
Bachelor thesis
Computing Science

Radboud University

A comparison of counterexample
processing techniques in

Angluin-style learning algorithms

Author:
Rick ten Tije
s1005826

First supervisor/assessor:
dr. J.C. Rot

jrot@cs.ru.nl

Second assessor:
prof. dr. F. W. (Frits)

Vaandrager
F.Vaandrager@cs.ru.nl

March 31, 2022

Abstract

Automata learning is the field of constructing finite-state models from ob-
served input-output data. In this thesis the automata learning algorithms
L∗ and NL∗ are discussed. L∗ learns a deterministic finite-state automaton
(DFA) whereas NL∗ learns a residual finite-state automaton (RFSA). The
algorithms will be compared by their performances on number of member-
ships queries, equivalence queries and automata sizes. Caching membership
queries, averting consistency and Rivest-Schapire counterexample process-
ing are improvements on these algorithms of which their effectiveness on L∗

and NL∗ in terms of membership queries, equivalence queries and automata
sizes are evaluated.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Finite state automata . 4

2.1.1 Deterministic finite-state automata 4
2.1.2 Nondeterministic finite-state automata 6
2.1.3 Minimal automata . 8
2.1.4 Residual finite-state automata 9

3 Automata Learning Algorithms 11
3.1 L* . 11

3.1.1 Fundamentals . 11
3.1.2 A run through L∗ . 16
3.1.3 Caching membership queries 20
3.1.4 Averting consistency 20
3.1.5 Smart counterexample processing 22

3.2 NL* . 26
3.2.1 Learning RFSAs . 26
3.2.2 A run through NL∗ . 31
3.2.3 Nondeterministic Rivest-Schapire 34

4 Experiments 36
4.1 Membership queries . 37
4.2 Equivalence queries . 39
4.3 Automata sizes . 41

5 Related Work 44

6 Conclusions 45
6.1 Future work . 45

1

Chapter 1

Introduction

Automata theory is the field in computer science that studies abstract ma-
chines [8]. Many machines can be abstracted into finite state automata. Fi-
nite state automata can be used as a model for different kinds of hardware
and software. A finite-state automaton consists of states and transitions.
The states save important information about the history of the machine’s
execution. We only have a finite number of states, thus when constructing a
finite state automaton, it is essential that the automaton only saves impor-
tant information and discards unimportant information. What is important
and what is not depends on the context.

It is sometimes possible to model a finite state automaton in a setting
in which the inner workings of a system or machine is unknown, we call this
setting a black box setting [5]. Under the black box setting, we can only
interact with the machine by entering inputs and receiving outputs. We can
often construct models from a machine under the black box setting. The
field that focuses on learning such models is called model learning [19].

In this thesis, we will focus on a specific type of model learning, namely
automata learning [1]. In automata learning, we investigate a machine un-
der a black-box setting and try to model an automaton which represents
the machine. There are many different types of automata. For automata
learning, we will look at two types of automata: deterministic finite-state au-
tomata (DFAs) and nondeterministic finite-state automata (NFAs) [8]. We
will also look at a subclass of NFAs namely residual finite-state automata
(RFSAs) [6]. We will go deeper into the specifics of these different types of
automata in the preliminaries chapter.

Automata learning is an active field. Active automata learning can be
traced back as early as 1987 with Angluin’s L∗ algorithm [1]. L∗ was the
first algorithm that was able to actively learn automata, that is, L∗ was able
to learn automata by actively experimenting on the to-be-learned automa-
ton. Various studies followed improving L∗ [12, 18]; these improvements will
be further discussed in Chapter 3. While L∗ focused on learning DFAs, a

2

succesful NFA automata learning algorithm was created in 1998 by Takashi
Yokomori described in [21]. The advantage of NFAs compared to DFAs
is that NFAs can contain less states compared to DFAs, this is explained
more in depth in the preliminaries chapter of this thesis. A decade after
Yokomori’s NFA automata learning algorithm, an even more efficient NFA
learning algorithm was created called NL∗ [3]. NL∗ is able to learn a sub-
class of NFAs, called RFSAs [6]. Two more recent DFA automata learning
algorithms are the TTT algorithm [10] and the L# algorithm [20]. A proper
overview of model learning and automata learning can be found in [19].

The two automata learning algorithms we will take a closer look at in
this thesis are L∗ [1] and NL∗ [3]. How these two differ will be explained
further in the thesis. Both L∗ and NL∗ are able to learn a model by us-
ing membership queries and equivalence queries. The membership queries
are used by the algorithm to find the answer to the question: “Is this in-
put accepted by the machine?” and the equivalence queries are used by the
algorithm to find the answer to the question: “Is this created model cor-
rect?”. These queries are issued by the learning algorithm to the teacher.
This teacher can be viewed as the representative of the system to be learned.
The teacher knows the unknown language and thus can answer the member-
ship and equivalence queries. We call this teacher the minimally adequate
teacher [1]. We will compare these two algorithms in terms of membership
queries, equivalence queries and model size.

L∗ and NL∗ can also be improved to reduce the number of member-
ship queries and equivalence queries. In this thesis we will discuss the fol-
lowing optimizations: caching membership queries, averting consistency by
treating counterexamples differently [14] and Rivest-Schapire counterexam-
ple processing [18]. We will also show why the counterexample processing
optimization by Rivest-Schapire will not work for NFAs.

Studies focusing on performance comparisons between automata learn-
ing algorithms and their variants in the literature are scarce. Certainly,
most studies introducing new automata learning algorithms compare their
results with other relevant algorithms; for example in [20] and [3]. The goal
of this research is to measure the impact that the optimizations have on L∗

and NL∗ along with the relative performance of the algorithms themselves.
Moreover, the comparison in this thesis can be used for future comparisons
with other automata learning algorithms and optimization techniques.

In Chapter 2, I will explain some basic automata theory which is nec-
essary to understand the successive chapters. In Chapter 3, I will introduce
the algorithms L∗ and NL∗ in detail, and also the optimization techniques
that can be used to improve these algorithms. In Chapter 4, the experi-
ments and their results are described. In Chapter 5, I will describe some
related work around automata learning. Chapter 6 concludes the research
and describes future research directions.

3

Chapter 2

Preliminaries

In this chapter, I will explain some concepts which are important for un-
derstanding the research conducted in this thesis. Two basic concepts of
automata theory are deterministic finite-state automata (DFAs) and nonde-
terminisitic finite-state automata (NFAs) [8]. We will also look at minimal
automata and residual finite-state automata (RFSAs) [6].

2.1 Finite state automata

2.1.1 Deterministic finite-state automata

We first define an alphabet A as a finite set of letters. Sequences of these
letters are called words. We define the set of all possible words made out of
A as A∗. A language L is a subset of A∗ (L ⊆ A∗). Note that the empty
word, defined by λ, is always in A∗.

A deterministic finite-state automaton (DFA) is a finite-state machine
that recognizes a certain language; it either accepts, or rejects a given word.

Definition 1. A deterministic finite-state automaton is a 5-tuple M= (Q,A, δ, q0, F)
where Q is the set of states, A the alphabet, δ : Q × A → Q the transition
function, q0 ∈ Q the initial state and F ⊆ Q the set of final states.

Let us define a DFA M1 where Q = {s0, s1, s2}, A = {a, b}, q0 = s0,
F = {s2} and its transition function δ as shown in Figure 2.2 in the form
of a table. This DFA accepts the language of words that end with ab. We
can represent a DFA as a graph. A graph representation of M1 is given in
Figure 2.1.

4

s0 s1 s2

b

a

a

b

a

b

Figure 2.1: A graph representation of M1

δ a b

s0 s1 s0

s1 s1 s2

s2 s1 s0

Figure 2.2: Transition table of M1

The transition function takes a state and a letter as input and produces
the resulting state. If we want to process a whole word instead of one letter
we use the transition function for words denoted by δ∗.

Definition 2. We define the transition function for words δ∗ in a DFA M
as Q × A∗ → Q where Q is the set of states in M and A∗ the set of words
by means of induction:

• Base case: for all q ∈ Q it holds that δ∗(q, λ) = q

• Inductive case: for all q ∈ Q, v ∈ A and u ∈ A∗ it holds that
δ∗(q, vu) = δ∗(δ(q, v), u)

To check if a word is accepted by a DFA, we use the transition function
δ∗. If the resulting state of this function is in F , then the automaton accepts
the given word. For example, the word abb is not accepted by M1 since:

δ∗(s0, abb) = δ∗((δ(s0, a), bb) = δ∗(s1, bb)

= δ∗((δ(s1, b), b) = δ∗(s2, b)

= δ∗((δ(s2, b), λ) = δ∗(s0, λ)

= s0

And because s0 is not in F , the word abb is not accepted but the word
aab is accepted since δ∗(s0, aab) = s2:

5

δ∗(s0, aab) = δ∗((δ(s0, a), ab) = δ∗(s1, ab)

= δ∗((δ(s1, a), b) = δ∗(s1, b)

= δ∗(δ(s1, b), λ) = δ∗(s2, λ)

= s2

As stated before, DFAs accept a certain language. We define language
acceptance for DFAs as follows.

