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Abstract

Most parallel computing systems today are a combination of a central pro-
cessing unit (CPU) and one or more graphics processing units (GPUs). Both
types of devices maintain their own dynamic RAM (DRAM), but the av-
erage amount available to each typically varies significantly. Whereas it is
relatively inexpensive to have 64, 128 or even 256 gigabytes of DRAM avail-
able to the CPU, a lot of high-end GPUs only have 8 to 16 gigabytes to
work with. This discrepancy limits the data complexity of algorithms that
can benefit from GPU acceleration.

It is possible to rewrite an algorithm in such a way that the data it
processes does not have to fit the GPU memory in one go. However, doing
this manually is error prone and complex, so we are looking into ways to
automate this process. Hence, this paper is meant as a stepping stone for
generating data size agnostic code for map-like operations, such as vector
addition, and (3-point) stencil computations using NVIDIA’s CUDA.
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Chapter 1

Introduction

GPUs are known for their high memory bandwidth, fast computation speed
and relatively low energy cost for high parallelism. These attributes make
them especially attractive for performing algorithms that can process large
blocks of data in parallel. Not surprisingly, GPUs are increasingly being
used for high performance computing and data-intensive scientific applica-
tions such as weather forecasting [16], physics simulations [7] and machine
learning [25].

In order to take advantage of the large computational power of a GPU,
the data required for a given algorithm first needs to be transferred to the de-
vice’s dedicated memory. Currently, most high-end GPUs only have between
eight and sixteen gigabytes of space available, whereas the main memory of a
modern parallel computing system can easily be several hundred gigabytes.
Unfortunately, this discrepancy limits the problem size of applications that
can benefit from GPU acceleration.

The indicated memory problem relates to a similar challenge in the past
when the data structures in use for purposes such as numerical linear alge-
bra, scientific visualisation and computer graphics became too large to fit in
the main memory of a computer. Consequently, research has been done on
the development of algorithms [22, 27] that are designed to achieve high per-
formance on the CPU when their data is stored in external memory. These
type of algorithms are often referred to as out-of-core algorithms.

Lately, it has become increasingly more common that the memory avail-
able on the GPU for immediate computation is insufficient in size to keep
the entire data in memory during the execution of an algorithm. As one
might expect, the need for executing large problem domains in a distributed
fashion on one or multiple GPUs has been a topic of recent research on sten-
cil computations [12, 13, 23, 24]. However, creating a correct and efficient
solution is non-trivial, because it usually involves multiple technologies and
a lot of domain-specific knowledge.

This research looks at generating out-of-core code on the GPU for two
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different types of common algorithms; map-like operations and (3-point)
stencil computations. In order to achieve this, CUDA’s asynchronous com-
munication model is first used to concurrently process, or stream, chunks of
data on the GPU when the data does fit. This in-core streaming method is
then extended to realize out-of-core execution.

The main contribution of this paper are rewriting schematics, or blueprints,
for in-core streamed and out-of-core code generation. My approach to estab-
lishing these blueprints is to first identify two commonly used algorithmic
classes. From there, I manually investigate the respective challenges for
creating out-of-core code for these algorithms. Finally, I look at the perfor-
mance one can expect by implementing a simple variant of both algorithmic
classes in C++. Ultimately, these blueprints could then function as a start-
ing point for implementing streamed or out-of-core code generation in a
domain-specific array language such as SaC [21].

In the second chapter of this report, the background for this research
is covered. After that, chapter three presents the in-core specification, and
based on that, the in-core streamed and out-of-core blueprints for both map-
like operations and 3-point stencils in a C++-like pseudo-language. Next,
chapter four evaluates the performance of the aforementioned blueprints
when implemented in C++. Finally, chapter five discusses related work and
chapter six contains the concluding remarks and possible future work.
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Chapter 2

Background

2.1 CUDA

In section 2.1, an introduction to CUDA is given by providing a brief de-
scription of CUDA and going over several technical details such as the pro-
gramming model and the threading model. Figure 2.1 compares the addition
of two vectors of a sequential C++ program and a possible CUDA counter
part. Although the syntax of the CUDA program may still be unfamiliar at
this point, it is further explained in subsections 2.1.1 through 2.1.3.

2.1.1 What is CUDA?

CUDA is a parallel computing platform and programming model that allows
programmers to utilise the computational power of GPUs. Its programming
model emphasizes two important design goals, the first of which is to provide
a low learning curve for programmers familiar with a supported program-
ming language [4]. This is done by extending a standard language (e.g.
C++) with a minimalist set of keywords for expressing parallelism [6]. The
second goal is to allow for the design of highly scalable code [6] and an
example of this is the concept of grids and (thread-)blocks, which will be
discussed in more detail in subsection 2.1.3 of this chapter.

Furthermore, it was the first API that allowed for general purpose com-
puting on GPUs (GPGPU), because prior to CUDA’s release in 2007, the
only alternatives were designed for graphics programming (e.g. openGL).
This seems to be one of the reasons why CUDA applications are now com-
monly used for several different purposes such as medical imaging, compu-
tational fluid dynamics and environmental science [20].
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Listing 2.1: Sequential
1 void add vector ( int N, f loat ∗a ,
2 f loat ∗b)
3 {
4 for ( int i = 0 ; i < N; i++)
5 {
6 a [ i ] = a [ i ] + b [ i ] ;
7 }
8 }
9

10 int main ( )
11 {
12 s i z e t N = 1000000;
13
14 f loat ∗a = new f loat [N ] ;
15 f loat ∗b = new f loat [N ] ;
16
17 for ( int i = 0 ; i<N; i++)
18 {
19 a [ i ] = 1 . 0 ;
20 b [ i ] = 1 . 0 ;
21 }
22
23 add vector (N, a , b) ;
24
25 delete [ ] a ;
26 delete [ ] b ;
27
28 return 0 ;
29 }

Listing 2.2: CUDA program
1 g l o b a l
2 void add vector ( int N, f loat ∗a ,
3 f loat ∗b)
4 {
5 int index = blockIdx . x ∗ blockDim . x
6 + threadIdx . x ;
7 int s t r i d e = blockDim . x ∗ gridDim . x ;
8
9 for ( int i = index ; i<N; i+=s t r i d e )

10 {
11 a [ i ] = a [ i ] + b [ i ] ;
12 }
13 }
14
15 int main ( )
16 {
17 s i z e t N = 1000000;
18
19 f loat ∗a = new f loat [N ] ;
20 f loat ∗b = new f loat [N ] ;
21
22 for ( int i = 0 ; i < N; i++)
23 {
24 a [ i ] = 1 . 0 ;
25 b [ i ] = 1 . 0 ;
26 }
27
28 f loat ∗dev a = 0 ;
29 f loat ∗dev b = 0 ;
30 int block n = 256 ;
31 int b locks = (N + block n − 1)
32 / b lock n ;
33
34 cudaMalloc ( ( void ∗∗)&dev a ,
35 N∗ s izeof ( f loat ) ) ;
36 cudaMalloc ( ( void ∗∗)&dev b ,
37 N∗ s izeof ( f loat ) ) ;
38
39 cudaMemcpy( dev a , a ,N∗ s izeof ( f loat ) ,
40 cudaMemcpyHostToDevice ) ;
41 cudaMemcpy( dev b , b ,N∗ s izeof ( f loat ) ,
42 cudaMemcpyHostToDevice ) ;
43
44 add vector<<<blocks , b lock n>>>(N,
45 dev a , dev b ) ;
46
47 cudaMemcpy( a , dev a ,N∗ s izeof ( f loat ) ,
48 cudaMemcpyDeviceToHost ) ;
49
50 delete [ ] a ;
51 delete [ ] b ;
52 cudaFree ( dev a ) ;
53 cudaFree ( dev b ) ;
54
55 return 0 ;
56 }

Figure 2.1: A comparison of adding two vectors in a sequential program and
in a (parallel) CUDA program.

2.1.2 Programming model

First of all, CUDA programs are heterogeneous co-processing programs.
This means that both a CPU and a GPU are involved in the execution of
CUDA code. Each of these components are dedicated to their own specific
task. The CPU, which is referred to as the host, executes the serial parts
of the program and the GPU, which is referred to as the device, executes
the parallel parts of the program. This kind of co-processing approach gives
the best performance for parallel-intensive programs, but also many mostly-
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sequential codes [18].
Furthermore, CUDA kernels are special functions that are executed N

times in parallel by N different CUDA threads on the device [4]. They are
defined using the ” global ” keyword and are called in the same manner as
regular C++ functions, except that the amount of threads that will execute
the kernel are specified with a special syntax: ”⟨⟨⟨...⟩⟩⟩”. Within a kernel,
the programmer also has access to built-in variables, such as the thread ID
of the executing thread.

Finally, the programming model assumes that both the host and the
device have their own separate dynamic RAM (DRAM) [4], which are aptly
referred to as the host memory and the device memory. In order for the
device to operate on data from the host, the program first has to call for a
memory transfer from the host to the device. When the device has finished
its computation, the resulting data in turn is often transferred back to the
host. For this purpose, CUDA provides the programmer with several run-
time functions, of which ”cudaMemcpy(...)” is one of them that is commonly
used. It has four arguments: the destination buffer, the source buffer, the
size of the data that should be transferred and the direction of the memory
transfer (e.g. cudaMemcpyHostToDevice), respectively.

2.1.3 Threading model

In order to leverage parallelism, it is important to understand CUDA’s
threading model. First, when launching a kernel, the programmer has to
indicate by how many threads the kernel should be executed. All the ex-
ecuting threads requested at kernel launch are then grouped together in
so-called blocks. These blocks can combine their threads together in sev-
eral different shapes spanning up-to three dimensions, which is illustrated
in figure 2.2. One reason why this is useful is that data belonging to a given
algorithm usually has up-to three dimensions, so several blocks could then
be combined to match the shape of the data, which in turn gives easy and
predictable access to any element.

Figure 2.2: An example of two random shapes of input data and matching
blocks of threads. The values in the blocks are the thread IDs.

The amount of threads in any of the three block dimensions can be specified
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at launch, but the size limit in the x-dimension is 1024. All blocks com-
bined form a so-called grid, which can also have up to three dimensions and
has a limit of 231 − 1 blocks in the x-dimension [4]. Each block in a grid
executes independently and their order of execution cannot be guaranteed.
This means that, currently, the only way of synchronizing blocks is by exit-
ing the kernel. On the other hand, synchronization between threads within
a block is possible using provided functions such as ” syncthreads()”.

As hinted at earlier, this model allows the programmer to consider a
problem as a grid and divide it into smaller blocks of sub-problems that can
be solved cooperatively by the threads in that block [4]. To illustrate this
better, let us consider a common shape of input (and output) data: a vector
of size N. There are many different algorithms that can be performed on
this data type. For example, there might be a second input vector of size n
that a programmer wants to add to the first vector.

In order to maximise parallelism, it would be ideal to request a thread
for each element in the vector. In this case, a matching grid would then
have (n + 128 − 1)/128 blocks with each block having 128 threads. Each
thread in the grid now corresponds to exactly one index of the output vector
(except for some threads in the last block if n is not divisible by 128). An
appropriate kernel queries the thread ID of the executing thread and then
performs the addition for the corresponding index. This can be implemented
as shown in figure 2.3

1 g l o b a l
2 void add vector ( int n , f loat ∗a , f loat ∗b)
3 {
4 int index = blockIdx . x ∗ blockDim . x + threadIdx . x ;
5 int s t r i d e = blockDim . x ∗ gridDim . x ;
6 for ( int i=index ; i < n ; i+=s t r i d e )
7 {
8 a [ i ] = a [ i ] + b [ i ] ;
9 }

10 }

Figure 2.3: A CUDA kernel code example of vector addition.

First, a variable ”index” is created by using the keywords ”blockIdx.x”,
”blockDim.x” and ”threadIdx.x” that are provided by CUDA. The first
keyword refers to the location of the executing thread’s block within the
grid, the second one refers to the size of each block and the third refers to
the executing thread’s position within its own block.

Unfortunately, situations might arise where the executing grid is not
large enough, because of a bug or hardware limitations. In this case, some
or all threads are responsible for the calculation of more than one index,
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with each of their indices separated in distance by the size of the grid.
Therefore, a stride, which corresponds to the size of the grid, is calculated
and a loop is used to prevent unintended behaviour, which is called a grid-
stride loop1. Figure 2.4 gives a more visual and intuitive example of how
the previous kernel calculates the index of the output vector corresponding
to the executing thread.

Figure 2.4: In this example, the grid contains 4096 blocks and each block has
256 threads. When the third thread in the third block of this grid executes,
its corresponding index in the vector is calculated as shown. See footnote 1
for figure source.

2.2 Asynchronous memory transfers

The standard communication model in CUDA is synchronous, which means
the memory transfers in figure 2.1 are also synchronous. Therefore, when-
ever a memory transfer is initiated, further execution on the host is blocked
until the data transfer to the device has been completed.

Moreover, the device first copies the entire data from the host, then
launches a kernel for the requested computation and afterwards it copies
the resulting data back to the host. This entire process happens in what is
referred to as the default (or null) stream. In general, a CUDA stream is a
sequence of commands that execute in order [4].

