fitness function is defined in the following formula:

fitness(model) =

∑
d∈dataset accuracy of model on d∑

d∈dataset 100− accuracy of model on d
(5.1)

The fitness measure was found suitable through experimentation with multiple potential
fitness functions and it takes into account the performance on all tasks. It can be thought of
as a scaled sum of the accuracies of a network on the datasets it is evolved on. The scalar
ensures that the GA favors models with higher train accuracy across all datasets and penalizes
low accuracies on even one of them. Note that this number on its own has no meaning and
well defined-range; It is only important to maximize it with respect to the initial model’s
fitness value.

5.1.4 Creating The PADAWANN

The algorithm we have designed is illustrated by the pseudo-code in Algorithm 1. The output
is the ready-to-use PADAWANN.

3This technique is akin to the joint training used in the multi-task field [7, 50] with the addition of the
weights sharing one value. Moreover, no retraining is carried out.

18



Algorithm 1 Evolving a pre-trained model into a PADAWANN

Input: pre-trained NN net
Output: PADAWANN
evolve():

1: pop← copies of net, which get pruned once . This contains the “current” population
2: best ← None . This is the best model (according to the fitness function)
3: iter ← 0 . The current iteration
4: while iter < MAX ITERATIONS do
5: next← ∅ . This is the next generation
6: next← next ∪ {the models with best accuracy from pop}
7: pop← pop – {the models with worst accuracy from pop}
8: while the size of next < POP SIZE do
9: if crossover happens then

10: individual← the offspring of two tournament winners
11: else
12: individual← choose from pop via tournament selection
13: end if
14: prune individual
15: next← next ∪ {individual}
16: end while
17: if model with highest fitness from next has higher fitness than best then
18: best← model
19: end if
20: pop← next
21: iter ← iter + 1
22: end while
23: file← best . Store the PADAWANN

We implement the genetic algorithm from scratch, but utilize useful Python machine learning
libraries (mainly PyTorch) that facilitate working with NNs. All relevant information about
the code and used libraries and pointers to outside materials can be found in Appendix A.

5.2 Preliminary Experiment Information

Due to the stochastic nature of genetic evolution, every described experiment is repeated
10 times and the numbers given are averaged over those trials. The hyperparameters used
(which we will refer to as default) are given in Table 5.1 and they are utilized in all tests
unless stated otherwise.

Number of

Generations

Population

Size
Elitism Culling Pruning Crossover

Tournament

Size

50 20 30% 30%
0.025%

(unstructured)

50%

(one-point)
8

Table 5.1: The default hyperparameters of the GA used in our experiments.

19



The values we choose for elitism, culling, crossover probability and pruning amount in our
experiments are heuristic ones based on preliminary tests. Due to time limitations, we do not
fine-tune the hyperparameters, but we investigate their influence in Chapter 6, section 6.1 on
a smaller problem size.

5.2.1 Initial Models

For most of our experiments we use a convolutional neural network pre-trained on MNIST
(henceforth, MNIST-Net) as initial model for the GA to fairly compare our approach to weight
agnosticism to Gaier and Ha’s. Moreover, we want to test the algorithm on a simple problem
as a proof of concept to gauge the plausibility of our goal before tackling more complex tasks,
and MNIST is widely accepted as one of the simplest datasets for image classification. Since
the MNIST classification task is relatively simple, we train a relatively simple model ourselves.
It has 98% accuracy on the test MNIST data and 1.2 million non-zero edges.

For another set of tests, we make use of a model pre-trained on 10Letters (henceforth,
10Letters-Net). It has the same architecture as MNIST-Net and 96% accuracy on the test
10Letters dataset. The last network we work with is a three-layer feed-forward model with
no convolutions. It has 97% accuracy on MNIST and just over 50,000 non-zero edges.

5.2.2 Datasets

Note that due to time limitations, we use a small sample of the train data for the evolution;
We use 700 samples per class for both datasets.

In the joint evaluation we evaluate the networks on MNIST and on a subset of the EMNIST
Letters dataset. We take only the first 10 classes from it to match the number of MNIST
digits classes and output features of the model; We refer to this dataset created by us as
10Letters. We choose 10Letters because of its relative simplicity and our hypothesis that
it is related to MNIST, which should we think would facilitate the domain transfer task.
MNIST and EMNIST Letters have a lot of features such as straight lines, curves, circles
that are alike (as seen in fig. 5.1), and are both Grayscale. We want to first gauge the
feasibility of PADAWANN when the datasets are at least slightly similar, before considering
generalizability to any image data.

Figure 5.1: Examples of the common features of the MNIST and EMNIST 10Letters datasets.

20



Other two datasets we make use of for generalization testing are another EMNIST subset
(which we call Another10 Letters) and FashionMNIST – also 10-class Grayscale data. Gen-
eralizing to datasets with a different number of classes, for which it is required to use less
output nodes or to add new ones, is not considered in this thesis.

The first new dataset is also a subset of EMNIST Letters made up of classes 11-21 (corre-
sponding to letters ‘k’ through ‘t’). This dataset, Another10 Letters, we also consider related
to the ones the model already knows from its training and evolution. Therefore, we expect
accuracy higher than the initial model’s. Moreover, we conduct a test on another less related
dataset. We choose FashionMNIST because it also contains Grayscale images with 10 classes
but has more complex features.

Because the test datasets we use are balanced, the accuracy of the networks is a good measure
to compare them by which is why we focus on it for our main analysis.

5.2.3 Sign of the Weights

The results of our preliminary experiments showcase a great difference in the network’s per-
formance when the signs of the original weight values are kept compared to when they are not.
In true weight-agnostic fashion the sign is discarded as it is part of the weight information of
the initial model. However, the accuracies and loss achieved when the signs are not kept are
very bad, as seen in Table 5.2. Figures displaying network’s evolution over the generations
can be found in Appendix B, section B.2.

MNIST

Accuracy

10Letters

Accuracy
Loss

Number

of Edges

20.3% (± 5.46%) 14.34% (± 1.75%) 464483.35 (± 1032441.97) 1016651 (± 47906)

Table 5.2: The average accuracy and sparsity of the PADAWANN when the signs are discarded
and the GA is run with the default parameters.

The loss is high, indicating the models find it difficult or impossible to converge, and the
number of edges does not seem be significantly reduced. The low accuracies are not surpris-
ing as the network used has two fully-connected layers with all non-zero weights. Setting
that network’s weights values to a shared constant one is expected to lead to suboptimal
performance as all samples would be given the same class. This is illustrated in the confusion
matrices given in Figure 5.2.

It appears necessary to provide some additional guidance to the network (in the form of
keeping the signs) when evolving the PADAWANN from a pre-trained model. In light of that
fact we report only on the experiments conducted with the original weight signs kept.

21



Figure 5.2: The MNIST and 10Letters confusion matrices of the model evolved in a fully
weight agnostic way.

5.2.4 Feed-forward Networks

During our preliminary tests we experiment with starting the evolution from a feed-forward
model without any convolutional layers. The results are summarized in Table 5.3 and the
evolution is illustrated in Appendix B, section B.5.

MNIST

Accuracy

10Letters

Accuracy
Loss

Number

of Edges

Initial Model 97.29% 8.29% 0.05 50816

PADAWANN 80.314% (± 1.79%) 12.66% (± 2.37%) 11.15 (± 0.95) 34134 (± 1703)

Table 5.3: The average accuracy and sparsity of the PADAWANN when the initial network
has no convolutional layers compared to the network it was evolved from.

Although the loss has not increased only slightly and the model is 1.5x sparser than the ini-
tial one, there is barely any improvement in the 10Letters accuracy and the drop in MNIST
accuracy is significant. Those results show that the GA is applicable to any type of network,
but having a feed-forward model as initial one results in PADAWANNs with worse perfor-
mance. We hypothesise that this could be due to the fact that the feed-forward model has
only fully-connected layers which does not combine well with weight agnosticism. For that
reason, we conduct the rest of our experiments on a CNN.

5.3 PADAWANN

5.3.1 Results

The average results of the PADAWANN evolved from the convolutional MNIST-Net are pre-
sented in Table 5.4. The MNIST accuracy is still high, and the 10Letters accuracy has
improved. The model appears to occasionally make highly incorrect predictions, as told by
the loss value, but it is half the size of the initial model, having removed 50% of all edges.

22



MNIST

Accuracy

10Letters

Accuracy
Loss

Number

of Edges

93.67% (± 0.54%) 22.1% (± 0.85%) 272.8 (± 280.56) 600460 (± 38033)

Table 5.4: The average accuracy and sparsity of the PADAWANN when the initial network
is MNIST-Net.

The accuracy evolution of the best model throughout the generations is displayed in Figure
5.3. The evolution of the loss, number of non-zero edges and fitness is included in Appendix
B, section B.1 for completeness.