Definition 3. For a DFA M = (Q,A, δ, q0, F), the language of state q ∈ Q
is defined as: Lq = {w | δ∗(q0, w) ∈ F}. The language accepted by M is the
language of the initial state Lq0.

2.1.2 Nondeterministic finite-state automata

A nondeterminisitic finite-state automaton (NFA) has, contrary to a DFA,
possibly multiple initial states and a slightly different transition function.
Instead of transitioning to only one state with a given letter, the nondeter-
ministic transition function can transition to multiple states with the same
letter. This makes the transition function different from DFAs, instead of
mapping to a single state as in our previous definition: Q×A→ Q, we can
now go from a state with an arbritary letter to possibly all other states so
our transition function becomes of type: Q×A→ 2Q where 2Q is the power
set of Q.

We define NFAs as follows.

Definition 4. A nondeterministic finite-state automaton is a 5-tuple M=
(Q,A, δ, I, F) where Q represents the set of states, A the alphabet, δ the
transition function Q× A→ 2Q, I ⊆ Q the set of initial states and F ⊆ Q
the set of final states.

We can also create an NFA for the language of words that end with ab.
Let us call this NFA M2 where Q = {s0, s1, s2}, A = {a, b}, I = {s0} and
F = {s2}. A graphical representation of this NFA is shown in Figure 2.3
and the transition function δ for this NFA is shown in Figure 2.4 as a table.

s0 s1 s2

a,b

a b

Figure 2.3: A graphical representation of M2

6

δ a b

s0 {s0, s1} {s0}
s1 ∅ {s2}
s2 ∅ ∅

Figure 2.4: Transition table of M2

Similar to the transition function for DFAs, if we want to process a whole
word instead of one letter we use the transition function for words denoted
by δ∗. This function gets a state and a word as input and iterates through
the word with the transition function δ and the current state producing a
set of resulting states.

Definition 5. We define the transition function for words δ∗ in an NFA M
as Q× A∗ → 2Q where Q is the set of states in M and A∗ the set of words
by means of induction:

• Base case: for all q ∈ Q it holds that δ∗(q, λ) = {q}

• Inductive case: for all q ∈ Q, v ∈ A and u ∈ A∗ it holds that
δ∗(q, vu) =

⋃
q∈δ∗(q,v) δ(q, u)

Since δ∗ produces a set of states for each iteration through a word, we
will have to take the union of the next steps for the resulting set of states.
The example below shows how the word abb is processed in M2 with δ∗ for
NFAs.

δ∗(s0, abb) = δ∗((δ(s0, a), bb) = δ∗({s0, s1}, bb)
= δ∗((δ(s0, b) ∪ δ(s1, b)), b) = δ∗({s0} ∪ {s2}), b)
= δ∗((δ(s0, b) ∪ δ(s2, b)), λ) = δ∗({s0} ∪ ∅), λ)

= {s0}

Since s0 is not in F , the word abb is not accepted by NFA M2 but the word
aab is accepted since δ∗(s0, aab) = {s0, s2} and s2 is a final state:

δ∗(s0, abb) = δ∗((δ(s0, a), ab) = δ∗({s0, s1}, ab)
= δ∗((δ(s0, a) ∪ δ(s1, a)), b) = δ∗({s0, s1} ∪ ∅), b)
= δ∗((δ(s0, b) ∪ δ(s1, b)), λ) = δ∗({s0} ∪ {s2}), λ)

= {s0, s2}

Finally, we can formally define language acceptance for NFAs.

Definition 6. For an NFA M = (Q,A, δ, I, F), the language of states Q′ ⊆
Q is defined as: LQ′ = {w | δ∗(q0, w) ∩ F 6= ∅}. The language accepted by
M is the language of the initial states LI .

7

2.1.3 Minimal automata

Two automata are equivalent if they accept the same language. A language
can be represented by multiple different DFAs. A DFA is called minimal
if there are no equivalent DFAs with fewer states. A regular language can
always be represented by a unique minimal DFA [8]. The same cannot be
said about NFAs [6].

For instance, take the language L1 over the alphabet {a, b} which con-
tains all the words which have exactly one b in them. Two graphical rep-
resentations of DFAs are given in Figures 2.5 and 2.6. Both these DFAs
accept L1. However, the DFA in Figure 2.6 is the unique minimal DFA
since there does not exist another DFA that accepts the same language with
fewer states.

s0

s1

s2

s3

s4

s5

a

b

a

b

a

ba

b

a

b

a, b

Figure 2.5: Nonminimal DFA of L1

s0 s1 s2

a

b

a

b

a, b

Figure 2.6: Minimal DFA of L1

NFAs do not have the property of having a unique minimal automaton
for every language. Take for example the language L2 over the alphabet
{a, b, c} which contains two letter words in which each letter is different [2].
A minimal graphical representation of an NFA that accepts L2 has five
states, but it is not unique as shown in Figure 2.7.

8

s0 s1

s2

s3

s4

a

b

c

b,c

a,c

a,b

s0 s1

s2

s3

s4

a,b

b,c

a,c

c

a

b

Figure 2.7: Two minimal representations of the NFA accepting L2

2.1.4 Residual finite-state automata

As mentioned earlier, a property that NFAs do not have, contrary to DFAs,
is the property that there is a unique minimal automaton for each regular
language. Another property that DFAs have but NFAs do not always have is
the property that every state of a DFA corresponds to a residual language [3].

Definition 7. A language Lr ⊆ A∗ is a residual language of another lan-
guage L ⊆ A∗ if there is a word u ∈ A∗ such that Lr = {v ∈ A∗ | uv ∈ L}.
We denote the set {v ∈ A∗ | uv ∈ L} as u−1L. The set of residual languages
of L is denoted by Res(L).

There is a subclass of NFAs which does have the two properties of having
a unique minimal automaton for each regular language and having each state
of the automaton correspond to a residual language by definition. This
subclass of NFAs is called residual finite state automata (RFSAs) [6].

Definition 8. A residual finite-state automaton is an NFA M : (Q,A, δ, I, F)
for which each q ∈ Q, the language of that state Lq is a residual language of
the language of the automaton, or Lq ∈ Res(L(M)).

Since RFSAs are nondeteministic, they can have less states than their
corresponding minimal DFAs. Some states of a minimal DFA are superfluous
since they correspond to the union of languages of other states. To find these
superfluous states we introduce prime and composed residual languages [3].

9

Definition 9. A residual language Lr of a language L ⊆ A∗ is called com-
posed if there are other residual languages L1, ..., Ln ∈ Res(L)\Lr where Lr
= L1 ∪ ... ∪ Ln. If this does not hold, then Lr is called prime.

Each residual language represents a state in a RFSA. When we have a
RFSA that consists only of states representing the prime residual languages
we have a canonical RFSA. A canonical RFSA is also a minimal RFSA
as shown in [6]. Since canonical RFSAs are minimal, they are a perfect
candidate for learning as will be shown in the next chapter.

Definition 10. For a regular language L ⊆ A∗, the canonical residual finite-
state automaton of L is the NFA M : (Q,A, δ, I, F) where

• A is the alphabet of L

• Q is the set of prime residual languages of L.

• I is the set of initial states consisting of prime residual languages in-
cluded in L.

• F is the set of final states which are the prime residual languages
containing the empty word.

• δ is the transition function.

Take again the language of words ending with ab over the alphabet {a, b}
(L = (a+ b)∗ab). The minimal DFA which accepts this language was shown
in Figure 2.1 and a NFA representation of the same language was shown in
Figure 2.3. The NFA representation is not a RFSA since the languages of
states s1 (Ls1 = {b}) and s2 (Ls2 = {λ}) are not residual languages. The
canonical RFSA of the same language is shown in Figure 2.8. The languages
of the states in this RFSA are: Ls0 = (a+ b)∗ab, Ls1 = (a+ b)∗ab+ λ and
Ls2 = (a + b)∗ab + a∗b. All these languages are residual languages since
Ls0 = λ−1L, Ls1 = ab−1L and Ls2 = a−1L.

s0 s1 s2

aa, b

a, b a

b

a

a, b

Figure 2.8: Canonical RFSA

10

Chapter 3

Automata Learning
Algorithms

In this chapter, I will explain the algorithms L* and NL∗ in detail. For each
algorithm, I will explain how it works followed by an example run through
the algorithm. Moreover, optimization techniques such as caching mem-
bership queries, averting consistency and Rivest-Schapire counterexample
processing will be explained and their function within L* and NL∗ will be
made clear.