Instead of only using the default stream, CUDA also support the notion
of multiple streams. These different streams could then potentially be exe-
cuted concurrently. Consequently, while the commands within one stream
happen sequentially, the order in which they happen between streams is
not guaranteed. Although this additional concurrency introduces an extra

1https://developer.nvidia.com/blog/even-easier-introduction-cuda/
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layer of complexity, it also allows for asynchronous interaction between the
host and device. For example, an asynchronous alternative for the memory
transfers in figure 2.1 can be implemented as shown in figure 2.5

1 cudaHostRegister ( a , N∗ s izeof ( f loat ) , 0) ;
2 cudaStream t stream ;
3 cudaStreamCreate(&stream ) ;
4
5 cudaMemcpyAsync( dev a , a ,N∗ s izeof ( f loat ) ,
6 cudaMemcpyHostToDevice , stream ) ;
7 kernel<<<blocks , block n , 0 , stream>>>(N, dev a ) ;
8 cudaMemcpyAsync( a , dev a ,N∗ s izeof ( f loat ) ,
9 cudaMemcpyDeviceToHost , stream ) ;

10 cudaDeviceSynchronize ( ) ;

Figure 2.5: An example of ansynchronous communication in CUDA.

First, it is required to pin the host memory, which can be done with cu-
daHostRegister(..) and is shown on line 1. This pinning page-locks the
memory and prevents it from being swapped out [28], which is vital, be-
cause asynchronous transfers allow the GPU to directly access the host’s
main memory [4]. On lines 2-3, a stream that is different from the default
stream is declared and created. Next, on lines 5 and 8 a new method is
shown, namely, cudaMemcpyAsync(..), which initiates a memory transfer in
the specified stream. As one might expect, cudaMemcpyAsync(..) does not
block the host until the memory transfer is finished, unlike cudaMemcpy(..).
Lastly, cudaDeviceSynchronize() is introduced on line 10 to actually ensure
that the host is blocked till all prior commands have finished, so that race
conditions are prevented.

In general, switching to asynchronous communication can improve data
throughput and overall performance depending on the combination of hard-
ware used, the size of the input data and the ratio between computation
and communication [28].

As hinted at earlier, it is possible to leverage these asynchronous transfers
for the purpose of creating multiple streams, which each transfer a portion,
or chunk, of the entire vector. On top of that, one could also divide the
kernel computation between the different streams, so that each stream in-
dependently (1) transfers data to the device, (2) launches a kernel on this
subset of data and then (3) transfers the final result back to the host.

In theory, this leads to transfers and computations within a stream over-
lapping with the commands in other streams [4]. Overlapping communi-
cation and computation can lead to increased performance and can, for
example, be used to more efficiently split a stencil computation between
multiple GPUs [23, 24].
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2.3 Tiling

Using several streams to execute a given algorithm comes with a new chal-
lenge. Partitioning the input vector(s) into chunks of data and streaming
them through the device will not produce the correct result if one stream is
dependent on a value calculated by or assigned to another stream. There-
fore, the key challenge is to find a partitioning scheme that does not violate
any possible data dependencies.

Tiling is a strategy often used to both improve the data locality and to
maximize parallelism of stencil computations [9]. I draw inspiration from
this technique to make streaming, and ultimately out-of-core execution, pos-
sible for both map-like operations and stencil computations. Note that im-
proving data locality in the context of out-of-core in recent work is also
referred to as temporal blocking [5, 12, 24].

Several variants of tiling exist and the one preferred for a given stencil
can depend on various factors such as dimensionality of the inputs, the pro-
cessing device (i.e. CPU, GPU or both) and the memory architecture (i.e.
shared or distributed). In this subsection, rectangular tiling [19] is intro-
duced in the context of map-like operations, and, overlapped tiling [9, 19],
[10, 11, 15] and split tiling [1, 8, 26] are introduced in the context of stencil
computations.

2.3.1 Map-like operations

In this paper, a map-like operation is an index-wise function application
with one or multiple lists as input. For example, common list operations in
functional programming languages such as map and zip can be considered
map-like operations. Another example would be vector addition, since it
essentially is index-wise addition of multiple lists (typically two).

In order to stream map-like operations, it is necessary to divide the
input vector(s) between the streams, so that the outputs corresponding to
the resulting chunks of data can be calculated independently. The work
of P.S. Rawat et al. [19] shows rectangular tiling to illustrate that this
approach would not work for stencil computations. However, it is perfectly
suitable for map-like operations.

An example of rectangular tiling for map-like operations is shown in
figure 2.6. The dots resemble values in a vector at different time steps t.
The arrows show which values in time step 0 are necessary to calculate a
value in time step 1. If the calculation of a value in a given tile does not
depend on a value in another tile, then that portion of the data can be
computed concurrently. Clearly, the rectangular tiles are independent in
the case of map-like operations for any number of iterations.
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Figure 2.6: An example of rectangular tiling with map-like operations.

2.3.2 Stencil computations

An n-point stencil is a computational pattern that is iteratively applied on
a k-dimensional data structure for several time steps. Stencil computations
are used for a wide range of scientific and engineering disciplines [17] and
have as a result been studied extensively in areas such as high performance
computing, compilers and code generation [1, 8, 9, 10, 11, 15, 17, 19, 23, 24,
26].

Figure 2.7: An example of rectangular tiling with stencil computations.

Figure 2.7 shows rectangular tiling for a one dimensional 3-point stencil
computation. This stencil is the simplest variant of a stencil computation
and is the one that this paper will focus on. A value at index i in time
step t is calculated from the value at i in time step t - 1 as well as its two
neighbouring values at i - 1 and i + 1. Therefore, these tiles cannot be
executed concurrently, because there are many inter-tile dependencies.
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Figure 2.8: An example of overlapped tiling with stencil computations.

A commonly used tiling strategy for a stencil is overlapped tiling, which is
shown in figure 2.8. When visualized across the time dimension, these tiles
resemble trapezoidal shapes. The core idea behind this approach is that
each tile does not only compute some number of values in the final time
step, but also all the values that are required from earlier time steps, which
results in an overlap between the tiles. Although this introduces redundant
computations, it also solves the dependency issues and thus all the tiles can
be computed concurrently. These overlapping regions are also referred to as
halo regions [11, 19, 26], ghost zones [8, 15] or shadow regions [9].

Figure 2.9: An example of split tiling with stencil computations.

An alternative, called split tiling, is shown in figure 2.9. This method does
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not require redundant computations, but it does require more communica-
tion, because not all tiles are independent. The yellow trapezoidal tiles can
be started concurrently, but the red triangle-shaped tile can only be com-
puted when all the yellow tiles are finished (or at the very least the ones
directly neighbouring the red tile). Note that the coverage of these tiles do
not represent the memory foot-print, because the values that the red tile
depends on still have to be in memory.

Furthermore, these tiling strategies are in GPUs usually applied at the
thread block level and aim to improve performance by reducing global reads
and kernel exits by utilizing the faster local memory shared between the
threads in a block [10, 11, 15, 19]. However, the purpose of my research is dif-
ferent, because the goal is to be able to independently calculate much larger
chunks of data. In turn, these independent chunks can then be streamed
through the GPU to realize out-of-core execution.

Unfortunately, it is not trivial to determine which tiling approach would
suit my use-case better and trying both is out of scope. For split tiling, there
is no overhead from redundant computations, but the boundaries of each tile
will need to be recomputed each loop. This again increases the amount of
computation and leads to more control-flow divergence as pointed out by J.
Meng, and K. Skadron [15]. However, the authors are considering strategies
at the thread block level. Indeed, recomputing boundaries for each block
of threads introduces a lot of extra computation. However, I only need to
recompute the boundaries once for each stream per time step and this can
be done by the host at each kernel launch.

Another concern is pointed out by P.S. Rawat et al.[19], being that split
tiling leads to irregular shaped-tiles, which makes it more challenging to
achieve high performance on a GPU. This is especially true at the chunk
level, because the red triangles will be many orders smaller than the yellow
trapezoids. However, the standard split tiling approach can be slightly al-
tered to make the tiles regular, as I will show in chapter three.

Furthermore, the memory footprint of overlapped tiling is clearly larger,
which is the main problem this research is trying to tackle. Additionally,
while the computational overhead for 1D stencils can be kept relatively
small, it becomes quite significant for 3D stencils [19]. Although I only con-
sider a 1D 3-point stencil in my code generation schemes and experiments,
it does not hurt to keep in mind how this would scale for possible future
work.
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Chapter 3

Out-of-core code generation

In this chapter, I present an approach to out-of-core code generation for
both map-like operations and 3-point stencil computations, respectively, as
they are defined in section 2.3.1 and 2.3.2.

For both algorithmic classes, this is be done by first defining an in-core
specification in C++-like pseudo-code. After that, an in-core specification
using CUDA streams is presented including rewriting rules and explanations.
Based on these streamed blue prints, an out-of-core version is developed.

The in-core specification using CUDA streams serves as a solid check-
point from both an explanatory and problem-solving perspective. Further-
more, it is also helps with investigating whether streaming a computation
through the GPU is interesting regardless of whether the data fits in the
memory or not.

3.1 Map-like operations

3.1.1 In-core

In figure 3.1, the in-core specification that I will use as a basis for the out-
of-core code generation of map-like operations is shown. The host memory
is pinned on lines 1-2 as described in figure 2.5, because this will be a
requirement for using CUDA streams later on. Next, two buffers, dev a and
dev b, are allocated on the device (lines 4-5) to match the given buffers a
and b on the host and, after that, the host memory is transferred to the
device (h2d) on lines 7-8. Subsequently, n kernels are launched for a given t
time steps (lines 10-14). Although more than one time step does not occur
as often as with stencil computations, it is still useful to consider and helpful
for performance analysis. At the end, the resulting values in dev a are copied
to the host memory (d2h) on line 14.
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1 a = cudaHostRegister ( a , n ) ;
2 b = cudaHostRegister (b , n) ;
3
4 dev a = cudaMalloc ( dev a , n) ;
5 dev b = cudaMalloc ( dev b , n) ;
6
7 dev a = cudaMemcpy( dev a , a , n , h2d) ;
8 dev b = cudaMemcpy( dev b , b , n , h2d) ;
9

10 for ( i = 1 ; i <= t ; i++){
11 dev a = kernel<<< n >>>( dev a , dev b , n) ;
12 }
13
14 a = cudaMemcpy( a , dev a , n , d2h) ;
15
16 kernel ( dev a , dev b , n)
17 {
18 t i d = blockIdx . x ∗ blockDim . x + threadIdx . x ;
19 s t r i d e = blockDim . x ∗ gridDim . x ;
20
21 for ( i = t i d ; t i d < n ; t i d+=s t r i d e )
22 dev a [ i ] = f ( dev a [ i ] , dev b [ i ] ) ;
23 }

Figure 3.1: The in-core specification of a map-like operation.

The kernel code is shown on lines 16-23. First, the index of the value in
dev a that the executing thread has to calculate is determined and stored in
variable tid. Next, the stride is calculated just in case the total amount of
requested threads is smaller than the size of dev a in the device’s memory.
Finally, dev a[i] is calculated using the values at i in both dev a and dev b
and applying generic function f to them (i ∈ [0..n − 1]). This procedure
corresponds to the background of grid-stride-loops and map-like operations
as described in sections 2.1.3 and 2.3.1, respectively.

3.1.2 In-core streamed

In order to stream a map-like operation through the device, it is necessary
to find a way to perform calculations on subsets of the data independently.
Recall that a map-like operation is defined as applying a generic function f
index-wise to both a value from vector a and vector b.

For example, the operation could be a[i] = a[i]+ b[i], where i ∈ [0..n−1]
and f := (+), which corresponds to vector addition. Since you only need
the values at i from time step j, where j ∈ [0..t], to calculate the value i at
time step j + 1, it is straightforward to create chunks of data that can be
calculated independently.
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Figure 3.2: A visual representation of dividing a vector in independent
chunks for map-like operations.

This process is illustrated in figure 3.2. Clearly, it is possible to calculate
(n + nS − 1) / nS and store the result in variable chunk n. Next to
representing the chunk size, chunk n can also be used to calculate the offset
of each independent chunk in the host and the device buffer. However, do
keep in mind that the right-most chunk is not always equal to chunk n, so,
a second variable, lchunk n, is necessary, which is equal to n−nS ∗chunk n.

1 kernel ( dev a , dev b , n)
2 {
3 t i d = blockIdx . x ∗ blockDim . x + threadIdx . x ;
4 s t r i d e = blockDim . x ∗ gridDim . x ;
5
6 for ( i = t i d ; t i d < n−1; t i d+=s t r i d e )
7 dev a [ t i d ] = f ( dev a [ i ] , dev b [ i ] ) ;
8 }

→→→
1 kernel ( dev a , dev b , o f f s e t l , o f f s e t r )
2 {
3 t i d = blockIdx . x ∗ blockDim . x + threadIdx . x + o f f s e t l ;
4 s t r i d e = blockDim . x ∗ gridDim . x ;
5
6 for ( i = t i d ; t i d < o f f s e t r ; t i d+=s t r i d e )
7 dev a [ t i d ] = f ( dev a [ i ] , dev b [ i ] ) ;
8 }

Figure 3.3: A rewriting schematic for rewriting in-core kernel code to in-core
streamed kernel-code. The upper code block shows the original kernel code
and the lower code block shows the resulting kernel code.

In order to ensure that each stream can only compute on its assigned data,
it is necessary to introduce bounds in the kernel code, which is shown in
figure 3.3. The changes are on lines 1, 3 and 6 in the lower code block.
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First, two new arguments, offset l and offset r are added to the kernel. The
former represents the left bound of the executing threads in the current time
step and the latter the right bound. Next, offset l is added to tid on line 3
to make sure the threads access the correct region of the vectors. Finally,
offset r replaces n−1 on line 6 in order to prevent the threads from accessing
data that the specific stream should not be operating on.