0 10 20 30 40 50
Generation

92

93

94

95

96

97

98

M
NI

ST
 A

cc
ur

ac
y

The MNIST Accuracy of the Best Model
Throughout the Evolution

When Initial Model is MNIST-Net

0 10 20 30 40 50
Generation

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

EM
NI

ST
 1

0L
et

te
rs

 A
cc

ur
ac

y

The EMNIST 10Letters Accuracy of the Best Model
Throughout the Evolution

When Initial Model is MNIST-Net

Figure 5.3: The evolution of the PADAWANNs’ accuracy on the train MNIST and 10Letters
datasets, with each trial represented in a different color.

The best, worst and average accuracy are compared in Table 5.5. The standard deviation of
the results from the different trials is very low which gives the average result more validity.

Best

Accuracy

Worst

Accuracy

Average

Accuracy

MNIST 94.99% 92.99% 93.67% (± 0.54%)

10Letters 23.8% 21.015% 22.1% (± 0.85%)

Table 5.5: Comparison of the best, worst and average accuracy achieved on the MNIST and
10Letters datasets by the PADAWANN.

5.3.2 PADAWANN vs Pre-trained Networks

To put our model’s performance in perspective, we compare the accuracy achieved by the
PADAWANN to that of the initial MNIST-Net and the 10Letters-Net network (in Table 5.6).

23



MNIST

Accuracy

10Letters

Accuracy

MNIST-Net 98.13% 6.68%

10Letters-Net 7.35% 96.17%

PADAWANN 93.67% 22.1%

Table 5.6: The accuracies of the pre-trained models (with their original pre-trained weights)
and of PADAWANN.

The accuracy of the PADAWANN on the MNIST test set is lower than the accuracy of MNIST-
Net, and its accuracy on the 10Letters test set is lower than the accuracy of 10Letters-Net.
Therefore, the PADAWANN does not perform as good as or better than a network specifically
trained on a certain task, but that is expected. In contrast to the other two networks, the
PADAWANN’s goal is to encode information about multiple datasets instead of specializing
on one of them (ensured by the fitness function which favors networks with good performance
on both datasets). Thus, the PADAWANNs are no longer looking for MNIST-specific features,
but for features of handwritten digits and some letters. Because of this property, we believe
it is reasonable for the PADAWANN to be (slightly) underfitting for both datasets. We are
essentially doing a trade-off between high performance on one task and better than random
guessing performance on multiple.

The accuracy of PADAWANN on MNIST has decreased by about 4.46% from MNIST-
Net’s. Although the p-value < 0.01 shows a significant difference in performance, we think
PADAWANN can still be considered a good MNIST classifier. This is evident in the confusion
matrix of PADAWANN, given in Figure 5.4. It is interesting to note that the type of errors
made do not seem random and can in fact be related to the newly introduced task. For
instance, ‘1’ is classified as an ‘8’ 44 times and the 8th class in 10Letters is actually ‘i’ – a
letter visually similar to the digit ‘1’. As another example, ‘5’ is classified as a ‘3’ 27 times
and the 3rd class in 10Letters corresponds to ‘c,’ a letter which has the same curve.

Figure 5.4: The confusion matrices of MNIST-Net (left) and PADAWANN (right) for the
MNIST dataset.

24



While the accuracy of the PADAWANN on 10Letters is only about twice as good as random
guessing and therefore the model cannot be used as a reliable classifier for that dataset,
the improvement over the initial model is significant (p-value < 0.01). PADAWANN has 3.3x
higher accuracy on 10Letters than MNIST-Net, which indicates a higher generalization ability
to this new task. This boost in generalizability without ever training the model’s structure to
recognize the dataset can potentially be increased further by applying strategies from transfer
or multi-task learning. We also hypothesize that increasing the population size and maximum
number of iterations will lead to better results.

Figure 5.5 compares the confusion matrices of the initial model and the PADAWANN for the
new task. As we can see, MNIST-Net tends to classify the samples as class ‘a’, indicating
that the relation between the two domains and tasks is biased and weak, given that model.
On the other hand, while PADAWANN seems to classify a lot of the samples as class ‘c’, it is
clearly starting to learn features of the dataset and classify classes ‘c’, ‘f’, ‘h’ and ‘i’ correctly.

Figure 5.5: The confusion matrices of MNIST-Net (left) and PADAWANN (right) for the
10Letters dataset.

5.3.3 PADAWANN vs WANN

We now compare the digit classifier WANN evolved by Gaier and Ha and the JointWANN we
created and documented in Chapter 4 to the PADAWANN. Their complexity and accuracy
are summarized in Table 5.7.

MNIST
EMNIST

10Letters

Number

of Edges

WANN 91% 9% 762129

JointWANN 11% 66% 290521

PADAWANN 93.67% 22.1% 600460

Table 5.7: The average accuracy and sparsity of the three models.

The accuracy PADAWANN has on MNIST is higher than WANN’s and JointWANN’s mak-

25



ing it the best partially weight-agnostic network out of the three in terms of MNIST digits
classification. Its accuracy on EMNIST 10Letters is lower than JointWANN’s but higher than
WANN’s. In terms of overall performance, we believe that PADAWANN has slightly higher
generalization capabilities than the WANNs. Moreover, PADAWANN is sparser than WANN.
However, because the two are implemented using different libraries and data structures, it is
impossible to formally investigate whether their performance is significantly different or not.

5.3.4 Generalization Over Unseen Tasks

We investigate how generalizable the PADAWANN actually is over new tasks. Essentially,
we test whether being evolved with a fitness function involving information on MNIST and
10Letters datasets will increase its capability to generalize to other previously unseen tasks.

The average accuracy of PADAWANN and MNIST-Net when tested on FashionMNIST and
other handwritten letters is given in Table 5.8.

Another10

Accuracy

FashionMNIST

Accuracy

MNIST-Net 9.99% 7.82%

PADAWANN 13.79% (± 1.78%) 10.895% (± 2.04%)

Table 5.8: The average accuracy of the initial model MNIST-Net and the PADAWANN
evolved from it on the Another10 Letters and FashionMNIST datasets.

As we can see, the accuracies PADAWANN achieves are slightly higher than the initial model’s
and significantly different. Despite that, for those unseen-before datasets, PADAWANN seems
unable to group samples of the same class together. Some classes are never even predicted at
all. This shows that the generalization ability of the network extends only to the datasets used
in the evolution of the model. The confusion matrices of PADAWANN for the two datasets
iluustrate this in Figure 5.6.

Figure 5.6: The confusion matrices of PADAWANN for the Another10 and FashionMNIST
datasets.

26



5.4 Three-task PADAWANN

Following that conclusion, we test how the PADAWANN will behave if it is evolved with the
fitness function considering three datasets. We want to understand whether two is an upper
limit to the number of datasets a model can become generalizable to, and if being exposed to
an additional dataset will lead to the MNIST accuracy decreasing even further.

We run the GA with MNIST-Net as initial network and the default parameters. We evaluate
the models on MNIST, 10Letters and Another10. The results of the evolved 3D-PADAWANN
(“Three Dataset PADAWANN”) are presented in Table 5.9 and a comparison between the
initial model, PADAWANNN and 3D-PADAWANN in terms of accuracy is presented in Table
5.10. (The evolution of parameters is given in Appendix B, section B.4.)

MNIST

Accuracy

10Letters

Accuracy

Another10

Accuracy
Loss

Number

of Edges

90.99% (± 0.65%) 19.44% (± 2.39%) 24.35% (± 3.6%) 405.8 (± 385) 627897 (± 55000)

Table 5.9: The average accuracy and sparsity of the three-task PADAWANN.

MNIST

Accuracy

10Letters

Accuracy

Another10

Accuracy

FashionMNIST

Accuracy

MNIST-Net 98.13% 6.68% 9.99% 7.82%

PADAWANN 93.67% 22.1% 13.79% 10.895%

3D-PADAWANN 90.99% 19.44% 24.35% 13.79%

Table 5.10: Comparison of the average accuracies of the initial model, the PADAWANN and
3D-PADAWANN. FashionMNIST is not involved in the evolution.

The further decrease in MNIST accuracy, in comparison to PADAWANN’s, is expected. As
there is a larger number of tasks, the model tries to leverage across all of them, and thus, it
is natural that the accuracy on the original task drops.

PADAWANN is also superior when it comes to 10Letters accuracy, but 3D-PADAWANN
comes close with a 2.9x improvement over the initial model. Furthermore, 3D-PADAWANN
achieves 2.4x higher accuracy on Another10 than MNIST-Net – more than 10% higher than
PADAWANN. The confusion matrices presented in Figure 5.7 show that 3D-PADAWANN
has indeed started to learn about the features of the new datasets it was evolved on.

