
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Computing apart states in a partial Mealy machine

Author:
Niek Terol
s1000979

First supervisor/assessor:
dr. J.C. Rot

Second supervisor/assessor:
dr. T.T. Wißmann

Second assessor:
prof. dr. F.W. Vaandrager

July 26, 2022

Acknowledgements

I am very grateful to both of my supervisors, dr. Jurriaan Rot and dr.
Thorsten Wißmann, for guiding me through the scientific process of my
thesis and for giving invaluable feedback along the way.

Abstract

This thesis presents and analyses an algorithm that finds all pairs of apart
states in a partial Mealy machine. While there are already algorithms that
accomplish this, they were not analysed extensively. The time complexity
of the presented algorithm was found to be O(|I|n2), where I is the input
alphabet and n the number of states of a given partial Mealy machine. The
algorithm was benchmarked to compare the practical performance with the
theoretical complexity. The benchmarks show that the time needed for the
algorithm to terminate scales quadratically in the number of states. For a
fixed number of states, the average performance of the algorithm improves
when the number of used input symbols increases.

Contents

1 Introduction 2

2 Partial Mealy machines, trees and apartness 4
2.1 Preliminary definitions . 4
2.2 Partial Mealy machine in rooted tree form 5
2.3 Partial Mealy tree . 9
2.4 Equivalence of definitions . 11

2.4.1 Proof of first statement 12
2.4.2 Proof of second statement 14

3 Algorithmic computation of apart states 16
3.1 Description of DetermineApart 16
3.2 Description of ComputeAllApartPairs 18
3.3 Correctness . 19
3.4 Complexity . 20

3.4.1 Complexity of DetermineApart 21
3.4.2 Complexity of ComputeAllApartPairs 21

3.5 Variations . 22
3.5.1 State order in ComputeAllApartPairs 22
3.5.2 Order of for-loops in DetermineApart 24

4 Benchmark 26
4.1 Generating random partial Mealy machines 26
4.2 Influence of machine properties 28
4.3 Benchmark description . 29
4.4 Benchmark results . 29

5 Related Work 34

6 Conclusions 36

A Benchmarking result tables 38

1

Chapter 1

Introduction

Active model learning is the problem of reconstructing a black box finite-
state machine by giving it inputs and observing the resulting outputs [7].
Performing this task efficiently is an active field of research in Computer Sci-
ence. Model learning has numerous applications, such as testing real-world
systems. Some of these systems include banking cards, network protocols
and old software [7]. The L∗ algorithm, created by Angluin [2], is one of the
most influential algorithms on active model learning.

L∗ makes use of the minimally adequate teacher framework, in which
there is a teacher that has full access to the black box finite-state machine.
The algorithm can pose membership and equivalence queries to this teacher.
A membership query encompasses the algorithm giving an input sequence
to the teacher and the teacher giving the output sequence that the black
box finite-state machine returned. An equivalence query consists of the
algorithm asking the teacher whether its currently constructed finite-state
machine is equal to the black box finite-state machine. There are many
algorithms in the field of active automata learning that are based on L∗ and
the minimally adequate teacher framework.

Recently, a new active model learning algorithm called L# was presented,
which takes a different approach than L∗. The latter reconstructs a finite-
state machine based on the equivalence of states, whereas the former does
this by using a sort of nonequivalence of states, called apartness [8]. The L#

algorithm learns a black-box Mealy machine, a type of finite-state machine
that outputs a sequence of symbols depending on the sequence of symbols
it receives as input. L# uses an observation tree, which is a partial Mealy
machine in the form of a rooted tree. During the execution of the algorithm,
L# needs to compute all pairs of states that are apart in the observation
tree.

A closely related problem to finding all pairs of states that are nonequiv-
alent is that of the minimisation of deterministic finite automata. Minimis-
ing a deterministic finite automaton entails finding a deterministic finite

2

automaton with the least number of states that accepts the same language
as the initial automaton. Moore was the first to propose a minimisation
algorithm [5], which Hopcroft later improved [3]. These algorithms create a
partition that contains sets of equivalent states, resulting in an equivalence
relation on the states. Nonequivalence of states is also determined by these
algorithms: if two states are not in the same set, then they are nonequiva-
lent. However, the minimisation algorithms of Moore and Hopcroft cannot
be used for finding all pairs of apart states in an observation tree, due to its
partiality.

While an algorithm that computes all pairs of apart states in a partial
Mealy machine in rooted tree form was used to implement L#, it has not
been analysed extensively. In this thesis, we present such an algorithm,
of which the correctness will be proven and the time complexity analysed.
Furthermore, some variations of this algorithm are described that could
improve its performance. The algorithm and all of its variations will be
benchmarked, in order to compare the performance of the variations and to
verify that the theoretical time complexity is accurate.

First, relevant definitions to the problem at hand will be given in chap-
ter 2. Then, the algorithm will be described, its correctness proven and its
complexity analysed in chapter 3. Moreover, some variations of the algo-
rithm will be described in chapter 3. The benchmarking process and the
results of the benchmarks will be discussed in chapter 4. In chapter 5, re-
lated work will be discussed and it will be explained why the minimisation
algorithms of Moore and Hopcroft do not function properly on observation
trees. Last, in chapter 6 conclusions will be drawn.

3

Chapter 2

Partial Mealy machines,
trees and apartness

In this chapter, concepts will be defined that are relevant to the thesis.
Moreover, the mathematical problem that will be solved algorithmically in
later chapters is introduced.

Firstly, some preliminary definitions will be given that are relevant to
the rest of the thesis in section 2.1. Secondly, partial Mealy machines in
rooted tree form will be defined in section 2.2 and partial Mealy trees in
section 2.3.

The definition of a partial Mealy machine in rooted tree form will be
given as this thesis aims to present an algorithm that finds all pairs of apart
states in an observation tree that arises in the active automata learning
algorithm L# [8]. This observation tree is a partial Mealy machine in rooted
tree form.

An equivalent representation of partial Mealy machines in rooted tree
form, called partial Mealy trees, will also be given in this chapter. Partial
Mealy trees are interesting for this thesis, because they lend themselves to
be implemented more easily with a functional programming language than
partial Mealy machines in rooted tree form. More on this will be discussed
in section 2.3 after partial Mealy trees have been defined.

Lastly, it will be shown that partial Mealy machines in rooted tree form
are equivalent to partial Mealy trees in section 2.4. As a result of this, an
algorithm that finds all pairs of apart states in one of the structures also
determines what states are apart in the other structure.

2.1 Preliminary definitions

The partiality in a Mealy machine is represented by partial functions:

Definition 2.1 (Partial function). A partial function f is a relation from a

4

set X to a set Y that assigns at most one value y ∈ Y to each value x ∈ X.
A partial function f from X to Y is denoted by f : X ⇀ Y .

• If ∃y ∈ Y : f(x) = y, we write f(x)↓.

• Otherwise, we write f(x)↑.

The definition of a rooted tree is needed in order to be able to define
when a partial Mealy machine is in rooted tree form.

Definition 2.2 (Rooted tree). A rooted tree is a directed graph with a root
vertex in which, for every vertex v, there is exactly one path from the root
vertex to v.

Some notation will now be introduced that is relevant to Mealy machines.
Let X be a set. X∗ is defined as the set of all words of x ∈ X and we write
ε for the empty word. Concatenation of two words σ and ρ is written as σρ.

The notion of a prefix-closed set is relevant for the definition of a partial
Mealy tree.

Definition 2.3 (Prefix-closed set). Let B be a set. A subset A ⊆ B∗ is
prefix-closed if and only if

∀σ ∈ B∗ ∀i ∈ B : σi ∈ A→ σ ∈ A

2.2 Partial Mealy machine in rooted tree form

Mealy machines are automata that output a sequence of symbols based on
a sequence of input symbols. These machines are the main focus of this
thesis.

Definition 2.4 (Mealy machine). A Mealy machine is a tuple (I, O, Q, q0,
δ, λ), where

• I is a finite set of input symbols.

• O is a finite set of output symbols.

• Q is a finite set of states.

• q0 ∈ Q is an initial state.

• δ : Q× I → Q is a transition function.

• λ : Q× I → O is an output function.

5

An example Mealy machine can be seen in fig. 2.1. The first symbol in
the label of an edge represents the input symbol of that transition and the
second symbol represents the output symbol of that transition.

q0start

q1 q2

0/a

1/a

0/a
1/a 0/b

1/b

Figure 2.1: Example of a Mealy machine with I = {0, 1}, O = {a, b}

A definition of partial Mealy machines will now be given.

Definition 2.5 (Partial Mealy machine). A partial Mealy machine is de-
fined like a Mealy machine, but with a partial transition and output function
instead of a total transition and output function:

• δ : Q× I ⇀ Q

• λ : Q× I ⇀ O

Moreover, we require:

∀q ∈ Q ∀i ∈ I : δ(q, i)↓ ↔ λ(q, i)↓

Note that this definition is more general than a non-partial Mealy ma-
chine, since total functions are also partial functions. An example partial
Mealy machine can be seen in fig. 2.2.

q0start

q1 q2

0/a

0/a
1/a

1/b

Figure 2.2: Example of a partial Mealy machine with I = {0, 1}, O = {a, b}

Transition functions that take a word as input will now be defined to
simplify notation in later definitions, theorems and proofs. This type of
transition function is defined recursively using the definition of a standard
transition function.