3.1 L*

In this section, L* will be explained. L* is an algorithm which can learn
an unknown regular language by using queries and counterexamples [1].
The algorithm was created by Dana Angluin. Her algorithm serves as a
foundation of other research related to learning these regular languages [20].
In the following subsections, I will explain the main idea of how Angluin’s
algorithm works.

3.1.1 Fundamentals

Suppose we have an unknown regular language L over a known alphabet A.
Now the task at hand is to find an automaton that represents the same lan-
guage as L. We do not know what L is but the minimally adequate teacher
does. We can ask this teacher two things: if a word is in L (membership
queries) and if a created conjecture equals L (equivalence queries). For the
membership queries, the teacher responds with either a ’+’, indicating that
a word is in L); or a ’-’, indicating the opposite. For the equivalence queries,
the teacher either responds with yes, which means that the created automa-
ton represents L; or with no and an accompanying counterexample, the
counterexample distinguishes the created automaton and L. In other words,

11

the counterexample is either accepted by the created automaton but not in
L, or is not accepted by the created automaton but is in L.

The algorithm uses observation tables to create an automaton. How-
ever, before we can define observation tables, we first need to define prefixes
and suffixes. A prefix is a set of letters at the beginning of a word.

Definition 11. A word p is a prefix of word w if there is a word u such that
pu = w.

When we talk about the prefixes of a word, we talk about all the sub-
words of that word which start at the beginning of the word. For example,
the prefixes of the word aabb are aab, aa, a and λ.
A suffix is a set of letters at the end of a word.

Definition 12. A word s is a suffix of word w if there is a word u such that
us = w.

For example, the suffixes of the word aabb are abb, bb and b. Prefix-
closed means that every prefix of all the members of the set is also a member
of the set. Suffix-closed means that every suffix of all the members of the
set is also a member of the set.

With prefixes and suffixes defined, we can now formally define observa-
tion tables.

Definition 13. An observation table is a 3-tuple (S,E,row) where S is a
nonempty finite prefix-closed set of strings, E is a nonempty finite suffix-
closed set of strings, and row a function defined as
row : S ∪ S ×A→ {+,−}E.

T1 λ a

λ - +

a + -

b - -

ba - -

aa - -

ab + -

bb - -

baa - -

bab - -

Figure 3.1: An observation table.

12

We denote the upper part of an observation table by Oup and the lower
part by Olow.

An example of an observation table is given in Figure 3.1. In this
observation table, the labels of the rows in Oup represent S = {λ, a, b, ba},
the labels of the rows in Olow represent all the words in the Cartesian product
of S and A which are not already in S, and the column labels represent E
= {λ, a}. Each value in the table corresponds to a word which consists of
a concatenation of the row label and the column label. row now maps the
word to either a ’+’ or a ’-’ depending on the fact if the word is in the
unknown language L. Whether a word is in L is determined by asking a
membership query for that word to the teacher. For example, according to
T1 the word aa is not in L but the word ab is.

The algorithm can now create an automaton from this observation table
if the table has the following two properties:

• Consistent, which means that if we take any two different words s1, s2 ∈
S such that row(s1) = row(s2), then for all a in A it must hold that
row(s1 · a) = row(s2 · a).

• Closed, which means that for each row in Olow, there should be an
equal row in Oup. Thus for all s1 ∈ S · A there exists a s2 ∈ S such
that row(s1) = row(s2).

We can see that T1 is consistent since row(b) and row(ba) have the
same value and both the values of row(ba) and row(baa) are the same and
the values of row(bb) and row(bab) are the same.

We can also see that T1 is closed since for each row in Olow = {{-,-},
{+,-}, {-,-}, {-,-},{-,-}} there is a row in Oup = {{-,+}, {+,-}, {-,-}, {-,-}}
with the same value.

Hypothesis construction

From a closed and consistent observation table, a DFA can be constructed.
We call this constructed DFA a hypothesis.

Definition 14. For an observation table O = (S,E,row) that is closed and
consistent, a hypothesis M = (Q,A, δ, q0, F) can be created where:

• Q = {r | r ∈ Oup}.

• A is the alphabet.

• δ(row(s), a) = q ∈ Q where row(sa) ∈ q, for s ∈ S and a ∈ A.

• q0 = q ∈ Q where row(λ) ∈ q.

• F = {q ∈ Q | r(λ) = + for r ∈ q}.

13

Closedness is necessary because of the way we defined the transition
function for the hypothesis. If a row in Olow is not in Oup, then that row is
not represented by a state and thus impossible to transition to. Consistency
is necessary since multiple words in S can represent the same state, and if
we have a inconsistent table, then that would mean that we can transition
to different rows and thus different states with the same word. This goes
against the property of DFAs of having a unique transition from one state
to another with the same word.

For example, in T1 there are three distinct rows so we create three
groups: {row(λ)}, {row(a)} and {row(b), row(ba)}; we rename these states
to q0, q1 and q2 respectively for convenience. The initial state will be
the group containing the empty word row, row(λ). The final states are
the groups in which the column value of the empty word is a +. The
transitions between the states can also be determined from the observation
table. Suppose we are in state q2, if the next input is b, then we have a
transition to state q2 since the fact that we are in q2 already tells us that
reading a b should result in either row(bb) or row(bab) and both of have
the same value of the group value of state q2. The resulting DFA can be
seen in Figure 3.2. This DFA accepts the language of words which start
with the letter a and end with any number of b’s.

λ (q0) a (q1) b, ba (q2)
a

b

a

b

a, b

Figure 3.2: DFA of T1

Counterexamples

When the algorithm has created a hypothesis, it asks the teacher if the
created automaton actually represents L. If the teacher replies with ’yes’, the
hypothesis correctly represents the unknown language and L∗ terminates.
However, if the teacher replies with ’no’, it also gives a counterexample.
This counterexample is in L and is not accepted by the hypothesis or the
other way around. If a counterexample is given, the algorithm adds the
counterexample and all its prefixes to S and then it will start over again
with making a new observation table and automaton. This process continues
until an automaton is found that represents L.

14

The algorithm

I will now give an overview of how L∗ exactly works by combining all the
parts we discussed in this section.

L∗ starts by initializing S and E with the empty word. Then, it will
create an initial observation table by using S, E, the alphabet A and row.
L∗ will then check for closedness and consistency. If the table is not con-
sistent, then L∗ will acquire the word responsible for the inconsistency, add
it to E and update the observation table accordingly. If the table is not
closed, then L∗ will add the word sa ∈ S · A for which row(sa) is not in
Oup to S and also update the observation table accordingly. After fixing the
closedness and/or consistency violation, the algorithm repeats the process
of checking for closedness and consistency violations. If the algorithm as-
serts that the observation table is closed and consistent, it will continue by
creating a hypothesis. The hypothesis is given to the teacher in the form
of an equivalency query. The teacher will then either respond with ’yes’ or
’no’. If the teacher’s respond is ’no’, the given counterexample and its pre-
fixes is added to S and L∗ starts over again by checking for closedness and
consistency violations. If the teacher’s respond is ’yes’, then the hypothesis
represents the unknown language and the algorithm terminates.

A representation of how the algorithm works is also given in form of
pseudo code below in Algorithm 1. In this pseudo code, the following pseudo
functions are used:

• membership(), which asks membership queries for the given set of
words and returns the corresponding values for each word.

• createHypothesis(), which creates a hypothesis with the given obser-
vation table.

• equivalent(), which issues an equivalence query to the teacher with
the given automaton and returns a yes or no answer with an optional
counterexample.

• prefixes(), which returns all the prefixes of a given word.