1 dev a = cudaMemcpy( dev a , a , n , h2d) ;
2 dev b = cudaMemcpy( dev b , b , n , h2d) ;

→→→
1 stream [ nS ] ;
2 for ( i = 0 ; i < nS ; i++)
3 cudaStreamCreate ( stream [ i ] ) ;
4
5 chunk n = (n + nS − 1) / nS
6 lchunk n = n − (nS−1)∗chunk n ;
7
8 for ( i = 0 ; i < nS−1; i++){
9 cudaMemcpyAsync( dev a [ i ∗chunk n ] , a [ i ∗chunk n ] , chunk n , h2d ,

10 stream [ i ] ) ;
11 cudaMemcpyAsync( dev b [ i ∗chunk n ] , b [ i ∗chunk n ] , chunk n , h2d ,
12 stream [ i ] ) ;
13 }
14 cudaMemcpyAsync( dev a [ ( nS−1)∗chunk n ] , a [ ( nS−1)∗chunk n ] ,
15 lchunk n , h2d , stream [ nS−1]) ;
16 cudaMemcpyAsync( dev b [ ( nS−1)∗chunk n ] , b [ ( nS−1)∗chunk n ] ,
17 lchunk n , h2d , stream [ nS−1]) ;

Figure 3.4: A rewriting schematic for rewriting in-core memory transfers to
in-core streamed memory transfers (host to device). The upper code block
shows the original synchronous memory transfers and the lower code block
shows the rewritten code.

Since the map-like operation is now split between streams, each stream
should copy their own portion of data. The necessary code transformation
regarding the copying of data is shown in figure 3.4. First, the requested nS
streams have to be explicitly created, which is done on lines 1-3. After that,
variables chunk n and lchunk n are calculated as defined earlier on lines 5-
6. The formula used ensures that lchunk n is equal to chunk n or smaller
in case nS does not divide n. Finally, asynchronous memory transfers are
introduced for each stream on lines 8-17.

The first nS-2 streams copy the same amount of data (chunk n values),
following the exact same offset pattern (at i*chunk n), so these transfers can
be initiated in a loop. The last stream also follows the same offset pattern,
but instead needs to transfer lchunk n values, so its transfers are declared
separately.
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1 for ( i = 1 ; i <= t ; i++){
2 dev a = kernel<<< n >>>( dev a , dev b , n) ;
3 }

→→→
1 for ( i = 1 ; i <= t ; i++){
2 for ( j = 0 ; j < nS−1; j++){
3 kernel<<< chunk n , stream [ j ] >>>( dev a , dev b , j ∗chunk n ,
4 ( j +1)∗chunk n ) ;
5 }
6 kernel<<< lchunk n , stream [ nS−1] >>>( dev a , dev b ,
7 (nS−1)∗chunk n ,
8 (nS−1)∗chunk n+lchunk n ) ;
9 }

Figure 3.5: A rewriting schematic for rewriting in-core kernel launches to
in-core streamed kernel launches. The upper code block shows the original
kernel launches and the lower code block shows the rewritten code up-to
and including the synchronization mid-point.

Similarly, instead of one kernel per time step, nS kernels per time step are
now required. The rewriting scheme for this purpose is shown in figure 3.5.
As with the memory transfers, the first nS-2 streams follow the same bound-
ary pattern and use the same number of threads for their calculations. The
left bound is j*chunk n and the right bound is (j+1)*chunk n. Their exact
kernel launches are on lines 2-5.

Although on line 2 in the upper code block it is only necessary to specify
the number of threads, on lines 3 and 6 in the lower code block the stream
that will execute the specific kernel also has to be given. Furthermore, the
last stream’s kernel is declared separately on lines 6-9, because it uses less
threads and the distance between its left and right bound is different from
the other streams.

Notably, due to streams being asynchronous, the order of execution of
these kernels cannot be guaranteed. It might seem like this could lead to syn-
chronization issues, but it does not, because the data the different streams
operate on is fully independent. The only thing that matters is that the
time steps of each stream happen chronologically, which they will, because
all kernels and transfers within a stream are synchronous.

The final necessary adjustment is shown in figure 3.6. Similar to h2d
memory transfers, each stream copies their assigned data back to the host
when it finishes its kernels. This is done by declaring an asynchronous mem-
ory transfer for each stream in the same manner as before, but now with the
copy direction d2h. At the end, on line 8, the host is blocked till all streams
are finished executing their tasks. This ensures that the entire map-like
operation has finished before giving control back to the host.
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1 a = cudaMemcpy( dev a , a , n , d2h) ;

→→→
1 for ( i = 0 ; i < nS−1; i++){
2 cudaMemcpyAsync( a [ i ∗chunk n ] , dev a [ i ∗chunk n ] ,
3 chunk n , d2h , stream [ i ] ) ;
4 }
5 cudaMemcpyAsync( a [ ( nS−1∗chunk n ] , dev a [ ( nS−1)∗chunk n ] ,
6 lchunk n , d2h , stream [ nS−1]) ;
7
8 cudaDeviceSynchronize ( ) ;

Figure 3.6: A rewriting schematic for rewriting in-core memory transfers to
in-core streamed memory transfers (device to host). The upper code block
shows the synchronous memory transfer and the lower code block shows the
rewritten asynchronous memory transfers.
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3.1.3 Out-of-core

Previously, out-of-core was defined as performing an algorithm on data that
is too large to fit into the GPU’s memory in one go. An important part
of my strategy to accomplish this is to stream chunks of data through the
device using CUDA. In section 3.1.2, I show how this can be done for in-core
data in combination with map-like operations. Now, in this section I present
my strategy for rewriting the in-core streamed version to out-of-core.

Figure 3.7: A visual representation of the device memory moving as a sliding
window across the host memory.

Since it is already shown that the chunks can be calculated independently,
the next step is to figure out a procedure for actually streaming the data
through the GPU in an out-of-core manner. To accomplish this, I opt for an
approach that is based on the idea of using the device’s memory as a sliding
window that can be moved over the host’s memory from left to right, which
is depicted in figure 3.7.

The algorithm starts off at index zero and divides the data that currently
overlaps with the window in a predetermined number of independent chunks.
Subsequently, these chunks can be streamed in similar fashion as in section
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3.1.2.
However, after doing so, there is still data left on the host that has not

been processed yet. Therefore, while the device starts copying memory and
launching kernels, the sliding window is moved forward until it exclusively
covers unprocessed data. Next, it is possible to already stream the next
portion, which essentially creates several queues of chunks that are streamed
concurrently through the GPU, which is illustrated in figure 3.8.

Figure 3.8: A visual representation of the sequence of actions each stream
takes based on figure 3.7.

There are two aspects interesting to note here. First of all, it is now necessary
to execute t kernels before transferring results back to the host, because any
occupied space on the device has to be reused for the next chunk. Clearly, it
would be difficult to keep track of how many time steps remain for different
chunks and it would also introduce additional unnecessary memory transfer.

Secondly, my method of out-of-core streaming can be seen as a greedy
approach, because at any point, I try to fit as much data on the device
as possible, without considering how well the available memory divides the
data on the host. Consequently, choosing the right values for the different
parameters involved is non-trivial, but establishing heuristics is out of scope
for this research.

1 dev a = cudaMalloc ( dev a , n) ;
2 dev b = cudaMalloc ( dev b , n) ;

→→→
1 free mem = cudaMemGetInfo( )
2 dev n = free mem ∗ 95 / 100 / dtype n / 2
3
4 dev a = cudaMalloc ( dev a , dev n )
5 dev b = cudaMalloc ( dev b , dev n )

Figure 3.9: A rewriting schematic that transforms the allocation of device
buffers based on n, to allocation based on the available memory on the
device.
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Since allocating two buffers of size n on the device is no longer possible, the
original buffer allocation needs to be changed, which is shown in figure 3.9.
First, the amount of free memory on the device in bytes is queried on line 1
in the lower code block. Considering that it is often not possible to use all of
the free memory, only 95 percent of the total available space is used, which
is shown on line 2. The exact size one should choose here depends on the
architecture, so to automate this in future, heuristics should be established.

Furthermore, the new value is divided by dtype n, which refers to the
size in bytes of the datatype that is used. Finally, the value is also divided
by two, because this operation requires the allocation of two buffers. The
result is stored in the variable dev n and then used on lines 4-5 to allocate
dev a and dev b.

Now that dev n has been established, most of the rewritten code in sec-
tion 3.1.2 needs to be altered. The start of this is shown in figure 3.10 and
other parts of the new code are spread over multiple figures, which is also
indicated with comments on lines 9-10 in the lower code block. Fortunately,
the general structure of the code can be reused and thus a lot of the new
code will look very familiar.

However, figure 3.10 mostly contains new variables and ideas. First, re-
call that the core idea is to divide the hosts data up in chunks that do fit on
the device and can be independently processed, at the very least, one after
each other. Therefore, it is necessary to introduce an approach that is based
on the idea of having several rounds of memory transfers and computations.

As mentioned earlier, the number of rounds is calculated in a greedy
manner by dividing n by dev n and stored in the variable r, which is shown
on line 1 in the lower code block. Next, the calculation of chunk n and
lchunk n is slightly altered on lines 2-3 by exchanging n with dev n.

Similar to the possible difference between chunk n and lchunk n, the last
round is likely to be smaller than round 0 to n-2. Therefore, the size of the
last round and the chunk sizes of the last round are calculated on lines 5-7.
Their values are then stored in lr n, lr chunk n and lr lchunk n, respectively.

Finally, the actual code for the implementation of these rounds is split
in to two separate figures. The code for rounds 0 to n-2 is shown in figure
3.11 and the code for the final round is shown in figure 3.12.
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1 chunk n = (n + nS − 1) / nS
2 lchunk n = n − (nS−1)∗chunk n ;
3
4 for ( i = 0 ; i < nS−1; i++){
5 cudaMemcpyAsync( dev a [ i ∗chunk n ] , a [ i ∗chunk n ] , chunk n , h2d ,
6 stream [ i ] ) ;
7 cudaMemcpyAsync( dev b [ i ∗chunk n ] , b [ i ∗chunk n ] , chunk n , h2d ,
8 stream [ i ] ) ;
9 }

10 cudaMemcpyAsync( dev a [ ( nS−1)∗chunk n ] , a [ ( nS−1)∗chunk n ] ,
11 lchunk n , h2d , stream [ nS−1]) ;
12 cudaMemcpyAsync( dev b [ ( nS−1)∗chunk n ] , b [ ( nS−1)∗chunk n ] ,
13 lchunk n , h2d , stream [ nS−1]) ;
14
15 for ( i = 1 ; i <= t ; i++){
16 for ( j = 0 ; j < nS−1; j++){
17 kernel<<< chunk n , stream [ j ] >>>( dev a , dev b , j ∗chunk n ,
18 ( j +1)∗chunk n ) ;
19 }
20 kernel<<< lchunk n , stream [ nS−1] >>>( dev a , dev b ,
21 (nS−1)∗chunk n ,
22 (nS−1)∗chunk n+lchunk n ) ;
23 }
24
25 for ( i = 0 ; i < nS−1; i++){
26 cudaMemcpyAsync( a [ i ∗chunk n ] , dev a [ i ∗chunk n ] ,
27 chunk n , d2h , stream [ i ] ) ;
28 }
29 cudaMemcpyAsync( a [ ( nS−1∗chunk n ] , dev a [ ( nS−1)∗chunk n ] ,
30 lchunk n , d2h , stream [ nS−1]) ;

→→→
1 r = (n + dev n − 1) / dev n ;
2 chunk n = ( dev n + nS − 1) / nS ;
3 lchunk n = dev n − (nS−1) ∗ chunk n ;
4
5 l r n = n − ( r−1) ∗ dev n ;
6 l r chunk n = ( l r n + nS − 1) / nS ;
7 l r l c hunk n = l r n − (nS−1) ∗ l r chunk n ;
8
9 // rounds 0 to n−2, see f i g u r e 3.11

10 // round n−1, see f i g u r e 3.12

Figure 3.10: A rewriting schematic that transforms the in-core streaming of
map-like operations, to out-of-core.
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1 for ( i = 0 ; i < r−1; i++){
2 for ( j = 0 ; j < nS−1; j++){
3 cudaMemcpyAsync( dev a [ j ∗chunk n ] , a [ i ∗dev n+j ∗chunk n ] ,
4 chunk n , h2d , stream [ j ] ) ;
5 cudaMemcpyAsync( dev b [ j ∗chunk n ] , b [ i ∗dev n+j ∗chunk n ] ,
6 chunk n , h2d , stream [ j ] ) ;
7 }
8 cudaMemcpyAsync( dev a [ ( nS−1)∗chunk n ] ,
9 a [ i ∗dev n+(nS−1)∗chunk n ] , lchunk n , h2d ,

10 stream [ nS−1]) ;
11 cudaMemcpyAsync( dev b [ ( nS−1)∗chunk n ] ,
12 b [ i ∗dev n+(nS−1)∗chunk n ] , lchunk n , h2d ,
13 stream [ nS−1]) ;
14
15 for ( k = 1 ; k <= t ; k++){
16 for ( j = 0 ; j < nS−1; j++){
17 kernel<<< chunk n , stream [ j ] >>>( dev a , dev b , j ∗chunk n ,
18 ( j +1)∗chunk n ) ;
19 }
20 kernel<<< lchunk n , stream [ nS−1] >>> ( dev a , dev b ,
21 (nS−1)∗chunk n ,
22 (nS−1)∗chunk n+lchunk n ) ;
23 }
24
25 for ( j = 0 ; i < nS−1; j++){
26 cudaMemcpyAsync( a [ j ∗dev n+j ∗chunk n ] , dev a [ j ∗chunk n ] ,
27 chunk n , d2h , stream [ j ] ) ;
28 }
29 cudaMemcpyAsync( a [ j ∗dev n+(nS−1)∗chunk n ] ,
30 dev a [ ( nS−1)∗chunk n ] , lchunk n , d2h ,
31 stream [ nS−1]) ;
32 }

Figure 3.11: The rewritten code of rounds 0 to r - 2 for performing map-like
operations out-of-core.

