
Radboud University Nijmegen

Faculty of Science

On iterated transducers and
closure under hypotheses

Discussing the hidden relationship

Thesis BSc Computing Science

Author:
Robin Holen

Supervisor:
dr. Jurriaan Rot

Second reader:
prof. dr. Herman Geuvers

April 2022

Abstract

Hypotheses are inequations of the form e ≤ f where e and f are regular ex-
pressions. Transducers and languages closed under hypotheses (H-closure)
define functions from language to language. We can iterate such transducers
to create new transducers. Taking the union of all finite iterations yields
the ω-iteration. The H-closure is by definition an ω-iterated function. Com-
paring the ω-iterted transducer and the H-closure reveals that these two
notions are the same under specific circumstances. Given a transducer T ,
we change the transducer to Tc, and then we can make a set of hypotheses
H such that the ω-iteration of Tc coincides with the H-closure. Also, given
a set of hypothesis H with inequations of the form e ≤ w where e is a reg-
ular expression and w a word, we can construct a transducer such that its
ω-iteration coincides with the closure under H.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Regular languages and regular expressions 4
2.2 Automata . 6

3 Transducers 11
3.1 Definition and properties . 11

3.1.1 Transducer normal form 13
3.1.2 Regularity preservation of transducers 14
3.1.3 Composing transducers 16

3.2 ω-iteration . 19
3.2.1 Non-regularity of ω-iteration 21

4 H-closures 24
4.1 What are H-closures? . 24
4.2 A helpful proof system . 25
4.3 Computation of the closure 27

5 Relation between transducers and H-closures 29
5.1 Hypotheses and transducers 29
5.2 From a transducer to hypotheses 30
5.3 From hypotheses to a transducer 32
5.4 A comparison between transducers and H-closures 34

5.4.1 H-closures are more flexible 34
5.4.2 Transducers are more intuitive 35

6 Related work 37

7 Conclusion 39

1

Chapter 1

Introduction

Typically, computing science undergraduate students encounter languages
and automata early in their education. The world of formal language and
automata theory is vast and profound and cannot be all taught within one
course. Automata are abstract machines. Machines that can be used to
solve computational problems. Aside from the computational aspect of au-
tomata, these abstract machines are also important in areas such as compiler
construction or text processing [7]. Also, there have been uses outside of
computing science, such as in bioscience [2]. The many fields where au-
tomata theory is applicable are vast and cannot be contained in only one
course. We focus on one kind of automata within the automata theory called
a transducer.

Transducers are finite automata that map formal languages to other
formal languages. We can see a transducer as a finite state automaton with
output. The research behind the transducers traces back to at least 1965 [6].
Since then, transducers have become part of several “advanced” courses on
automata theory such as “A second course in formal languages and automata
theory” from J. Shallit [10].

We also have a different notion called H-closures, closures for short.
Closures are defined by applying hypotheses to a language. For instance,
apply ab ≤ ba to the language of the regular expression b∗a∗ (denoted as
Jb∗a∗K). We apply ab ≤ ba to Jb∗a∗K, meaning we can rewrite every instance
of ba to ab as many times as we can, and we get a new language J(a+ b)∗K.
In general, hypotheses take the form of an inequation, “e ≤ f”, where e, f
are both regular expressions [5].

One may think there are some similarities between these two notions.
They both, in some sense, have a language, to begin with, and after using
the transduction/closure, there is a (different) language. Transducers, the
machines that perform the transductions, follow a transition relation to map
languages to languages. H-closures use the given hypotheses to determine
the language closed under these hypotheses.

2

The method these notions use to obtain languages is somewhat different, and
there is no trivial way to see if transducers and closures are even related.
Nevertheless, the similarities they do have, suggest that there is a relation
between the two.

In this thesis, we uncover that relation. The contributions made in
this thesis rely on ω-iteration. It is possible to iterate transducers. Finite
iterations of transducers preserve regularity. Iteration extends to iterating a
transducer countably many times. Such iteration is called the ω-iteration of
said transducer. We know that the ω-iteration does not preserve regularity
in general [8]. Nonetheless, ω-iteration proved to be helpful.

This thesis covers two theorems about this relation. First, given a trans-
ducer T , we can create a slightly different transducer Tc. From this new
transducer, we make a set of hypotheses H so that the ω-iteration of Tc
coincides with the H-closure. This Tc is almost the same as T ; the difference
lies in that Tc can return the input word as output while T does not nec-
essarily have such a possibility. Second, given a set of hypotheses H where
each hypothesis is of the form e ≤ w with e a regular expression and w a
word, we make a transducer T such that the ω-iteration of T coincides with
the H-closure. We cannot miss the requirement that each hypothesis is in
the form e ≤ w. Transducers can only read words, not entire languages.
Hence it does not make sense to allow hypotheses of the form e ≤ f with f
a regular expression.

We will cover details of the results after we have introduced both no-
tions properly. First, we need to cover some preliminaries. Chapter 2 con-
tains general information about finite automata and regular expressions that
many undergraduate students may see in their first year. In chapter 3, we
take a look at transducers themselves. Here we precisely define transduc-
ers and give basic properties such as regularity preservation and composi-
tion. All these properties build to the definition of iteration, particularly
ω-iteration. Here we will show that ω-iteration does not preserve regularity
by giving a concrete counterexample.

In chapter 4, we give a formal definition of what H-closures are and
how we can use them to determine what the closure will be. For this, we
use a proof system defined in [5] which will help prove what the closures
are. Another tool will be transfinite induction. Chapter 5 is the chapter
where we prove the relation between closures and transducers. We show two
equalities, one assuming we have a set of assumptions and another assuming
we have a transducer. The chapter concludes with a discussion on the use
of closures and transducers. The discussion will contain the pros and cons
of each method to convey in what situations which method is best to use.