6

Definition 2.6 (Transition function extended to words). Let δ : Q × I ⇀
Q be the transition function of a partial Mealy machine. The transition
function extended to words δ∗ : Q × I∗ ⇀ Q is defined as follows for q ∈
Q, σ ∈ I∗:

δ∗(q, σ) :=


q if σ = ε

δ∗(δ(q, i), σ′) if σ = iσ′ and δ(q, i)↓ and δ∗(δ(q, i), σ′)↓

undefined otherwise

Example 2.7. For the Mealy machine of fig. 2.2, we have:

δ∗(q0, 010) = δ∗(δ(q0, 0), 10)

= δ∗(q1, 10)

= δ∗(δ(q1, 1), 0)

= δ∗(q1, 0)

= δ∗(δ(q1, 0), ε)

= δ∗(q2, ε)

= q2

Similar to transition functions, output functions can be defined so that
they take a word as input. Output functions that take a word as input will
also be recursively defined using the definition of a standard output function.

Definition 2.8 (Output function extended to words). Let λ : Q × I ⇀ O
be the output function of a partial Mealy machine. The output function
extended to words λ∗ : Q× I∗ ⇀ O∗ is defined as follows for q ∈ Q, σ ∈ I∗:

λ∗(q, σ) :=


ε if σ = ε

λ(q, i)λ∗(δ(q, i), σ′) if σ = iσ′ and λ(q, i)↓ and λ∗(δ(q, i), σ′)↓

undefined otherwise

Example 2.9. For the Mealy machine of fig. 2.2, we have:

λ∗(q0, 010) = λ(q0, 0)λ∗(δ(q0, 0), 10)

= aλ∗(q1, 10)

= aλ(q1, 1)λ∗(δ(q1, 1), 0)

= aaλ∗(q1, 0)

= aaλ(q1, 0)λ∗(q2, ε)

= aaaε

= aaa

7

Observation trees are partial Mealy machines that are in the form of
a rooted tree. These machines are defined by imposing a requirement on
partial Mealy machines.

Definition 2.10 (Partial Mealy machine in rooted tree form). A partial
Mealy machine in rooted tree form is a partial Mealy machine (I, O, Q, q0,
δ, λ) as in definition 2.5 in which, for every state q ∈ Q, there is exactly one
input sequence σ ∈ I∗ such that δ∗(q0, σ) = q.

The requirement in definition 2.10 states that, for every state q ∈ Q,
there is exactly one path in the partial Mealy machine from the initial state
to q. This is in accordance with the definition of a rooted tree as in defini-
tion 2.2.

Assumption 2.11. From now on, whenever a partial Mealy machine is
mentioned in this thesis, then it is assumed to be a partial Mealy machine
in rooted tree form.

An example of a partial Mealy machine in rooted tree form can be seen
in fig. 2.3. The notation is the same as for Mealy machines.

q0start

q1

q2

q3

q4

1/b

1/b

0/a

0/b

Figure 2.3: Example of a partial Mealy machine in rooted tree form with
I = {0, 1}, O = {a, b}

An input sequence that causes a machine to transition from the initial
state to a certain other state will be used to show equivalence of partial
Mealy machines and partial Mealy trees in section 2.4. Therefore, it is
convenient to define this type of input sequence.

Definition 2.12 (Access sequence). LetM = (I,O,Q, q0, δ, λ) be a partial
Mealy machine. For each q ∈ Q, an access sequence access(q) ∈ I∗ is a
sequence of input symbols such that δ∗(q0, access(q)) = q.

8

Note that for a partial Mealy machine in rooted tree form, there is exactly
one access sequence per state. This is because there is exactly one path to
each state from the initial state.

Example 2.13. The access sequence of state q3 in fig. 2.3 is 110.

Apartness of a pair of states in a partial Mealy machine will now be
defined.

Definition 2.14 (Apart states in a partial Mealy machine). Let M =
(I,O,Q, q0, δ, λ) be a partial Mealy machine. A pair of states (p, q) ∈ Q×Q
is apart if

∃σ ∈ I∗ : λ∗(p, σ)↓ ∧ λ∗(q, σ)↓ ∧ (λ∗(p, σ) 6= λ∗(q, σ))

The sequence of input symbols σ is called a distinguishing sequence of p and
q. The fact that the states p and q are apart is denoted by p# q.

Example 2.15. The states q1 and q2 in the machine in fig. 2.3 are apart,
as witnessed by the distinguishing sequence 0.

The states q0 and q1 in the machine in fig. 2.3 are also apart, as witnessed
by the distinguishing sequence is 10.

LetM = (I,O,Q, q0, δ, λ) be a partial Mealy machine. The problem this
thesis tries to solve algorithmically is to find all pairs of states (p, q) ∈ Q×Q
that are apart in M.

2.3 Partial Mealy tree

In this section, a more compact representation of tree-shaped Mealy ma-
chines, called partial Mealy trees, is provided.

Definition 2.16 (Partial Mealy tree). A partial Mealy tree is a tuple (I, O,
Q, λ), where:

• I is a finite set of input symbols.

• O is a finite set of output symbols.

• Q ⊂ I∗ is a finite non-empty prefix-closed set of states. The initial
state is ε. The state qi ∈ Q is reached by giving i as input symbol
when the partial Mealy tree is in state q.

• λ : Q× I ⇀ O is an output function.

• λ(q, i)↓ ↔ qi ∈ Q.

9

The prefix order on Q causes a partial Mealy tree to naturally induce a
rooted tree.

A partial Mealy tree can be implemented more easily using a functional
programming language than a partial Mealy machine because the states
are not defined explicitly. Moreover, only an output function has to be
implemented instead of both a transition and an output function.

An example partial Mealy tree can be seen in fig. 2.4. The name of a
state represents the sequence of input symbols needed to transition from ε
to that state. This means that state σρ can be reached from the state σ
by giving ρ as input, where σ, ρ ∈ I∗. The label on an edge represents the
output symbol associated with that transition.

For a fixed sequence of input symbols, the partial Mealy tree in fig. 2.4
outputs the same sequence of symbols as the partial Mealy machine in
fig. 2.3. The difference between the two automata is that the one in fig. 2.4
is represented as a partial Mealy tree and the one in fig. 2.3 is represented
as a partial Mealy machine.

εstart

1

11

110

10

b

b

a

b

Figure 2.4: Example of a partial Mealy tree with I = {0, 1}, O = {a, b}

The definition of output functions that take a word as input will now be
given for partial Mealy trees.

Definition 2.17 (Output function extended to words). Let λ : Q× I ⇀ O
be the output function of a partial Mealy tree. The output function extended
to words λ∗ : Q× I∗ ⇀ O∗ is defined as follows for q ∈ Q, σ ∈ I∗:

λ∗(q, σ) :=


ε if σ = ε

λ(q, i)λ∗(qi, σ′) if σ = iσ′ and qi ∈ Q and λ∗(qi, σ′)↓

undefined otherwise

10

Example 2.18. In fig. 2.4, we have

λ∗(ε, 10) = λ(ε, 1)λ∗(1, 0)

= bλ∗(1, 0)

= bλ(1, 0)λ∗(10, ε)

= bbε

= bb

Apartness of a pair of states in a partial Mealy tree will now be defined.

Definition 2.19 (Apart states in a partial Mealy tree). Let T = (I,O,Q, λ)
be a partial Mealy tree. A pair of states (p, q) ∈ Q×Q is apart if

∃σ ∈ I∗ : pσ ∈ Q ∧ qσ ∈ Q ∧ (λ∗(p, σ) 6= λ∗(q, σ))

The sequence of input symbols σ is called a distinguishing sequence of p and
q. The fact that the states p and q are apart is denoted by p# q.

Example 2.20. The states 1 and 11 are apart in fig. 2.4, as witnessed by
the distinguishing sequence 0. The states ε and 1 are apart as well in fig. 2.4,
as witnessed by the distinguishing sequence 10.

Let T = (I,O,Q, λ) be a partial Mealy tree. The problem that this thesis
tries to solve algorithmically is to find all pairs of states (p, q) ∈ Q×Q that
are apart in T .

2.4 Equivalence of definitions

In this section, the equivalence of partial Mealy machines and partial Mealy
trees will be shown. The following two statements will be proven in order
to show that partial Mealy machines and partial Mealy trees are equivalent
with respect to apart states.

1. For each partial Mealy machineM = (I,O,Q, q0, δ, λ) there is a partial
Mealy tree T = (I ′, O′, Q′, λ′) such that if the pair of states (p, q) ∈
Q×Q is apart in M, then (access(p), access(q)) ∈ Q′ ×Q′ is apart in
T .

2. For each partial Mealy tree T = (I ′, O′, Q′, λ′) there is a partial Mealy
machine M = (I,O,Q, q0, δ, λ) such that if the pair of states (p, q) ∈
Q′×Q′ is apart in T , then (δ∗(q0, p), δ

∗(q0, q)) ∈ Q×Q is apart inM.

These statements will be proven using two constructions. The first con-
struction transforms a partial Mealy machine into a partial Mealy tree and
the second construction transforms a partial Mealy tree into a partial Mealy
machine. The first construction will give the desired partial Mealy tree of
the first statement and the second construction the desired partial Mealy
machine of the second statement.

11

2.4.1 Proof of first statement

In this section, the first statement of section 2.4 will be proven. A construc-
tion will first be defined that transforms a given partial Mealy machine into
a partial Mealy tree. This construction will then be used to prove the first
statement.

Construction 2.21. LetM = (I,O,Q, q0, δ, λ) be a partial Mealy machine.
A partial Mealy tree T = (I ′, O′, Q′, λ′) is constructed from M as follows:

• I ′ := I

• O′ := O

• Q′ := {σ ∈ I∗ | δ∗(q0, σ)↓}

• λ′(q′, i) :=

λ(δ∗(q0, q
′), i) if λ(δ∗(q0, q

′), i)↓

undefined otherwise

Note that since M is a partial Mealy machine in rooted tree form, Q is
a finite set. Therefore, the construction is well-defined.