15

Algorithm 1 L∗

S ← {λ}
E ← {λ}
row ← membership((S ∪ S ·A) · E)
O ← create initial observation table (S, E, row).
repeat

while (S, E, row) not closed or not consistent do
if (S, E, row) is not consistent then

Find s1, s2 ∈ S, a ∈ A and e ∈ E such that row(s1) = row(s2)
and T (s1 · a · e) 6= T (s2 · a · e)
E ← E + a · e
row ← membership((S ∪ S ·A) · E)

end if
if (S, E, row) is not closed then

Find s1 ∈ S and a ∈ A such that row(s1 ·a) 6= row(s) for all s ∈ S
S ← s1 · a
row ← membership((S ∪ S ·A) · E)

end if
end while
M ← createHypothesis(S,E, row).
Eq, counterExample← equivalent(M)
if Eq = False then
S ← S + counterExample+ prefixes(counterExample)
row ← membership((S ∪ S ·A) · E)

end if
until Eq = True
Return M

3.1.2 A run through L∗

In this subsection we will do a run through L∗ to strengthen our under-
standing of the algorithm. In this run we will learn the DFA which accepts
the language L over the alphabet A = {a, b} where L = {a, b} ∪ {w | w ∈
A∗ and |w| > 2}. The algorithm starts by initializing S and E with the
empty word λ. It then proceeds by making the initial observation table by
asking the according membership queries and making sure the table is closed
and consistent. The initial observation table is shown in Figure 3.3.

16

T2 λ

λ -

a +

b +

Figure 3.3: Initial observation table T2.

T2 is is not closed, as row(a) is in Olow but not in Oup so the algo-
rithm will add row(a) to Oup and add all the necessary rows to Olow using
membership queries. The new observation table T3 is shown in Figure 3.4.

T3 λ

λ -

a +

b +

aa -

ab -

Figure 3.4: Observation table T3.

T3 is closed and consistent so L∗ now creates a hypothesis. We have two
distinct rows in Oup so the newly created automaton has two states. The
transitions are created as described in the previous section. The resulting
hypothesis is show in Figure 3.5.

q0 q1
a, b

a, b

Figure 3.5: DFA of T3

The algorithm continues to ask the teacher if the hypothesis actually
represents L. The teacher replies with no and a counterexample. Let us
assume that the teacher gave us the counter example aaaa. This is indeed
a counterexample since it is in L but the hypothesis does not accept it. The
algorithm now adds the counterexample aaaa and its prefixes aaa and aa
to S and creates the new observation table T4 depicted in Figure 3.6. Note
that we do not add the prefixes a and λ to S since they are already in S.

17

T4 λ

λ -

a +

aa -

aaa +

aaaa +

b +

ab -

aab +

aaab +

aaaab +

aaaaa +

Figure 3.6: Observation table T4.

T4 is not consistent since row(a) = row(aaa) but row(aa) 6= row(aaaa).
The algorithm fixes consistency violations by adding a new column with
column label a · e and fill the new column by using membership queries. In
this case, we got a inconsistency by adding the letter a to the words a and
aaa, and the column which exposes the difference in the two rows is the
column with column label λ. Thus, we should add aλ to E (aλ = a) and fill
the newly created column by asking membership queries until we have the
resulting table T5 in Figure 3.7.

18

T5 λ a

λ - +

a + -

aa - +

aaa + +

aaaa + +

b + -

ab - +

aab + +

aaab + +

aaaab + +

aaaaa + +

Figure 3.7: Observation table T5.

The newly created observation table T5 is still not consistent since row(λ)
= row(aa) but if we add the letter a to both words we get that row(a) 6=
row(aaa). The difference between row(a) and row(aaa) is visible in column
with column label a. Thus, since adding the letter a to the words λ and
aa results in different rows and since column label a exposes the difference
between the two rows we add aa to E and fill the newly created column by
asking membership queries until we have the resulting table T6 in Figure 3.8.

T6 λ a aa

λ - + -

a + - +

aa - + +

aaa + + +

aaaa + + +

b + - +

ab - + +

aab + + +

aaab + + +

aaaab + + +

aaaaa + + +

Figure 3.8: Observation table T6.

19

Table T6 is closed and consistent so the algorithm makes a new hypothesis
shown in Figure 3.9.

q0 q1 q2 q3
a,b a,b a,b

a,b

Figure 3.9: DFA of T6

Finally, the algorithm asks the teacher if the hypothesis actually repre-
sents L. The teacher replies with yes and the program terminates.

3.1.3 Caching membership queries

A smart automaton learning algorithm needs to invoke the help of the
teacher as little as possible. Caching the membership queries is an easy
way of reducing the amount of membership queries needed to be asked
to the teacher. Look for example at observation table T4 in Figure 3.6.
row(a · λ) = + since we issued a membership query to the teacher for the
word a. Now consider table T5 in Figure 3.7. In this table, a was added
to E after a consistency violation. L∗ would ask a membership query for
each new cell created by the new column. For example, L∗ would ask a
membership query for the word a to fill in the value for row(λ · a) but we
already know that row(a · λ) = − and a · λ = λ · a so we do not need to ask
a new membership query if L∗ remembered that we already queried that
word.

Caching membership queries can reduce the total number of member-
ship queries considerably. For this reason, and for the reason that it has
no negative impact on other aspects of the algorithm, automata learning li-
braries such as LearnLib [16] cache membership queries by storing them in a
hash table. I will also use this optimization in all experiments in Chapter 4.

3.1.4 Averting consistency

As we have seen in the previous section, inconsistency occurs when two rows
in Oup, for example row(s1) and row(s2) where s1, s2 ∈ S and s1 6= s2, which
have the same value, have a different value after you add the same letter
from the alphabet to both s1 and s2. Inconsistency in an observation table
can only occur when we add a counterexample and its prefixes to Oup. The
only other operation that changes Oup is the closedness operation and this
only adds a row to Oup which is not already in Oup, thus this cannot create
a new situation where two rows in Oup have the same value.

Thus, adding counterexamples to S can create inconsistency. However,

20

we can avert this problem by changing the way we handle counterexam-
ples [14]. Instead of adding a counterexample and all its prefixes to S, we
add the counterexample and all its suffixes to E. This way, we do not in-
crease the number of rows in Oup, we only increase the number of columns.
As the observation table was already consistent before adding the counterex-
ample, adding the counterexample and its suffixes to E can only create more
unique rows, not create more identical rows. This will ensure consistency
within the table and thus a consistency check does not have to be executed.
We call this variation of L∗ which adds counterexamples and their suffixes
to E, L∗col.

For example in our run through L∗, when we had the observation table
in Figure 3.4 the teacher gave the counterexample aaaa. We added aaaa
and its prefixes to S and this already created an inconsistency in the table
as shown in Figure 3.6. If we had added aaaa and its suffixes aaa, aa and
a to E we would have had the observation table in Figure 3.10.

T∗4 λ a aa aaa aaaa

λ - + - + +

a + - + + +

b + - + + +

aa - + + + +

ab - + + + +

Figure 3.10: Observation table T4∗.

After resolving two more closedness violations we end up with the table
shown in Figure 3.11 which results in the same hypothesis as the hypothesis
shown in Figure 3.9. Thus we can avert consistency checks altogether if we
add counterexamples to E instead of S.

21

T∗5 λ a aa aaa aaaa

λ - + - + +

a + - + + +

aa - + + + +

aaa + + + + +

b + - + + +

ab - + + + +

aab + + + + +

aaaa + + + + +

aaab + + + + +

Figure 3.11: Observation table T5∗.

3.1.5 Smart counterexample processing

When an equivalence query is issued to the teacher, the teacher responds
with a counterexample z if the two given automata (the DFA M represent-
ing the unknown language and the hypothesis H) are not equivalent. A
counterexample shows that two automata are different since they give a dif-
ferent output for the same input. However, with just the counterexample,
we do not know exactly what makes the two automata different. Since we
only know that z distinguishes M and H, we add z and all its suffixes to the
set E. After all, at some point in H while processing the counterexample, H
has an incorrect transition which leads to the difference to M . The problem
with adding z and its suffixes to E is that it makes the observation table
a lot bigger and thus increases the number of membership queries consid-
erably. It would be more efficient if we could find the exact suffix of the
counterexample that is responsible for the difference.

For example, take a look at the observation table in Figure 3.10. We
can clearly see that the columns with column labels aaaa, aaa and a do not
distinguish any rows in the table. For example, in T ∗4 , row(λ) = row(aa)
and row(λ) 6= row(a) and if we would delete all the columns with column
labels aaaa, aaa and a, we would still have that row(λ) = row(aa) and
row(λ) 6= row(a). However, the column with column label aa does change
something. Suffix aa distinguishes row(λ) from row(aa); these rows were
the same in Figure 3.4. Thus adding the suffixes aaaa, aaa and a to E is
obsolete.

More formally, when we look at the observation table ofH, for s1, s2 ∈ S
and a ∈ A where row(s1) = row(s2 · a) the suffix e we need to expose the
difference should be such that δ∗(q0, s1 · e) 6= δ∗(q0, s2 · a · e). Here δ∗ is the
transition function for H and q0 is the initial state of H. But how do we

22

find e?
The counterexample processing algorithm by Rivest-Schapire [18] does

exactly what we described above. In their paper they describe their proce-
dure of finding such a suffix e by using a kind of binary search. The process
of finding the desired suffix will now be explained in detail.