3

Chapter 2

Preliminaries

This section will describe the notions of regular languages, regular expres-
sions, and finite automata. These are standard notions. See, for instance, [10].

2.1 Regular languages and regular expressions

Definition 2.1.1. An alphabet Σ is a finite set of symbols.

Definition 2.1.2. A word over an alphabet Σ is a finite sequence a1a2 . . . an
where for each i ≤ n we have ai ∈ Σ. There also exists the empty word
denoted as ε. If w is a word then εw = wε = w. Furthermore, Σ∗ is the set
of all words and is inductively defined as:

1. ε ∈ Σ∗

2. if x ∈ Σ and v ∈ Σ∗ then xv ∈ Σ∗

We denote the length of a word w by |w| and the number of occurences of
the letter x ∈ Σ by |w|x.

Definition 2.1.3. A formal language L over an alphabet Σ is a subset of
Σ∗

Examples of languages are the Dutch language (which has the widely
known usual alphabet), the Japanese language, the programming language
C++, the Klingon language, and the Python programming language. These
languages are vibrant and extensive, which goes far beyond the purpose of
this thesis. We will focus more on formal languages. Examples of such
languages are the language with an arbitrary number of repetitions of ab,
the language of all binary numbers, or even the language of all words with a
specific subword. These languages are written as {(ab)n | n ∈ N}, {0, 1}∗ and
{w ∈ Σ∗ | v ∈ Σ∗ is a subword of w}. One should note what the meaning is
of {(ab)n | n ∈ N}. The letters a and b are not numbers, so “exponentiation”
is not defined.

4

We, therefore, need to define what “exponentiation” and other opera-
tions on languages are. Suppose L1, L2, L ⊆ Σ∗ are languages, then the
following are also languages:

L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 ∨ w ∈ L2}
L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 ∧ w ∈ L2}

L = {w ∈ Σ∗ | w /∈ L}
L1L2 = {w1w2 ∈ Σ∗ | w1 ∈ L1 ∧ w2 ∈ L2}
L0 = {ε}

Ln+1 = LLn

L∗ =
⋃
n∈N

Ln

This shows that (ab)n 6= anbn since

{(ab)n | n ∈ N} = {ε, ab, abab, ababab, . . . }
6= {ε, ab, aabb, aaabbb, . . . } = {anbn | n ∈ N}

Formal languages are classified into different classes of languages. One
such class is the class of regular languages. Regular languages are an essen-
tial class of languages. They are used in string processing and lexical analysis
in programming language compilation [1]. Besides regular languages, there
are also related regular expressions.

Definition 2.1.4. Regular expressions are inductively defined over Σ as
follows:

• 0, 1 and a ∈ Σ are regular expressions.

• If r, s are regular expressions, then so are (r + s), rs, r∗

With JrK we denote the language of r which is defined as:

• J0K = ∅

• J1K = {ε}

• JaK = {a}

• JrsK = JrKJsK

• Jr + sK = JrK ∪ JsK

• Jr∗K = (JrK)∗

5

We say a language L is regular if there is an regular expression e such
that L = JeK. For example, consider {(ab)n | n ∈ N}. This language has the
expression (ab)∗ because

J(ab)∗K = JabK∗ = {ab}∗ = {ε, ab, abab, . . . } = {(ab)n | n ∈ N}

Another example is b∗(abba+ baab)b∗. The corresponding language is:

Jb∗(abba+ baab)b∗K = Jb∗K(JabbaK ∪ JbaabK)Jb∗K
= {ε, b, bb, bbb, . . . }{abba, baab}{ε, b, bb, bbb, . . . }

2.2 Automata

We turn to the notion of automata, abstract machines related to languages
and regular languages. The focus will primarily be on finite state automata.
There are many different kinds of finite-state automata, and we will intro-
duce three kinds.

Definition 2.2.1. A deterministic finite automaton (DFA) is a tuple
M = 〈Q,Σ, q0, δ, F 〉 where:

• Q is a finite set of states

• Σ is an alphabet

• q0 is the initial state

• δ : Q× Σ→ Q is a transition function

• F ⊆ Q is the set of accepting states

It is important to note that to accept words (i.e., we are in an accepting
state), we need a transition function that can read words and then output a
state. Here the multi-step transition δ∗ : Q×Σ∗ → Q is inductively defined
as:

• δ∗(q, ε) = q

• δ∗(q, aw) = δ∗(δ(q, a), w)

With this function, we can input whole words. The language accepted by
the DFA M is the set L(M) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}.

Figure 2.1 is a DFA that accepts any word with the substring aba in it.
Let us demonstrate how this works. Suppose we have the word aabab.

6

q0 q1 q2 q3a b a

ab

b

a, b

Figure 2.1: A DFA that accepts any word with the substring aba in it.

The initial state of our DFA is q0. We start with computing δ∗(q0, aabab).

δ∗(q0, aabab) = δ∗(δ(q0, a), abab) = δ∗(q1, abab)

= δ∗(δ(q1, a), bab) = δ∗(q1, bab)

= δ∗(δ(q1, b), ab) = δ∗(q2, ab)

= δ∗(δ(q2, a), b) = δ∗(q3, b)

= δ∗(δ(q3, b), ε) = δ∗(q3, ε)

= q3

Thus we see that δ∗(q0, aabab) = q3. Since q3 is an accepting state, the word
aabab is accepted by the DFA. In the same fashion we can work out if abbba
is accepted by this DFA. We start with computing δ∗(q0, abbba).

δ∗(q0, abbba) = δ∗(δ(q0, a), bbba) = δ∗(q1, bbba)

= δ∗(δ(q1, b), bba) = δ∗(q2, bba)

= δ∗(δ(q2, b), ba) = δ∗(q0, ba)

= δ∗(δ(q0, b), a) = δ∗(q0, a)

= δ∗(δ(q0, a), ε) = δ∗(q1, ε)

= q1

The state q1 is not an accepting state; hence the machine does not accept
the word abbba.