Example 2.22. Let the partial Mealy machine depicted in fig. 2.3 be a
partial Mealy machine M. The partial Mealy tree T that is the result of
construction 2.21 when applied to M is illustrated in fig. 2.4.

Definition 2.16 requires that a partial Mealy tree T = (I ′, O′, Q′, λ′)
satisfies three conditions.

Lemma 2.23. A partial Mealy tree that is a result of construction 2.21
satisfies the three conditions of definition 2.16:

• Q′ is non-empty.

• Q′ is prefix-closed.

• ∀q ∈ Q′ ∀i ∈ I ′ : λ′(q, i)↓ ↔ qi ∈ Q′

Proof. The proof will be divided into three parts, one for each condition. Let
M = (I, O, Q, q0, δ, λ) be a partial Mealy machine. Let T = (I ′, O′, Q′, λ′)
be the partial Mealy tree that is a result of applying construction 2.21 to
M.

• First, it will be proven that Q′ is non-empty. We know that δ∗(q0, ε)↓.
From the construction we can see that ε ∈ Q′. Thus, Q′ is non-empty.

• Second, it will be proven that Q′ is prefix-closed. Assume that Q′ is not
prefix-closed. Then there exist σ, ρ ∈ I∗ such that σρ ∈ Q′ ∧ σ 6∈ Q′.
From this follows δ∗(q0, σρ)↓ and δ∗(q0, σ)↑. From definition 2.6 follows
δ∗(q0, σρ)↑. This is a contradiction, so Q′ is prefix-closed.

12

• Last, it will be proven that:

∀q ∈ Q′ ∀i ∈ I ′ : λ′(q, i)↓ ↔ qi ∈ Q′

Let q ∈ Q′ and i ∈ I ′.
Assume λ′(q, i)↓. Then we have λ(δ∗(q0, q), i)↓ because of construc-
tion 2.21. From definition 2.5 follows that δ(δ∗(q0, q), i)↓. Now it fol-
lows from definition 2.6 that δ∗(q0, qi)↓. Construction 2.21 now gives
us qi ∈ Q′. Thus, if λ′(q, i)↓, then qi ∈ Q′.
Now assume qi ∈ Q′. From construction 2.21 follows δ∗(q0, qi)↓. Now
it follows from definition 2.6 that δ(δ∗(q0, q), i)↓. From definition 2.5
it follows that λ(δ∗(q0, q), i)↓. From construction 2.21 we now have
λ′(q, i)↓. Thus, if qi ∈ Q′, then λ′(q, i)↓.
Since q ∈ Q′ and i ∈ I ′ were chosen arbitrarily, this holds for all q ∈ Q′
and i ∈ I ′.

Thus, a partial Mealy tree resulting from construction 2.21 satisfies the three
conditions.

Now it will proven that construction 2.21 reflects the apartness relation.

Theorem 2.24. For each partial Mealy machine M = (I,O,Q, q0, δ, λ), we
have that if the pair of states (p, q) ∈ Q × Q is apart in M, then the pair
of states (access(p), access(q)) ∈ Q′ × Q′ is apart in the partial Mealy tree
T = (I ′, O′, Q′, λ′) that is a result of construction 2.21 applied to M.

Proof. Let M = (I,O,Q, q0, δ, λ) be a partial Mealy machine and let T =
(I ′, O′, Q′, λ′) be the partial Mealy tree that is the result of applying con-
struction 2.21 to M. Assume that the pair of states (p, q) ∈ Q×Q is apart
inM. Then there is an input sequence σ ∈ I∗, such that λ∗(p, σ)↓, λ∗(q, σ)↓
and λ∗(p, σ) 6= λ∗(q, σ). From the definition of partial Mealy machines
follows that δ∗(p, σ)↓ and δ∗(q, σ)↓. Since δ∗(p, σ) = δ∗(q0, access(p)σ)
and δ∗(q, σ) = δ∗(q0, access(q)σ), we have δ∗(q0, access(p)σ)↓ and δ∗(q0,
access(q)σ) ↓. Now we know that access(p)σ ∈ Q′, access(q)σ ∈ Q′. More-
over, we have

λ∗′(access(p), σ)

= λ∗(δ∗(q0, access(p)), σ)

= λ∗(p, σ)

6= λ∗(q, σ)

= λ∗(δ∗(q0, access(q)), σ)

= λ∗′(access(q), σ)

Thus, the pair (access(p), access(q)) ∈ Q′ ×Q′ is apart in T . Since M was
chosen arbitrarily, this proof holds for all partial Mealy machines.

13

2.4.2 Proof of second statement

In this section, the second statement of section 2.4 will be proven. A con-
struction will first be defined that transforms a given partial Mealy tree into
a partial Mealy machine. This construction will then be used to prove the
second statement.

Construction 2.25. Let T = (I ′, O′, Q′, λ′) be a partial Mealy tree. A par-
tial Mealy machine M = (I,O,Q, q0, δ, λ) is constructed from T as follows:

• I := I ′

• O := O′

• Q := Q′

• q0 := ε

• δ(q, i) :=

qi if qi ∈ Q

undefined otherwise

• λ(q, i) :=

λ′(q, i) if λ′(q, i)↓

undefined otherwise

Note that T is a partial Mealy tree, so Q is a finite set. Therefore, the
construction is well-defined.

Example 2.26. The partial Mealy machine depicted in fig. 2.5 is the result
of applying construction 2.25 to the partial Mealy tree in fig. 2.4.

εstart

1

11

110

10

1/b

1/b

0/a

0/b

Figure 2.5: Example of a partial Mealy machine that is a result of construc-
tion 2.25 (I = {0, 1}, O = {a, b})

14

From definition 2.5 it can be seen that a partial Mealy machine M =
(I,O,Q, q0, δ, λ) must satisfy the following condition:

∀q ∈ Q ∀i ∈ I : δ(q, i)↓ ↔ λ(q, i)↓

It will first be proven that a partial Mealy machine that is a result of con-
struction 2.25 satisfies this condition.

Lemma 2.27. For each partial Mealy machine M = (I, O, Q, q0, δ, λ)
that is a result of construction 2.25, we have

∀q ∈ Q ∀i ∈ I : δ(q, i)↓ ↔ λ(q, i)↓

Proof. Let T = (I ′, O′, Q′, λ′) be a partial Mealy tree and let M = (I,
O, Q, q0, δ, λ) be the partial Mealy machine that is the result of applying
construction 2.25 to T . Let q ∈ Q and i ∈ I.

Assume that δ(q, i)↓. Then we know from construction 2.25 that qi ∈ Q.
From definition 2.16 we know λ′(q, i)↓. From construction 2.25 now follows
λ(q, i)↓. Thus, if δ(q, i)↓, then λ(q, i)↓.

Now assume that λ(q, i)↓. Then we know from construction 2.25 that
λ′(q, i)↓. From definition 2.16 we know that qi ∈ Q. From construction 2.25
we now have δ(q, i)↓. Thus, if λ(q, i)↓, then δ(q, i)↓.

Since q ∈ Q and i ∈ I were chosen arbitrarily, this holds for all q ∈ Q
and i ∈ I.

Now it will be proven that construction 2.25 reflects the apartness rela-
tion.

Theorem 2.28. For each partial Mealy tree T = (I ′, O′, Q′, λ′), we have
that if the pair of states (p, q) ∈ Q′×Q′ is apart in T , then the pair of states
(p, q) ∈ Q×Q is apart in the partial Mealy machine M = (I,O,Q, q0, δ, λ)
that is a result of construction 2.25 applied to T .

Proof. Let T = (I ′, O′, Q′, λ′) be a partial Mealy tree and let M = (I,
O, Q, q0, δ, λ) be a partial Mealy machine that is the result of applying
construction 2.25 to T . Assume that the pair of states (p, q) ∈ Q′ × Q′ is
apart in T . Then we know that there is a σ ∈ I ′ such that pσ ∈ Q′, qσ ∈
Q′ and λ∗′(p, σ) 6= λ∗′(q, σ). From definition 2.16 follows that λ∗′(p, σ)↓
and λ∗′(q, σ)↓. From the definition of λ in construction 2.25 follows that
λ∗(p, σ)↓, λ∗(q, σ)↓ and λ∗(p, σ) 6= λ∗(q, σ). Thus, the pair of states (p, q) ∈
Q × Q is apart in M. Since T was chosen arbitrarily, this proof holds for
all partial Mealy trees.

To conclude, partial Mealy machines and partial Mealy trees are equiv-
alent in terms of apartness.

15

Chapter 3

Algorithmic computation of
apart states

In this chapter, an algorithm for computing all pairs of states that are apart
in a partial Mealy machine will be described. This was created for par-
tial Mealy machines, as this structure is more straightforward to implement
with an imperative programming language. However, it could be modi-
fied to be applicable to partial Mealy trees. The algorithm consists of two
smaller ones, called DetermineApart and ComputeAllApartPairs. The first
determines whether a given pair of states is apart. The second determines
for all pairs of states in a given partial Mealy machine whether they are
apart. ComputeAllApartPairs accomplishes this by calling DetermineApart
for each pair of states in the partial Mealy machine.

3.1 Description of DetermineApart

DetermineApart computes whether a pair of states (p, q) is apart. This is
done by checking if p and q output a different symbol when they receive
the same input symbol. If p and q do not output different symbols, then
the algorithm checks recursively for all input symbols i whether the children
δ(p, i) and δ(q, i) are apart. If they are apart with distinguishing sequence
σ, then p and q are apart with distinguishing sequence iσ. This fact will be
used in the correctness proof but DetermineApart does not return distin-
guishing sequences. There is a small description at the end of this section
that explains how DetermineApart can be modified to return distinguishing
sequences. After the above options have been explored, p and q are found
not to be apart.