As mentioned earlier, the structure of the code in figure 3.11 is similar to the
code in the upper code block of figure 3.10. The h2d memory transfers are
depicted on lines 2-13, the kernel calls on lines 15-23 and the d2h memory
transfers on lines 25-31. The access patterns and number of threads are
exactly the same for the first r-1 rounds, so the code can be executed in a
loop r-1 times.

In order to access the correct chunk of data in the host, the indices for
a and b are altered, which is shown on lines 3, 5, 9, 12, 26 and 29. First,
the offset for the entire data assigned to the current round is calculated
by i*dev n. Next, it is possible to get the correct region of data to each
stream j by adding j*chunk n. Similar to the streamed version, the memory
transfers and kernel calls for the last stream are declared separately, because
it operates on lchunk n data instead of chunk n.
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1 for ( j = 0 ; j < nS−1; j++){
2 cudaMemcpyAsync( dev a [ j ∗chunk n ] ,
3 a [ ( r−1)∗dev n+j ∗ l r chunk n ] , l r chunk n ,
4 h2d , stream [ j ] ) ;
5 cudaMemcpyAsync( dev b [ j ∗chunk n ] ,
6 b [ ( r−1)∗dev n+j ∗ l r chunk n ] , l r chunk n ,
7 h2d , stream [ j ] ) ;
8 }
9 cudaMemcpyAsync( dev a [ ( nS−1)∗chunk n ] ,

10 a [ ( r−1)∗dev n+(nS−1)∗ l r chunk n ] ,
11 l r l chunk n , h2d , stream [ nS−1]) ;
12 cudaMemcpyAsync( dev b [ ( nS−1)∗chunk n ] ,
13 b [ ( r−1)∗dev n+(nS−1)∗ l r chunk n ] ,
14 l r l chunk n , h2d , stream [ nS−1]) ;
15
16 for ( k = 1 ; k <= t ; k++){
17 for ( j = 0 ; j < nS−1; j++) {
18 kernel<<< l r chunk n , stream [ j ] >>>( dev a , dev b , j ∗chunk n

,
19 j ∗chunk n+lr chunk n ) ;
20 }
21 kernel<<< l r l chunk n , stream [ nS−1] >>>( dev a , dev b ,
22 (nS−1)∗chunk n ,
23 (nS−1)∗chunk n+l r l c hunk n ) ;
24 }
25
26 for ( j = 0 ; j < nS−1; j++) {
27 cudaMemcpyAsync( a [ ( r−1)∗dev n+j ∗ l r chunk n ] ,
28 dev a [ j ∗chunk n ] , l r chunk n , d2h , stream [ j ] ) ;
29 }
30 cudaMemcpyAsync( a [ ( r−1)∗dev n+(nS−1)∗ l r chunk n ] ,
31 dev a [ ( nS−1)∗chunk n ] , l r l chunk n , d2h ,
32 stream [ nS−1]) ;

Figure 3.12: The rewritten code for the kernel calls in round r - 1 for map-
like operations out-of-core.

The final round of the out-of-core map-like operation looks similar to rounds
0 to n-2. However, the total round size and most of the chunk sizes are dif-
ferent. Additionally, each occurrence of i is replaced with r-1, because of
the lack of a loop.

First, the h2d memory transfers are shown on lines 1-8 in figure 3.12.
The access patterns to dev a and dev b remain the same, but all the other in-
stances of chunk n and lchunk n are replaced with lr chunk n and lr lchunk n,
respectively. Next, the kernel calls are shown on lines 16-24. Although the
left bounds remain the same, the right bounds now depend on lr chunk n
and lr lchunk n. Furthermore, the number of threads are also reduced to
their respective sizes for the last round. Finally, the d2h memory transfers
are shown on lines 26-32, which contain the same changes as for h2d.
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3.2 3-point stencil computations

3.2.1 In-core

1 in = cudaHostRegister ( in , n ) ;
2 out = cudaHostRegister ( out , n ) ;
3
4 dev in = cudaMalloc ( in dev , n) ;
5 dev out = cudaMalloc ( out dev , n) ;
6
7 dev in = cudaMemcpy( dev in , in , n , h2d) ;
8 dev out = cudaMemcpy( dev out , out , n , h2d) ;
9

10 for ( i = 1 ; i <= t ; i++){
11 dev out = kernel<<< n >>>( dev in , dev out , n) ;
12 i f ( i != t )
13 dev in , dev out = swap( dev in , dev out ) ;
14 }
15
16 out = cudaMemcpy( dev out , out , n , d2h) ;
17
18 kernel ( dev in , dev out , n)
19 {
20 t i d = blockIdx . x ∗ blockDim . x + threadIdx . x ;
21 s t r i d e = blockDim . x ∗ gridDim . x ;
22
23 for ( i = t i d ; t i d < n−1; t i d+=s t r i d e )
24 dev out [ i ] = f ( dev in [ i −1] , dev in [ i ] ,
25 dev in [ i +1]) ;
26 }

Figure 3.13: The in core specification of a three-point stencil computation.

In figure 3.13, the in-core specification that I use as a basis for the out-of-
core code generation of 3-point stencil computations is shown. The pinning
of the host memory (lines 1-2), the memory allocation on the device (lines
4-5) and the memory transfers (lines 7-8, 16) are identical to those in the
in-core specification for map-like operations. On the other hand, some vari-
ables names, the kernel launches and the kernel code are slightly different.

First of all, the memory pointers a, b, dev a and dev b are replaced
with in, out, dev in and dev out. I make this decision, because, with stencil
computations, it is helpful to make a clear distinction between the in- and
output buffer.

Secondly, after each time step, the pointers to dev in and dev out are
swapped (line 13), but only if the last time step has not yet been made. The
reason for this is that in a given time step i, where i ∈ [1..t− 1], the output
buffer becomes the input buffer in time step i + 1.

Finally, the actual computation in the kernel code has to be adjusted to
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a 3-point stencil. This is shown on lines 24-25, where dev out[i] is calcu-
lated using the values at dev in[i-1], dev in[i] and dev in[i+1] and applying
generic function f to them (i ∈ [1..n−2]). This procedure corresponds to the
background of a 3-point stencil computation as described in section 2.3.2.

3.2.2 In-core streamed

Figure 3.14: A visual representation of dividing a vector in (partially) inde-
pendent chunks for 3-point stencil computations.

In order to stream a stencil computation through the device, it is necessary
to find a way to calculate subsets of the data independently. Unfortunately,
this is not as straightforward as with map-like operations, because in order
to calculate some value i in time step j, values i-1, i and i+1 in time step
j - 1 have to be calculated first. Clearly, if value i-1 or i+1 happens to be
part of a different stream, then value i cannot be calculated independently.

In figure 3.14, my strategy for calculating independent trapezoidal-shaped
chunks over the time dimension is shown. For convenience, the trapezoids
are numerically labeled from left to right starting at 0. Consequently, it is
possible to distinguish between two types of trapezoids based on their label;
even- and odd trapezoids.

First, step one divides the entire data over the number of streams that
were given, which is four in this example. Now, it would be possible to
immediately start launching t independent kernels on the streams. How-
ever, as hinted at earlier, the streams can only safely read the data they are
assigned to, so each time step the number of values that can be calculated,
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reduces at the edges.
As one might expect, this would create pyramid-shaped gaps over the

time dimension and these will still need to be calculated separately after
all streams have finished their kernels. However, these gaps would, most of
the time, contain a lot less data then the total data the streams originally
started with. Therefore, in order to balance the workload, I divide the data
of each stream in half before doing any calculations, as is illustrated in the
second step of figure 3.14.

Next, the even chunks are given t extra values at t = 0, but the to-
tal amount of values is reduced each time step at the edges. This process
will create equally sized trapezoidal-shaped chunks as is shown through step
three and step four. Note that it is necessary to repeat this process several
times if the individual chunk size is smaller than or equal to the number of
time steps. However, this scenario will not be considered in the code further
on.

Furthermore, these trapezoids cannot be calculated all at once, as pointed
out in section 2.3.2. To solve this, each stream first has to calculate an even
trapezoid, wait for the other streams to finish and then calculate an odd
trapezoid.

1 kernel ( dev in , dev out , n)
2 {
3 t i d = blockIdx . x ∗ blockDim . x + threadIdx . x ;
4 s t r i d e = blockDim . x ∗ gridDim . x ;
5
6 for ( i = t i d ; t i d < n−1; t i d+=s t r i d e )
7 dev out [ t i d ] = f ( dev in [ t id −1] , dev in [ t i d ] ,
8 dev in [ t i d +1] ) ;
9 }

→→→
1 kernel ( dev in , dev out , o f f s e t l , o f f s e t r )
2 {
3 t i d = blockIdx . x ∗ blockDim . x + threadIdx . x + o f f s e t l ;
4 s t r i d e = blockDim . x ∗ gridDim . x ;
5
6 for ( i = t i d ; t i d < o f f s e t r ; t i d+=s t r i d e )
7 dev out [ t i d ] = f ( dev in [ t id −1] , dev in [ t i d ] ,
8 dev in [ t i d +1] ) ;
9 }

Figure 3.15: A rewriting schematic for rewriting in-core kernel code to in-
core streamed kernel-code. The upper code block shows the original kernel
code and the lower code block shows the resulting kernel code.

In practice, the trapezoids are computed by introducing boundaries in the
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kernel code, which is shown in figure 3.15. The changes are on lines 1, 3 and
6 in the lower code block. First, two new arguments, offset l and offset r,
are added to the kernel. The former represents the left bound of the execut-
ing threads in the current time step and the latter the right bound. Finally,
offset l is added to tid on line 3 and offset r replaces n− 1 on line 6.

Each time step, these boundaries are reduced or increased on one or both
sides by the host. This ensures that each stream only calculates the indices
it is responsible for based on the trapezoid it is calculating. However, before
diving into more details, it is necessary to understand in which order the
trapezoids have to be calculated.

As mentioned before, each stream will calculate two trapezoids; one even
and one odd. In general, this means that the first stream calculates trape-
zoids 0 and 1, the second calculates trapezoids 2 and 3, et cetera. More
formally, when given n streams, then stream i, where i ∈ [0..n − 1], calcu-
lates trapezoids 2i and 2i + 1.

Moreover, the even trapezoids can immediately be calculated and are
fully independent. The non-trivial part is that the odd trapezoids cannot
be calculated until the trapezoids they depend on have been calculated.
This problem can be solved by introducing a synchronization point. Al-
though there might be several approaches one can take, I have chosen to
block the calculation of odd trapezoids until all streams have finished cal-
culating their even trapezoid. Not only is this approach simple and concise,
it also requires the least synchronization.

All things considered, we can sum up the following workflow for one
stream:

1. Copy the data necessary to calculate the even trapezoid to the device.

2. Calculate the even trapezoid.

3. Copy the part of the result that is already final back to host memory.

4. Wait for all other streams to finish calculating their even trapezoid.

5. Copy the remaining data necessary to calculate the odd trapezoid.

6. Calculate the odd trapezoid.

7. Copy the the remainder of the final result to host memory.
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1 dev in = cudaMemcpy( dev in , in , n , h2d) ;
2 dev out = cudaMemcpy( dev out , out , n , h2d) ;

→→→
1 stream [ nS ] ;
2 for ( i = 0 ; i < nS ; i++)
3 cudaStreamCreate ( stream [ i ] ) ;
4
5 chunk n = (n + 2∗nS − 1) / 2∗nS ;
6 lchunk n = n − (2∗nS−1)∗chunk n ;
7
8 for ( i = 0 ; i < nS ; i++){
9 cudaMemcpyAsync( dev in [ i ∗2∗ chunk n ] , in [ i ∗2∗ chunk n ] ,

10 chunk n + t , h2d , stream [ i ] ) ;
11 cudaMemcpyAsync( dev out [ i ∗2∗ chunk n ] , out [ i ∗2∗ chunk n ] ,
12 chunk n + t , h2d , stream [ i ] ) ;
13 }

Figure 3.16: A rewriting schematic for rewriting in-core memory transfers to
in-core streamed memory transfers (host to device). The upper code block
shows the original synchronous memory transfers and the lower code block
shows the rewritten code.

In order to realise part one of the workflow, it is necessary to rewrite the
memory transfers from host to device. This is shown in figure 3.16. First,
CUDA streams are created with given amount nS on lines 1-3.

Next, the size of each individual chunk, which is depicted in step 2 of
figure 3.14, is calculated and stored in variable chunk n. It is also necessary
to keep into account that n may not be divisible by nS. Therefore, the vari-
able lchunk n is introduced to calculate the size of the right-most chunk.