DFAs have the lovely property that they are deterministic (as the name
says), which means that if we run a DFA twice by inputting the same word,
the results will be equal. There are also non-deterministic finite-state au-
tomata. That is, there are multiple transitions possible from one state for a
given letter.

7

q0

q1

q2

q3

q4

q5

ε

ε

b

b a

ε

a

a

a b

b

Figure 2.2: An NFA-ε. Here we can see that ε-closure(q0) = {q0, q1, q2}.
Note here that every state has an implicit ε transition to itself.

Definition 2.2.2. A non-deterministic finite automaton with ε transitions
(NFA-ε) is a tuple defined as a DFA except for the transition function. The
transition function is a function δ : Q × (Σ ∪ ε) → ℘(Q) which takes in a
state and a symbol and returns a set of states. Here ℘(Q) denotes the power
set of Q. The ε-closure(q) is the set of states reachable from q with only
ε-steps. The multi step transition function is defined as:

• δ∗(q, ε) = ε-closure(q)

• δ∗(q, aw) =
⋃
q′∈ε-closure(q)

⋃
p∈δ(q′,a) δ

∗(p, w)

An NFA is an NFA-ε but without the ε transitions. The language accepted
by the NFA(-ε) is the set {w ∈ Σ∗ | δ∗(q0, w) ∩ F 6= ∅}.

8

q0 q1

q2

a

a

ba

b
b

b

Figure 2.3: An NFA. If we read an a while in state q0 we can go to either
q1 or to q0. Thus δ(q0, a) = {q0, q1}.

Figure 2.2 depicts an NFA-ε. Let us demonstrate the workings of this
NFA-ε. We want to check if the NFA-ε accepts aabb.

δ∗(q0, aabb) =
⋃

q′∈ε-closure(q0)

⋃
p∈δ(q′,a)

δ∗(p, abb)

=
⋃

p∈δ(q0,a)

δ∗(p, abb) ∪
⋃

p∈δ(q1,a)

δ∗(p, abb) ∪
⋃

p∈δ(q2,a)

δ∗(p, abb)

= δ∗(q1, abb) ∪ δ∗(q4, abb)

=
⋃

q′∈ε-closure(q1)

⋃
p∈δ(q′,a)

δ∗(p, bb) ∪
⋃

q′∈ε-closure(q4)

⋃
p∈δ(q′,a)

δ∗(p, bb)

=
⋃

p∈δ(q1,a)

δ∗(p, bb) ∪
⋃

p∈δ(q3,a)

δ∗(p, bb) ∪
⋃

p∈δ(q4,a)

δ∗(p, bb)

= δ∗(q1, bb) ∪ δ∗(q2, bb) ∪ δ∗(q4, bb) ∪ δ∗(q5, bb)
= . . .

= δ∗(q3, ε) ∪ δ∗(q5, ε)
= {q3, q5}

For clarity, we leave out a part of the computation since it mostly the same
kind of computation in the first few steps but bigger and less readable.

9

Earlier, we stated that finite-state automata are related to regular lan-
guages. Finite-state automata accept languages. A famous result by Stephen
Cole Kleene is the following:

Theorem 2.2.3 (Kleene’s theorem). The class of languages accepted by
DFAs is the class of regular languages.

The theorem tells us that a DFA accepts that language for every regular
language. Proving the theorem can be done with the notions of NFA and
NFA-ε. Given a regular language, we have a regular expression from which
we can create an NFA-ε. An NFA-ε can then be transformed into an NFA,
allowing us to construct a DFA. Lastly, with a DFA, we can construct the
regular expression accepted by the DFA.

10

Chapter 3

Transducers

Transducers are a form of generalized finite-state automata with output.
Conceptually, we can see them as formal language translators. The defini-
tions are based on the theory as described in [10].

3.1 Definition and properties

Definition 3.1.1. A finite state transducer T is a 6-tuple 〈Q, q0,Σ,Γ, R, F 〉
where:

• Q is a finite set of states.

• q0 is the initial state.

• Σ is the input alphabet.

• Γ is the output alphabet.

• R ⊆ Q× Σ∗ × Γ∗ ×Q is a transition relation.

• F ⊆ Q is the set of final states.

An element 〈qi, x, y, qj〉 ∈ R is called a rule. The multistep relation R# is
the smallest relation such that:

• R ⊆ R#

• if 〈qi, w1, v1, qj〉 and 〈qj , w2, v2, qk〉 ∈ R# then 〈qi, w1w2, v1v2, qk〉 ∈ R#

Furthermore, we write a rule 〈qi, x, y, qj〉 ∈ R as qix →T yqj . We write
qix → yqj if it is clear from the context that the transition rule belongs to
T . Similarly, we write 〈qn, w, v, qm〉 ∈ R# as qnw →# vqm. The transition
→# allows for stitching rules together and is called the reflexive transitive
closure.

11

Suppose we have T = 〈{{q0}, q0, {a}, {b}, {q0a→ q0b}, {q0}}.
A transduction of aaa uses the rule three times, for which we get the sequence
q1aaa→ bq1aa, bq1aa→ bbq1a and bbq1a → bbbq1. Yet with the transitive
closure, we have that

q1aaa→ bq1aa→ bbq1a→ bbbq1

is just the same transduction as

q1aaa→# bbbq1

Finite-state transducers (transducers for short) are functions from words
to the set of languages. If T is a transducer with input alphabet Σ and
output Γ, then we can define fT : Σ∗ → ℘(Γ∗), the function that maps words
to a language. Transducers can only read one word at a time; therefore, the
language accepted by a transducer is the union of all the translated words.
To put it more formally:

Definition 3.1.2. Let L be a language over Σ and T = 〈Q, q0,Σ,Γ, RT , F 〉
a transducer. Let w ∈ L. Define fT : Σ∗ → ℘(Γ∗) as

w 7→ {v | There exists a rule in R#
T such that q0w →# vqf}

where qf is a final state. Furthermore,

fT (L) =
⋃
w∈L

fT (w)

If S = 〈P, q′0,Σ,Γ, RS , G〉 is a transducer, then we say that S is equivalent
to T (S ∼ T) if and only if for any language L over Σ, fS(L) = fT (L).