Lastly, we can see that the accuracy on FashionMNIST seems to increase even more than
when only two datasets were used, but the confusion matrix in Figure 5.7 shows that it is
merely because one class gets predominantly correctly classified.

27



Figure 5.7: The confusion matrices of 3D-PADAWANN for the MNIST, 10Letters, Another10
and FashionMNIST datasets.

These results are somewhat expected and further confirm that we are trading off high accuracy
on a single dataset for above random-guessing on multiple.

5.5 10Letters-Net as Initial Network

We run the GA again, starting the evolution from the model pre-trained on EMNIST 10Letters
in order to investigate whether the results we have obtained thus far are specific to models
trained on MNIST only. We also want to find out whether the task the model was originally
trained for determines the results and derive conclusions about the algorithm’s symmetry.

The PADAWANN’s characteristics are given in Table 5.11. We notice the same trend as for
the PADAWANN evolved from MNIST-Net: The accuracy on the dataset the initial network
was pre-trained on drops by a few percent (6.92% in this setting), while its accuracy on
the never-seen-before dataset increases (2.35x higher in this case). However, the results are
slightly worse in comparison to the PADAWANN evolved from MNIST-Net.

28



MNIST

Accuracy

10Letters

Accuracy
Loss

Number

of Edges

17.296% (± 2.56%) 89.25% (± 1.54%) 817.48 (± 596.11) 768888 (± 64779)

Table 5.11: The average accuracy and sparsity of the PADAWANN when the initial network
is 10Letters-Net.

The accuracy evolution of the best model throughout the generations (displayed in Figure 5.8)
seems to be similar to the one we observed when starting from MNIST-Net but with higher
variation in the results. The evolution of the loss, number of non-zero edges and fitness is
included in Appendix B, section B.8 for completeness.

0 10 20 30 40 50
Generation

8

10

12

14

16

18

20

22

24

M
NI

ST
 A

cc
ur

ac
y

The MNIST Accuracy of the Best Model
Throughout the Evolution

When Initial Model is 10Letters-Net

0 10 20 30 40 50
Generation

86

87

88

89

90

91

92

93

94
EM

NI
ST

 1
0L

et
te

rs
 A

cc
ur

ac
y

The EMNIST 10Letters Accuracy of the Best Model
Throughout the Evolution

When Initial Model is 10Letters-Net

Figure 5.8: The evolution of the PADAWANN’s accuracy when evolved from 10Letters-Net,
with each trial represented in a different color.

Best

Accuracy

Worst

Accuracy

Average

Accuracy

MNIST 22.67% 12.55% 17.296% (± 2.56)

10Letters 91.11% 85.59% 89.25% (± 1.54)

Table 5.12: Comparison of the best, worst and average accuracy achieved on the MNIST and
10Letters datasets by the PADAWANN.

These results show that our algorithm yields similar performance when starting with a network
pre-trained on MNIST and on 10Letters. However, when MNIST-Net is initial model we
obtain significantly better results.

29



5.6 Transfer Learning

As shown by our results so far, evolving a weight-agnostic network while pruning it increases
its generalization ability, but not to an extent that allows us to reliably use the PADAWANN
for multiple tasks. Thus, we investigate whether allowing the network to learn about the new
datasets’ features will cause the PADAWANN to outperform the initial model.

For that purpose we retrain the last layer of the PADAWANN (related to classification) using
the corresponding train data of the dataset on which we will test the model. The rest of the
layers are kept fixed at the value ∈ {0.5, 1, 2} which was found to be optimal for this dataset.

In Table 5.13 we present the average accuracies achieved by the initial model and by the
PADAWANN.

MNIST 10Letters Another10 FashionMNIST

MNIST-Net
No TL 98.13% 6.68% 9.99% 7.82%

TL 98.1% 58.69% 72.7% 67%

PADAWANN
No TL 93.67% 22.1% 13.79% 10.895%

TL 96.48% 55% 67.14% 63.55%

Table 5.13: Comparison between the performance of MNIST-Net and the PADAWANN
evolved from it before and after fine-tuning the last layer.

Transfer learning has a large impact, as expected. The results and the improvement over
the preliminary version of the PADAWANN are impressive. While the performance of the
fine-tuned initial network is slightly better than the fine-tuned PADAWANN’s by about 3-5%
on each dataset, the PADAWANN is twice as sparse.

30



Chapter 6

Ablation Study

To further understand the efficiency and contribution of the separate PADAWANN compo-
nents and GA hyperparameters, we carry out an ablation study. In this chapter we describe
those experiments and display the results.

6.1 Hyperparameter Investigation

We conduct a number of tests in order to investigate the usefulness of the GA parameters
we utilize (elitism, culling, unstructured pruning, etc.). The results are summarized in Table
6.1. We only specify the parameter that is modified in a certain trial, the rest are the default
parameters (as given in Chapter 5, section 5.2) although we scale down the population size
to 10 individuals. Because of that we also adjust the tournament size accordingly to 4.

MNIST

Accuracy

10Letters

Accuracy
Loss

Number

Of Edges

Fitness

Value

Default

Parameters

93.46%

(± 0.76%)

19.73%

(± 1.89%)

344.68

(± 496%)

658028

(± 42429)

1.33

(± 0.04)

No Elitism
93.7%

(± 1.06%)

17.13%

(± 2%)

525.22

(± 780.17)

720954

(± 84299)

1.26

(± 0.03)

No Culling
94%

(± 0.82%)

19.44%

(± 1.35%)

522.28

(± 403.1)

676044

(± 35924)

1.33

(± 0.02)

Structured

Pruning

95.87%

(± 0.77%)

13.99%

(± 1.62%)

1921.05

(± 1632)

855915

(± 52403)

1.24

(± 0.02)

Without

Crossover

92.99%

(± 1.06%)

20.02%

(± 1.58%)

284.06

(± 392.2)

675996

(± 32766)

1.32

(± 0.03)

Uniform

Crossover

92.89%

(± 1.22%)

20.09%

(± 1.43%)

331.411

(± 453.6)

681010

(± 29999)

1.33

(± 0.03)

Table 6.1: The average results the PADAWANNs obtained with the specified parameters.

31



As we can see, the performance of PADAWANN does not change significantly when the
different parameters are used. However, when compared to the PADAWANN obtained with
default parameters, all other PADAWANNs seem to be significantly different as given by the
p-value which is < 0.01 in all five tests.

To investigate the influence of the tournament size on the performance of the GA, we conduct
two additional tests with population size 10 and smaller and bigger tournament size. The
results are given in Table 6.2.

MNIST

Accuracy

10Letters

Accuracy
Loss

Number

Of Edges

Fitness

Value

Tour Size = 2
93.97%

(± 0.84%)

18.72%

(± 1.2%)

320.6

(± 490.5)

676672

(± 42905)

1.31

(± 0.03)

Tour Size = 4
93.46%

(± 0.76%)

19.73%

(± 1.89%)

344.68

(± 496%)

658028

(± 42429)

1.33

(± 0.04)

Tour Size = 6
93.2%

(± 0.52%)

20.48%

(± 1.54%)

134.67

(± 231.5)

656885

(± 49286)

1.35

(± 0.04)

Table 6.2: The characteristics of the PADAWANNs obtained with differing tournament sizes.

There appears to be a trend: The bigger the tournament size, the higher the accuracy on
10Letters, the sparser the model, and the larger the drop in MNIST accuracy. However, no
conclusions can be derived from this as the experiment is very limited.

6.2 Weight Agnosticism

We investigate what influence weight agnosticism has on the model and its generalization
ability. We run the GA again but keep the pre-trained weight values of the initial model.
The resulting model we will refer to as PGA-NN, short for “Pruning GA neural network”.
Its averaged characteristics are summarized in Table 6.3.

MNIST

Accuracy

10Letters

Accuracy
Loss

Number

of Edges

83.02% (± 9.26%) 15.42% (± 1.13%) 345.33 (± 211.6) 560583 (± 77727)

Table 6.3: The average accuracy and sparsity of the PGA-NN.

We can see that the algorithm produces a PGA-NN with more than twice higher accuracy
score on the 10Letters dataset than the initial model. The MNIST accuracy on the test
dataset has dropped significantly from the initial model’s and from the PGA-NN’s on the
train dataset. The difference between the two networks is evident from p < 0.01.

The accuracy evolution throughout the generations is displayed, together with that of the
PADAWANN’s, in Figure 6.1 and a comparison of their accuracies on all four datatsets

32



before and after applying transfer learning is given in Table 6.4. (The evolution of PGA-NN
is presented in figures in Appendix B, section B.7.)