DetermineApart is a recursive algorithm that utilises dynamic program-
ming and a map from state pairs to booleans. When a pair of states is
found to be either apart or not apart, this is immediately stored in the map.
DetermineApart checks this map before computing whether a pair of states

16

is apart. The algorithm becomes more efficient using this map, because a
large part of it is not executed if the given pair of states is already in the
map. After the algorithm has terminated, all pairs that are apart have the
value true in the map. Conversely, all pairs that are not apart have the
value false.

The pairs in the map are represented as unordered pairs. This cuts the
memory needed for the map in half. Representing the pairs as unordered
pairs is achieved by imposing an ordering on the states. A pair (p, q) will
only be stored in the map if p is smaller than q in the ordering.

The symbols used in DetermineApart are similar to the symbols used to
describe Mealy machines:

• A is a map from state pairs to booleans. The map is passed by refer-
ence.

• p and q are states.

• I is an input alphabet.

• δ is a transition function, implemented as a map.

• λ is an output function, implemented as a map.

Algorithm 1 DetermineApart(A, p, q, I, δ, λ)

1: if p > q then
2: return DetermineApart(A, q, p, I, δ, λ)
3: end if
4: if A[(p, q)] 6= NIL then
5: return A[(p, q)]
6: end if
7: for all i ∈ I with λ(p, i)↓ and λ(q, i)↓ do
8: if λ(p, i) 6= λ(q, i) then
9: A[(p, q)]← true

10: return true
11: end if
12: end for
13: for all i ∈ I with δ(p, i)↓ and δ(q, i)↓ do
14: if DetermineApart(A, δ(p, i), δ(q, i), I, δ, λ) = true then
15: A[(p, q)]← true
16: return true
17: end if
18: end for
19: A[(p, q)]← false
20: return false

17

At lines 1-3, the algorithm checks whether p is larger in the ordering
than q. If this is the case, then the algorithm will be called on the pair
(q, p). This is done to make sure that A remains a map of unordered pairs.
At lines 4-6, the algorithm checks whether the pair (p, q) is already in the
map A. If this is the case, then the algorithm returns the value A[(p, q)] and
terminates. At lines 7-12, the algorithm checks whether the given states p
and q output different symbols when they receive the same input symbol.
At lines 13-18, the algorithm checks recursively, for all input symbols i ∈ I,
whether δ(p, i) and δ(q, i) are apart. If there is a i ∈ I such that they are
apart, then p and q are also apart. At lines 19-20, the algorithm knows that
the given pair of states is not apart and it puts this pair of states in A with
the value false.

In order to make DetermineApart compatible with partial Mealy trees
instead of partial Mealy machines, the following changes would have to be
made:

• The transition function δ has to be changed to a set of states Q.

• The clauses at lines 7 and 13 have to be changed from

i ∈ I with λ(p, i)↓ and λ(q, i)↓

to

i ∈ I with pi ∈ Q and qi ∈ Q

Note that DetermineApart could be adjusted to return a distinguishing
sequence for each pair of apart states. This can be achieved by changing
A to a map from state pairs to input symbols and by using the following
conventions:

• If A[(p, q)] = NIL, then it has not been determined yet whether p and
q are apart or not.

• If A[(p, q)] = ε, then p and q are not apart.

• If A[(p, q)] = σ with σ ∈ I∗, then p and q are apart and a distinguishing
sequence for this pair of states is σ.

3.2 Description of ComputeAllApartPairs

ComputeAllApartPairs ensures that every pair of states is present in the
map A.

18

Algorithm 2 ComputeAllApartPairs(I,Q, δ, λ)

1: A is an empty map from state pairs to booleans
2: for all p, q ∈ Q, p < q do
3: DetermineApart(A, p, q, I, δ, λ)
4: end for
5: return A

3.3 Correctness

The correctness of both algorithms will be shown in this section. This is
done by proving the correctness of DetermineApart using an invariant on
the map A, which is defined as follows:

Inv(A) = ∀p, q ∈ Q with (p, q) ∈ A : A[(p, q)] = true ⇐⇒ p# q

ComputeAllApartPairs is correct if A is defined for every unordered
pair of states after it has finished. Since no values are removed from A in
ComputeAllApartPairs and DetermineApart, the correctness of the former
follows trivially from the correctness of the latter. Hence, only correctness
of DetermineApart will be proven, which is represented by the following
theorem.

Theorem 3.1. If Inv(A) holds before DetermineApart(A, p, q, I, δ, λ) is
called, then, after DetermineApart(A, p, q, I, δ, λ) has finished, we have:

• (p, q) ∈ A or (q, p) ∈ A

• Inv(A) still holds

Proof. For the entire proof, assume that Inv(A) holds before Determine-
Apart is called.

Theorem 3.1 will be proven by induction over the number of recursive
calls. DetermineApart always terminates, because it recurses over a finite
tree. Therefore, a proof by induction can be used.

DetermineApart can only terminate at line 2, 5, 10, 16 or 20. Since the
algorithm always terminates, we know that one of these lines will be reached
during its execution.

If line 2 is reached, then A has not been modified by the algorithm before
line 2. Consequently, Inv(A) holds before the recursive call at line 2. Since
Inv(A) holds before the recursive call, we have after the recursive call:

• (p, q) ∈ A or (q, p) ∈ A

• Inv(A) holds

19

The algorithm terminates immediately after the recursive call. Because it
terminates, DetermineApart is correct if it reaches line 2.

If line 5 is reached, then A has not been modified before line 5. Therefore,
Inv(A) still holds. We also know that (p, q) ∈ A. The algorithm terminates
at line 5. Because it terminates, DetermineApart is correct if it reaches line
5.

If line 10 is reached, then A has not been altered before line 9 and thus
Inv(A) holds. We know that there is a i ∈ I such that λ(p, i)↓, λ(q, i)↓ and
λ(p, i) 6= λ(q, i). As a result we have p # q with distinguishing sequence i.
At line 9, the pair (p, q) is added to A and this pair is assigned the value
true. This operation does not violate Inv(A), so the invariant holds for the
updated map A. The algorithm terminates at line 10. Because it terminates,
DetermineApart is correct if it reaches line 10.

If line 16 is reached, then line 14 has been executed. We know that if line
14 is reached, then A has not been altered before line 14. Therefore, Inv(A)
holds before the recursive call. Since Inv(A) holds before the recursive call,
we have after the recursive call:

• (δ(p, i), δ(q, i)) ∈ A or (δ(q, i), δ(p, i)) ∈ A for some i ∈ I

• Inv(A) holds

We also know that if line 16 is reached, then there is an i ∈ I such that
δ(p, i)#δ(q, i). Let a distinguishing sequence of δ(p, i) and δ(q, i) be σ ∈ I∗.
Then the sequence iσ is a distinguishing sequence of p and q. Hence, p and
q are apart. At line 15, the pair (p, q) is added to A and this pair is assigned
the value true. This operation does not violate Inv(A), so the invariant
holds for the updated map A. The algorithm terminates at line 16. Because
it terminates, DetermineApart is correct if it reaches line 16.

If line 20 is reached, then A could have been modified at line 14. However,
it was shown that Inv(A) holds after the recursive call at line 14. We know
that there is no distinguishing sequence iσ ∈ I∗, with i ∈ I, σ ∈ I∗, of p
and q. If there would be a distinguishing sequence iσ, then the algorithm
would reach either line 10 or line 16. In case σ is the empty word, line 10 is
reached. In case σ is not the empty word, line 16 is reached. Consequently,
we know that p and q are not apart. The algorithm adds (p, q) to A and this
pair is assigned the value false. This operation does not violate Inv(A),
so the invariant holds for the updated map A. The algorithm terminates at
line 20. Because it terminates, DetermineApart is correct if it reaches line
20.

3.4 Complexity

In this section the time complexity of DetermineApart and of ComputeAll-
ApartPairs will be analysed. For the remainder of this section, assume that

20

A is implemented as a hash map and that a suitable hash function is used,
so that there are few collisions. Searching for an element and insertion of
an element in the hash map A both have an amortized time complexity of
O(1).

3.4.1 Complexity of DetermineApart

DetermineApart(A, p, q, I, δ, λ) is called on partial Mealy machines that
are trees and the recursive calls at line 14 are called on the children of the
current states. As a result of this, every state v ∈ Q can appear at most once
as parameter p in the recursive calls. Thus, there are at most |Q| recursive
calls. Since each given partial Mealy machine is a tree, it will have at most
|Q| − 1 transitions. The for-loops at lines 7-12 and lines 13-18 are both
executed at most once for each transition, so these for-loops add O(|Q|) to
the total time complexity. Hence, the time complexity of DetermineApart
is O(|Q|).

3.4.2 Complexity of ComputeAllApartPairs

Let n be the number of states in a given partial Mealy tree. Compute-
AllApartPairs makes calls to DetermineApart and DetermineApart makes
recursive calls to itself. There are two cases if DetermineApart(A, p, q, I,
δ, λ) is called:

1. (p, q) or (q, p) is in A.

2. (p, q) and (q, p) are not in A.

In case 2, at most O(|I|) steps are taken, without considering the steps
in the recursive calls. DetermineApart makes at most |I| recursive calls
at line 14. The pair (p, q) cannot appear again in recursive calls, since
DetermineApart is called on the children of p and q and the partial Mealy
machine is a tree. When DetermineApart(A, p, q, I, δ, λ) terminates, it is
guaranteed that (p, q) or (q, p) is in A. Thus, case 2 happens at most once
per pair of states. Since there are n2 pairs of states, DetermineApart can
be in case 2 at most n2 times. This gives a total complexity of O(|I|n2) for
the calls that end up in case 2.