How does such a transducer work? Take a look at figure 3.1. In this
case, our input and output alphabet are both {a, b}. Suppose we want a
transduction of the word abbba. Every arrow in the transducer is a rule in
R. A transduction of the word abbba is effectively the same as that there
exists a rule q0abbba→# vqi for a v ∈ {a, b}∗ and i ∈ {1, 2}.

q0abbba→ q1bbba→ bq2bba→ baq2ba→ baaq2a→ baabq1

These rules can all be combined to one rule in R#. For instance combining
the first two rules, q0a→ q1, q1b→ bq2, becomes q0ab→# bq2. When we keep
on going, q0ab→# bq2 and q2b→T aq2 becomes q0abb→#

T baq2. Repeating
the process will result q0abbba→# baabq1 and so 〈q0, abbba, baab, q1〉 ∈ R#.
As demonstrated, R# allows us to combine rules such that we can actu-
ally use the transducer. With this, it would be nice if we can also break
rules apart into “smaller” rules. For this property, we define the notion of
transducer normal form.

12

3.1.1 Transducer normal form

Definition 3.1.3. A transducer is in Transducer Normal Form (TNF) if
and only if for every rule 〈qi, x, y, qj〉 ∈ R we have that |x| ≤ 1 and |y| ≤ 1.

The transducer in figure 3.1 is in TNF. It is desirable if every transducer
has a TNF or, formally, if there exists a transducer T ′ that is in TNF such
that for any language L, fT (L) = fT ′(L). Fortunately, this is possible. We
designed an algorithm to create a new transducer with the TNF property.

Algorithm 1 Rewrite a rule into several other rules

1: function RewriteRule(〈qi, x, y, qj〉)
2: R′ ← {〈qi, x, y, qj〉}
3: r ← ∅
4: while R′ 6= ∅ do
5: rule← EXTRACT(R) . Gets a rule from R and removes this rule

from R
6: x← rule[1]
7: y ← rule[2]
8: p← max(|x|, |y|)
9: if 1 < p then

10: a← x[0] . The first letter of x
11: b← y[0] . The first letter of y
12: w ← x[1→] . x without the first letter
13: v ← y[1→] . y without the first letter
14: Create new state q′i
15: Create new rule 〈qi, a, b, q′i〉
16: r ← r ∪ {〈qi, a, b, q′i〉}
17: Create new rule 〈q′i, w, v, qj〉
18: R′ ← R′ ∪ {〈q′i, w, v, qj〉}
19: else
20: R′ ← ∅
21: r ← r ∪ {〈qi, x, y, qj〉}
22: end if
23: end while
24: return r
25: end function

Here the assumption is made that if one of the words is empty (ε), then
rule[m][n] will just return ε regardless of m and n. The algorithm takes the
first letter of each word x and y, and then puts that into a new rule. This
new rule must contain a new state. If we did not create a new state, we
would have created a new transducer. After creating the first rule, we need
to create another rule since after combining the rules in r, we must end in qj .

13

q0

q1

q2

a / ε

a / a

a / b

b / ε

b / b

b / a

Figure 3.1: A finite-state transducer

We thus make the rule q′iw →T vqj . The set r now contains qia → bq′i and
R′ contains q′iw →T vqj . Repeat creating new rules until both v and w are
1-, or 0-letter words. Since rules are transitive, all the rules in r used after
each other will give the original rule. Every rule in r now only transduces
letters to letters.

Proposition 3.1.4. Let L be a language. Every finite-state
transducer T = 〈Q, q0,Σ,Γ, RT , F 〉 can be rewritten to transducer
S = 〈P, q0,Σ,Γ, RS , F 〉 that is in TNF such that T ∼ S.

Proof. Let T be a finite state transducer. Then for each element
in RT we use algorithm 1 to get the set RS of rules. Now define
P = Q ∪ {q | q = π4(r) ∧ r ∈ RS}. In words, we take the states in Q and
the states that we need extra to be able the create the rule r. Define the
new transducer as S = 〈P, q0,Σ,Γ, RS , F 〉. We are left to show that fT = fS .

Important to note is that R#
T = R#

S since RS only contains rules from RT
that the algorithm made. It is therefore evident that fT = fS .

The TNF property is rather nice in that it lets us assume that every rule
in R only translates letters. If not, we can create an equivalent transducer
that is in TNF.

3.1.2 Regularity preservation of transducers

Earlier, we discussed regular languages. Not all languages are regular such as
{anbn | n ∈ N}. There does not exist a DFA that can accept that language.
Regularity is a pleasant property to have for a language. Transductions
preserve the regularity of a language.

14

Theorem 3.1.5. Let L be a regular language over Σ and
T = 〈P, p0,Σ,Γ, S,G〉 a transducer. Then fT (L) is a regular language
over Γ.

Proof. L is regular thus there exists a DFA M = 〈Q, q0,Σ, δ, F 〉 such that
L(M) = L (where L(M) denotes the language accepted by M). To show
that fT (L) is a regular language over Γ, we will construct an NFA-ε accepting
fT (L). The NFA-ε M ′ will be constructed as follows:

• The set of states will be Q× P .

• (q0, p0) will be the initial state.