0 10 20 30 40 50
Generation

94

95

96

97

98

M
NI

ST
 A

cc
ur

ac
y

Comparison of The Average MNIST Accuracy
of the PADAWANN and PGA-NN Throughout the Evolution

PADAWANN
PGA-NN

0 10 20 30 40 50
Generation

8

10

12

14

16

18

20

22

EM
NI

ST
 1

0L
et

te
rs

 A
cc

ur
ac

y

Comparison of The Average EMNIST 10Letters Accuracy
of the PADAWANN and PGA-NN Throughout the Evolution

PADAWANN
PGA-NN

Figure 6.1: Comparison of the train accuracy evolution of PADAWANN and PGA-NN.

MNIST 10Letters Another10 FashionMNIST

PGA-NN
No TL 83.02% 15.42% 12.9% 10.72%

TL 95.07% 54.44% 64.17% 61.3%

PADAWANN
No TL 93.67% 22.1% 13.79% 10.895%

TL 96.48% 55% 67.14% 63.55%

Table 6.4: Comparison between the performance of the PGA-NN and the PADAWANN on
all four datasets before and after fine-tuning the last layer.

As we can see, PADAWANN is superior when it comes to all aspects except sparseness;
PGA-NN is slightly more compact. Even after fine-tuning, the PADAWANN remains a few
percent better in terms of accuracy. PGA-NN’s large drop of accuracy on MNIST between
train and test data indicates that when the evolution is not carried out in a weight agnostic
way, the model overfits. Furthermore, PADAWANN achieving higher average accuracy over
PGA-NN (with p < 0.01) indicates that weight agnosticism helps the network gain higher
generalizability and balance between the performance on the different tasks. We believe that
is because it abstracts it from the pre-trained weight values, which are biased towards one
dataset.

To further understand the influence of weight agnosticism, we take MNIST-Net and evaluate
its accuracy on MNIST and 10Letters in a weight agnostic way. The results are as follows:
97.69% accuracy on MNIST and 6.4% on 10Letters. Interestingly enough, the accuracy scores
barely change from the ones obtained with the pre-trained weights. While the accuracy does
not drop significantly, the generalization ability of the models is also not higher. This indicates
that weight agnosticism does not boost generalizability on its own, but in combination with
the other PADAWANN components.

33



6.3 Joint Evaluation

6.3.1 Fitness Based Only on MNIST Accuracy

It is our hypothesis that joint evaluation is an absolute necessity when the goal of the GA is
evolving a general topology, in order to bypass the bias the network has towards the dataset
it was pre-trained on. To test this hypothesis, we run the GA again but the fitness function
only considers the accuracy on MNIST.

The accuracy and parameters of the resulting network (which we call MNIST-Only) are given
in Table 6.5. Their evolution is presented in Appendix B, section B.6.

MNIST

Accuracy

10Letters

Accuracy
Loss

Number

of Edges

97.95% (± 0.12%) 6.07% (± 0.53%) 1201.48 (± 911.9) 996093 (± 53657)

Table 6.5: The average accuracy and sparsity of the MNIST-Only model.

Since the fitness function no longer considers the network’s accuracy over the multiple tasks,
the resulting low accuracy on 10Letters is not surprising. It confirms that in order to achieve
a generalizable network, we need to show it samples of the different tasks while it is being
evolved.

The MNIST accuracy of MNIST-Only is higher than PADAWANN’s and more importantly,
it is as high as the model it was evolved from while being 1.25x sparser and weight-agnostic.
A significance test gives p-value of 0.1 showing there is no significant difference between the
performance of MNIST-Only and MNIST-Net. This shows that our approach of evolving the
network is also a feasible way to create a (partially) weight-agnostic neural network and can
be used interchangeably with the one Gaier and Ha propose [11]. This also applies to the
PADAWANN obtained using joint evaluation, which is even more sparse.

After applying fine-tuning, MNIST-Only appears to have a slightly worse performance than
the PADAWANN on all datasets except MNIST (as seen in Table 6.6). This result indicates
that evaluating the PADAWANN on multiple datasets is not needed if one’s aim is to evolve
a more compact MNIST classifier. However, if the goal is generalizability, the PADAWANN
is superior. The lack of increase in the accuracy on the new datasets confirms our hypothesis.

MNIST 10Letters Another10 FashionMNIST

MNIST-Net
No TL 98.13% 6.68% 9.99% 7.82%

TL 98.1% 58.69% 72.7% 67%

PADAWANN
No TL 93.67% 22.1% 13.79% 10.895%

TL 96.48% 55% 67.14% 63.55%

MNIST-Only
No TL 97.95% 6.07% 10.7% 7.07%

TL 98.04% 52.76% 66.42% 58.57%

Table 6.6: Comparison between the accuracy of the initial model, the PADAWANN and
MNIST-Only on all four datasets before and after fine-tuning the last layer.

34



6.3.2 Optimized Mapping Between Domains

Another aspect of the joint evalution we perform is the mapping between the MNIST and
10Letters classes. In all of our experiments, it was random: We use the first 10 classes from
EMNIST Letters in the order they are in (e.g. ‘a’ being class 0, mapping to ‘0’ from MNIST).
We investigate whether we can achieve a boost in performance if we utilize an optimized
mapping between the two domains based on visual similarity between the classes, i.e. ‘i’ is
visually most similar to the digit ‘1’ and will thus have class 1. The full mapping between
the 10 classes is given in Appendix A, section A.4.

The evolution of the accuracies of the model created with optimized mapping is compared
to the PADAWANN’s in Figure 6.2 and a further comparison between the accuracy and the
spraseness is made in Table 6.7.

0 10 20 30 40 50
Generation

94

95

96

97

M
NI

ST
 A

cc
ur

ac
y

Comparison of The Average MNIST Accuracy
With Random vs Visually Closer Mapping Between the Datasets

 Throughout the Evolution
PADAWANN
Model With
Visually Closer
Mapping

0 10 20 30 40 50
Generation

6

8

10

12

14

16

18

20

22
EM

NI
ST

 1
0L

et
te

rs
 A

cc
ur

ac
y

Comparison of The Average EMNIST 10Letters Accuracy
With Random vs Visually Closer Mapping Between the Datasets

 Throughout the Evolution
PADAWANN
Model With
Visually Closer
Mapping

Figure 6.2: Comparison of the train accuracy evolution when the mapping between the
MNIST and 10Letters domains is random and optimized.

MNIST

Accuracy

10Letters

Accuracy
Loss

Number

of Edges

Random

Mapping

93.67%

(± 0.54%)

22.1%

(± 0.85%)

272.8

(± 280.56)

600460

(± 38033)

Optimized

Mapping

93.84%

(± 0.61%)

20.25%

(± 1.13%)

732.58

(± 182.3)

626963

(± 33716)

Table 6.7: The average accuracy and sparsity of the PADAWANN when the mapping between
the MNIST and 10Letters domains is random and optimized.

The MNIST accuracy is slightly higher but not significantly (p = 0.06), while the accuracy on
10Letters is actually significantly lower (p < 0.01) when using a more visually closer mapping.
This indicates that the visual similarity we found within the classes is not as optimal as we
expected it to be.

35



6.4 Pruning

To determine the role of evolutionary random pruning in the algorithm, we prune MNIST-Net
in a more typical fashion and compare the resulting networks to the PADAWANN evolved
from MNIST-Net. We perform unstructured pruning in two ways: random pruning, which is
also the strategy utilized in the GA, and removing the weights with lowest L1-norm. Because
of the randomness of the first approach, we prune the initial model 10 times to obtain an
average estimate of the performance after pruning. The amount of pruned weights is equal
to the amount pruned by PADAWANN in order to make a fair comparison.

Table 6.8 presents the results of this experiment. It is interesting to note that only about half
the edges pruned by the two other pruning strategies are ones PADAWANN pruned as well.

MNIST

Accuracy

10Letters

Accuracy

Edges Pruned

In Common

PADAWANN 93.67% (± 0.54%) 22.1% (± 0.85%) –

PNN-Random 77.27% (± 5.53%) 9.94% (± 2.27%) 304148 (51%)

PNN-L1 98.12% 6.74% 319227 (53%)

Table 6.8: The average accuracy of PADAWANN and the Pruned Neural Networks (PNNs)
when using random and L1-norm pruning on the MNIST-Net model, as well as the edges
pruned in common with the PADAWANN.

Random unstructured pruning greatly reduces the accuracy of the network on MNIST when
there is no genetic evolution involved. That is because pruning edges at random has a high
risk of removing ones that are crucial for the classification function of the model. We use
the same pruning strategy in the PADAWANN-GA, but natural selection removes such unfit
individuals. On the other hand, L1-Norm has the expected effect: It simplifies the model
while the accuracy on MNIST stays the same (the difference in performance is insignificant
with p > 0.05). However, the performance on 10Letters of the PNNs is still low. This is
further illustrated by the confusion matrices given in Figure 6.3.