DetermineApart is in case 1 for all other calls. In case 1, we have that
DetermineApart(A, p, q, I, δ, λ) either terminates at line 2 or at line 5.
If it terminates at line 2, then DetermineApart(A, q, p, I, δ, λ) is called
recursively and this recursive call terminates at line 5, taking O(1) time.
If DetermineApart(A, p, q, I, δ, λ) terminates at line 5, then it also takes
O(1) time. Thus, case 1 always takes O(1) time. Every time the algorithm
is in case 2, it is possible that a following recursive call ends up in case 1.
DetermineApart is in case 2 at most n2 times and each time it is in case

21

2, it can make at most |I| recursive calls. As a result, there are at most
|I|n2 recursive calls possible that end up in case 1. ComputeAllApartPairs
calls DetermineApart for each pair of states, so n2 times in total. Therefore,
DetermineApart is at most |I|n2 + n2 times in case 1, taking O(|I|n2 + n2)
time. The resulting time complexity of ComputeAllApartPairs is O(|I|n2 +
|I|n2 + n2) = O(|I|n2).

3.5 Variations

There are some variations of the algorithm that could have an effect on its
efficiency. These variations will be described in this section.

3.5.1 State order in ComputeAllApartPairs

The order in which states are chosen at line 2 of ComputeAllApartPairs
could influence the efficiency of the algorithm. The number of times that
DetermineApart is called in total depends on the order in which the states
are chosen. This is because recursive calls can render calls from Compute-
AllApartPairs to DetermineApart redundant, as a pair of states might have
been put in the map A by a recursive call. However, there is an option for
which no redundant calls from ComputeAllApartPairs will be made.

For the sake of simplicity, assume that if a state p is a parent of a state
q, then p < q. This implies that the root state is smaller than every other
state. Three possible orders of states are:

1. ComputeAllApartPairs picks pairs of states randomly. This is the
default of ComputeAllApartPairs. This option acts as a benchmark
for the other two options. This option is called ‘random’.

2. ComputeAllApartPairs starts at the top of the tree structure and
works its way down. This option is called ‘top-down’. The order
of the pairs is determined as in algorithm 3.

3. ComputeAllApartPairs starts with leaf states of the tree structure and
works its way up. This option is called ‘bottom-up’. Inverting the
order of the pairs in ‘top-down’ results in the order of the pairs in
‘bottom-up’.

22

Algorithm 3 TopDownOrder(Q)

1: L is an empty array of pairs of states.
2: for all p ∈ Q, from lowest to highest state in the order do
3: for all q ∈ Q, p < q, from lowest to highest state in the order do
4: L← (p, q)
5: end for
6: end for
7: return L

The order in which the states are called in ComputeAllApartPairs is not
relevant for the correctness proof in section 3.3 and therefore Determine-
Apart is still correct. ComputeAllApartPairs ensures that A is defined for
every unordered pair of states using DetermineApart, regardless of the order
in which those pairs are chosen. Hence, correctness of ComputeAllApart-
Pairs follows trivially from the correctness of DetermineApart.

The time complexity of ComputeAllApartPairs does not depend on the
states p and q that it receives as input. From the complexity analysis in
section 3.4.2 follows that DetermineApart ends up in case 2 at most once
for each unordered pair of states, taking O(|I|n2) time in total. The order
in which the states are chosen in the for-loop of ComputeAllApartPairs does
not change this fact. The number of times that DetermineApart ends up
in case 1 depends on the option of this variation that is used, but it never
exceeds |I|n2 +n2. Thus, the complexity of ComputeAllApartPairs remains
O(|I|n2) for the options of this variation.

However, the performance of ComputeAllApartPairs in practice could
be affected by the order in which states are picked. In case ComputeAll-
ApartPairs starts at leaf states and works its way up, then every recursive
call will terminate at line 5. This means that the algorithm is in case 2 of
the complexity analysis in section 3.4.2 if and only if DetermineApart was
called directly from ComputeAllApartPairs. In the complexity analysis it
was concluded that ComputeAllApartPairs takes O(|I|n2 + |I|n2 +n2) steps
in total. This would now be reduced to O(|I|n2 + |I|n2), as the term n2

represents the calls to DetermineApart from ComputeAllApartPairs that
end up in case 1. These calls from ComputeAllApartPairs to Determine-
Apart are redundant, as they do not add information to the map A. If the
algorithm starts at the root state and works its way down the tree struc-
ture or when states are picked randomly, then there will be redundant calls
from ComputeAllApartPairs to DetermineApart. Consequently, it is ex-
pected that the ‘bottom-up’ option gives the best performance. This is in
accordance with the general rule that bottom-up causes less overhead than
top-down in recursive algorithms.

23

3.5.2 Order of for-loops in DetermineApart

A second possible variation, called DetermineApartReversed, consists of
changing the order of the for-loops of DetermineApart. The for-loop at lines
13-18 is placed in front of the one at lines 7-12, as shown in the pseudocode of
algorithm 4. The result of this is that DetermineApartReversed first checks
whether children of the given states are apart. DetermineApartReversed
could be faster than DetermineApart, provided that there are already nu-
merous pairs of apart states in the map A. This is because some runs of
DetermineApartReversed will then terminate before its second for-loop.

Algorithm 4 DetermineApartReversed(A, p, q, I, δ, λ)

1: if p > q then
2: return DetermineApart(A, q, p, I, δ, λ)
3: end if
4: if A[(p, q)] 6= NIL then
5: return A[(p, q)]
6: end if
7: for all i ∈ I with δ(p, i)↓ and δ(q, i)↓ do
8: if DetermineApart(A, δ(p, i), δ(q, i), I, δ, λ) = true then
9: A[(p, q)]← true

10: return true
11: end if
12: end for
13: for all i ∈ I with λ(p, i)↓ and λ(q, i)↓ do
14: if λ(p, i) 6= λ(q, i) then
15: A[(p, q)]← true
16: return true
17: end if
18: end for
19: A[(p, q)]← false
20: return false

DetermineApartReversed is correct, as the correctness of Determine-
Apart does not depend on the order of the for-loops. The correctness of
the standard version does rely on the fact that both for loops are executed
before line 19 is reached, but this still happens in DetermineApartReversed.
Correctness of ComputeAllApartPairs follows trivially from the correctness
of DetermineApartReversed.

The fact that the for-loops are rearranged does not influence the time
complexity of ComputeAllApartPairs. DetermineApartReversed still ends
up at most n2 times in case 2 of the complexity analysis in section 3.4.2
and at most |I|n2 + n2 times in case 1. However, the practical efficiency of
ComputeAllApartPairs could be influenced by this variation. There are two

24

cases:

• A does not contain a great number of pairs of apart states. Determine-
ApartReversed makes more recursive calls than DetermineApart, as it
first makes recursive calls and only then proceeds to the for-loop at
lines 13-18 of algorithm 4. As a result of the increase in the number of
recursive calls, ComputeAllApartPairs makes more calls to Determine-
ApartReversed that end up in case 1 of the complexity analysis. These
are redundant calls, as was stated in section 3.5.1, which is why it is
expected that the performance is worse in this case.

• A already contains a great number of pairs of apart states. The ar-
gument of the previous bullet point still holds in this case. How-
ever, it becomes increasingly likely that a recursive call at line 8 of
DetermineApartReversed returns true when there are more pairs of
apart states in the map A. As a consequence, some runs of Determine-
ApartReversed take fewer steps, because the for-loop at lines 13-18 of
DetermineApartReversed does not have to be executed if a recursive
call at line 8 returns true. This might make up for the loss of perfor-
mance described in the first bullet point.

25

Chapter 4

Benchmark

The algorithm ComputeAllApartPairs was benchmarked to check whether
the time complexity is accurate and to compare the variations described
in section 3.5. First, an algorithm for generating random Mealy machines
will be presented in section 4.1. Then, the effect that properties of partial
Mealy machines have on the performance of ComputeAllApartPairs will be
discussed in section 4.2. After that, the method of benchmarking will be
described in section 4.3. Finally, the results of benchmarking will be shown
and discussed in section 4.4.

4.1 Generating random partial Mealy machines

A set of partial Mealy machines was randomly generated in order to bench-
mark ComputeAllApartPairs. The algorithm that generated these partial
Mealy machines, called GenerateMealyMachine, will be described in this sec-
tion. GenerateMealyMachine is based on the algorithm presented in chap-
ter 4 of ‘On the Performance of Automata Minimization Algorithms’ [1],
which will be called GenerateNFA from now on.

GenerateNFA generates a nondeterministic finite automaton, whereas
random partial Mealy machines are needed for the benchmarks. There-
fore, there are some differences between GenerateNFA and GenerateMealy-
Machine:

• GenerateMealyMachine assigns an output value to each generated
transition, because a nondeterministic finite automaton does not have
an output symbol associated to its transition, while a Mealy machine
does.

• GenerateMealyMachine terminates when all states are visited once,
whereas GenerateNFA continues to add random transitions. Generate-
MealyMachine terminates at that point because it needs to generate a

26

partial Mealy machine that is a tree. Trees always have |V | − 1 edges,
where V is the set of vertices.

The algorithm GenerateMealyMachine randomly generates one partial
Mealy machine in rooted tree form, which is achieved by starting with an
initial state and then adding random transitions. If a transition was not
generated during the algorithm, then it is undefined in the resulting partial
Mealy machine. GenerateMealyMachine expects as input variables three
integers: one represents the size of the input alphabet, one the size of the
output alphabet and one the number of states. The input and output al-
phabet are, respectively, the set of integers ranging from 0 to the size of the
input and output alphabet minus one. Each state is represented by a unique
natural number between 0 and the number of states minus one.