• Γ is the alphabet.

• F ×G will be the set of accepting states.

• δ′ : (Q× P)× (Γ∪ {ε})→ P(Q× P) is the transition function that is
defined as:

δ′((qi, pj), y) = {(δ(qi, x), pk) | (pj , x, y, pk) ∈ S ∧ x ∈ Σ ∪ {ε}}

It is time to prove that L(M ′) = fT (L).

• Suppose v ∈ L(M ′). This means that δ′∗((q0, p0), v)∩F 6= ∅. Assume
v = y0y1y2 . . . yn with ∀i[yi ∈ Γ ∪ {ε}] (it can be the case that ε
transitions are needed to reach a final state, so yi = ε is possible). By
definition of an NFA-ε we have a transition sequence:

(q0, p0)
y0−→ (q1, p1)

y1−→ . . .
yn−→ (qf , pf)

The construction of NFA-ε M ′ tells us that for each such transition,
there exists an xi ∈ Σ ∪ {ε} such that

pixi →T yipi+1

The combination of these rules, p0w →#
T vpf where w = x0x1 . . . xn.

It is left to show that w ∈ L(M). Since there can be an i for which
xi = ε, we need to show that this does not matter for acceptance by
M . Indeed, if xi = ε then δ(qi, xi) = qi. Hence in the transition
sequence, we can see that qi = qi+1. Now w is accepted by M and we
can therefore conclude that v ∈ fT (L).

• Suppose w ∈ L(M) and fT (w) = v with w = x0x1 . . . xn and

v = y0y1 . . . yn. Then the transduction p0w →#
T vpf exists in S#. We

decompose rules in S# into smaller ones via the algorithm 1. We get
a sequence of rules:

p0
x0/y0−−−→ p1

x1/y1−−−→ . . .
xn/yn−−−−→ pf

15

Since by assumption we know that w is accepted by M , there is also
a transition sequence:

q0
x0−→ q1

x1−→ . . .
xn−→ qf

The construction of M ′ now allows us to create the following transition
sequence:

(q0, p0)
y0−→ (q1, p1)

y1−→ . . .
yn−→ (qf , pf)

Now some letters in w or v can be ε. It does not matter since if
xi = ε for an i then in the transition sequence we just have that
(qi, pi)

yi−→ (qi, pi+1). It is also no problem if yi = ε for some i because
we have an ε transition, and that is allowed in an NFA-ε. We conclude
v ∈ L(M ′).

3.1.3 Composing transducers

Regular languages are closed under union, intersection, complement, Kleene
star, and transductions. Unfortunately, regular languages are not closed
under infinite union/intersection, meaning that maybe, infinite transduc-
tions also will not preserve regularity. What are infinite transductions?
We need compositions for that. Taking a look at figure 3.1, we see that
fT ({abbba}) = baab. We know that function composition is possible if the
range of one function is the same as the domain of the other. However,
that is not sufficient for us. One may see a transducer as a function, but
functions are generally not transducers. We, therefore, have to construct a
new transducer from two existing transducers.

Definition 3.1.6. Let T = 〈Q, q,Σ,Γ, RT , FT 〉 and S = 〈P, p,Γ,∆, RS , FS〉
be transducers. Then S ◦ T = 〈Q × P, 〈q0, p0〉,Σ,∆, RS◦T , FT × FS〉 is a
transducer with fS◦T : Σ∗ → ℘(∆∗). Here RS◦T is defined as: for every rule
〈qi, x, y, qj〉 ∈ RT and for every rule 〈pm, y, z, pn〉 ∈ RS with |x|, |y|, |z| ≤ 1,
we create the rule 〈〈qi, pm〉, x, z, 〈qj , pn〉〉 to be in RS◦T .

Proposition 3.1.7. Let fT : Σ∗ → ℘(Γ∗) and fS : Γ∗ → ℘(∆∗) be trans-
ducers. Then fS◦T = fS ◦ fT .

Proof. Let w ∈ Σ∗ and assume T and S are both in TNF. By definition we
have

fS◦T (w) = {v | There exists a rule in R#
S◦T such that q0w →# vqf}

This means that v ∈ fS◦T (w) if and only if 〈〈q0, p0〉, w, v, 〈qf , pf 〉〉 ∈ R#
S◦T .

Apply algorithm 1 to obtain the set of letter-to-letter rules. Call this set V .
By construction of RS◦T any rule 〈〈qi, pm〉, x, z, 〈qj , pn〉〉 ∈ V is made from
two rules: 〈qi, x, y, qj〉 and 〈pm, y, z, pn〉. We have two sequences.

16

T2 p0 p1 p2

q0T1 q1

b/b

b/ε a/c

a/a, b/ε

a/a, b/b, c/c

a/b, b/c, c/a

Figure 3.2: Two transducers that we can compose.

One sequence of 〈qi, x, y, qj〉 ∈ RT which combines to 〈q0, w, u, qf 〉 for
some u ∈ Γ∗ and another sequence of 〈pm, y, z, pn〉 ∈ RS which combines to
〈p0, u, v, pf 〉. Therefore:

v ∈ fS◦T (w) if and only if v ∈
⋃

w′∈{u|q0w→#
T uqf}

{v | p0w′ →#
T vqf}

The set {u | q0w →#
T uqf} is just fT (w) and {v | p0w′ →#

T vqf} = fS(w′).
We see that v ∈ fS◦T (w) if and only if v ∈

⋃
w′∈fT (w) fS(w′). The latter is

equal to fS ◦ fT (w)

Take a look at figure 3.2. This figure shows two transducers for which
we want to find the composition. Figure 3.3 is the result of the composition.
We are looking for arrows labeled x/y in T1 and arrows labeled y/z in T2.
Here x, y, z ∈ {a, b, c}. For example, we see in T1 the rule q0b →T1 bq1
and in T2 we see the rule p0b →T1 bp0. Thus in T2 ◦ T1 we get the rule
〈q0, p0〉b →T2◦T1 b〈q1, p0〉. Another, more interesting, example are the rules
q1a →T1 bq0 in T1 and p0b →T2 εp1 in T2. Combining these will yield
〈q1, p0〉a→T2◦T1 ε〈q0, p1〉. If we continue this procedure of finding such rules,
we will find all the rules, and it will result in the transducers in figure 3.3.