Figure 6.3: The confusion matrices of RNN-L1 (left) and PNN-Random (right) for the MNIST
and 10Letters datasets.

36



Figure 6.3: The confusion matrices of RNN-L1 (left) and PNN-Random (right) for the MNIST
and 10Letters datasets.

We compare PNN-L1 to the PADAWANN in one more way, by evaluating it in a weight ag-
nostic way (keeping the signs). We obtain 97.9% accuracy on MNIST and 6.63% on 10Letters.
This shows that the combination of pruning and weight agnosticism only works when genetic
evolution is involved.

Our algorithm seems to work as the best pruning technique in terms of performance on more
than one task out of the examined ones. We achieve a topology that can be considered better
than the initial one in terms of generalizing to other tasks. On the other hand, the typical
pruning methods optimize the architecture in regards to its complexity and accuracy only on
the dataset it was trained on. On the other hand, the traditional pruning methods are much
faster.

37



Chapter 7

Discussion

In this chapter, we discuss the most important outcomes of our research, reflect on the work
conducted for the thesis, and propose directions for further future research.

7.1 Sign of Weight Values

One interesting finding from our research is the importance of the sign of the weights on the
performance of the pruned weight-agnostic model. If we disregard the signs when assigning the
shared weight value, the network cannot converge and has random-guessing level performance.
This issue arises from the fully connected layers of the networks we work with, which contain
only non-zero edges. Once all edges are given the same value, the same weighted sum will
arrive at all output layer nodes and the model will always predict the same class.

This is not a problem inherent to weight agnosticism; Gaier and Ha assign values with the
same sign to all edges [11]. In their experiment, the genetic evolution would simply remove
networks whose performance suffers because of very dense layers. Our algorithm, however,
deals with networks with (some) fully-connected layers and would have to prune the majority
of the edges in specifically those layers in order to improve beyond random guessing. Because
of this, the evolution of a pre-trained network into a weight agnostic one appears to be a
harder task than building a complex weight agnostic net from a simple one.

Another observation is that giving the pre-trained networks a shared weight value and keeping
the sign of the original weights results in a model that has almost the exact same performance
as the pre-trained network with its original weights. This can be seen as a confirmation of [51]’s
findings that the only important information from the original initialization of a network’s
weights is their signs, not their weight values.

Keeping the sign produces models with higher accuracy, but has downsides as well: It means
that we do not achieve full weight agnosticism because we are preserving some information
about the initial model’s weights. Furthermore, keeping the weight signs indicates that the
resulting PADAWANN will always have a bias towards the domain it was pre-trained on.

38



7.2 Domain Adaptation

Our results show that the MNIST and 10Letters are too dissimilar and make the domain
adaptation difficult. The GA seems to display similar behaviour when the mapping is from
MNIST to 10Letters and vice versa. However, the PADAWANN evolved from MNIST-Net en-
joys a higher improvement over the initial model. This indicates that, while our algorithm can
use a network pre-trained on any dataset as initial model, ones trained as MNIST classifiers
are at an advantage. This could be due to the relative simplicity of the dataset.

The tests with an optimized mapping between the classes of MNSIT and 10Letters show no
improvement over the random mapping, which further indicates that the two domains are
not strongly related. The two tasks are not similar enough for this domain adaptation to
fully work. Another indicator for this is the lack of change in performance for different fitness
measures. However, because of the jump in accuracy of the PADAWANNs on the unseen-
before dataset, we believe that for more closely-related domains our approach could be more
successful (e.g. letters in different fonts, on different surfaces/backgrounds).

7.3 General vs Task-specific Structures

The structure and performance of the models obtained through PADAWANN and through
traditional pruning techniques are vastly different. As shown by our results, the usual pruning
simplifies the model in a way that maintains the accuracy on the dataset it was trained on,
but does not increase its generalization ability over other tasks. On the other hand, the
random pruning that PADAWANN goes through results in a model that has a slightly lower
accuracy on the dataset it was trained on, but a much higher accuracy on the new datasets.

The PADAWANN and the pruned models prune only about 50% of the edges in common. We
believe that the increase in generalization comes from the other half and thus, our GA prunes
a network into a more general one while the usual pruning techniques achieve a smaller and
more efficient model, but at the cost of its generality. The difference in accuracy on 10Letters
and which edges in particular are pruned could be indicative of the existence of different parts
of the network that are specific to a certain task.

7.4 Weight Agnosticism

The difference between WANN and PADAWANN was not computed using a significance
test, which is one of the shortcomings of our research. However, the accuracy score and
sparseness of PADAWANN is comparable to the network Gaier and Ha evolve. Thus, we can
conclude that the algorithm can be used for evolving a (partially) weight-agnostic network
in an alternative way to the one suggested in [11]. However, it needs to start from a pre-
trained neural network which already has a high performance on a certain task. Furthermore,
currently our algorithm is less efficient in terms of its run-time to WANN.

Our findings show that training the network’s architecture instead of weights contributes
to increasing the generalization ability of the model and keeping the balance between its
performance on the different tasks. That definitely raises curiosity of how useful weight
agnosticism can be for neural architecture search and transfer learning in general.

39



7.5 Compression

Because we prune the edges and only preserve the weight-sign information, the PADAWANN
is easier to store, fine-tune and use than the model it was evolved from. While space-efficiency
and speed-up are not the main focus of our work, the PADAWANN we create is half the size
of the initial network in terms of non-zero edges. This by-product makes the idea of creating
a PADAWANN even more appealing.

Although PADAWANN is 2x smaller than the model it was evolved from, the drop of accuracy
on the original network is quite a bit larger than what is achieved by the state-of-the-art
[46, 17, 47]. When the fitness function only takes MNIST into account, the drop in accuracy
is insignificant and similar to the aforementioned research results. However, the compression
is negligible in comparison. This indicates that, while our algorithm can be used as a pruning
method, there is room for improvement. Which can happen, for example, by allowing the
fitness function to involve the complexity of the model as well.

7.6 Generalization

We show the potential of evolving a model over multiple tasks in a weight agnostic way,
starting from a network pre-trained on one of them and keeping only the sign of the original
weights. Our results indicate PADAWANN trades off high accuracy on a specific task with
better than random-guessing accuracy on multiple. The boost in generalization ability scales
well: The evolution on three datasets results in a model that has increased accuracy on both
new tasks. However, as more datasets get involved, the accuracy on the original dataset drops
further. We hypothesise this could be due to new features overwriting knowledge of old ones
or because reusing the whole structure for all tasks is inefficient.

We confirm that the networks we evolve cannot perform well on domains they do not encode
any information about. This is further illustrated by the fact that PADAWANN’s generaliz-
ability does not extend to datasets which are not used in the evolution of the model. Because
of that we can conclude that joint evaluation is a necessary component of our algorithm.

The suggestion made by Gaier and Ha [11] is unfortunately shown to be untrue for the
WANNs originating from their research. Reasons for this could be that the two domains
used are not similar enough; the network’s structure focuses on a single task only and finds it
hard to encode information about the features of others; the algorithm needs more guidance.
Our results show that combining weight agnosticism and knowledge from a pre-trained model
brings WANNs closer to learning how to perform multiple tasks. Although PADAWANN is
better at performing more than one task compared to the model it was evolved from and
WANN, its improved performance is still barely above random-guessing. However, when
transfer learning is applied on the network we observe a high accuracy of above 50% on all
four datasets used for testing.

Based on the observed difference in performance of the PADAWANN before and after transfer
learning, we also conclude that a network’s topology cannot be made general so that it
performs well on multiple tasks without any modifications to its structure or weights, or
training the network on those datasets. This is also supported by other literature [27, 36, 51,
50] focused on transfer and multi-task learning.

40



7.7 Future Work

This research is quite limited with respect to the number of generations and population size
due to constraints on time and resources, but our results show that PADAWANN could benefit
from a longer run with more individuals. Additionally, fine-tuning the GA’s hyperparameters
and experimenting with more suitable fitness functions are potential directions for future
research. Exploring the relation between population size and tournament size is also an
interesting prospect. In our limited tests, we noticed that a higher tournament size is related
to higher accuracies, so it is worth considering implementing the GA so that a single best
fitting individual is chosen as the “parent” of the whole next generation (similarly to [40]).

Our research is conducted on only a few relatively easy tasks, because it is intended as a proof
of concept. It could be the case that the combination of weight agnosticism and evolutionary
random pruning only work well together for very simple data and our results do not scale
well for other tasks, or the contrary: Results better than ours would be achieved if the initial
model is much more complex and pre-trained on a diverse dataset such as ImageNet. Thus,
further research must be conducted for other domains (images in color; containing more
classes; having more sophisticated features).