GenerateMealyMachine uses two arrays which are called ‘visited’ and
‘unvisited’. The array ‘visited’ represents states that are already placed
in the partial Mealy machine. The array ‘unvisited’ represents the states
that still need to be added to the machine. At first, only the initial state
is in the array ‘visited’ and the rest of the states are in ‘unvisited’. The
algorithm builds the machine by adding transitions with a random state
from ‘visited’ as source and a random state from ‘unvisited’ as target. In
this way, it is ensured that the generated partial Mealy machine is a tree.
After a transition has been added, the target state is moved from ‘unvisited’
to ‘visited’, since it is part of the machine. The input character of this
transition is chosen randomly from the set of input symbols for which the
source state does not have an outgoing transition. This is to ensure that
the resulting machine is deterministic. If the source node has an outgoing
transition for each input character, then this source node is removed from
‘visited’ and a new source node is chosen instead. The output of a transition
is chosen randomly from the output alphabet. The algorithm terminates
when ‘unvisited’ is empty.

The symbols used in the pseudocode for this algorithm are similar to the
symbols used to describe Mealy machines:

• I is an input alphabet.

• O is an output alphabet.

• Q is a set of states.

• q0 ∈ Q is the initial state of a Mealy machine.

27

Algorithm 5 GenerateMealyMachine(I, O, Q)

1: Let δ, λ be partial functions
2: Let V,U be arrays
3: V ← {q0}
4: U ← Q \ {q0}
5: while U 6= ∅ do
6: Choose qv ∈ V randomly
7: while δ(qv, i)↓ for each i ∈ I do
8: Remove qv from V
9: Choose qv ∈ V randomly

10: end while
11: Choose qu ∈ U randomly
12: Choose i ∈ I randomly, such that δ(qv, i)↑
13: Choose o ∈ O randomly
14: δ(qv, i)← qu
15: λ(qv, i)← o
16: U ← U \ {qu}
17: V ← V ∪ {qu}
18: end while
19: return (I,O,Q, q0, δ, λ)

4.2 Influence of machine properties

The influence of the number of states and the input and output alphabet
sizes of partial Mealy machines on the performance of ComputeAllApart-
Pairs will be discussed in this section.

The complexity of ComputeAllApartPairs depends on both the number
of states and the size of the input alphabet, as described in section 3.4.2.
The time complexity of ComputeAllApartPairs scales quadratically in the
number of states and linearly in the size of the input alphabet. However, the
probability that both δ(p, i) and δ(q, i) are defined is smaller for machines
that were generated with a larger input alphabet. This is because each
transition gets assigned an input symbol that is chosen from a larger set of
symbols. As a result, both for-loops of DetermineApart will be executed
less often when the input alphabet is large, leading to better performance.

The size of the output alphabet that was used to generate a partial
Mealy machine has an effect on the performance of the algorithm as well.
If a partial Mealy machine was generated with a larger output alphabet,
then there is a larger set of output symbols that can get assigned to each
transition. As a result, the probability that two different transitions give the
same output symbol decreases. This increases the likeliness that the for-loop
at lines 7-12 of DetermineApart goes to line 10. Consequently, the algorithm

28

makes fewer recursive calls, which should yield better performance.

4.3 Benchmark description

In this section, it will be described how the benchmarks were performed.
GenerateMealyMachine was used to generate partial Mealy machines for

benchmarking. The number of states and alphabet sizes that were given as
input to GenerateMealyMachine differ. The number of states varied between
2 and 50 and the alphabet sizes varied between 2 and 40. Twenty partial
Mealy machines were generated per combination of number of states, input
alphabet size and output alphabet size.

The performance of ComputeAllApartPairs was measured by recording
the time it needed to terminate. Each combination of options of the vari-
ations described in section 3.5 was benchmarked. One variation decides in
what order the states are picked in ComputeAllApartPairs and its options
are: random, top-down and bottom-up. The other variation changes the
order of the for-loops of DetermineApart and its two options are the stan-
dard order of the for-loops and the reversed order of the for-loops. For
every combination of options of the two variations, ComputeAllApartPairs
was performed a hundred times on each generated partial Mealy machine.
The average of those hundred runs was calculated and will be referred to as
the performance of that machine using those options of the variations. For
every combination of number of states, input and output alphabet size and
variation options, the average performance of the corresponding twenty ma-
chines was calculated. These averages are used in the graphs in this chapter
and can be found in the tables in appendix A in the column ‘Average’. The
performances of the best and worst performing machines of such a combi-
nation can be found, respectively, in the column ‘Minimum’ and the column
‘Maximum’.

The benchmarks were performed with an AMD Ryzen 5 2600 proces-
sor, NVIDIA GeForce RTX 2060 graphics card and 16 GB of RAM. The
operating system that was used is Pop! OS 22.04 LTS.

4.4 Benchmark results

The results of the benchmarks will be shown and discussed in this section.
Tables in which the results of the benchmarks are presented can be found
in appendix A.

The legends in figs. 4.1 to 4.3, 4.5 and 4.6 refer to the variations dis-
cussed in section 3.5. The terms ‘top-down’, ‘bottom-up’ and ‘random’ rep-
resent the options of the variation that determines in what order the pairs of
states are chosen in ComputeAllApartPairs. The term ‘reversed’ indicates
that DetermineApartReversed was used instead of DetermineApart. The

29

performance of the fastest machine is used as the negative error and that of
the slowest as the positive error in figs. 4.1 to 4.3, 4.5 and 4.6. The error
bars in fig. 4.4 represent the performances of the best and worst performing
machines averaged over all options of variations. In figs. 4.1 to 4.4 both the
input and output alphabet have the same size.

Figures 4.1 to 4.4 show that ComputeAllApartPairs scales quadratically
in the number of states in the given machine. In section 3.4.2, the time
complexity of ComputeAllApartPairs was found to be O(|I|n2). This means
that the algorithm performs in accordance with its time complexity in terms
of number of states.

Moreover, figs. 4.1 to 4.6 show that bottom-up performs better than
random, which in turn performs better than top-down. It was predicted in
section 3.5.1 that bottom-up would be the fastest option. The non-reversed
variations perform better than the reversed variations. In section 3.5.2 it
was stated that the reversed variations become more efficient as there are
more pairs of apart states in the map A. As the map A is empty when
ComputeAllApartPairs starts, it is to be expected that the reversed varia-
tions perform worse than the non-reversed variations.

Figures 4.4 and 4.5 show that ComputeAllApartPairs performs better
on machines that were generated with larger input alphabet sizes, as was
predicted in section 4.2. The differences between the variation options de-
crease as the alphabet input size increases, which can be seen in figs. 4.1
to 4.3 and 4.5. This is due to the fact that the for-loops of DetermineApart
are executed less often when the input alphabet is larger. As was discussed
in section 3.5, the difference in performance between variations is caused by
the number of recursive calls that do not terminate at line 5 of Determine-
Apart. If the for-loop at lines 13-18 has a low probability of executing,
then each variation will make fewer recursive calls, which ultimately leads
to fewer recursive calls not terminating at line 5. This causes the difference
between the variations to shrink.

Figure 4.6 shows that the performance of the non-reversed variations
improves as the output alphabet size used to generate the partial Mealy
machines increases, as was predicted in section 4.2. Figure 4.6 also shows
that the reversed variations have equal performance for all output alphabet
sizes. This is because the for-loop at lines 7-12 of DetermineApartReversed
will be executed before the for-loop that checks whether there is an input
symbol for which the states give different output symbols. As a result,
DetermineApartReversed makes the same number of recursive calls regard-
less of the output alphabet size, which leads to nearly equal performance for
all output alphabet sizes.

30

0 10 20 30 40 50

0

200

400

600

800

Number of states

T
im

e
(i

n
m

il
li

se
co

n
d

s)

Top-down
Bottom-up
Random

Top-down reversed
Bottom-up reversed
Random reversed

Figure 4.1: Performance of ComputeAllApartPairs on machines with alpha-
bet size 2

0 10 20 30 40 50

0

200

400

600

Number of states

T
im

e
(i

n
m

il
li

se
co

n
d

s)

Top-down
Bottom-up
Random

Top-down reversed
Bottom-up reversed
Random reversed

Figure 4.2: Performance of ComputeAllApartPairs on machines with alpha-
bet size 5

31

0 10 20 30 40 50

0

200

400

600

Number of states

T
im

e
(i

n
m

il
li

se
co

n
d

s)

Top-down
Bottom-up
Random

Top-down reversed
Bottom-up reversed
Random reversed

Figure 4.3: Performance of ComputeAllApartPairs on machines with alpha-
bet size 20

0 10 20 30 40 50

0

200

400

600

Number of states

T
im

e
(i

n
m

il
li

se
co

n
d

s)

Alphabet size 2
Alphabet size 5
Alphabet size 20

Figure 4.4: Average performance of variations of ComputeAllApartPairs

32

0 10 20 30 40
1.4

1.6

1.8

2

2.2

2.4

2.6

Input alphabet size

T
im

e
(i

n
m

il
li

se
co

n
d

s)

Top-down
Bottom-up
Random

Top-down reversed
Bottom-up reversed
Random reversed

Figure 4.5: Varying input alphabet size (10 states, output alphabet size 2)

0 10 20 30 40

1.4

1.6

1.8

2

2.2

2.4

Output alphabet size

T
im

e
(i

n
m

il
li

se
co

n
d

s)

Top-down
Bottom-up
Random

Top-down reversed
Bottom-up reversed
Random reversed

Figure 4.6: Varying output alphabet size (10 states, input alphabet size 2)

33

Chapter 5

Related Work

Research that has already been done on the subject of finding all apart
states in Mealy machines will be discussed in this section.