17

q0, p0

q1, p0

q1, p1

q0, p1

q0, p2

q1, p2

b/b a/b

a/ε

b/ε c/c

a/c

a/ε, c/a a/a, b/ε

Figure 3.3: The composition of two transducers in figure 3.2

q0, q0

q1, q0

q2, q0

q1, q1

q2, q1

q2, q2

q1, q2

a/ε

b/ε

a/ε

b/ε

b/ε

a/ε

a/a

b/b

a/a

b/b

a/b
b/a

a/b

a/a

Figure 3.4: T 2 of the transducer in figure 3.1

18

3.2 ω-iteration

We can go further than only one composition. Suppose we have a se-
quence of transducers T0, T1, . . . , Tn. As long as the output alphabet of
Ti is the same as the input alphabet of Ti+1, then we can make a compo-
sition fTn ◦ fTn−1 ◦ fTn−2 ◦ · · · ◦ fT0 . This is possible due to induction and
proposition 3.1.7. Imagine now that we have a transducer T such that
fT : Σ∗ → ℘(Σ∗). We can compose fT with itself twice or even thrice. We
refer to this kind of composition as ”iteration” since we iterate over the
natural numbers (the number of times we apply fT to the input word).

Definition 3.2.1 (Iteration). Let T be a transducer over the alphabet Σ
(meaning that the input and output alphabets of T are both Σ). Then we
define iteration of transducers inductively as:

• T 0 = 〈{q0}, q0,Σ,Σ, {〈q0, x, x, q0〉 | x ∈ Σ}, {q0}〉

• Tn+1 = T ◦ Tn

T 0 is the identity transducer; if we apply fT 0 on a language L, the result
will be L. We take a look at an example of an iterated transducer. Suppose
we have the transducer T from figure 3.1. We apply regular composition
as we did with the transducers in figure 3.2 only now our T1 and T2 are
both T . The composition will result in the transducer in figure 3.4. It is
our discretion to iterate many more times if we wish to do so. The resulting
composition will also preserve the regularity of a language. This is a corollary
of theorem 3.1.5 which we prove by induction on the number of iterations.

Corollary 3.2.1.1. Let T be a transducer over the alphabet Σ and let L be
a regular language. Then we have that fTn(L) is regular for every n ∈ N.

Proof. We prove the statement by induction on n.

• Suppose n = 0. Then fT 0(L) = L which is regular by assumption.

• Suppose fTn(L) is regular.

Consider fTn+1(L) = (fT ◦ fTn)(L) = fT (fTn(L)). By our induction
hypothesis, fTn(L) is regular and by theorem 3.1.5, fTn+1(L) is regu-
lar.

Hence, we may conclude fTn(L) is regular for every n ∈ N.

19

q0 q1q2

a/a, b/b

a/b

b/a

b/a

a/b

Figure 3.5: A FST that can change the substring ab to ba and vice versa.
The transducer does not have to change the substrings, it can also leave
them as they are.

Regular languages are closed under finite intersection, union, and more.
However, we know that taking the infinite intersection or union of regular
languages is not regular. This is also the case with infinite transductions [8].
To prove that regular languages are not closed under infinite transductions,
we consider the ω-iteration1:

Definition 3.2.2. Let T be a transducer over the alphabet Σ and let L be
a language. The ω-iteration of T is defined as:

fT<ω(L) =
⋃
i∈N

fT i(L)

We are taking the union of all iterated transducers. That is
fT<ω(L) = L ∪ fT (L) ∪ fT 2(L) ∪ . . . An analogue definition can be made
without the language L. One would then have:

fT<ω =
⋃
i∈N

fT i

The transducer T<ω is in itself an infinite state transducer. Nevertheless,
infinite-state transducers are hard to work with or even conceptualize. Al-
though this transducer itself is not in the scope of this thesis, Dennis Dams
et al. created an algorithm to reduce the size of T<ω to an equivalent trans-
ducer [4]. However, this reduced transducer does not have to be finite.

1The symbol ω comes from ordinal numbers, where ω is the first inductive ordinal
number. The ordinal ω is also the smallest infinity.

20

3.2.1 Non-regularity of ω-iteration

It is, unfortunately, the case that ω-iteration does not preserve regularity.
This negative result is shown in [8], but an explicit counterexample is not
given. For the remainder of this section, we will show a transducer that
will be our counterexample and prove that ω-iteration does not preserve
regularity.

The transducer in figure 3.5 is a counterexample. We will call this T
from here on forward. The transducer T switches a with b and vice versa
if a and b are adjacent to each other (ab or ba). However, it can also leave
a string as it is. For instance, take the word abba. Feeding this to T will
yield fT (abba) = {abba, baba, abab, baab}. It shows that the transducer is
non-deterministic. This is not a problem for iteration since fT 2(abba) =⋃
w∈fT (abba) fT (w) = fT (abba) ∪ fT (baba) ∪ fT (abab) ∪ fT (baab). We will

prove that ω-iteration does not preserve regularity in general.

Theorem 3.2.3. Let T be the transducer in fig 3.5. Let Σ = {a, b} and let
L = {(ab)n | n ∈ N}. Then we have:

fT<ω(L) = {w ∈ Σ∗ | |w|a = |w|b}

We first need some lemmas before we can start to prove the theorem. It
is important to know that our transducer of choice T preserves the property
|w|a = |w|b.