Finally, asynchronous memory transfers are declared on lines 8-12. The
number of each stream, i, and chunk n are used to find the correct offset in
host memory and device memory. In order to calculate the even trapezoids,
each stream has to copy chunk n + t values to the device (see the dotted
lines in step 3 in figure 3.14).
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1 for ( i = 1 ; i <= t ; i++){
2 kernel<<< n >>>( dev in , dev out , n) ;
3 i f ( i != t )
4 dev in , dev out = swap( dev in , dev out ) ;
5 }

→→→
1 for ( i = 1 ; i <= t ; i++){
2 kernel<<< chunk n+t−i , stream [ 0 ] >>>( dev in , dev out , 1 ,
3 chunk n+t−i ) ;
4 for ( j = 1 ; j < nS ; j++){
5 kernel<<< chunk n+t−2∗ i , stream [ j ] >>>( dev in , dev out ,
6 j ∗2∗ chunk n+i , (2∗ j +1)∗chunk n+t−i ) ;
7 }
8 i f ( i != t )
9 dev in , dev out = swap( dev in , dev out ) ;

10 }
11
12 cudaMemcpyAsync( out [ 0 ] , dev out [ 0 ] , chunkSize , d2h , stream [ 0 ] ) ;
13
14 for ( i = 1 ; i < nS ; i++){
15 cudaMemcpyAsync( out [ i ∗2∗ chunk n+t ] , dev out [ i ∗2∗ chunk n+t ] ,
16 chunkSize−t , d2h , stream [ i ] ) ;
17 }
18
19 cudaDeviceSynchronize ( ) ;

Figure 3.17: A rewriting schematic for rewriting in-core kernel launches to
in-core streamed kernel launches. The upper code block shows the original
kernel launches and the lower code block shows the rewritten code up-to
and including the synchronization mid-point.

In figure 3.17, a rewriting schematic is shown for rewriting the original kernel
code in such a way that it matches steps 2-4 of the outlined workflow.

First, the single kernel call on line 2 in the upper code block has to be
replaced by kernel calls for each individual stream. This is shown on lines
1-10 in the lower code block. The kernel call for stream 0 is called separately,
because each time step only the right bound decreases. All the other kernels
can be started in a for loop, because both boundaries shrink with the same
pattern. Stream 0 calculates chunk n + t - 1 values in it’s first time step
and chunk n values in its last. The rest of the streams calculate chunk n
+ t - 2 values in their first time step and chunk n - t in their last. This is
coherent with the approach shown in step 3 of figure 3.14.

Next, new code is introduced on lines 12-19 to implement step three
and four of the workflow. Notably, only the values calculated in the last
time step are final. Since stream 0 calculates more values in it’s last time
step than the other streams, its memory transfer back to the host is called
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separately on line 12. However, the other streams again follow the same
pattern, so their memory transfers can be called in a for loop. Their left
bounds in the final time step are moved t indices to the right and their right
bounds are moved t indices to the left (see figure 3.14, step 3). Therefore,
the source and destination offsets in the device and host memory are equal
to i * 2 * chunk n + t.

Finally, a synchronization call is made on line 19, which represents the
fourth step in the work flow. It is important to note here that, technically,
the streams don’t actually wait, but the host is blocked till all streams on
the device have finished their tasks.

1 i f ( t % 2 == 0)
2 swap( dev in , dev out )
3
4 for ( i = 0 ; i < nS−1; i++){
5 cudaMemcpyAsync( dev in [ ( 2∗ i +1)∗chunk n+t ] ,
6 in [ ( 2∗ i +1)∗chunk n+t ] ,
7 chunk n−t , h2d , stream [ i ] ) ;
8 cudaMemcpyAsync( dev out [ ( 2∗ i +1)∗chunk n+t ] ,
9 out [ ( 2∗ i +1)∗chunk n+t ] ,

10 chunk n−t , h2d , stream [ i ] ) ;
11 }
12
13 cudaMemcpyAsync( dev in [ ( 2 ∗ ( nS−1)+1)∗chunk n+t ] ,
14 in [ ( 2 ∗ ( nS−1)+1)∗chunk n+t ] , lchunk n−t , h2d ,
15 stream [ nS−1]) ;
16 cudaMemcpyAsync( dev out [ ( 2 ∗ ( nS−1)+1)∗chunk n+t ] ,
17 out [ ( 2 ∗ ( nS−1)+1)∗chunk n+t ] , lchunk n−t , h2d ,
18 stream [ nS−1]) ;
19
20 for ( i = 1 ; i <= t ; i++){
21 for ( j = 0 ; j < nS−1; j++){
22 kernel<<< chunk n−t+2∗ i , stream [ j ] >>>( dev in , dev out ,
23 (2∗ j +1)∗chunk n+t−i

,
24 (2∗ j +2)∗chunk n+i ) ;
25 }
26 kernel <<< lchunk n−t+i , stream [ nS−1] >> > ( dev in , dev out ,
27 (2∗nS−1)∗chunk n+t−i , n−1)

;
28 i f ( i != t )
29 dev in , dev out = swap( dev in , dev out ) ;
30 }

Figure 3.18: Memory transfers and kernel calls for odd trapezoids, to be
added directly after the rewritten code in figure 3.17, but before line 16 in
the original in-core specification in figure 3.13.

In figure 3.18, code is shown for steps five and six of the workflow. This code
will be generated right after the code in figure 3.17 and just before the code
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on line 16 in the original specification. Before continuing the process, the
program checks whether dev in actually points to the original input vector
(line 1-2). This means that if t is even, dev in and dev out need to be
swapped.

After that, the remaining data is copied from the host to the device,
which is shown on lines 4-16. Every stream but the last follow the same
pattern for finding the correct offset on both the host and the device. The
data for the even trapezoid of any stream i starts at 2 * i * chunk n, so
the data for the odd trapezoid starts at (2*i + 1)*chunk n. However, the
first t values were already copied during the process of calculating the even
trapezoid, so the offset becomes (2*i + 1)*chunk n + t. Subsequently, the
number values that need to be transferred then is chunk n - t.

Similarly, the data transfer executed by the last stream, nS - 1, also has
offset (2*i + 1). However, it is necessary to keep into account that the size
of the last chunk may not be equal to chunk n. Therefore, the number of
values that are copied should be lchunk n - t.

Finally, the code for calculating the odd trapezoids is shown on lines
18-28. The process of finding the left- and right bound for the kernel calls is
similar to that of the even trapezoids, but now the bounds will be expanded
each time step instead of decreased (see figure 3.14, step 3). This means
that stream j, where j ∈ [0..nS − 2], starts of with its left bound at (2*j
+ 1)*chunk n + t - 1 and its right bound at (2*j + 2)*chunk n + 1. For
the last stream, only the left bound increases and the right bound stays the
same, which means the starting offsets are (2*nS - 1)*chunk n + t - 1 and
n - 1, respectively. After t time steps, the last stream will calculate lchunk n
values and the others calculate chunk n + t values.

1 out = cudaMemcpy( dev out , out , n , d2h) ;

→→→
1 for ( i = 0 ; i < nS−1; i++){
2 cudaMemcpyAsync( out [ ( 2∗ i +1)∗chunk n ] ,
3 dev out [ ( 2∗ i +1)∗chunk n ] , chunk n+t , d2h ,
4 stream [ i ] ) ;
5 }
6 cudaMemcpyAsync( out [ ( 2 ∗ ( nS−1)+1)∗chunk n ] ,
7 dev out [ ( 2 ∗ ( nS−1)+1)∗chunk n ] , lchunk n , d2h ,
8 stream [ nS−1]) ;
9

10 cudaDeviceSynchronize ( ) ;

Figure 3.19: A rewriting schematic for rewriting the final in-core memory
transfer to in-core streamed memory transfers. The upper code block shows
the synchronous memory transfer and the lower code block shows the rewrit-
ten asynchronous memory transfers.
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In order to implement the seventh and last step of the work flow, the final
memory transfer of the in-core specification needs to be rewritten. This is
shown in figure 3.19. At this point, each stream still has to copy back the
results that were obtained by calculating the odd trapezoids.

The rewritten code for this is shown on lines 1-8. The offset in device
and host memory is equal to (2*i+1)*chunk n, which is the mid point of
all the values stream i is responsible for (see the dotted lines in figure 3.14,
step 2). The number of values that are copied from the device to the host is
equal to chunk n + t for all streams except for the last one, which is equal
to lchunk n.

Additionally, since all of these memory transfers are asynchronous, one
more synchronization is necessary, which is shown on line 10. This ensures
that the final result is correctly copied back to the host and that no unex-
pected behaviour will occur.

3.2.3 Out-of-core

Figure 3.20: A visual representation of dividing the device memory into
independent chunks for out-of-core 3-point stencils.

In this section, I present my out-of-core solution for 3-point stencil compu-
tations. Many of the core ideas for the out-of-core blueprints of map-like
operations also apply here. However, due to the dependencies of the 3-point
stencil, which were also discussed in sections 3.2.1 and 2.3.2, the implemen-
tation is a lot more challenging.

First of all, the allocation of device memory and the division of data
between streams needs to be more carefully considered, which is shown in
figure 3.20. Instead of directly dividing the memory, it is first necessary to
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reserve space for the number of time steps that will be done. After that,
the remainder can be equally divided between the streams. Notably, it is
necessary to reserve two extra values on top of the number of time steps
(i.e. t + 2 ), because in the last time step of the odd trapezoids chunk n+t
values are calculated. Clearly, in case of a 3-point stencil computation, in
order to compute chunk n + t values, chunk n + t + 2 are needed.

Figure 3.21: A visual representation of the device moving as a sliding window
over the host in order to stream the even trapezoids.

Next, figure 3.21 shows the processing of all the even trapezoids in the host
vector, based on the division in figure 3.20. Similar to map-like operations,
the device memory is used as a sliding window that moves across the host
memory. However, it is necessary to more carefully consider which of the
chunks that currently overlap with the window will be send to the GPU.
Indeed, only the even trapezoids can be processed at this time, so they have
to be precisely located. In case of an odd number of streams, the number
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of chunks that should be considered in each round alternates.
Furthermore, after executing t kernels on the even chunks, the d2h mem-

ory transfers also have to be slightly adjusted. Although the final chunk n
- t values (see figure 3.20) are still copied back to the host’s output buffer
as before, the other 2*t values that are not yet final are needed for the
odd trapezoids later on. Before, when the entire host vector fitted in the de-
vice memory, these unfinished values could be left in place. However, during
out-of-core execution, the space they occupy is required to compute the next
chunk. Therefore, two additional d2h transfers that copy the 2*t interme-
diate values to the host’s input buffer have to be in introduced. Note that
these intermediate values also have to be transferred to the host’s output
buffer, so the d2h transfer containing final results should transfer chunk n
+ t values instead of chunk n - t. It is essential that these memory transfers
are done correctly, because, otherwise, the final output buffer will not be
correct.
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Figure 3.22: A visual representation of the device moving as a sliding window
over the host in order to stream the odd trapezoids.

Finally, figure 3.22 shows the processing of all the odd trapezoids in the host
vector. In this case, there are less changes required than for the even trape-
zoids, but it is still important to carefully locate the odd trapezoids on the
host. As mentioned before (and shown in figure 3.20), it is also necessary
to copy two additional values for each chunk from the host compared to the
in-core streamed version. Namely, instead of chunk n + t values, chunk n
+ t + 2 values are copied. When a stream finishes the computation of an
odd trapezoid, it only has to copy the final chunk n + t output values once
to the host’s output buffer.

Although allowing for any number of streams was not much of an issue
up until now, doing so for the out-of-core 3-point stencil would result in con-
voluted code. The reason for this is that the patterns for locating chunks in
the host buffer differ between an odd and even number of streams. There-
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fore, the transformations that are presented only consider odd amounts of
streams.

1 dev in = cudaMalloc ( dev in , n ) ;
2 dev out = cudaMalloc ( dev out , n) ;

→→→
1 free mem = cudaMemGetInfo( )
2 dev n = free mem ∗ 95 / 100 / dtype n / 2
3
4 dev in = cudaMalloc ( dev in , dev n )
5 dev out = cudaMalloc ( dev out , dev n )
6
7 r n = dev n − nS ∗ ( t+2) ;

Figure 3.23: A rewriting schematic that transforms the allocation of device
buffers based on n, to allocation based on the available memory on the
device.

Similar to out-of-core map-like operations, allocating two buffers of size n
on the device is no longer possible, so the original buffer allocation on the
device needs to be changed, which is shown in figure 3.23.

The necessary transformation is almost completely the same for both
types of out-of-core computations, except that part of dev n needs to be
reserved for the time steps of each chunk. Therefore, the variable r n is
introduced on line 7 in the lower code block. It is calculated by subtracting
nS * (t + 2) from the available memory on the device (dev n).

Moreover, the out-of-core 3-point stencils have a similar round-based
approach as out-of-core map-like operations, but both the code for the cal-
culation of even trapezoids and odd trapezoids need their own r rounds
instead. Note that the synchronization shown in the in-core streamed ver-
sion between the computation of even and odd trapezoids is still required.

On top of that, it is necessary to be more selective of which streams are
used in which round, as shown in figure 3.21 and 3.22. Accordingly, when
calculating even trapezoids, code should only be executed for any stream
j if it has the same parity as current round i, where j ∈ [0..nS − 1] and
i ∈ [0..r − 1]. On the other hand, when calculating odd trapezoids, code
should only be be executed for any stream j if it does not have the same
parity as current round i. This is achieved by surrounding code for memory
transfers and kernels with if-statements as shown in figure 3.24.
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1 // in case o f even t r a p e z o i d s
2 i f ( ( i % 2) == ( j % 2) )
3 // h2d , k e rne l or d2h
4
5 // in case o f odd t r a p e z o i d s
6 i f ( ( i % 2) != ( j % 2) )
7 // h2d , k e rne l or d2h

Figure 3.24: An example of using if-statements to select the correct streams
j for transfers or kernel computations in a given round i.

The rest of the code transformations that follow after figure 3.24 are largely
the same as for the in-core streamed version, but combined with the changes
introduced for out-of-core map-like operations and the usage of if-statements
as shown in figure 3.24. Therefore, and also to improve readability, all the
rewriting schemes for calculating even trapezoids can be looked at in detail
in part A.1 of the appendix. Similarly, all the transformations for odd
trapezoids are present in part A.2 of the appendix.
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Chapter 4

Performance evaluation

In this chapter, a performance analysis of the in-core, in-core streamed, and
out-of-core versions is presented for both algorithmic classes.