Using datasets with a different number of classes is also not explored in this research, but
should be investigated in the future. If the original structure of the model is to be kept, it
would be necessary to apply some sort of masking in order to only use a portion of the original
number of output features. Applying a strategy similar to [27] might be worth investigating.
If the original structure is kept, however, the PADAWANN would not be able to generalize
to datasets with a different amount of classes than the dataset the initial model was trained
on. Another approach to try out would be one utilized in multi-task learning, where there is
a different output layer for each dataset that can be connected to the PADAWANN’s output
layer depending on which task we want to work on.

The WANN in [11] is also used as an ensemble which leads to slightly higher results. Investi-
gating whether PADAWANN would also benefit from that is another potential direction for
future work.

Our algorithm is quite time-consuming, mainly due to the evaluation procedures. Using
a small subset of the train data seems to be a sweet spot, which does not result in low
performance of the PADAWANN and speeds up the runtime. However, even then pruning with
PADAWANN is very slow in comparison to traditional pruning like L1-norm. Improving this
aspect of our algorithm could happen, for instance, by parallelizing the code. An interesting
experiment to conduct would be pruning a model using L1 pruning and then using that as
the initial network for the GA. It is curious whether this will lose the generalization ability
that the PADAWANN normally evolves.

Lastly, we believe that further experiments with the weight values must be conducted. Making
them agnostic is a crucial part of the algorithm, but that can be achieved in ways different
from ours. For instance, sampling the shared weight value from a bigger range might lead to
better results. Furthermore, setting a random value to all weights and keeping it constant
throughout the whole algorithm is worth considering. Those suggestions could possibly even
lead to the full utilization of weight agnosticism (i.e. discarding the signs).

41



Chapter 8

Conclusions

In this thesis we extend the research conducted by Gaier and Ha [11]. We test the generaliza-
tion abilities of their classification WANN and find it to be sub-optimal. We propose another
method for achieving a weight-agnostic generalizable model via evolution and pruning.

The PADAWANNs we create are two times sparser than the model they are evolved from
and have improved generalization ability: about 2.3 – 3.3x increase of accuracy on datasets
the network was not trained on. Our further ablation study shows that the boost of gen-
eralizability is indeed due to the combination of weight agnosticism, evolution and pruning
a pre-trained model. Furthermore, our results indicate that evolutionary weight-agnostic
random pruning can be used as a new pruning technique meaning our algorithm has dual
functionality.

In conclusion, we show that the networks evolved by the baseline algorithm can not be directly
reused for multiple tasks. Our proposed approach evolves PADAWANNs that are superior to
WANNs, but it is still insufficient for creating networks with high accuracy over more than
one task. We hope our experimental results spark interest and inspire further work into this
domain.

42



Appendix A

Experiment Details

The implementation of this project has been achieved fully in python, because the language
supports numerous machine learning libraries that facilitate research of this type. The im-
plementation can be found in our GitHub repository.

A.1 Set-up

The tests were run on the compute cluster of the Science Faculty of Radboud University. The
cluster makes use of the job scheduler Slurm1. Since we have not parallelized our code, we
only use 1 node to run the algorithm on.

A.2 Libraries

We make use of the standard python library for multi-dimensional arrays and mathematical
operations on them, numpy2, as well as the widely used open source machine learning library
PyTorch3. PyTorch facilitates dealing with neural networks by offering:

• A method to represent them. The Module class represents many types of NN layers in
a convenient way, and allows to get/set the values of their weights, count the number
of weights, prepare the layers for training/testing, etc. It is documented here.

• Image datasets. A list of all available datasets that are almost ready-to-use4 is given
here. PyTorch also supplies the class DataLoader which provides an easy way to iterate
over the dataset in batches. More information about it is found here.

• Pruning functions. They allow for global and L1-norm structured and unstructured
pruning (as well as other types that we do not make use of) and for randomly picking
the pruned weights. They are part of the torch module, and are listed under section
“Utilities” here.

1Information about Slurm can be found on this university wikia.
2The documentation of numpy can be found here.
3The complete documentation of PyTorch can be found here.
4Some preprocessing steps must be done before the datasets are used. More information about that in A.4.

43

https://github.com/nadiand/PADAWANN
https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://pytorch.org/vision/stable/datasets.html
https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
https://pytorch.org/docs/stable/nn.html#utilities
https://wiki.cncz.science.ru.nl/Slurm
https://numpy.org/
https://pytorch.org/


A.3 Model Structure

As mentioned in Chapter 5, the architecture of the initial network we used in most of our
experiments is taken from the official PyTorch GitHub repository. More precisely, the model
can be found here. The structure is created specifically for the MNIST dataset which is why
we chose it. It is also not very complex (only six layers: two convolutional, two dropout layers
and two fully-connected layers) with 1.2 million edges.

We carry out the model training using the code provided in the repository linked above, with
some small modifications to make use of our custom DatasetManager class.

A.4 Datasets

We work with the following three datasets:

• MNIST is a dataset with 70,000 Grayscale images of handwritten digits (Fugure A.1.a).
It has 10 classes. More about it can be found here.

• EMNIST is a dataset with 145,600 Grayscale images of handwritten letters. It has
26 classes, but for the purpose of this research, we do not use the last 6. We cre-
ate the 10Letters dataset from the first 10 classes (‘a’ through ‘j’; Figure A.1.b), and
the Another10 dataset from the next 10 classes (‘k’ through ‘t’; Figure A.2.a). More
information about EMNIST can be found here

• FashionMNIST is a dataset with 70,000 Grayscale images of pieces of clothing or acces-
sories distributed in 10 classes (Figure A.1.b). More about it is presented here.

(a) (b)

Figure A.1: Examples of the ten classes of the MNIST (a) and EMNIST 10Letters (b) datasets.

44

https://github.com/pytorch/examples/blob/master/mnist/main.py
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1702.05373v1
https://github.com/zalandoresearch/fashion-mnist


(a) (b)

Figure A.2: Examples of the ten classes of the EMNIST Another10 (a) and FashionMNIST
(b) datasets.

We access the datasets directly through the PyTorch library. Since they are all Grayscale,
the pre-processing step we take is minimal: normalize the images and transform them into
Tensors5 (the data type that PyTorch’s neural networks work with). We modify the 10Letters
and Another10 datasets further by changing their labels to match the 0 – 10 class distribution
of MNIST.

The visually closer mapping between the MNIST and 10Letters dataset that we use in one of
the experiments is presented in Figure A.3.

Figure A.3: Example of the ten classes of the MNIST (top row) and 10Letters datasets
(bottom) when the mapping between them is “optimized.”

5Torch Tensors are simply multi-dimensional matrices with elements of the same type. More about them
can be found here.

45

https://pytorch.org/docs/master/tensors.html#torch.Tensor


Appendix B

Additional Figures

This appendix contains the auxiliary plots of our experiments. The default parameters are
used unless otherwise specified. The different colors represent an individual run of the GA.

B.1 PADAWANN Results

0 10 20 30 40 50
Generation

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Nu
m

be
r o

f N
on

-z
er

o 
Ed

ge
s

1e6

The Number of Non-zero Edges of the Best Model
Throughout the Evolution

When Initial Model is MNIST-Net

0 10 20 30 40 50
Generation

0

2000

4000

6000

8000

Lo
ss

The Loss of the Best Model
Throughout the Evolution

When Initial Model is MNIST-Net

0 10 20 30 40 50
Generation

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Fit
ne

ss

The Fitness of the Best Model
Throughout the Evolution

When Initial Model is MNIST-Net

Figure B.1: The evolution of PADAWANN when evolved from MNIST-Net.

46



B.2 Discarding the Signs

0 10 20 30 40 50
Generation

10

12

14

16

18

20

22

24

M
NI

ST
 A

cc
ur

ac
y

The MNIST Accuracy of the Best Model
Throughout the Evolution

When the Weight Signs Are Discarded

0 10 20 30 40 50
Generation

10

12

14

16

18

EM
NI

ST
 1

0L
et

te
rs

 A
cc

ur
ac

y

The EMNIST 10Letters Accuracy of the Best Model
Throughout the Evolution

When the Weight Signs Are Discarded

0 10 20 30 40 50
Generation

0.95

1.00

1.05

1.10

1.15

1.20

Nu
m

be
r o

f N
on

-z
er

o 
Ed

ge
s

1e6

The Number of Non-zero Edges of the Best Model
Throughout the Evolution

When the Weight Signs Are Discarded

0 10 20 30 40 50
Generation

0

1

2

3

4

Lo
ss

1e6

The Loss of the Best Model
Throughout the Evolution

When the Weight Signs Are Discarded

0 10 20 30 40 50
Generation

0.12

0.14

0.16

0.18

0.20

0.22

Fit
ne

ss

The Fitness of the Best Model
Throughout the Evolution

When the Weight Signs Are Discarded

Figure B.2: The evolution of the PADAWANN’s parameters and accuracy when the initial
network’s weight signs are discarded.