Lemma 3.2.4.

∀i∈N[fT i(L) ⊆ {w ∈ Σ∗ | |w|a = |w|b}]

Proof. We prove this by induction on i.

• Suppose i = 0.

Then fT 0(L) = L = {(ab)n | n ∈ N} ⊆ {w ∈ Σ∗ | |w|a = |w|b}.

• Suppose that the statement holds for i. We now are proving the state-
ment for i+ 1. We assume w ∈ fT (fT i(L)). Then we know that there
is a v ∈ fT i(L) such that w ∈ fT (v). By the induction hypothesis, we
can conclude that |v|a = |v|b. Now we apply fT on v and show that
for all u ∈ fT (v), |u|a = |u|b. The transducer T has a total of six rules:

q0a→ aq0 q0a→ bq1 q1b→ aq0

q0b→ bq0 q0b→ aq2 q2a→ bq0

Application of the rules q0a → aq0 and q0b → bq0 will not change
the number of symbols. Using the rule q0a → bq1 gives an inequality
|u|a < |u|b but after this rule, we are in a non-accepting state.

21

So any transduction that ends in q1, is rejected. The only rule to get
out of q1 is q1b→ aq0. This rule acts as an inverse because it changes
a b into an a. We get |u|a = |u|b after applying these two rules.
A similar reasoning holds for the rules q0b → aq2 and q2a → bq0.
Therefore, |u|a = |u|b for any u ∈ fT (v) and especially for w.

Now we have that fT i(L) ⊆ {w ∈ Σ∗ | |w|a = |w|b}.

For the proof of theorem 3.2.3, it will be necessary that we can translate
any word of length 2n to anbn and back. Proving that this is the case for
T , we need inversions. An inversion is an occurrence of the letter a to the
right of a letter b. The word ba contains one inversion, baa and bba have
two inversions. Also anbn has zero inversions for any n.

In the next lemma, we prove that the transduction fT has the property
that if a word w of length 2n is in {w ∈ Σ∗ | |w|a = |w|b} then anbn ∈ fT (w).
We prove this by induction on the number of inversions. Swapping an a
with a b either increases or decreases the number of inversions by one. That
insight is what we will be using.

Lemma 3.2.5. From any word w ∈ {w ∈ Σ∗ | |w|a = |w|b} of length 2n, we
can obtain the word anbn by applying fT to w in a finite number of steps.

Proof. We prove the lemma by induction on the number of inversions p ∈ N.

• Suppose p = 0. Then w = anbn. We therefore need zero applications
of fT .

• Suppose w′ →k
T anbn for a k ∈ N when w′ has p inversions. We

prove that if w has p + 1 inversions, then w →k+1
T anbn. Since w

has p + 1 > 0 inversions, w contains a substring ba. Apply fT to
w such that ba →T ab for this substring. Call this transduced word
w′. Now w′ has p inversions. By the induction hypothesis, we have
that w′ →k

T anbn. Thus we have w →T w′ →k anbn and therefore
w →k+1

T anbn.

At last, we need a similar yet different lemma for us to prove theo-
rem 3.2.3.

Lemma 3.2.6. Any word w ∈ {w ∈ Σ∗ | |w|a = |w|b} of length 2n can be
obtained by applying fT to anbn finitely many times.

Proof. We prove this again by induction on the number of inversions p ∈ N.

• Suppose p = 0, then w = anbn so no applications of fT are needed on
anbn.

22

• Suppose that if a word w′ has p inversions, then we can translate anbn

to w′ in k < ∞ steps. Suppose w has p + 1 inversions. Then it must
have a substring ba. Now swap this instance of ba to ab and call this
new word w′.

The word w′ now has p inversions, and so by the induction hypoth-
esis, we have that anbn →k

T w′. Now we apply fT to w′ such that
the substring ab becomes ba again, thus we have w. Now we have
anbn →k+1

T w.

We conclude that with finitely many applications of fT on anbn, we get any
word w ∈ {w ∈ Σ∗ | |w|a = |w|b} of length 2n.

It is time to prove theorem 3.2.3.

Proof. We will prove separately that f<ωT (L) ⊆ {w ∈ Σ∗ | |w|a = |w|b} and
{w ∈ Σ∗ | |w|a = |w|b} ⊆ fT<ω(L).

• f<ωT (L) ⊆ {w ∈ Σ∗ | |w|a = |w|b}. Assume w ∈ f<ωT (L). Then we
have that ∃i∈N[w ∈ fT i(L)]. Furthermore, by lemma 3.2.4 we know
that it does not matter how many times we apply fT to w. Thus
f iT (w) = fT i(w) ∈ {w ∈ Σ∗ | |w|a = |w|b} for any i ∈ N. Therefore, we
are able to conclude:

fT<ω(L) ⊆ {w ∈ Σ∗ | |w|a = |w|b}

• {w ∈ Σ∗ | |w|a = |w|b} ⊆ fT<ω(L).

Suppose w ∈ {w ∈ Σ∗ | |w|a = |w|b} and suppose that |w| = 2n for a
n ∈ N. Consider the word anbn. Then w has a finite number p of
inversions. Here we can apply lemma 3.2.5 on (ab)n to get anbn in k0
steps. By lemma 3.2.6 we can transduce anbn to w in k1 applications
of fT . We then have:

(ab)n →k0
T anbn →k1

T w ⇒ (ab)n →k0+k1
T w

By definition of fT<ω and the fact that w ∈ fk0+k1T (L) = fTk0+k1 (L)
we conclude that w ∈ fT<ω(L) which was to be proven.

Corollary 3.2.6.1. ω-iteration does not preserve regularity in general.

Proof. The language {w ∈ Σ∗ | |w|a = |w|b} is not regular.