4.1 Experimental setup

There are two aspects of interest regarding the rewritten code. Namely,
the impact in-core streaming has on the overall performance and whether it
is possible to achieve the same performance out-of-core compared to when
the data fits on the device. In order to answer these questions, the in-core,
in-core streamed and out-of-core blueprints are implemented in C++1.

Furthermore, GFLOP/s and (effective) memory bandwidth are used as
a measure of performance. The former refers to the number of one billion
floating-point operations per second done by the GPU and gives a good
impression of the overall achieved performance. The latter resembles the
memory throughput in GB/s. Since both algorithms are limited by how
fast memory can be accessed on the device (i.e. memory bound), it is im-
portant to see whether the achieved bandwidth comes close to the theoretical
bandwidth of the device. The code that is used to compute these metrics
can be found in appendix A.3.

Kernel # FLOPs mem. reads mem. writes

map-like 1 2 1

3-point 5 3 1

Table 4.1: An overview of the number of floating-point operations, memory
reads and memory writes in each kernel execution of the different algorithms.

In case of the map-like operation, a simple vector addition consisting of one
floating-point operation (FLOP) is implemented. On the other hand, the

1https://gitlab.science.ru.nl/pbeurden/thesis
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stencil computation is evaluated with a one dimensional 3-point heat equa-
tion consisting of five FLOPs (three multiplications, two additions), without
considering convergence. An overview of the numbers relevant for the per-
formance metrics is shown in table 4.1 for both algorithms.

Moreover, the experiments are conducted with individual vector sizes
ranging from 20MB to 25GB consisting of single-precision floats and up to
3883 time steps. All combinations of parameters are performed ten times
each and the combined run-time of the memory transfers and kernel exe-
cutions is measured using CUDA events. The exact manner is shown in
figure 4.1 and essentially covers the precise moment the first host-to-device
transfer is initiated until the final device-to-host transfer has completed.

1 // . . .
2 cudaEventRecord( s t a r t ) ;
3 // f i r s t h2d
4 // . . .
5 // l a s t d2h
6 cudaDeviceSynchronize ( )
7 cudaEventRecord( stop ) ;
8 cudaEventSynchronize ( stop ) ;
9 cudaEventElapsedTime(&run time , s t a r t , stop ) ;

Figure 4.1: Example of how the run-time of each experiment is measured
with CUDA events. The event ”start” is recorded just before the first h2d
memory transfer and the event ”stop” is recorded just after the last d2h
transfer finishes.

Most of the time, the standard deviation of these runs is between 0.01%-2%,
so the mean value is used to calculate the performance metrics. However,
there can occasionally be one outlier within a set of ten runs. In that case,
the value is removed and the mean of the remaining nine values is used in-
stead.

The experiments are done on a shared cluster that is provided by the
university. The cluster in question consists of two separate nodes on one of
which a combination of CPU and GPU is used. The details of the hardware
and software of the test system are shown in table 4.2. Note that the the-
oretical peak bandwidth of the GPU, which is based on the memory clock
frequency, is equal to 616 GB/s.
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Test system

Hardware Software

Intel(R) Xeon(R) Silver 4214 Ubuntu 20.04.4 LTS

12 cores, 2 threads per core @ 2.20GHz 5.13.0-28-generic (kernel)

min. 1.0 GHz, max 3.2 GHz NVIDIA driver 510.47.03

NVIDIA GeForce RTX 2080 Ti CUDA 11.6

11GB GDDR6 gcc 9.4.0

616 GB/s (peak bandwidth)

13.45 TFLOP/s (max. perf. float)

PCI-e 3.0 x16 (15.75 GB/s)

Table 4.2: An overview of the system used for the experiments.
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4.2 Map-like operations

Figure 4.2: The effect of input size on the performance of an in-core,
streamed and out-of-core map-like operation at all different time steps.

In figure 4.2, the effect of input size on the performance in terms of GFLOP/s
and bandwidth is shown. The left y-axis shows the GFLOP/s and the right
y-axis shows the bandwidth. The generally low GFLOP/s and bandwidth
at 1 and 16 time steps indicates that this procedure is, initially, latency
bound. However, as the number of time steps go up, the GFLOP/s and
bandwidth increase to roughly 45 and 515, respectively. Clearly, the effec-
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tive bandwidth gets close to the theoretical peak bandwidth, which indeed
shows that, overall, the computation is memory bound.

There are several interesting things that stand out. First of all, the
streamed and out-of-core version do not only perform significantly better
than the in-core version for up to 128 time steps, they reach the peak per-
formance faster. Even at 3883 time steps, the in-core version has not com-
pletely caught up yet with the streamed version in terms of performance.
However, do note that intermediate results are not copied out between it-
erations, which is uncommon for map-like operations. Secondly, it seems to
be the case that input size has no significant effect on the performance.

Input size Time steps Streams GFLOP/s
(tot.)

Bandwidth
(tot.)

GFLOP/s
(kernel)

Bandwidth
(kernel)

1280M 1 - 1.01 12.16 45.65 547.87

1280M 1 8 1.32 15.92 44.76 537.15

1280M 3883 - 45.23 542.85 45.75 549.07

1280M 3883 2 45.48 545.83 45.7 548.48

Table 4.3: The performance of two data points for both in-core and streamed
map-like operations.

Table 4.3 shows two data points for the vector addition of 1280 million el-
ements, where the in-core version is indicated with a dash in the Streams
column. Both the overall performance, measured as shown in figure 4.1,
and the performance of the kernel(s) exclusively, which was measured with
nvprof, are visible. At one time step, the performance of the in-core ker-
nel beats the combined performance of the streamed kernels and both are
already equal to the approximate peak overall performance shown in figure
4.2. However, the overall performance of the streamed version is 1.3x higher
than the in-core version. Based on the kernel performance, it seems to be the
case that this gain can be attributed to the overlapping of communication
and computations. At 3883 time steps, the streamed version still performs
slightly better, but the difference has become insignificant. This decrease
can probably be explained by the fact that the compute-to-communication
ratio increases over time, which is consistent with the observation that the
performance increase, in general, seems to come from latency hiding.

During the experiments, different numbers of streams were chosen, of
which the results are shown in figure 4.3 and 4.4. Note that the reason
for these values being slightly different compared to figure 4.3 is that they
are not from the same data set, because, initially, nvprof was not used for
profiling and, also, the load on the university cluster differs.

All variants perform better than the in-core version for one time step
and 1280 million elements, but choosing correctly does seem to be benefi-
cial. The worst performing number of streams is 128, with an approximate
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bandwidth of 13.5 GB/s. On the other hand, the best performing number
of streams has a bandwidth of approximately 15.3 GB/s, which is, roughly,
a 13% difference.

Figure 4.3: The performance of vector addition with 1280 million elements
measured with different numbers of streams at 1 and 3883 time steps.

This performance difference between the choice of number of streams re-
mains at 3883 time steps, but it, clearly, is a lot less significant. The dis-
crepancy between the two extremes is now only 0.6%.

Furthermore, the plots for out-of-core vector addition of 6336 million el-
ements, shown in figure 4.4, tell a similar story. The difference between the
extremes at one time step and 3883 time steps in this case is approximately
14.5% and 0.55%, respectively.
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Figure 4.4: The performance of vector addition with 6338 million elements
measured with different numbers of streams at 1 and 3883 time steps.
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4.3 3-point stencil computations

Figure 4.5: The effect of input size on the performance of an in-core,
streamed and out-of-core 3-point stencil computation at all different time
steps.

The effect of input size on the performance of the 3-point stencil computation
in terms of GFLOP/s and bandwidth is shown in figure 4.5. The results are
similar to the ones for map-like operations, except that the GFLOP/s are
significantly higher, but this can be explained by the fact that the stencil
does five FLOPs instead of only one. One thing that differs is that at 64
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time steps, 20 MB, 40MB and 80MB perform worse than all other sizes.
However, this seems to be the case for both in-core and in-core streamed.

Input size Time steps Streams GFLOP/s
(tot.)

Bandwidth
(tot.)

GFLOP/s
(kernel)

Bandwidth
(kernel)

1280M 1 - 5.03 16.09 165.79 530.55

1280M 1 16 6.72 21.53 151 483.32

1280M 3883 - 159.01 508.83 160.25 512.81

1280M 3883 16 160.49 513.58 155.33 497.06

Table 4.4: The performance of two data points for both in-core and streamed
3-point stencil computations.

In table 4.4, two data points are shown for the 3-point stencil on a vector
of 1280 million elements, where the in-core version is again indicated with
a dash in the Streams column. These results were measured exactly the
same as for map-like operations and also show similar improvements. The
performance of sixteen streams is 1.33x higher than that of the in-core
version at one time step.

Figure 4.6: The performance of a 3-point stencil with 1280 million elements
measured with different numbers of streams at 1 and 3883 time steps.

Furthermore, the performance of the kernel(s) alone is at one time step
already near peak performance, which likely again indicates that the perfor-
mance increase is due to the overlapping of computation and communication.

Similarly to map-like operations, the performance impact of the choice
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of streams is measured for the 3-point stencil. In figure 4.6, the measure-
ments for an input size of 1280 million at one time step and 3883 time
steps is shown. Clearly, the choice matters more when the computation-to-
communication ratio is low. At one time step, the performance difference
between the extremes is roughly 11.49% and at 3883 time steps 0.31%.
For the out-of-core 3-point stencil of 6336 million elements (figure 4.7) a
similar observation can be made, where the difference between of the ex-
tremes at one time step and 3883 time steps is approximately 15.9% and
0.43%, respectively.

Figure 4.7: The performance of a 3-point stencil with 6338 million elements
measured with different numbers of streams at 1 and 3883 time steps.
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Chapter 5

Related Work

5.1 Asynchronous memory transfers

The differences in performance between CUDA’s communication models in
the context of code generation has been studied before. In [28], several
extensions for the SaC compiler are introduced to, amongst other things,
allow for code generation of asynchronous memory transfers. The authors
find that the choice of communication model becomes more critical the lower
the compute-to-communication ratio gets.

I have similar findings regarding the performance difference between non-
streamed and streamed. Namely, the performance increase of streaming is
larger, and the choice of number of streams also has more impact, when the
compute-to-communication ratio is low.

5.2 Optimizing stencil computations for the GPU

Lots of research has been done on optimizing stencil computations on the
GPU, for example, [23] and [24] look at stencil computations split between
multiple GPUs. Multiple CPU threads are used to reduce the overhead from
kernel launches and to further close the gaps between communication and
computation.

In [23], multiple CUDA streams are used to overlap the computation
and communication of halo regions between the neighbouring GPUs and
the much larger computation of the non-halo region on the GPU. [24] builds
on this by letting the CPU take part in the computations, which led to a
reduced solution time on two different GPU clusters. However, the authors
of [23] and [24] do not stream chunks of data on the individual GPUs and
are not directly targeting general out-of-core execution.
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5.3 Code generation for streaming arrays

Research on the automation of streaming arrays through the GPU exists.
Both [3] and [14] look at extensions for the embedded array language Ac-
celerate [2], which allow the programmer to explicitly choose to stream a
limited set of operations through the GPU. [14] is most closely related to
my paper, because it specifically considers so-called regular arrays, which are
arrays that do not contain other arrays as elements. For example, scalars,
vectors and matrices [14]. The authors use a similar chunk-based approach
to scheduling the streams, but communication and computation are not
overlapped.

Furthermore, their benchmarks [14] show a more significant impact from
the chunk size on performance, for example, a dot product operation reaches
optimal performance at approximately sixteen million elements per chunk.
On the other hand, I find that eight streams give optimal performance for
a vector addition of five million elements, which is a chunk size of approxi-
mately six-hundred-fifty thousand. This difference may be explained by the
fact that I try to overlap as much communication and computation as pos-
sible, because the authors of [14] also suggest that, in general, there could
be a significant improvement in performance by doing so.

5.4 Out-of-core stencil computations on the GPU

More recently, a few studies related to out-of-core stencil computations on
the GPU have been published. For instance, [12] looks at stencil compu-
tations on input data larger than the device memory with a single GPU.
The authors split the problem domain in several sub-domains and use ghost
zones and temporal blocking combined with memory-saving optimizations
and communication overlap to achieve higher performance.

The sub-domains are computed sequentially and ghost zones include
some redundant computations, whereas I calculate several sub-domains con-
currently by streaming them through the GPU and this is done without re-
dundant computations. [12] also mentions that the performance falls when
the problem sizes increases, which is not the case in this study and may
be partially explained by the lack of redundant computations. However, do
note that the authors of [12] considered 3D stencils, so a direct comparison
cannot be made.

Moreover, [13] follows up on [12] by extending the out-of-core implemen-
tation to multiple GPUs. In [13], MPI is used to split the problem domain
in sub-domains to be handled by separate GPUs, which each then utilise the
approach in [12]. Therefore, this method does calculate several sub-domains
concurrently, but only between the GPUs, not within an individual GPU.
The authors mention in future work that it would be promising to intro-
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duce their algorithm into domain specific languages, but do not yet provide
rewriting schematics or code generation examples.

Finally, [5] introduces a library (HHRT) that functions as a wrapper
around MPI and CUDA to assists the programmer with the non-trivial mem-
ory swapping process. On top of that, multiple MPI processes can now be
assigned to one device to further reduce the cost of memory swaps. However,
memory consumption is increased due to the usage of dedicated swap buffers
on the host and CUDA’s asynchronous communication model is not utilised.
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Chapter 6

Conclusions

This paper looks at out-of-core code generation for map-like operations and
stencil computations. In particular, I present blueprints for rewriting the
aforementioned operations into their out-of-core version and analyse the per-
formance with hand-coded implementations in C++.