47



B.3 Optimized Domain Mapping

0 10 20 30 40 50
Generation

93

94

95

96

97

98

M
NI

ST
 A

cc
ur

ac
y

The MNIST Accuracy of the Best Model
Throughout the Evolution

When the Mapping Between Datasets is Visually Closer

0 10 20 30 40 50
Generation

7.5

10.0

12.5

15.0

17.5

20.0

22.5

EM
NI

ST
 1

0L
et

te
rs

 A
cc

ur
ac

y

The EMNIST 10Letters Accuracy of the Best Model
Throughout the Evolution

When the Mapping Between Datasets is Visually Closer

0 10 20 30 40 50
Generation

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Nu
m

be
r o

f N
on

-z
er

o 
Ed

ge
s

1e6

The Number of Non-zero Edges of the Best Model
Throughout the Evolution

When the Mapping Between Datasets is Visually Closer

0 10 20 30 40 50
Generation

0

2000

4000

6000

8000

Lo
ss

The Loss of the Best Model
Throughout the Evolution

When the Mapping Between Datasets is Visually Closer

0 10 20 30 40 50
Generation

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Fit
ne

ss

The Fitness of the Best Model
Throughout the Evolution

When the Mapping Between Datasets is Visually Closer

Figure B.3: The evolution of the PADAWANNs’ parameters, loss and fitness when evolved
from MNIST-Net with an optimized mapping between the MNIST and 10Letters classes.

48



B.4 3D-PADAWANN Results

0 10 20 30 40 50
Generation

88

90

92

94

96

98

M
NI

ST
 A

cc
ur

ac
y

The MNIST Accuracy of the Best Model
Throughout the Evolution

When the Fitness Considers Accuracy on Three Datasets

0 10 20 30 40 50
Generation

7.5

10.0

12.5

15.0

17.5

20.0

22.5

EM
NI

ST
 1

0L
et

te
rs

 A
cc

ur
ac

y

The EMNIST 10Letters Accuracy of the Best Model
Throughout the Evolution

When the Fitness Considers Accuracy on Three Datasets

0 10 20 30 40 50
Generation

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

ER
RO

R 
Ac

cu
ra

cy

The ERROR Accuracy of the Best Model
Throughout the Evolution

When the Fitness Considers Accuracy on Three Datasets

0 10 20 30 40 50
Generation

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Nu
m

be
r o

f N
on

-z
er

o 
Ed

ge
s

1e6

The Number of Non-zero Edges of the Best Model
Throughout the Evolution

When the Fitness Considers Accuracy on Three Datasets

0 10 20 30 40 50
Generation

0

2000

4000

6000

8000

Lo
ss

The Loss of the Best Model
Throughout the Evolution

When the Fitness Considers Accuracy on Three Datasets

0 10 20 30 40 50
Generation

0.65

0.70

0.75

0.80

0.85

Fit
ne

ss

The Fitness of the Best Model
Throughout the Evolution

When the Fitness Considers Accuracy on Three Datasets

Figure B.4: The evolution of 3D-PADAWANN when the evolution considers three datasets:
MNIST, 10Letters and Another10.

49



B.5 Non-convolutional Networks

0 10 20 30 40 50
Generation

76

78

80

82

84

M
NI

ST
 A

cc
ur

ac
y

The MNIST Accuracy of the Best Model
Throughout the Evolution

When the Initial Network Has No Convolution

0 10 20 30 40 50
Generation

6

8

10

12

14

16

18

20

EM
NI

ST
 1

0L
et

te
rs

 A
cc

ur
ac

y

The EMNIST 10Letters Accuracy of the Best Model
Throughout the Evolution

When the Initial Network Has No Convolution

0 10 20 30 40 50
Generation

32500

35000

37500

40000

42500

45000

47500

50000

Nu
m

be
r o

f N
on

-z
er

o 
Ed

ge
s

The Number of Non-zero Edges of the Best Model
Throughout the Evolution

When the Initial Network Has No Convolution

0 10 20 30 40 50
Generation

0

2

4

6

8

10

12

Lo
ss

The Loss of the Best Model
Throughout the Evolution

When the Initial Network Has No Convolution

0 10 20 30 40 50
Generation

0.75

0.80

0.85

0.90

0.95

Fit
ne

ss

The Fitness of the Best Model
Throughout the Evolution

When the Initial Network Has No Convolution

Figure B.5: The evolution of the PADAWANNs’ parameters, loss and fitness when evolved
from a network without convolutional layers.

50



B.6 MNIST-Only

0 10 20 30 40 50
Generation

97.8

97.9

98.0

98.1

98.2

M
NI

ST
 A

cc
ur

ac
y

The MNIST Accuracy of the Best Model
Throughout the Evolution

When Fitness Function Considers Only MNIST Accuracy

0 10 20 30 40 50
Generation

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Nu
m

be
r o

f N
on

-z
er

o 
Ed

ge
s

1e6

The Number of Non-zero Edges of the Best Model
Throughout the Evolution

When Fitness Function Considers Only MNIST Accuracy

0 10 20 30 40 50
Generation

0

20

40

60

80

100

120

140

Lo
ss

The Loss of the Best Model
Throughout the Evolution

When Fitness Function Considers Only MNIST Accuracy

0 10 20 30 40 50
Generation

44

46

48

50

52

54

56

Fit
ne

ss
The Fitness of the Best Model

Throughout the Evolution
When Fitness Function Considers Only MNIST Accuracy

Figure B.6: The evolution of the MNIST-Only network’s parameters and accuracy.

51



B.7 Without Weight Agnosticism

0 10 20 30 40 50
Generation

93

94

95

96

97

98

M
NI

ST
 A

cc
ur

ac
y

The MNIST Accuracy of the Best Model
Throughout the Evolution

When Weight-Agnosticism is Not Utilized

0 10 20 30 40 50
Generation

7.5

10.0

12.5

15.0

17.5

20.0

22.5

EM
NI

ST
 1

0L
et

te
rs

 A
cc

ur
ac

y

The EMNIST 10Letters Accuracy of the Best Model
Throughout the Evolution

When Weight-Agnosticism is Not Utilized

0 10 20 30 40 50
Generation

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Nu
m

be
r o

f N
on

-z
er

o 
Ed

ge
s

1e6

The Number of Non-zero Edges of the Best Model
Throughout the Evolution

When Weight-Agnosticism is Not Utilized

0 10 20 30 40 50
Generation

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

Lo
ss

The Loss of the Best Model
Throughout the Evolution

When Weight-Agnosticism is Not Utilized

0 10 20 30 40 50
Generation

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Fit
ne

ss

The Fitness of the Best Model
Throughout the Evolution

When Weight-Agnosticism is Not Utilized

Figure B.7: The evolution of the network obtained when weight agnosticism is not utilized.

52



B.8 PADAWANN Evolved From 10Letters-Net

0 10 20 30 40 50
Generation

0.7

0.8

0.9

1.0

1.1

1.2

Nu
m

be
r o

f N
on

-z
er

o 
Ed

ge
s

1e6

The Number of Non-zero Edges of the Best Model
Throughout the Evolution

When Initial Model is 10Letters-Net

0 10 20 30 40 50
Generation

0

500

1000

1500

2000

Lo
ss

The Loss of the Best Model
Throughout the Evolution

When Initial Model is 10Letters-Net

0 10 20 30 40 50
Generation

1.00

1.05

1.10

1.15

1.20

1.25

Fit
ne

ss

The Fitness of the Best Model
Throughout the Evolution

When Initial Model is 10Letters-Net

Figure B.8: The evolution of the PADAWANNs’ parameters, loss and fitness when evolved
from 10Letters-Net.

B.9 Hyperparameter Investigation

All figures produced from our hyperparameter investigation can be found in our GitHub repository.

53

https://github.com/nadiand/PADAWANN/tree/main/Results/Hyperparameter%20Investigation%20Figures


Bibliography

[1] Chang Wook Ahn and Rudrapatna S Ramakrishna. Elitism-based compact genetic al-
gorithms. IEEE Transactions on Evolutionary Computation, 7(4):367–385, 2003.

[2] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolu-
tional neural networks. ACM Journal on Emerging Technologies in Computing Systems
(JETC), 13(3):1–18, 2017.

[3] George Bebis and Michael Georgiopoulos. Improving generalization by using genetic
algorithms to determine the neural network size. In Proceedings of Southcon’95, pages
392–397. IEEE, 1995.

[4] Armando Blanco, Miguel Delgado, and MC Pegalajar. A genetic algorithm to obtain
the optimal recurrent neural network. International Journal of Approximate Reasoning,
23(1):67–83, 2000.

[5] Miguel A. Carreira-Perpinan and Yerlan Idelbayev. ”learning-compression” algorithms
for neural net pruning. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8532–8541, 2018.