Suppose we have two DFAs M1 and M2 which are different, that is,
they do not accept the same language. In context of L∗, M1 is the DFA
representing the unknown language and M2 is the hypothesis. Now assume
that we have the counterexample z which distinguishes these two machines.
We start by checking if z is accepted by M1, denoted by M1.membership(z).
If this is the case, we know it is not accepted by M2 since z is a counterex-
ample and vice versa.
Now for every iteration we split z in two parts. Let u be the first part of z
and v the other part. We now put u through M2 and look in which state it
ends. Recall that each state has its own prefix representing the state. We
take the prefix of that state, we call this prefix p. Now take p, append v
to it and put it through M1, denoted by M1.membership(pv). One of the
following two things can now happen:

• M1.membership(pv) = M1.membership(z), which means that v or
one of its suffixes distinguishes M1 and M2. Since v is shorter than z
(unless u = λ), you do not have to add the suffixes of u to E which
are not also a suffix of v. Fewer words in E means issuing fewer
membership queries. However, we want to pinpoint the exact suffix
to add to E so the next step of the algorithm is splitting z at index
|u| + 1

2 |v|. This means that for the next iteration, u will have more
letters of z and v will have fewer letters of z than the previous iteration.

• M1.membership(pv) 6= M1.membership(z), which means that v and
all of its suffixes do not distinguish M1 from M2. This means that
a part of u is needed to find the correct suffix. Thus, for the next
iteration we split z at index 1

2 |u|.

The splitting works in a binary search-like way. So the first split of z will
be at index 1

2 |z|. The second split, depending on M1.membership(pv) and
M1.membership(z), will be at either 3

4 |z| (in the first case) or at 1
4 |z| (in in

the second case).
This whole process is repeated until we find the exact suffix v of z for

which a one-letter longer suffix or one-letter shorter suffix of z changes the
outcome ofM1.membership(pv) = M1.membership(z) toM1.membership(pv) 6=
M1.membership(z) or vice versa. This suffix v is then our desired suffix e
to add to E. Because of the binary search, we need log(|z|) membership
queries to find the one desired suffix.

In L∗ the observation tables are filled by using membership queries.
Thus, the number of membership queries needed to fill a table is the cardi-

23

nality of the table ((S ∪ S · A) · E). In L∗, the complexity of the number
of membership queries is O(kmn2) where k is the length of the alphabet,
m is the length of the longest counterexample received and n is the number
of states of the minimal DFA representing the unknown language [1]. We
can however improve the complexity of the number of membership queries
by using the Rivest-Schapire counterexample processing technique described
above. In the L∗ variant which averts consistency checks described in section
3.1.4, |E| is bounded by O(mn) but this can be improved to O(n) although
an additional n log m membership queries will be needed to achieve this [18].
This improves the complexity of the number of membership queries from
O(kmn2) in L∗ to O(kn2 +n log m) in L∗ which uses Rivest-Schapire coun-
terexample processing.

The pseudocode of the algorithm can be found in Algorithm 2. In this
pseudo code, the following pseudo functions are used:

• membership(), which asks membership queries for the given set of
words and returns the corresponding values for each word.

• len(), which returns the length of the given word.

• getEndState(), which returns the state the hypothesis is in after tran-
sitioning through the hypothesis with a given word.

24

Algorithm 2 Rivest− Schapire counterexample processing
cex← counterExample
hypothesis← createdAutomaton
unAut← unknownAutomaton
cexOut← unAut.membership(cex)
lower ← 1
upper ← len(cex)− 2
while True do
mid← (lower + upper)//2
endState← hypothesis.getEndState(cex[: mid])
prefix← endState.prefix
secHalfCex← cex[mid :]
mq ← unAut.membership(prefix + secHalfCex)
if mq = cexOut then
lower ← mid+ 1
if upper < lower then

Return secHalfCex[1:]
end if

else
upper ← mid+ 1
if upper < lower then

Return secHalfCex
end if

end if
end while

25

3.2 NL*

When it comes to learning finite-state machines, DFAs are easier to under-
stand and implement compared to NFAs. Learning a DFA with learning
algorithms like L∗ is possible since there is always a unique minimal DFA.
This is not true for NFAs as we have shown in the preliminaries chapter.
However, DFAs also have a huge disadvantage compared to NFAs. DFAs
generally require more states than NFAs to represent the same regular lan-
guage. With small regular languages this is not a problem but it becomes a
significant problem if a DFA needs much more states to represent a language.
L∗ can not handle NFAs but in recent years, researchers have constructed
algorithms that are able to learn NFAs. In this section I will describe such
an algorithm, namely NL∗.

The algorithm NL∗ is an automaton learning algorithm which is able
to learn certain non-deterministic finite state automata in an L∗-like man-
ner [3]. NL∗ is able to learn residual finite state automata (Definition 8)
which are non-deterministic finite state machines with some DFA proper-
ties. Most notably, every regular language has a unique minimal RFSA.

NL∗ is not the first algorithm which learned NFAs as this was also done
in [21]. However, in [21], the resulting NFAs were non-canonical RFSAs and
thus could have more states than their corresponding minimal DFAs. This
issue is addressed in NL∗ which always results in a canonical RFSA.

3.2.1 Learning RFSAs

As stated before, NL∗ learns a RFSA in an L∗-like manner. NL∗ also makes
use of observation tables but there are some crucial differences. Closedness
and consistency of an observation table is determined differently yet the
general idea is the same. An observation table in NL∗ has so called prime
rows. Before we explain what a prime row is, we have to define the join
operation for observation table rows.

Definition 15. A join of two rows of an observation table, r1 ∪ r2, results in
a single row in which each value is determined by taking the join of the pair of
values from both r1 and r2 where −∪− = − and −∪+ = +∪− = +∪+ = +.

For example, in Figure 3.12, row(aa) is the join of row(λ) and row(a).

Definition 16. A row r in an observation table O (r ∈ rows(O)) is a prime
row if and only if r 6= r1 ∪ r2 where r1, r2 ∈ rows(O) and r1 6= r2. A prime
row is marked with *.

Prime rows play a big role in ensuring RFSA-closedness whereas in
RFSA-consistency, prime rows do not play a part. However, to explain
both RFSA-closedness and RFSA-consistency, we first have to introduce a
new operation, the subset relation for rows ⊆.

26

T7 λ a b

* λ + - -

* a - + -

* b - - -

aa + + -

* ab - - -

* ba - + -

* bb - - -

Figure 3.12: An observation table in NL∗.

Definition 17. A row r1 ∈ rows(O) is called a subset of another row r2 ∈
rows(O) if for each value of r1, v1 ∈ r1, and the corresponding value of r2,
v2 ∈ r2, it holds that v1 = + → v2 = +. A row is called a strict subset
if r1 6= r2 and the aforementioned statement holds. The subset relation is
denoted by ⊆ and the strict subset relation is denoted by ⊂.

For example, in Figure 3.12, row(ba) ⊆ row(aa) and row(b) is a subset
of all other rows in the table.

Recall that in L∗ an observation table was considered closed if each row
in Olow, which represented the rows in the lower part of the table, was also
present in Oup, the upper part of the table. RFSA-closedness is not as strict
as closedness in L∗ algorithm because, compared to DFAs, you can have
more transitions from a single state with the same letter in RFSAs; this will
be explained in more detail further on in this section.

Definition 18. An observation table O is RFSA-closed if for each row r ∈
Olow, r =

⋃
{r′ ∈ Oup primes | r′ ⊆ r}.

RFSA-closedness is not the same as closedness in L∗. As we can see in
Figure 3.12, T7 is RFSA-closed since all the rows in Olow are composed of
prime rows of Oup. But the table is not closed in the sense of L∗, as row(aa)
is not present in Oup.

As for consistency, recall that in L∗ an observation table was consistent
if we could take any two rows in Oup, row(s1) and row(s2), which have the
same value, then for all a ∈ A it must hold that row(s1 · a) = row(s2 · a).
RFSA-consistency works a little differently.

Definition 19. An observation table O is RFSA-consistent if any two rows
in Oup, row(s1) and row(s2), where row(s1) ⊆ row(s2), it holds that for all
a ∈ A row(s1 · a) ⊆ row(s2 · a).

27

RFSA-consistency is not the same as consistency in L∗. Take for example
the table in Figure 3.13, this table is consistent in context of L∗ since row(λ)
= row(a) and both row(a) = row(aa) and row(b) = row(ab) but the table
is not RFSA-consistent as row(a) ⊆ row(b) but row(ab) 6⊆ row(bb).