Both rewriting schemes leverage CUDA streams to essentially establish
concurrent kernels and concurrent memory transfers. Comparisons are made
between in-core implementations and their streamed and out-of-core coun-
terparts according to the suggested blueprints. The latter show an approx-
imate 1.3-1.33x increase in performance over the in-core version, indepen-
dently of the input length of the data the algorithms operate on. Moreover,
this improvement is maintained for approximately sixty-four time steps, af-
ter which the performance gain starts decreasing. Eventually, at 3883 time
steps, the in-core version of both algorithmic classes has nearly caught up.

Based on the results, it seems that the performance increase is mostly,
if not completely, achieved by overlapping the computation and communi-
cation. Since the performance gain starts decreasing after approximately
sixty-four time steps, the potential improvement seems to be related to the
compute-to-communication ratio of the involved operation.

Furthermore, the number of streams used to stream an algorithm, or
execute it out-of-core, has a relevant impact on the performance at a lower
number of time steps. On the other hand, this choice of number of streams
starts mattering less when the compute-to-communication ratio decreases.

In summary, the overall drive of this research was to find out whether
it possible to actually generate code that can process arrays that are larger
than the memory that is available on the GPU. Surprisingly, I find that
top performance can not only be achieved for both map-like operations,
but also for stencil computations. Furthermore, this research shows that
in some cases it is even desirable to stream these algorithms, regardless of
whether in-core execution is possible. In particular, in scenarios where the
overall computation time spent on the device is relatively small, improved

54



performance can be achieved.

6.1 Future work

In the future, it would be interesting to perform a more extensive perfor-
mance analysis in order to establish heuristics. Furthermore, the presented
rewriting schematics are not yet very generic, so it would be great to, for ex-
ample, add support for k-dimensional n-point stencils. Finally, implement-
ing the presented blueprints for out-of-core code generation in a compiler is
out of scope for this research, so that could also be an interesting next step.
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Appendix A

Appendix

A.1 Even trapezoids

This part of the appendix contains all the code transformations for the
calculation of even trapezoids in out-of-core 3-point stencil computations.
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1 chunk n = (n + 2∗nS − 1) / 2∗nS ;
2 lchunk n = n − (2∗nS−1)∗chunk n ;
3
4 for ( i = 0 ; i < nS ; i++){
5 cudaMemcpyAsync( dev in [ i ∗2∗ chunk n ] , in [ i ∗2∗ chunk n ] ,
6 chunk n + t , h2d , stream [ i ] ) ;
7 cudaMemcpyAsync( dev out [ i ∗2∗ chunk n ] , out [ i ∗2∗ chunk n ] ,
8 chunk n + t , h2d , stream [ i ] ) ;
9 }

10
11 for ( i = 1 ; i <= t ; i++){
12 kernel<<< chunk n+t−i , stream [ 0 ] >>>( dev in , dev out , 1 ,
13 chunk n+t−i ) ;
14 for ( j = 1 ; j < nS ; j++){
15 kernel<<< chunk n+t−2∗ i , stream [ j ] >>>( dev in , dev out ,
16 j ∗2∗ chunk n+i , (2∗ j +1)∗chunk n+t−i ) ;
17 }
18 i f ( i != t )
19 dev in , dev out = swap( dev in , dev out ) ;
20 }
21
22 cudaMemcpyAsync( out [ 0 ] , dev out [ 0 ] , chunkSize , d2h , stream [ 0 ] ) ;
23
24 for ( i = 1 ; i < nS ; i++){
25 cudaMemcpyAsync( out [ i ∗2∗ chunk n+t ] , dev out [ i ∗2∗ chunk n+t ] ,
26 chunkSize−t , d2h , stream [ i ] ) ;
27 }

→→→
1 r = (n + r n − 1) / r n ;
2 chunk n = ( r n + nS − 1) / nS ;
3 lchunk n = r n − (nS−1) ∗ chunk n ;
4
5 l r n = n − ( r−1) ∗ r n ;
6 l r chunk n = ( l r n + nS − 1) / nS ;
7 l r l c hunk n = l r n − (nS−1) ∗ l r chunk n ;
8
9 // round 0 , see f i g u r e A.2

10 // rounds 1 to n−2, see f i g u r e A.5
11 // round n−1, see f i g u r e A.8

Figure A.1: A rewriting schematic that transforms the in-core streaming of
even trapezoids, to out-of-core.
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1 cudaMemcpyAsync( dev in [ 0 ] , in [ 0 ] , chunk n+t , h2d , stream [ 0 ] ) ;
2 cudaMemcpyAsync( dev out [ 0 ] , out [ 0 ] , chunk n+t , h2d , stream [ 0 ] ) ;
3
4 for ( j = 1 ; j < nS−1; j++){
5 i f (0 == j % 2) {
6 cudaMemcpyAsync( dev in [ j ∗( chunk n+t+2) ] , in [ j ∗chunk n ] ,
7 chunk n+t , h2d , stream [ j ] ) ;
8 cudaMemcpyAsync( dev out [ j ∗( chunk n+t+2) ] , out [ j ∗chunk n ] ,
9 chunk n+t , h2d , stream [ j ] ) ;

10 }
11 }
12 i f (0 == ( ( nS−1) % 2) ) {
13 cudaMemcpyAsync( dev in [ ( nS−1)∗( chunk n+t+2) ] ,
14 in [ ( nS−1)∗chunk n ] , lchunk n+t , h2d ,
15 stream [ nS−1]) ;
16 cudaMemcpyAsync( dev out [ ( nS−1)∗( chunk n+t+2) ] ,
17 out [ ( nS−1)∗chunk n ] , lchunk n+t , h2d ,
18 stream [ nS−1]) ;
19 }
20 // kerne l s , see f i g u r e A.3
21 // d2h , see f i g u r e A.4

Figure A.2: The rewritten code for the h2d memory transfers of round 0 for
calculating even trapezoids out-of-core.

1 for ( k = 1 ; k <= t ; k++){
2 kernel<<< chunk n+t−k , stream [ 0 ] >>>( dev in , dev out , 1 ,
3 chunk n+t−k ) ;
4
5 for ( j = 1 ; j < nS−1; j++){
6 i f (0 == j % 2)
7 kernel<<< chunk n+t−2∗k , stream [ j ] >>>( dev in , dev out ,
8 j ∗( chunk n+t+2)+k ,
9 ( j +1)∗( chunk n+t+2)−2−k ) ;

10 }
11
12 i f (0 == ( ( nS−1) % 2) ) {
13 kernel<<< lchunk n+t−2∗k , stream [ nS−1] >>>( dev in , dev out ,
14 (nS−1)∗( chunk n+t+2)+k ,
15 (nS−1)∗( chunk n+t+2)+lchunk n+t−k ) ;
16 }
17 i f ( k < t )
18 swap( dev in , dev out ) ;
19 }

Figure A.3: The rewritten code for the kernel calls in round 0 for calculating
even trapezoids out-of-core.
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1 cudaMemcpyAsync( in [ chunk n −1] , dev in [ chunk n −1] , t , d2h ,
2 stream [ 0 ] ) ;
3 cudaMemcpyAsync( out [ 0 ] , dev out [ 0 ] , ( chunk n+t ) , d2h , stream [ 0 ] )

;
4
5 for ( j = 1 ; j < nS−1; j++){
6 i f (0 == j % 2) {
7 cudaMemcpyAsync( in [ j ∗chunk n+1] , dev in [ j ∗( chunk n+t+2)+1] ,
8 t , d2h , stream [ j ] ) ;
9 cudaMemcpyAsync( in [ ( j +1)∗chunk n −1] ,

10 dev in [ ( j +1)∗( chunk n+t+2)−t −3] , t , d2h ,
11 stream [ j ] ) ;
12
13 cudaMemcpyAsync( out [ j ∗chunk n ] ,
14 dev out [ j ∗( chunk n+t+2) ] , chunk n+t , d2h ,
15 stream [ j ] ) ;
16 }
17 }
18
19 i f (0 == ( ( nS−1) % 2) ) {
20 cudaMemcpyAsync( in [ ( nS−1)∗chunk n+1] ,
21 dev in [ ( nS−1)∗( chunk n+t+2)+1] , t , d2h ,
22 stream [ nS−1]) ;
23 cudaMemcpyAsync( in [ ( nS−1)∗chunk n+lchunk n −1] ,
24 dev in [ ( nS−1)∗( chunk n+t+2)+lchunk n −1] , t ,
25 d2h , stream [ nS−1]) ;
26
27 cudaMemcpyAsync( out [ ( nS−1)∗chunk n ] ,
28 dev out [ ( nS−1)∗( chunk n+t+2) ] , lchunk n+t ,
29 d2h , stream [ nS−1]) ;
30 }

Figure A.4: The rewritten code for the d2h memory transfers in round 0 for
calculating even trapezoids out-of-core.
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1 for ( i = 1 ; i < r − 1 ; i++){
2 for ( j = 0 ; j < nS−1; j++){
3 i f ( i % 2 == j % 2) {
4 cudaMemcpyAsync( dev in [ j ∗( chunk n+t+2) ] ,
5 in [ i ∗ r n + j ∗chunk n ] , chunk n+t ,
6 h2d , stream [ j ] ) ;
7 cudaMemcpyAsync( dev out [ j ∗( chunk n+t+2) ] ,
8 out [ i ∗ r n + j ∗chunk n ] , chunk n+t ,
9 h2d , stream [ j ] ) ;

10 }
11 }
12 i f ( i % 2 == (( nS−1) % 2) ) {
13 cudaMemcpyAsync( dev in [ ( nS−1)∗( chunk n+t+2) ] ,
14 in [ i ∗ r n+(nS−1)∗chunk n ] , lchunk n+t ,
15 h2d , stream [ nS−1]) ;
16 cudaMemcpyAsync( dev out [ ( nS−1)∗( chunk n+t+2) ] ,
17 out [ i ∗ r n+(nS−1)∗chunk n ] , lchunk n+t ,
18 h2d , stream [ nS−1]) ;
19 }
20
21 // kerne l s , see f i g u r e A.6
22 // d2h , see f i g u r e A.7
23 }

Figure A.5: The rewritten code for the h2d memory transfers of rounds 1
to n-2 for calculating even trapezoids out-of-core.

1 for ( k = 1 ; k <= t ; k++){
2 for ( j = 0 ; j < nS−1; j++){
3 i f ( i % 2 == j % 2) {
4 kernel<<< chunk n+t−2∗k , stream [ j ] >>>( dev in , dev out ,
5 j ∗( chunk n+t+2)+k ,
6 ( j +1)∗( chunk n+t+2)−2−k ) ;
7 }
8 }
9 i f ( i % 2 == (( nS−1) % 2) ) {

10 kernel<<< lchunk n+t−2∗k , stream [ nS−1] >>>( dev in , dev out ,
11 (nS−1)∗( chunk n+t+2)+k ,
12 (nS−1)∗( chunk n+t+2)+lchunk n+t−k ) ;
13 }
14
15 i f ( k < t )
16 swap( dev in , dev out ) ;
17 }

Figure A.6: The rewritten code for the kernel calls in rounds 1 to n-2 for
calculating even trapezoids out-of-core.
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1 for ( j = 0 ; j < nS−1; j++){
2 i f ( i % 2 == j % 2) {
3 cudaMemcpyAsync( in [ i ∗ r n+j ∗chunk n+1] ,
4 dev in [ j ∗( chunk n+t+2)+1] , t , d2h ,
5 stream [ j ] ) ;
6 cudaMemcpyAsync( in [ i ∗ r n+( j +1)∗chunk n −1] ,
7 dev in [ ( j +1)∗( chunk n+t+2)−t −3] , t , d2h ,
8 stream [ j ] ) ;
9

10 cudaMemcpyAsync( out [ i ∗ rounds n+j ∗chunk n ] ,
11 dev out [ j ∗( chunk n+t+2) ] , chunk n+t , d2h ,
12 stream [ j ] ) ;
13 }
14 }
15 i f ( i % 2 == (( nS−1) % 2) ) {
16 cudaMemcpyAsync( in [ i ∗ r n+(nS−1)∗chunk n+1] ,
17 dev in [ ( nS−1)∗( chunk n+t+2)+1] , t , d2h ,
18 stream [ nS−1]) ;
19 cudaMemcpyAsync( in [ i ∗ r n+(nS−1)∗chunk n+lchunk n −1] ,
20 dev in [ ( nS−1)∗( chunk n+t+2)+lchunk n −1] , t ,
21 d2h , stream [ nS−1]) ;
22
23 cudaMemcpyAsync( out [ i ∗ r n + (nS−1)∗chunk n ] ,
24 dev out [ ( nS−1)∗( chunk n+t+2) ] , lchunk n+t ,
25 d2h , stream [ nS−1]) ;
26 }

Figure A.7: The rewritten code for the d2h memory transfers in rounds 1
to n-2 for calculating even trapezoids out-of-core.
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1 for ( j = 0 ; j < nS−1; j++){
2 i f ( ( r−1) % 2 == j % 2) {
3 cudaMemcpyAsync( dev in [ j ∗( chunk n+t+2) ] ,
4 in [ ( r−1)∗ r n + j ∗ l r chunk n ] ,
5 l r chunk n+t , h2d , stream [ j ] ) ;
6 cudaMemcpyAsync( dev out [ j ∗( chunk n+t+2) ] ,
7 out [ ( r−1)∗ r e l ems + j ∗ l r chunk n ] ,
8 l r chunk n+t , h2d , stream [ j ] ) ;
9 }

10 }
11 i f ( ( r−1) % 2 == (( nS−1) % 2) ) {
12 cudaMemcpyAsync( dev in [ ( nS−1)∗( chunk n+t+2) ] ,
13 in [ ( r−1)∗ r n+(nS−1)∗ l r chunk n ] ,
14 l r l chunk n , h2d , stream [ nS−1]) ;
15 cudaMemcpyAsync( dev out [ ( nS−1)∗( chunk n+t+2) ] ,
16 out [ ( r−1)∗ r n+(nS−1)∗ l r chunk n ] ,
17 l r l chunk n , h2d , stream [ nS−1]) ;
18 }
19
20 // kerne l s , see f i g u r e A.9
21 // d2h , see f i g u r e A.10

Figure A.8: The rewritten code for the h2d memory transfers of round n-1
for calculating even trapezoids out-of-core.