An algorithm that computes the shortest distinguishing sequence for
each pair of apart states in a Mealy machine has been presented in ‘Minimal
Separating Sequences for All Pairs of States’ [6]. This algorithm makes use
of the fact that the negation of apartness, which will be called language
equivalence from now on, is an equivalence relation. Thus, it is possible
to construct a partition that consists of sets of language equivalent states.
The algorithm partitions the states of a Mealy machine into sets of language
equivalent states, similar to the automata minimisation algorithms of Moore
[5] and Hopcroft [3]. A splitting tree [4] is maintained to keep track of, for
each split of a set of states, the sequence of input symbols that was used
to split that set. After the algorithm has terminated, the distinguishing
sequence of a pair of apart states can be found in this splitting tree. By
splitting the sets in a certain order, the distinguishing sequences are guar-
anteed to be as short as possible. The algorithm has a time complexity of
O(m log n), where m is the number of transitions and n the number of states
in a given Mealy machine.

While this is an efficient algorithm for finding all pairs of apart states and
their corresponding distinguishing sequences in Mealy machines, it does not
work for partial Mealy machines. This is due to the fact that no partition
can be created that contains sets of language equivalent states, as language
equivalence is not transitive in partial Mealy machines. The lack of tran-
sitivity is caused by the partiality of partial Mealy machines, as shown in
example 5.1. Since the algorithms of Moore and Hopcroft are also based
on creating a partition of sets of language equivalent states, they cannot
be used either to find all pairs of apart states in a partial Mealy machine.
Therefore, a different algorithm was needed that is applicable to partial
Mealy machines.

Example 5.1. In fig. 5.1 we have that q0 and q2 are not apart, q2 and q1

34

are not apart, but q0 and q1 are apart.

q0start

q1

q2

q3

q4

1/b

1/a

0/a

0/a

Figure 5.1: A slight variation of the partial Mealy machine in fig. 2.3 (I =
{0, 1}, O = {a, b})

An algorithm that finds all pairs of apart states in a partial Mealy ma-
chine was implemented for the benchmarks in the paper ‘A New Approach
for Active Automata Learning Based on Apartness’ [8]. This is because the
L# algorithm needs all pairs of apart states in a partial Mealy machine, as
described in chapter 1. However, the implemented algorithm that finds all
pairs of apart states was not discussed separately, which is why this thesis
presents, analyses and benchmarks such an algorithm.

35

Chapter 6

Conclusions

An algorithm that finds all pairs of apart states in a partial Mealy machine
was presented in this thesis. Its time complexity was found to be O(|I|n2),
where I is the input alphabet and n is the number of states of a partial
Mealy machine. Two variations of the default algorithm were discussed.
One determines the order in which ComputeAllApartPairs picks pairs of
states and the other decides in what order the for-loops of DetermineApart
are executed.

Benchmarks were performed on the algorithm which indicate that it
scales quadratically in the number of states, which is in line with its time
complexity. The benchmarks also showed that, when the number of states
is fixed, the algorithm runs faster on partial Mealy machines in which the
transitions use more input symbols. ComputeAllApartPairs performs better
when the states are traversed bottom-up instead of top-down or randomly
and swapping the for-loops of DetermineApart worsened the performance of
ComputeAllApartPairs.

Possible future work on this topic would include transforming the pre-
sented algorithm into algorithms that are suitable for other types of finite-
state machines with partial transition and output functions. The perfor-
mance of these transformed algorithms could then be compared to that of
the original algorithm. Also, the current implementation could be improved,
as there may be data structures and low-level optimisations that improve
the algorithm’s performance.

36

Bibliography

[1] Marco Almeida, Nelma Moreira, and Rogério Reis. On the performance
of automata minimization algorithms. In Arnold Beckmann, Costas
Dimitracopoulos, and Benedikt Löwe, editors, Logic and Theory of Al-
gorithms, pages 3–14. Springer, 2008. Contributed talk.

[2] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

[3] John Hopcroft. An n log n algorithm for minimizing states in a finite
automaton. In Zvi Kohavi and Azaria Paz, editors, Theory of Machines
and Computations, pages 189–196. Academic Press, 1971.

[4] D. Lee and M. Yannakakis. Testing finite-state machines: state identi-
fication and verification. IEEE Transactions on Computers, 43(3):306–
320, 1994.

[5] Edward F. Moore. Gedanken-experiments on sequential machines. Au-
tomata Studies. (AM-34), 34:129–153, 1956.

[6] Rick Smetsers, Joshua Moerman, and David N. Jansen. Minimal sep-
arating sequences for all pairs of states. In Adrian-Horia Dediu, Jan
Janoušek, Carlos Mart́ın-Vide, and Bianca Truthe, editors, Language
and Automata Theory and Applications, pages 181–193, Cham, 2016.
Springer International Publishing.

[7] Frits Vaandrager. Model learning. Commun. ACM, 60(2):86–95, jan
2017.

[8] Frits W. Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten
Wißmann. A new approach for active automata learning based on apart-
ness. CoRR, abs/2107.05419, 2021.

37

Appendix A

Benchmarking result tables

The column ‘Number of states’ refers to the number of states in a bench-
marked partial Mealy machine and the columns ‘Input alphabet’ and ‘Out-
put alphabet’ refer to the sizes of its input and output alphabets. Per
combination of number of states, size of input alphabet and size of output
alphabet, twenty partial Mealy machines were benchmarked. For each com-
bination of options of the variations, ComputeAllApartPairs was called a
hundred times on each of the partial Mealy machines. The average time
ComputeAllApartPairs needed to terminate over the hundred runs on a
partial Mealy machine will be called the performance of that partial Mealy
machine for that combination of options of variations. Each table contains
the performance of the partial Mealy machines using one specific combi-
nation of variation options. The column ‘Average’ represents the average
performance in milliseconds of the twenty partial Mealy machines corre-
sponding to that combination of number of states, size of input alphabet
and size of output alphabet. The columns ‘Minimum’ and ‘Maximum’ rep-
resent the performances in milliseconds of the partial Mealy machines that
were, respectively, the fastest and the slowest over their hundred runs out
of the twenty corresponding partial Mealy machines.

The terms ‘top-down’, ‘bottom-up’ and ‘random’ refer to the order in
which the states are chosen in ComputeAllApartPairs. DetermineApart was
used if the term ‘reversed’ is not in the name of a variation and Determine-
ApartReversed was used if the term ‘reversed’ is in the name of a variation.