T∗7 λ a

* λ - -

* a - -

* b + +

* aa - -

* ab + +

* ba + -

* bb - -

Figure 3.13: RFSA-inconsistent observation table

Hypothesis construction

Besides the difference in closedness and consistency checks between NL∗ and
L∗, the creation of a hypothesis from an observation table does also work
somehow differently compared to L∗.

Definition 20. From an observation table O(S,E,row) which is RFSA-
closed and RFSA-consistent, an NFA M = (Q,I,F,δ) can be created by defin-
ing:

• Q = Oup primes

• I = {r ∈ Q | r ⊆ row(λ)}

• F = {r ∈ Q | r(λ) = +}

• δ(row(s), a) = {r ∈ Q | r ⊆ row(sa)} for s ∈ S with row(s) ∈ Q and
a ∈ A

All the rows in the upper part of the observation table which are prime
will represent a state in the automaton. The initial states are the states for
which any of their respective rows are a subset of the empty word row. The
final states are the states for which any of their respective rows have a + as
their empty word column value.

Since with NFAs, you can have multiple destinations from one state
with the same letter, the transition function will not result in a single state,
but a set of states. Thus, the transition function for NL∗ will take a state

28

(which represents rows in Oup primes) and a letter, it then appends the letter
l to the row label r that state represents and look in O what value the
resulting rows represent row(rl). The destination of the transition function
will now be all the states for which row(rl) is a subset of.

For example, in Figure 3.12, if we want to transition from the state
which represent row(a) with the letter b, the resulting states will be the
states of which row(ab) = {−,−,−} will be a subset of; in this case that
will be all other states since {−,−,−} is a subset of all rows in Oup primes.

Remark 1. It is possible to omit RFSA-consistency from the algorithm
since this will still result in a canonical RFSA. However, removing RFSA-
consistency does have a negative impact on the efficiency of the algorithm.
Take for example the observation table in Figure 3.16. This table is RFSA-
closed but not RFSA-consistent since row(λ) ⊆ row(a) but row(a) 6⊆ row(aa).
If we ignore RFSA-consistency and wanted to create a hypothesis from this
table, we get the hypothesis shown below in Figure 3.14.

q0 q1
a,b

a,b

a,b

Figure 3.14: A hypothesis

The hypothesis shown in Figure 3.14 is not consistent with regard to the
table in Figure 3.16 since the word aa is accepted by the hypothesis but is
not in the language according to the table. This problem is however easily
solved by adding the counterexample and its suffixes to E. However, this
does require an extra equivalence query and this can be avoided by checking
for RFSA-consistency.

Counterexamples

When NL∗ has a RFSA-closed and RFSA-consisent table and a hypothesis
has been created, the algorithm will ask the teacher if the created automa-
ton correctly represents the unknown language. Just like in L∗, the teacher
will either respond with yes or no. If the teacher replies with yes, we are
done and the algorithm terminates. And if the teacher responds with no, it
will also give an additional counterexample which distinguishes the language
which the created automaton represents from the unknown language. When
given a counterexample, the algorithm will add the counterexample and all
its suffixes to E and runs the algorithm over again with making a new ob-
servation table and automaton. This process continues until an automaton
is found that represents the unknown language.

29

The algorithm

I will now give an overview of how NL∗ exactly works by combining all the
parts we discussed in this section.

NL∗ starts by initializing S and E with the empty word. Then, it will
create an initial observation table by using S, E, the alphabet A and row.
NL∗ will then check for RFSA-closedness and RFSA-consistency. If the table
is not RFSA-closed, then NL∗ will add the word sa ∈ S ·A for which row(sa)
cannot be composed of prime rows in Oup to S and also update the obser-
vation table accordingly. If the table is not RFSA-consistent, then NL∗ will
acquire the word responsible for the inconsistency, add it to E and update
the observation table accordingly. After fixing the RFSA-closedness and/or
RFSA-consistency violation, the algorithm repeats the process of checking
for RFSA-closedness and RFSA-consistency violations. If the algorithm as-
serts that the observation table is RFSA-closed and RFSA-consistent, it will
continue by creating a hypothesis. The hypothesis is given to the teacher
in the form of an equivalency query. The teacher will then either respond
with ’yes’ or ’no’. If the teacher’s respond is ’no’, the given counterexample
and its suffixes are added to E and NL∗ starts over again by checking for
RFSA-closedness and RFSA-consistency violations. If the teacher’s respond
is ’yes’, then the hypothesis represents the unknown language and the algo-
rithm terminates.

Note that NL∗ uses the approach of adding counterexamples to E in-
stead of S as discussed in a previous section about averting consistency.
Moreover, NL∗ cannot use the treatment of adding counterexamples to S as
done in L∗, as this leads to a non-terminating algorithm [3].

A representation of how NL∗ works is also given in form of pseudo code
below in Algorithm 3. In this pseudo code, the following pseudo functions
are used:

• membership(), which asks membership queries for the given set of
words and returns the corresponding values for each word.

• createHypothesis(), which creates a hypothesis with the given obser-
vation table.

• equivalent(), which issues an equivalence query to the teacher with
the given automaton and returns a yes or no answer with an optional
counterexample.

• prefixes(), which returns all the prefixes of a given word.

30

Algorithm 3 NL∗

S ← {λ}
E ← {λ}
row ← membership((S ∪ S ·A) · E)
O ← create initial observation table (S, E, row).
repeat

while (S, E, row) not RFSA-closed or not RFSA-consistent do
if (S, E, row) is not RFSA-closed then

Find s1 ∈ S and a ∈ A such that row(s1 ·a) ∈ Oprime low \ Oprime up
S ← s1 · a
row ← membership((S ∪ S ·A) · E)

end if
if (S, E, row) is not RFSA-consistent then

Find s1, s2 ∈ S, a ∈ A and e ∈ E such that row(s1) ⊆ row(s2) and
T (s1 · a · e) 6⊆ T (s2 · a · e)
E ← E + a · e
row ← membership((S ∪ S ·A) · E)

end if
end while
M ← createHypothesis(S,E, row).
Eq, counterExample← equivalent(M)
if Eq = False then
E ← E + counterExample+ /mathitprefixes(counterExample)
row ← membership((S ∪ S ·A) · E)

end if
until Eq = True
Return M

3.2.2 A run through NL∗

For this run we will learn a RFSA with NL∗ which accepts the language
L = {a, b} ∪ {w | w ∈ A∗ and |w| > 2} over the alphabet A = {a, b} which
we also used in the L∗ run in section 3.1.2. Like in L∗, the algorithm starts
by initializing S and E with the empty word λ. It creates an observation
table with S, E, row and the alphabet and ensures that it is RFSA-closed
and RFSA-consistent. If the table is not RFSA-closed, it will add all the
prime rows which make the table not closed from the lower part of the table
to the upper part of the table and update the table accordingly. If the table
is not RFSA-consistent, it will add a new column with as label the string
a · e (where a ∈ A and e ∈ E) responsible for the inconsistency. The initial
observation table for this run is shown in Figure 3.15

31

T8 λ

* λ -

* a +

* b -

Figure 3.15: Initial observation table T8.

T8 is not RFSA-closed, as row(a) can not be composed of rows in
Oup primes so the algorithm will add row(a) to Oup and add all the nec-
essary rows to Olow using membership queries. The new observation table
T9 is shown in Figure 3.16.

T9 λ

* λ -

* a +

* b +

* aa -

* ab -

Figure 3.16: Observation table T9.

T9 is not RFSA-consistent, as row(λ) ⊆ row(a) but row(a) 6⊆ row(aa)
so the algorithm will add a to E and fill the newly created column using
membership queries. The new observation table T10 is shown in Figure 3.17.

T10 λ a

* λ - +

* a + -

* b + -

* aa - +

* ab - +

Figure 3.17: Observation table T10.

T10 is RFSA-closed and RFSA-consistent, so the algorithm will create a
hypothesis. The hypothesis is shown in Figure 3.18.

32

q0 q1
a,b

a,b

Figure 3.18: Hypothesis for T10

Then the algorithm asks the teacher if the hypothesis actually represents
L. The teacher replies with no and a counterexample. Let us assume that the
teacher gave us the counter example aaaa. This is indeed a counterexample
since it is in L but the hypothesis does not accept it. The algorithm now
adds the counterexample aaaa and its suffixes aaa and aa to E and extends
the observation table to T11 depicted in Figure 3.19.

T11 λ a aa aaa aaaa

* λ - + - + +

* a + - + + +

* b + - + + +

* aa - + + + +

* ab - + + + +

Figure 3.19: Observation table T11.