1 for ( k = 1 ; k <= t ; k++){
2 for ( j = 0 ; j < nS−1; j++){
3 i f ( ( r−1) % 2 == j % 2) {
4 kernel<<< l r chunk n+t−2∗k , stream [ j ] >>>( dev in , dev out ,
5 j ∗( chunk n+t+2)+k ,
6 j ∗( chunk n+t+2)+l r chunk n+t−k )

;
7 }
8 }
9 i f ( ( r−1) % 2 == (( nS−1) % 2) ) {

10 kernel<<<l r l chunk n−k , stream [ nS−1] >>>( dev in , dev out ,
11 (nS−1)∗( chunk n+t+2)+k

,
12 (nS−1)∗( chunk n+t+2)+l r l chunk n −1)

;
13 }
14
15 i f ( k < t )
16 swap( dev in , dev out ) ;
17 }

Figure A.9: The rewritten code for the kernel calls in round n-1 for calcu-
lating even trapezoids out-of-core.
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1 for ( j = 0 ; j < nS−1; j++){
2 i f ( ( r−1) % 2 == j % 2) {
3 cudaMemcpyAsync( in [ ( r−1)∗ r n+j ∗ l r chunk n +1] ,
4 dev in [ j ∗( chunk n+t+2)+1] , t , d2h ,
5 stream [ j ] ) ;
6 cudaMemcpyAsync( in [ ( r−1)∗ r n+( j +1)∗ l r chunk n −1] ,
7 dev in [ j ∗( chunk n+t+2)+lr chunk n −1] , t ,
8 d2h , stream [ j ] ) ;
9

10 cudaMemcpyAsync( out [ ( r−1)∗ r n+j ∗ l r chunk n ] ,
11 dev out [ j ∗( chunk n+t+2) ] , l r chunk n+t ,
12 d2h , stream [ j ] ) ;
13 }
14 }
15 i f ( ( r−1) % 2 == (( nS−1) % 2) ) {
16 cudaMemcpyAsync( in [ ( r−1)∗ r n+(nS−1)∗ l r chunk n +1] ,
17 dev in [ ( nS−1)∗( chunk n+t+2)+1] , t , d2h ,
18 stream [ nS−1]) ;
19
20 cudaMemcpyAsync( out [ ( r−1)∗ r n + (nS−1)∗ l r chunk n ] ,
21 dev out [ ( nS−1)∗( chunk n+t+2) ] , l r l chunk n −1,
22 d2h , stream [ nS−1]) ;
23 }

Figure A.10: The rewritten code for the d2h memory transfers in round n-1
for calculating even trapezoids out-of-core.

A.2 Odd trapezoids

This part of the appendix contains all the code transformations for the
calculation of odd trapezoids in out-of-core 3-point stencil computations.
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1 for ( i = 0 ; i < nS−1; i++){
2 cudaMemcpyAsync( dev in [ ( 2∗ i +1)∗chunk n ] , in [ ( 2∗ i +1)∗chunk n ] ,
3 chunk n−t , h2d , stream [ i ] ) ;
4 cudaMemcpyAsync( dev out [ ( 2∗ i +1)∗chunk n ] , out [ ( 2∗ i +1)∗chunk n

] ,
5 chunk n−t , h2d , stream [ i ] ) ;
6 }
7 cudaMemcpyAsync( dev in [ ( 2 ∗ ( nS−1)+1)∗chunk n ] ,
8 in [ ( 2 ∗ ( nS−1)+1)∗chunk n ] , lchunk n−t , h2d ,
9 stream [ nS−1]) ;

10 cudaMemcpyAsync( dev out [ ( 2 ∗ ( nS−1)+1)∗chunk n ] ,
11 out [ ( 2 ∗ ( nS−1)+1)∗chunk n ] , lchunk n−t , h2d ,
12 stream [ nS−1]) ;
13
14 for ( i = 1 ; i <= t ; i++){
15 for ( j = 0 ; j < nS−1; j++){
16 kernel<<< chunk n−t+2∗ i , stream [ j ] >>>( dev in , dev out ,
17 (2∗ j +1)∗chunk n+t−i

,
18 (2∗ j +2)∗chunk n+i ) ;
19 }
20 kernel <<< lchunk n−t+i , stream [ nS−1] >> > ( dev in , dev out ,
21 (2∗nS−1)∗chunk n+t−i , n−1)

;
22 i f ( i != t )
23 dev in , dev out = swap( dev in , dev out ) ;
24 }
25
26 for ( i = 0 ; i < nS−1; i++){
27 cudaMemcpyAsync( out [ ( 2∗ i +1)∗chunk n ] ,
28 dev out [ ( 2∗ i +1)∗chunk n ] , chunk n+t , d2h ,
29 stream [ i ] ) ;
30 }
31 cudaMemcpyAsync( out [ ( 2 ∗ ( nS−1)+1)∗chunk n ] ,
32 dev out [ ( 2 ∗ ( nS−1)+1)∗chunk n ] , lchunk n , d2h ,
33 stream [ nS−1]) ;

→→→
1 // rounds 0 to n−2, see f i g u r e A.12
2 // round n−1, see f i g u r e A.15

Figure A.11: A rewriting schematic that transforms the in-core streaming
of odd trapezoids.
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1 for ( i = 0 ; i < r − 1 ; i++){
2 for ( j = 0 ; j < nS−1; j++){
3 i f ( i % 2 != j % 2) {
4 cudaMemcpyAsync( dev in [ j ∗( chunk n+t+2) ] ,
5 in [ i ∗ r n+j ∗chunk n −1] , chunk n+t+2,
6 h2d , stream [ j ] ) ;
7 cudaMemcpyAsync( dev out [ j ∗( chunk n+t+2) ] ,
8 out [ i ∗ r n+j ∗chunk n −1] , chunk n+t+2,
9 h2d , stream [ j ] ) ;

10 }
11 }
12 i f ( i % 2 != ( ( nS−1) % 2) ) {
13 cudaMemcpyAsync( dev in [ ( nS−1)∗( chunk n+t+2) ] ,
14 in [ i ∗ r n+(nS−1)∗chunk n −1] , lchunk n+t+2,
15 h2d , stream [ nS−1]) ;
16 cudaMemcpyAsync( dev out [ ( nS−1)∗( chunk n+t+2) ] ,
17 out [ i ∗ r n+(nS−1)∗chunk n −1] , lchunk n+t+2,
18 h2d , stream [ nS−1]) ;
19 }
20
21 i f ( t % 2 == 0)
22 swap( dev in , dev out )
23 // kerne l s , see f i g u r e A.13
24 // d2h , see f i g u r e A.14
25 }

Figure A.12: The rewritten code for the h2d memory transfers of rounds 0
to n-2 for calculating odd trapezoids out-of-core.

1 for ( k = 1 ; k <= t ; k++){
2 for ( j = 0 ; j < nS−1; j++){
3 i f ( i % 2 != j % 2) {
4 kernel<<< chunk n−t+2∗k , stream [ j ] >>>( dev in , dev out ,
5 j ∗( chunk n+t+2)+t−k ,
6 ( j +1)∗( chunk n+t+2)−t−1+k) ;
7 }
8 }
9 i f ( i % 2 != ( ( nS−1) % 2) ) {

10 kernel<<< lchunk n−t+2∗k , stream [ nS−1] >>>( dev in , dev out ,
11 (nS−1)∗( chunk n+t+2)+t−k ,
12 (nS−1)∗( chunk n+t+2)+1+lchunk n+k) ;
13 }
14
15 i f ( k < t )
16 swap( dev in , dev out ) ;
17 }

Figure A.13: The rewritten code for the kernel calls in rounds 0 to n-2 for
calculating odd trapezoids out-of-core.
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1 for ( j = 0 ; j < nS−1; j++){
2 i f ( i % 2 != j % 2) {
3 cudaMemcpyAsync( out [ i ∗ r n+j ∗chunk n ] ,
4 dev out [ j ∗( chunk n+t+2)+1] , chunk n+t , d2h ,
5 stream [ j ] ) ;
6 }
7 }
8 i f ( i % 2 != ( ( nS−1) % 2) ) {
9 cudaMemcpyAsync( out [ i ∗ r n + (nS−1)∗chunk n ] ,

10 dev out [ ( nS−1)∗( chunk n+t+2)+1] , lchunk n+t ,
11 d2h , stream [ nS−1]) ;
12 }

Figure A.14: The rewritten code for the d2h memory transfers in rounds 0
to n-2 for calculating odd trapezoids out-of-core.

1 for ( j = 0 ; j < nS−1; j++){
2 i f ( ( r−1) % 2 != j % 2) {
3 cudaMemcpyAsync( dev in [ j ∗( chunk n+t+2) ] ,
4 in [ ( r−1)∗ r n+j ∗ l r chunk n −1] ,
5 l r chunk n+t+2, h2d , stream [ j ] ) ;
6 cudaMemcpyAsync( dev out [ j ∗( chunk n+t+2) ] ,
7 out [ ( r−1)∗ r n+j ∗ l r chunk n −1] ,
8 l r chunk n+t+2, h2d , stream [ j ] ) ;
9 }

10 }
11 i f ( ( r−1) % 2 != ( ( nS−1) % 2) ) {
12 cudaMemcpyAsync( dev in [ ( nS−1)∗( chunk n+t+2) ] ,
13 in [ ( r−1)∗ r n+(nS−1)∗ l r chunk n −1] ,
14 l r l c hunk n+1, h2d , stream [ nS−1]) ;
15 cudaMemcpyAsync( dev out [ ( nS−1)∗( chunk n+t+2) ] ,
16 out [ ( r−1)∗ r n+(nS−1)∗ l r chunk n −1] ,
17 l r l c hunk n+1, h2d , stream [ nS−1]) ;
18 }
19
20 i f ( t % 2 == 0)
21 swap( dev in , dev out )
22 // kerne l s , see f i g u r e A.16
23 // d2h , see f i g u r e A.17

Figure A.15: The rewritten code for the h2d memory transfers of round n-1
for calculating odd trapezoids out-of-core.
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1 for ( k = 1 ; k <= t ; k++){
2 for ( j = 0 ; j < nS−1; j++){
3 i f ( ( r−1) % 2 != j % 2) {
4 kernel<<< l r chunk n−t+2∗k , stream [ j ] >>>( dev in , dev out ,
5 j ∗( chunk n+t+2)+t+1−k ,
6 j ∗( chunk n+t+2)+1+lr chunk n+

k) ;
7 }
8 }
9 i f ( ( rounds−1) % 2 != ( ( nS−1) % 2) ) {

10 kernel<<<l r l chunk n−t+k , stream [ nS−1]>>>( dev in , dev out ,
11 (nS−1)∗( chunk n+t+2)+t+1−k ,
12 (nS−1)∗( chunk n+t+2)+l r l c hunk n ) ;
13 }
14
15 i f ( k < t )
16 swap( dev in , dev out ) ;
17 }

Figure A.16: The rewritten code for the kernel calls in round n-1 for calcu-
lating even trapezoids out-of-core.

1 for ( j = 0 ; j < nS−1; j++){
2 i f ( ( r−1) % 2 != j % 2) {
3 cudaMemcpyAsync( out [ ( r−1)∗ r n+j ∗ l r chunk n ] ,
4 dev out [ j ∗( chunk n+t+2)+1] , l r chunk n+t ,
5 d2h , stream [ j ] ) ;
6 }
7 }
8 i f ( ( r−1) % 2 != ( ( nS−1) % 2) ) {
9 cudaMemcpyAsync( out [ ( r−1)∗ r n + (nS−1)∗ l r chunk n ] ,

10 dev out [ ( nS−1)∗( chunk n+t+2)+1] , l r l chunk n ,
11 d2h , stream [ nS−1]) ;
12 }

Figure A.17: The rewritten code for the d2h memory transfers in round n-1
for calculating even trapezoids out-of-core.
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A.3 Code for performance metrics

def c a l c u l a t e g f l o p s ( s e l f , N, f l op s , t , ms) :
”””
inpu t s :

N: nr o f e lements
f l o p s : f l o a t i n g po in t ope ra t i ons
t : t ime s t e p s
ms : runtime in m i l l i s e c ond s

re turn :
Returns GFLOP/s

”””
return t ∗ f l o p s ∗N/((ms/1 e3 ) ∗1 e9 )

Figure A.18: The python function used to calculate GFLOP/s of the exper-
iment measurements.

def c a l c u l a t e e b ( s e l f , N, r , w, b , t , ms) :
”””
inpu t s :

N: nr o f e lements
r : reads
w: wr i t e s
b : by t e s i z e
t : t imes t ep s
ms : runtime in m i l l i s e c ond s

re turn :
Returns the e f f e c t i v e bandwidth in GB/s

”””
return t ∗( r+w) ∗b∗N/((ms/1 e3 ) ∗1 e9 )

Figure A.19: The python function used to calculate (effective) bandwidth
of the experiment measurements.
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