38

Number of states Input alphabet Output alphabet Average Minimum Maximum

2 2 2 0.024468 0.01224 0.03248

5 2 2 0.220038 0.17242 0.30237

10 2 2 1.88057 1.66368 2.12626

20 2 2 20.2872 18.9555 21.6695

30 2 2 92.4129 87.176 99.6594

40 2 2 267.336 257.738 283.081

50 2 2 619.967 602.466 644.381

2 5 5 0.008881 0.0081 0.01014

5 5 5 0.168481 0.15603 0.22902

10 5 5 1.56638 1.5176 1.6659

20 5 5 17.9844 17.6069 18.9005

30 5 5 79.5247 78.3154 80.8282

40 5 5 230.511 228.541 232.357

50 5 5 538.15 531.835 552.052

2 20 20 0.008263 0.00801 0.00996

5 20 20 0.187612 0.16311 0.23925

10 20 20 1.58529 1.55919 1.76057

20 20 20 17.5751 17.3846 17.7952

30 20 20 77.679 77.0436 78.8663

40 20 20 224.199 222.628 228.071

50 20 20 518.012 514.372 521.915

10 2 2 1.76834 1.6273 1.99874

10 5 5 1.56838 1.52082 1.64371

10 10 10 1.55642 1.52738 1.61369

10 20 20 1.54906 1.51305 1.58247

10 30 30 1.56207 1.53883 1.73744

10 40 40 1.55441 1.54028 1.56853

10 2 2 1.82455 1.64633 2.09347

10 5 2 1.69121 1.55108 1.87466

10 10 2 1.62573 1.56038 1.81747

10 20 2 1.7462 1.55769 2.20642

10 30 2 1.62556 1.55947 1.83886

10 40 2 1.67947 1.56054 1.91867

10 2 2 1.76503 1.66199 1.97439

10 2 5 1.59349 1.50099 1.7858

10 2 10 1.55073 1.48227 1.6848

10 2 20 1.54005 1.44502 1.61662

10 2 30 1.53618 1.47327 1.68503

10 2 40 1.52453 1.4858 1.64163

Table A.1: Benchmark results of ‘top-down’ variation

39

Number of states Input alphabet Output alphabet Average Minimum Maximum

2 2 2 0.0086275 0.00801 0.01293

5 2 2 0.191601 0.162 0.2643

10 2 2 1.60685 1.52135 1.71012

20 2 2 18.0528 17.2952 19.1853

30 2 2 80.4229 77.7583 85.156

40 2 2 230.216 224.433 243.368

50 2 2 532.388 519.714 549.029

2 5 5 0.0095825 0.00801 0.01192

5 5 5 0.160987 0.15356 0.17371

10 5 5 1.51725 1.47208 1.5999

20 5 5 16.9904 16.4859 17.5179

30 5 5 74.4891 73.4082 75.5436

40 5 5 213.267 210.464 216.047

50 5 5 492.073 484.003 498.345

2 20 20 0.0080635 0.00801 0.00829

5 20 20 0.162988 0.15705 0.17985

10 20 20 1.53792 1.51233 1.56287

20 20 20 17.2467 17.0382 17.6278

30 20 20 75.8291 75.152 76.3859

40 20 20 218.033 216.835 220.087

50 20 20 501.758 497.505 504.648

10 2 2 1.58557 1.48733 1.6937

10 5 5 1.50824 1.44716 1.60837

10 10 10 1.53572 1.49805 1.60803

10 20 20 1.54954 1.4837 1.68476

10 30 30 1.54651 1.49618 1.57182

10 40 40 1.55657 1.52559 1.62614

10 2 2 1.61431 1.51839 1.75968

10 5 2 1.59407 1.50815 1.70717

10 10 2 1.55538 1.52829 1.599

10 20 2 1.55332 1.51298 1.6168

10 30 2 1.56175 1.52762 1.60081

10 40 2 1.57528 1.53805 1.73984

10 2 2 1.57279 1.49887 1.65385

10 2 5 1.44514 1.39644 1.51317

10 2 10 1.42836 1.37582 1.53711

10 2 20 1.43168 1.36644 1.62396

10 2 30 1.41721 1.36772 1.47591

10 2 40 1.41049 1.37494 1.47406

Table A.2: Benchmark results of ‘bottom-up’ variation

40

Number of states Input alphabet Output alphabet Average Minimum Maximum

2 2 2 0.0088755 0.00809 0.01007

5 2 2 0.178397 0.15875 0.21151

10 2 2 1.66144 1.55426 1.8064

20 2 2 19.2393 17.7695 20.1182

30 2 2 86.784 82.3473 92.3702

40 2 2 249.256 242.163 261.436

50 2 2 581.086 562.52 599.208

2 5 5 0.008029 0.00801 0.00814

5 5 5 0.167481 0.15737 0.24096

10 5 5 1.54685 1.50059 1.64831

20 5 5 17.6535 17.0672 18.9392

30 5 5 77.8321 77.0011 78.7296

40 5 5 223.987 220.599 226.455

50 5 5 518.043 509.549 522.73

2 20 20 0.0080315 0.00801 0.00811

5 20 20 0.171455 0.15763 0.25535

10 20 20 1.55614 1.52787 1.58136

20 20 20 17.5006 17.3127 17.8064

30 20 20 77.1979 76.7825 77.7613

40 20 20 224.137 221.131 241.982

50 20 20 512.56 507.569 518.869

10 2 2 1.67882 1.56806 1.84364

10 5 5 1.55523 1.49559 1.70315

10 10 10 1.55669 1.51617 1.64158

10 20 20 1.56163 1.49943 1.71949

10 30 30 1.55568 1.53548 1.57163

10 40 40 1.56603 1.54166 1.63381

10 2 2 1.7323 1.58331 1.93214

10 5 2 1.63558 1.52272 1.80412

10 10 2 1.57756 1.54777 1.67233

10 20 2 1.57052 1.52607 1.66814

10 30 2 1.58553 1.55348 1.72237

10 40 2 1.57611 1.54804 1.61445

10 2 2 1.66155 1.58215 1.86641

10 2 5 1.51051 1.45538 1.60506

10 2 10 1.49499 1.43677 1.68088

10 2 20 1.48281 1.41394 1.55252

10 2 30 1.48006 1.41476 1.54002

10 2 40 1.46442 1.40762 1.51973

Table A.3: Benchmark results of ‘random’ variation

41

Number of states Input alphabet Output alphabet Average Minimum Maximum

2 2 2 0.009735 0.00819 0.01254

5 2 2 0.211189 0.19459 0.23288

10 2 2 2.29643 2.16138 2.44967

20 2 2 27.0647 26.0993 28.8154

30 2 2 123.728 115.087 128.058

40 2 2 360.846 345.166 382.157

50 2 2 845.314 812.856 885.71

2 5 5 0.012026 0.00801 0.01325

5 5 5 0.187421 0.15685 0.32366

10 5 5 1.80857 1.68207 2.0518

20 5 5 20.9106 20.1632 21.9978

30 5 5 90.5254 87.0448 95.0894

40 5 5 262.727 253.405 274.751

50 5 5 610.777 593.25 628.857

2 20 20 0.0080645 0.00801 0.00832

5 20 20 0.163541 0.15613 0.18214

10 20 20 1.62482 1.5408 1.72064

20 20 20 18.1084 17.5293 18.6757

30 20 20 79.1871 77.7756 80.6432

40 20 20 229.867 226.07 234.434

50 20 20 531.946 525.962 548.723

10 2 2 2.30901 2.19466 2.52216

10 5 5 1.80847 1.67957 1.99979

10 10 10 1.66404 1.5728 1.78052

10 20 20 1.62675 1.53203 1.82356

10 30 30 1.58262 1.53963 1.70441

10 40 40 1.59057 1.53393 1.82469

10 2 2 2.29845 2.15372 2.60029

10 5 2 1.84413 1.68583 2.42512

10 10 2 1.6678 1.54549 1.84848

10 20 2 1.6107 1.54134 1.71912

10 30 2 1.59413 1.54388 1.70788

10 40 2 1.59789 1.55159 1.76959

10 2 2 2.26689 2.12899 2.46305

10 2 5 2.28584 2.15125 2.43084

10 2 10 2.28577 2.18549 2.47493

10 2 20 2.26035 2.16322 2.45406

10 2 30 2.28338 2.19439 2.45606

10 2 40 2.25647 2.14631 2.47082

Table A.4: Benchmark results of ‘top-down reversed’ variation

42

Number of states Input alphabet Output alphabet Average Minimum Maximum

2 2 2 0.009974 0.00802 0.01297

5 2 2 0.184112 0.17547 0.2066

10 2 2 1.85672 1.81443 1.91611

20 2 2 22.1786 21.7342 22.7086

30 2 2 99.2359 97.4059 101.03

40 2 2 291.284 284.187 306.607

50 2 2 678.09 667.257 692.562

2 5 5 0.0080425 0.00801 0.00823

5 5 5 0.169002 0.15549 0.20186

10 5 5 1.67825 1.5947 1.85901

20 5 5 19.5028 18.9582 20.07

30 5 5 86.351 85.0713 87.8666

40 5 5 250.93 248.2 253.768

50 5 5 583.131 577.233 587.351

2 20 20 0.0081615 0.00801 0.00956

5 20 20 0.195778 0.17384 0.24873

10 20 20 1.65729 1.58727 1.85046

20 20 20 18.1373 17.7657 18.5821

30 20 20 78.6814 77.3726 81.3708

40 20 20 226.849 223.913 229.842

50 20 20 522.333 515.913 534.089

10 2 2 1.87162 1.81004 2.07893

10 5 5 1.6838 1.61562 1.77832

10 10 10 1.60103 1.54472 1.6633

10 20 20 1.59722 1.53087 1.85452

10 30 30 1.56504 1.53502 1.63186

10 40 40 1.56532 1.5365 1.6037

10 2 2 1.85841 1.78116 1.92656

10 5 2 1.69219 1.61517 1.90508

10 10 2 1.60237 1.53168 1.70366

10 20 2 1.56954 1.53227 1.61887

10 30 2 1.57843 1.53566 1.79331

10 40 2 1.56794 1.53594 1.61913

10 2 2 1.86891 1.79539 1.97136

10 2 5 1.85396 1.77249 1.92897

10 2 10 1.84238 1.74562 1.88686

10 2 20 1.84522 1.78689 1.91475

10 2 30 1.84225 1.75633 1.9269

10 2 40 1.84387 1.78543 1.98782

Table A.5: Benchmark results of ‘bottom-up reversed’ variation

43

Number of states Input alphabet Output alphabet Average Minimum Maximum

2 2 2 0.009874 0.00813 0.01291

5 2 2 0.198064 0.17494 0.23939

10 2 2 2.05997 1.9365 2.19807

20 2 2 24.4418 23.3911 25.355

30 2 2 110.578 106.269 114.705

40 2 2 323.541 313.938 336.219

50 2 2 753.468 731.832 784.302

2 5 5 0.0082295 0.00811 0.00896

5 5 5 0.179931 0.15657 0.24573

10 5 5 1.73158 1.61251 1.93206

20 5 5 20.1576 19.6401 20.8862

30 5 5 88.7017 86.3991 91.3077

40 5 5 257.571 252.142 264.679

50 5 5 597.868 590.711 606.139

2 20 20 0.008476 0.00801 0.00994

5 20 20 0.163943 0.1578 0.18378

10 20 20 1.60009 1.53346 1.66726

20 20 20 18.0624 17.5773 18.4548

30 20 20 78.7158 77.2828 80.7656

40 20 20 228.03 223.918 231.493

50 20 20 529.048 522.856 543.326

10 2 2 2.07664 1.93472 2.26079

10 5 5 1.74754 1.6317 1.88415

10 10 10 1.63167 1.55962 1.71743

10 20 20 1.6149 1.53626 1.80393

10 30 30 1.56819 1.54001 1.66584

10 40 40 1.59029 1.53497 1.70455

10 2 2 2.06614 1.93962 2.19732

10 5 2 1.75221 1.64245 2.0135

10 10 2 1.63465 1.539 1.97558

10 20 2 1.58828 1.538 1.66099

10 30 2 1.57676 1.53621 1.64954

10 40 2 1.58118 1.54062 1.74656

10 2 2 2.07585 1.90446 2.27624

10 2 5 2.07974 1.96811 2.26348

10 2 10 2.06951 1.94902 2.26218

10 2 20 2.05864 1.92097 2.17518

10 2 30 2.03751 1.85853 2.46505

10 2 40 2.04273 1.88713 2.23996

Table A.6: Benchmark results of ‘random reversed’ variation

44

	Introduction
	Partial Mealy machines, trees and apartness
	Preliminary definitions
	Partial Mealy machine in rooted tree form
	Partial Mealy tree
	Equivalence of definitions
	Proof of first statement
	Proof of second statement

	Algorithmic computation of apart states
	Description of DetermineApart
	Description of ComputeAllApartPairs
	Correctness
	Complexity
	Complexity of DetermineApart
	Complexity of ComputeAllApartPairs

	Variations
	State order in ComputeAllApartPairs
	Order of for-loops in DetermineApart

	Benchmark
	Generating random partial Mealy machines
	Influence of machine properties
	Benchmark description
	Benchmark results

	Related Work
	Conclusions
	Benchmarking result tables