[6] Richard Caruana. Multitask learning: A knowledge-based source of inductive bias. In
Proceedings of the Tenth International Conference on Machine Learning, pages 41–48.
Morgan Kaufmann, 1993.

[7] Ronan Collobert and Jason Weston. A unified architecture for natural language process-
ing: Deep neural networks with multitask learning. In Proceedings of the 25th Interna-
tional Conference on Machine Learning, ICML ’08, page 160–167, New York, NY, USA,
2008. Association for Computing Machinery.

[8] S Deepak and PM Ameer. Brain tumor classification using deep cnn features via transfer
learning. Computers in biology and medicine, 111:103345, 2019.

[9] Oana Diana Eva and Anca Mihaela Lazar. Comparison of classifiers and statistical anal-
ysis for eeg signals used in brain computer interface motor task paradigm. International
Journal of Advanced Research in Artificial Intelligence (IJARAI), 1(4):8–12, 2015.

[10] Zhenyu Fang, Jinchang Ren, Stephen Marshall, Huimin Zhao, Song Wang, and Xuelong
Li. Topological optimization of the densenet with pretrained-weights inheritance and
genetic channel selection. Pattern Recognition, 109:107608, 2021.

[11] Adam Gaier and David Ha. Weight agnostic neural networks. arXiv preprint
arXiv:1906.04358, 2019.

54



[12] Rosa Maria Garcia-Gimeno, Cesar Hervas-Martinez, and Maria Isabel de Siloniz. Im-
proving artificial neural networks with a pruning methodology and genetic algorithms for
their application in microbial growth prediction in food. International Journal of Food
Microbiology, 72(1-2):19–30, 2002.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[14] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns.
arXiv preprint arXiv:1608.04493, 2016.

[15] Dongmei Han, Qigang Liu, and Weiguo Fan. A new image classification method using
cnn transfer learning and web data augmentation. Expert Systems with Applications,
95:43–56, 2018.

[16] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[17] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and
connections for efficient neural networks. arXiv preprint arXiv:1506.02626, 2015.

[18] Peter JB Hancock. Pruning neural nets by genetic algorithm. In Artificial Neural Net-
works, pages 991–994. Elsevier, 1992.

[19] Douglas M Hawkins. The problem of overfitting. Journal of chemical information and
computer sciences, 44(1):1–12, 2004.

[20] Cristian Ivan and Razvan Florian. Training highly effective connectivities within neural
networks with randomly initialized, fixed weights. arXiv preprint arXiv:2006.16627,
2020.

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[22] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network
pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

[23] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[24] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui
Zhang. Learning efficient convolutional networks through network slimming. In Proceed-
ings of the IEEE international conference on computer vision, pages 2736–2744, 2017.

[25] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking
the value of network pruning. In International Conference on Learning Representations,
2019.

[26] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for
deep neural network compression. In Proceedings of the IEEE international conference
on computer vision, pages 5058–5066, 2017.

55

http://www.deeplearningbook.org


[27] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single net-
work to multiple tasks by learning to mask weights. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 67–82, 2018.

[28] Quinn McNemar. Note on the sampling error of the difference between correlated pro-
portions or percentages. Psychometrika, 12(2):153–157, 1947.

[29] Masaya Misaki, Youn Kim, Peter A Bandettini, and Nikolaus Kriegeskorte. Compari-
son of multivariate classifiers and response normalizations for pattern-information fmri.
Neuroimage, 53(1):103–118, 2010.

[30] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Moham-
mad Rastegari. What’s hidden in a randomly weighted neural network? In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

[31] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu,
Jie Tan, Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In
International Conference on Machine Learning, pages 2902–2911. PMLR, 2017.

[32] R. Reed. Pruning algorithms-a survey. IEEE Transactions on Neural Networks, 4(5):740–
747, 1993.

[33] Fabian Ruehle. Evolving neural networks with genetic algorithms to study the string
landscape. Journal of High Energy Physics, 2017(8):1–20, 2017.

[34] Manali Shaha and Meenakshi Pawar. Transfer learning for image classification. In
2018 Second International Conference on Electronics, Communication and Aerospace
Technology (ICECA), pages 656–660. IEEE, 2018.

[35] Zhenghao Shi, Huan Hao, Minghua Zhao, Yaning Feng, Lifeng He, Yinghui Wang, and
Kenji Suzuki. A deep cnn based transfer learning method for false positive reduction.
Multimedia Tools and Applications, 78(1):1017–1033, 2019.

[36] Hoo-Chang Shin, Holger R. Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues,
Jianhua Yao, Daniel Mollura, and Ronald M. Summers. Deep convolutional neural
networks for computer-aided detection: Cnn architectures, dataset characteristics and
transfer learning. IEEE Transactions on Medical Imaging, 35(5):1285–1298, 2016.

[37] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[38] SN Sivanandam and SN Deepa. Genetic algorithms. In Introduction to genetic algorithms,
pages 15–37. Springer, 2008.

[39] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augment-
ing topologies. Evolutionary computation, 10(2):99–127, 2002.

[40] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic programming
approach to designing convolutional neural network architectures. In Proceedings of the
genetic and evolutionary computation conference, pages 497–504, 2017.

56



[41] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G Yen. Completely automated cnn
architecture design based on blocks. IEEE transactions on neural networks and learning
systems, 31(4):1242–1254, 2019.

[42] Hans Henrik Thodberg. Improving generalization of neural networks through pruning.
International Journal of Neural Systems, 1(04):317–326, 1991.

[43] Darrell Whitley et al. Genetic algorithms and neural networks. Genetic algorithms in
engineering and computer science, 3:191–201, 1995.

[44] Jiansheng Wu, Jin Long, and Mingzhe Liu. Evolving rbf neural networks for rainfall pre-
diction using hybrid particle swarm optimization and genetic algorithm. Neurocomputing,
148:136–142, 2015.

[45] Lingxi Xie and Alan Yuille. Genetic cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1379–1388, 2017.

[46] Chuanguang Yang, Zhulin An, Chao Li, Boyu Diao, and Yongjun Xu. Multi-objective
pruning for cnns using genetic algorithm. In International Conference on Artificial Neural
Networks, pages 299–305. Springer, 2019.

[47] Wenzhu Yang, Lilei Jin, Sile Wang, Zhenchao Cu, Xiangyang Chen, and Liping Chen.
Thinning of convolutional neural network with mixed pruning. IET Image Processing,
13(5):779–784, 2019.

[48] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are fea-
tures in deep neural networks? CoRR, abs/1411.1792, 2014.

[49] Ruizhe Zhao and Wayne Luk. Efficient structured pruning and architecture searching
for group convolution. In Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops, pages 0–0, 2019.

[50] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places:
A 10 million image database for scene recognition. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 40(6):1452–1464, 2018.

[51] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery
tickets: Zeros, signs, and the supermask. Advances in neural information processing
systems, 32, 2019.

57


	Introduction
	Preliminaries
	Neural Networks
	Basic Functionality
	Convolutional Neural Networks

	Neural Architecture Search
	Network Pruning
	Genetic Algorithms
	Evolving NNs
	Pruning NNs


	Related Work
	Weight-Agnostic Neural Networks
	Network Evolution
	GAs for Neural Network Pruning
	Standard Pruning Techniques
	Multi-task and Transfer Learning
	Multi-task Learning
	Transfer Learning


	Generalizability of WANNs
	WANN Algorithm
	WANN for Handwritten Digit Classification
	WANNs With Joint Evaluation

	The PADAWANN
	Algorithm
	Network Pruning
	Weight Agnosticism
	Evolution
	Creating The PADAWANN

	Preliminary Experiment Information
	Initial Models
	Datasets
	Sign of the Weights
	Feed-forward Networks

	PADAWANN
	Results
	PADAWANN vs Pre-trained Networks
	PADAWANN vs WANN
	Generalization Over Unseen Tasks

	Three-task PADAWANN
	10Letters-Net as Initial Network
	Transfer Learning

	Ablation Study
	Hyperparameter Investigation
	Weight Agnosticism
	Joint Evaluation
	Fitness Based Only on MNIST Accuracy
	Optimized Mapping Between Domains

	Pruning

	Discussion
	Sign of Weight Values
	Domain Adaptation
	General vs Task-specific Structures
	Weight Agnosticism
	Compression
	Generalization
	Future Work

	Conclusions
	Experiment Details
	Set-up
	Libraries
	Model Structure
	Datasets

	Additional Figures
	PADAWANN Results
	Discarding the Signs
	Optimized Domain Mapping
	3D-PADAWANN Results
	Non-convolutional Networks
	MNIST-Only
	Without Weight Agnosticism
	PADAWANN Evolved From 10Letters-Net
	Hyperparameter Investigation