T11 is not RFSA-closed, as row(aa) can not be composed of rows in
Oup primes so the algorithm will add row(ab) to Oup and add all the necessary
rows to Olow using membership queries. The new observation table T12 is
shown in Figure 3.20.

T12 λ a aa aaa aaaa

* λ - + - + +

* a + - + + +

* aa - + + + +

* b + - + + +

* ab - + + + +

aaa + + + + +

aab + + + + +

Figure 3.20: Observation table T12.

T12 is RFSA-closed and RFSA-consistent, so the algorithm will again

33

create a hypothesis. The hypothesis is shown in Figure 3.21.

q0 q1 q2
a,b

a,b
a,b

a,b

a,b

a,b

Figure 3.21: Hypothesis of T12

Finally, the algorithm asks the teacher if the hypothesis actually repre-
sents L. The teacher replies with yes and the program terminates with the
hypothesis as the resulting RFSA.

In both the run through L∗ and the run through NL∗, we learned the
language L = {a, b} ∪ {w | w ∈ A∗ and |w| > 2}. Notice that the canonical
RFSA learned by NL∗ in Figure 3.21 is one state smaller than the corre-
sponding minimal DFA learned by L∗ in Figure 3.9.

3.2.3 Nondeterministic Rivest-Schapire

We have discussed the smart counterexample processing technique by Rivest-
Schapire [18] in context of deterministic learning. However, in NL∗ we are
dealing with nondeterministic automata. In L∗ we only dealt with DFAs, as
the automaton representing the unknown language and the hypothesis were
both deterministic finite-state automata. With NL∗, the created hypothesis
is a RFSA.

Recall the idea behind the technique described in section 3.1.5. When
we look at a observation table H, for s1, s2 ∈ S and a ∈ A where row(s1) =
row(s2 · a) the suffix e we need to expose the difference should be such that
δ∗(q0, s1 · e) 6= δ∗(q0, s2 · a · e). Here δ∗ is the transition function for H and
q0 is the initial state of H. Finding e is the goal of the algorithm.

To find e we needed to find the exact transition in the hypothesis which
led to the difference between the hypothesis and the DFA representing the
unknown language. However, with NL∗ the hypothesis is a RFSA and thus
every state can have multiple transitions with the same letter. This makes
finding the difference between the hypothesis and the DFA representing
the unknown language difficult. In the next paragraph, I will explain where
Rivest-Schapire’s counterexample processing algorithm would fail in the con-
text of nondeterministic automata learning.

Recall that the processing algorithm split the counterexample z into
two parts. The second part of z, u, was put through the hypothesis to ob-
tain the prefix of the state in which u ended. If the hypothesis is a DFA, we

34

will always end up in the same state when putting the same word through
the DFA and thus we would obtain a single prefix representing the end
state. But if the hypothesis is a RFSA, we can end up in multiple states
representing multiple different prefixes. This makes determining the exact
difference between the hypothesis RFSA and the DFA representing the un-
known language near impossible. For this reason, I could not implement
Rivest-Schapire counterexample processing in NL∗ for more experiments.

35

Chapter 4

Experiments

In this chapter, we compare the different versions of L∗ and NL∗. To achieve
this, we need code of the algorithms and a set of regular languages to learn.

I implemented L∗ and NL∗ myself according to their description in [1]
and [3]. Writing the code myself instead of using other automata learning
libraries such as LearnLib [16] or libalf [4] gave me a thorough under-
standing of the algorithms and it made making changes to these algorithms,
such as implementing additional optimizations, easier. Writing the code for
the algorithms myself also made the results of the experiments consistent
as I used the same implementation decisions, such as data structures, when
writing the algorithms. A random walk equivalence oracle from the library
AALpy [15] was used as the equivalence oracle. Besides the equivalence or-
acle, their DFA generation function was also used to obtain the necessary
minimal DFAs to represent the regular languages for the experiments. All
the code used for these experiments is written in Python.

I generated 2600 random DFAs ranging from 1 to 200 states over a 2-
letter alphabet with AALpy’s DFA generation function. These random DFAs
were first tested for minimality before being used in the experiments. This
amount of DFAs comes close to the amount of languages used in [3]; there
3180 regular languages were used for which their minimal DFAs also ranged
from 1 to 200 states.
I will compare the following versions of the algorithms:

• L∗ which adds counterexamples and their prefixes to S (L∗).

• L∗ which adds counterexamples and their suffixes to E (L∗col).

• L∗ which uses Rives-Schapire counterexample processing to add only
a single suffix to E for each counterexample (L∗RS).

• NL∗ which adds counterexamples and their suffixes to E (NL∗).

• NL∗ without RFSA-consistency (NL∗no cons).

36

For all these versions, I compared the number of membership queries
and number of equivalence queries issued to the teacher. A comparison of
the number of states in the resulting automata was also made (only relevant
for NL∗ versions). As mentioned earlier in section 3.1.3, all versions contain
the caching membership optimization.

Unfortunately, we do not have a lot of data regarding the NL∗ experi-
ments. This is mainly due to time constraints and implementation decisions.
In my implementation of the algorithm, the resulting RFSA first needs to
be determinized before it can be checked for equivalence by the teacher.
Determinizing an NFA takes a substantial amount of time which increases
exponentially by the size of the NFA. For this reason and due to time con-
straints, I could not obtain the results for regular languages which can be
represented by a minimal DFA with 67 or more states. Thus in the following
sections, the NL∗ experiments will have a smaller sample size compared to
the L∗ experiments.

In section 4.1, I will compare the number of membership queries be-
tween the algorithms and their variants. After that, we will look at the
comparison between the algorithms in terms of equivalence queries in sec-
tion 4.2. Finally, in section 4.3 I will compare the algorithms in terms of
resulting automaton size.

4.1 Membership queries

In Figure 4.1, the results of the membership queries experiments on L∗

and its variants are shown. These graphs show the number of membership
queries needed (y-axis) before learning minimal DFAs of various number of
states (x-axis). For example, you will need around 2300 membership queries
to learn a minimal DFA of 100 states with L∗. Note that the classic L∗ al-
gorithm performs better and produces more consistent results in terms of
membership queries compared to L∗col. However, when we apply Rivest-
Schapire counterexample processing to L∗col, we get slightly better results
compared to classic L∗ and significant better results compared to L∗col with-
out Rivest-Schapire counterexample processing. The reason L∗col performs
poorly is because the equivalence oracle, while not often, can return long
counterexamples and the membership query complexity of L∗col linearly de-
pends on the length of the longest counterexample [18]. The Rivest-Schapire
counterexample processing technique does not have this dependency and
thus performs significantly better.

37

Figure 4.1: L∗ membership queries comparison

In Figure 4.2, the results of the membership queries experiments on NL∗

and NL∗ without RFSA-consistency are shown. These graphs show the num-
ber of membership queries needed (y-axis) before learning canonical RFSAs
from minimal DFAs of various number of states (x-axis). For example, when
given a minimal DFA of 25 states, NL∗ will need around 600 membership
queries to learn a canonical RFSA accepting the same language. As we can
observe from the graphs, RFSA-consistency does have little to no impact on
the number of membership queries required to learn a canonical RFSA of a
regular language.

Compared to the graphs for L∗ in terms of membership queries, NL∗

performs worse which is remarkable since it contradicts the results in [3].
However, since our sample size is smaller for NL∗, it might be that NL∗

performs better in bigger resulting automata as also shown in [3]. For
these experiments however, NL∗ performs similar to the L∗col variant without
Rivest-Schapire counterexample processing in terms of membership queries.

38

Figure 4.2: NL∗ membership queries comparison

4.2 Equivalence queries

In Figure 4.3, the results of the equivalence queries experiments on L∗ and
its variants are shown. These graphs show the number of equivalence queries
needed (y-axis) before learning minimal DFAs of various number of states
(x-axis). From these results, we can conclude that the classic L∗ algorithm
performs similar to the L∗RS variant in terms of equivalence queries. Re-
markably, Rivest-Schapire counterexample processing has a negative impact
on the L∗col variant in terms of equivalence queries needed.

39

Figure 4.3: L∗ equivalence queries comparison

In Figure 4.4, the results of the equivalence queries experiments on NL∗

and its variants are shown. These graphs show the number of equivalence
queries needed (y-axis) before learning canonical RFSAs from minimal DFAs
of various number of states (x-axis). The NL∗ algorithm performs best out
of all the other variants of learning algorithms experimented on in this thesis
in terms of equivalence queries. On average, three equivalence queries are
needed to learn a canonical RFSA with their corresponding minimal DFA
ranging from 1 to 66 states.

Contrarily, NL∗ without RFSA-consistency seems to perform the worst
out of all the other variants of learning algorithms experimented on in this
thesis in terms of equivalence queries.

40

Figure 4.4: NL∗ equivalence queries comparison

4.3 Automata sizes

To acknowledge the full potential of NL∗, consider the following DFAs which
accept the following language [13]:

Li = {w | w ∈ {a, b}∗ and the i-th letter from the right is an a}

To create a minimal DFA of Li you would need 2i states whereas the minimal
amount of states needed to create a RFSA of Li is i + 1. This means that
for i = 5, there are already 32 states needed for a minimal DFA to accept
L5 and only six states are needed for a canonical RFSA to accept L5. This
exponential increase in size for DFAs and linear increase in size for RFSAs
is shown in Figure 4.5.

41

Figure 4.5: Li automata size comparison

Thus NL∗ would perform extraordinary well in terms of automata size
on languages for which their canonical RFSAs can be explicitly smaller than
their corresponding minimal DFAs. In the next paragraph, we will look at
how NL∗ performs on my randomly generated minimal DFAs.

In Figure 4.6, the results of the automata size experiments on both
L∗ and NL∗ are shown. This graph shows the number of states of the
automaton learned by the algorithms (y-axis) compared to the number of
states of the corresponding minimal DFA (x-axis). Since L∗ and its variants
learn the minimal DFA which they receive as input, their learned automaton
has the same number of states as their input DFA. In NL∗, the learned
automaton is a canonical RFSA and thus can have less states than the
minimal DFA the algorithm received as input. Both NL∗ and NL∗ without
RFSA-consistency perform slightly better than L∗ and its variants in terms
of learned automaton size. RFSA-consistency does not appear to have any
influence on the resulting RFSA size as it should not by definition of the
learned canonical RFSA.

The results obtained here are different compared to the results obtained
in [3]. NL∗ seems to perform slightly better in [3] in terms of resulting
automaton size. However, due to the small sample size, the full potential of
NL∗ with more complex regular languages cannot be shown as was claimed
in [3]. One more explanation as to why my resulting canonical RFSAs
have more states compared to the learned canonical RFSAs in [3], is that I
used totally randomly generated minimal DFAs as inputs for the algorithm
whereas in [3], they used a different process of generating the large set of
regular languages that they experimented on which is described in [7].

42

Figure 4.6: Automata size comparison

43

Chapter 5

Related Work

Over the last decades, numerous automata learning algorithms were cre-
ated. Active automata learning started with Angluin’s L∗ [1] algorithm
which is able to learn determinsitic finite-state automata. The years there-
after, researchers have found ways to improve L∗ with optimizations like
Rivest-Schapire counterexample processing [18] and changing the treatment
of counterexamples [14]. Shortly after, nondeterministic automata learning
algorithms were constructed [21]. NL∗ followed which was essentially an
improved version of Yokomori’s [21] nondeterministic automaton learning
algorithm. More recent automata learning algorithms are the TTT algo-
rithm [10] from 2014 and the L# algorithm [20] from 2021. In short, au-
tomata learning algorithms are of broad and current interest. As stated
before, a proper overview of model learning and automata learning can be
found in [19].

Although there is abundant literature on these different automata learn-
ing algorithms, literature focused on how these algorithms compare with
each other, and more specifically their variants, is scarce. Nonetheless, a
counterexample analysis for active automata learning algorithms can be
found in [11] and an evaluation of practical performance on active automata
learning algorithms can be found in [9]. However, these comparisons do not
include nondeterministic learning algorithms such as NL∗. The research in
this thesis gives the reader a more in-depth understanding of two relevant
automata learning algorithms, L∗ and NL∗, along with their differences.
Moreover, the research gives an elaborate explanation on some interest-
ing optimization techniques used in these algorithms, most notably, Rivest-
Schapire counterexample processing. It also gives the reader an idea on how
these algorithms and their optimized variants compare with each other by
showing a comparison between the two algorithms in terms of membership
queries, equivalence queries and automata sizes.

44

Chapter 6

Conclusions

In conclusion, we explored the theory behind the learning algorithms L∗ and
NL∗ which gave us an understanding about their usage and capabilities. We
also looked at optimization techniques such as caching membership queries,
averting consistency and Rivest-Schapire counterexample processing which
can be used on these algorithms. We learned that Rivest-Schapire coun-
terexample processing is effective in minimizing the amount of membership
queries but it worsened the amount of equivalence queries. We also estab-
lished the importance of RFSA-consistency as it had little to no impact on
the number of membership queries, but a significant impact on the num-
ber of equivalence queries. Regarding resulting automata size, NL∗ does
not seem to perform much better compared to L∗ when used on randomly
generated minimal DFAs. However, NL∗ can result in much smaller au-
tomata compared to L∗ when used on suitable languages as we have seen in
section 4.3.

6.1 Future work

In this thesis, the automata learning algorithms L∗ and NL∗ were discussed
along with three optimizations. For future research, other automata learn-
ing algorithms like the TTT algorithm [10] or the L# algorithm [20] can
be compared with the results obtained from this research. For these fu-
ture comparisons, experiments on the number of membership queries and
equivalence queries can be performed similar to the experiments in this the-
sis. Moreover, other possible optimizations such as enforcing consistency
and closure strategies as described in [17] can be implemented in these au-
tomata learning algorithms which in turn can also be compared with the
results from this research. From these comparisons, possible ideas for new
and more efficient automata learning algorithms can be formed.

45

Bibliography

[1] Dana Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2):87–106, 1987.

[2] André Arnold, Anne Dicky, and Maurice Nivat. A note about minimal
non-deterministic automata. Bull. EATCS, 47:166–169, 1992.

[3] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker.
Angluin-style learning of NFA. In IJCAI, pages 1004–1009, 2009.

[4] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker,
Daniel Neider, and David R. Piegdon. libalf: The automata learning
framework. In CAV, volume 6174 of Lecture Notes in Computer Science,
pages 360–364. Springer, 2010.

[5] Mario Bunge. A general black box theory. Philosophy of Science,
30(4):346–358, 1963.

[6] François Denis, Aurélien Lemay, and Alain Terlutte. Residual finite
state automata. In STACS, volume 2010 of Lecture Notes in Computer
Science, pages 144–157. Springer, 2001.

[7] François Denis, Aurélien Lemay, and Alain Terlutte. Learning regular
languages using rfsas. Theor. Comput. Sci., 313(2):267–294, 2004.

[8] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

[9] Malte Isberner. Foundations of active automata learning: an algorith-
mic perspective. PhD thesis, Technical University Dortmund, Germany,
2015.

[10] Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT algo-
rithm: A redundancy-free approach to active automata learning. In
RV, volume 8734 of Lecture Notes in Computer Science, pages 307–
322. Springer, 2014.

46

[11] Malte Isberner and Bernhard Steffen. An abstract framework for coun-
terexample analysis in active automata learning. In ICGI, volume 34 of
JMLR Workshop and Conference Proceedings, pages 79–93. JMLR.org,
2014.

[12] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Compu-
tational Learning Theory. MIT Press, 1994.

[13] Mark V. Lawson. Finite automata. In Handbook of Networked and
Embedded Control Systems, pages 117–144. Birkhäuser, 2005.

[14] Oded Maler and Amir Pnueli. On the learnability of infinitary regular
sets. Inf. Comput., 118(2):316–326, 1995.

[15] Edi Muskardin, Bernhard K. Aichernig, Ingo Pill, Andrea Pferscher,
and Martin Tappler. Aalpy: An active automata learning library. In
ATVA, volume 12971 of Lecture Notes in Computer Science, pages 67–
73. Springer, 2021.

[16] Harald Raffelt and Bernhard Steffen. Learnlib: A library for automata
learning and experimentation. In FASE, volume 3922 of Lecture Notes
in Computer Science, pages 377–380. Springer, 2006.

[17] Harald Raffelt, Bernhard Steffen, Therese Berg, and Tiziana Margaria.
Learnlib: a framework for extrapolating behavioral models. Int. J.
Softw. Tools Technol. Transf., 11(5):393–407, 2009.

[18] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata
using homing sequences. Inf. Comput., 103(2):299–347, 1993.

[19] Frits W. Vaandrager. Model learning. Commun. ACM, 60(2):86–95,
2017.

[20] Frits W. Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten
Wißmann. A new approach for active automata learning based on
apartness. CoRR, abs/2107.05419, 2021.

[21] Takashi Yokomori. Learning non-deterministic finite automata from
queries and counterexamples. In Machine Intelligence 13, pages 169–
189. Clarendon Press, Oxford, 1992.

47