23

Chapter 4

H-closures

In 1995, E. Cohen introduced hypotheses in Kleene Algebras, from where
the H-closure originated [3]. We give a proper definition of the H-closure in
this chapter. From the definition, we introduce a proof system used in [5]
to determine the inclusion of languages in the H-closure. Furthermore, we
give a different step-by-step method for determining the H-closure.

4.1 What are H-closures?

It is not always possible to determine program equivalence. Take, for in-
stance, this example from [5]. We have two regular expressions (a∗b)∗ and
((a+ b)∗b+ 1). It is decidable if regular expressions are equivalent. We can
check if these regular expressions are accepted by the same minimized DFA
(up to isomorphism) [7]. In the case of (a∗b)∗ and ((a+ b)∗b+ 1), these are
equivalent.

Consider another example from [5], (a+ b)∗ and b∗a∗. These expressions
are not equivalent since ab ∈ J(a+ b)∗K but ab /∈ Jb∗a∗K. But what if we know
that ab = b? Then we would have ab = b ∈ Jb∗a∗K. With this hypothesis, we
can determine that (a + b)∗ and b∗a∗ are equivalent. We can change every
subword ab in some word w in J(a+ b)∗K to b and then w will be in Jb∗a∗K.

The idea of using hypotheses needs to be more rigorous in order to
prove that the hypothesis “ab = b” is sufficient for (a + b)∗ and b∗a∗ to be
equivalent. First some notation. If e, f are regular expressions, then e ≤ f
means f “translates to” e and this is called an hypothesis. Note here that
this is only an informal definition of ≤, sufficient for our purposes. When it
is the case that e ≤ f and f ≤ e, we can say e = f .

24

Considering the example again, ab = b is the same as saying ab ≤ b
and b ≤ ab. Notice here that it is sufficient to only assume ab ≤ b since
Jb∗a∗K ⊆ J(a+ b)∗K. However, just assuming ab ≤ b does not magically allow
us to say Jb∗a∗K = J(a + b)∗K. We need to apply our hypotheses on Jb∗a∗K.
Doing so will extend Jb∗a∗K to a language say C where Jb∗a∗K ⊆ C contains
words w that after a number (possibly infinite) of applications of ab ≤ b will
be in Jb∗a∗K. This set C is called the H-closure.

Definition 4.1.1 (H-closure [9]). Let H be a set of hypotheses and L ⊆ Σ∗

a language. The H-closure of L, written as clH(L), is the smallest language
such that:

• L ⊆ clH(L)

• For all e ≤ f ∈ H, for each u, v ∈ Σ∗, if uJfKv ⊆ clH(L) then
uJeKv ⊆ clH(L)

The words u and v are contexts that allow us to use our hypotheses in the
middle of the word instead of requiring that we translate the entire word.
Language equivalence with hypotheses is determined with the H-closure.
Regular expressions e and f are equivalent if and only if clH(JeK) = clH(JfK).

4.2 A helpful proof system

Determining clH(Jb∗a∗K) is more challenging but not undoable. First note
that clH(Jb∗a∗K) ⊆ J(a + b)∗K since J(a + b)∗K contains all the words using
the alphabet {a, b}. For the second part, we want J(a + b)∗K ⊆ clH(Jb∗a∗K)
meaning that for any word w ∈ J(a+ b)∗K, we want a word v ∈ Jb∗a∗K such
that we can get from v to w using ab ≤ b. This can be solved intuitively by
starting with v = bn where n = |w| − |w|a. We can then use the hypothesis
exactly at the b’s in v when there is an a in front of that b in w.

For instance, let w = ababb. Then v = bbb. In order to get to w from v,
we use the hypothesis ab ≤ b on the first and second b in v because in w, the
first and second b have an a in front. One might think: what about words
such as aaabb or aaaaa? In the first case, we want to use the hypothesis
three times on the first b. The second case is solved by defining v as aaaaa.
Via this intuitive reasoning, we can determine that J(a+ b)∗K ⊆ clH(Jb∗a∗K).

However, this is not a solid proof. We reasoned why this must be true.
Proving J(a + b)∗K ⊆ clH(Jb∗a∗K) using the definition is possible but not
preferred. We are better off using a proof system for this task.

25

Definition 4.2.1 ([5]). Let H be a set of hypotheses and L a regular lan-
guage. We define a proof system with the following three rules:

u ∈ L
u

(1),
(u)u∈JeK

e
(2),

ufv
w ∈ JeK, e ≤ f ∈ H

uwv
(3)

If e is derivable in this proof system, we denote that by `H,L e. Such a
tree is called a derivation tree for JeK ⊆ clH(L).

The proof system will help us prove J(a+ b)∗K ⊆ clH(Jb∗a∗K).

Proof. We use induction on the structure of the derivation tree. We start
our derivation tree as follows:

(u)u∈J(a+b)∗K
(2)

(a+ b)∗

There are two cases we need to cover. Since u is a word, (2) will not provide
any new information.

1. Suppose we use (1). We see u ∈ Jb∗a∗K and thus we are done.

2. Suppose we use (3). Let u be of the form xaby with x, y ∈ {a, b}∗ and
of length n. Assume that any word in J(a + b)∗K of length k < n we
have a derivation tree. Since we have xaby and ab ≤ b, we obtain the
proof tree:

xby
ab ≤ b (3)

xabyxaby∈J(a+b)∗K
(2)

(a+ b)∗

Notice that |xby| < |xaby| and thus by our assumption, we have
a derivation tree for xby. Hence a proof tree of length n asserts
J(a+ b)∗K ⊆ clH(Jb∗a∗K).

By induction we see that J(a+ b)∗K ⊆ clH(Jb∗a∗K).

With the proof system, we were able to rigorously prove

J(a+ b)∗K = cl{ab≤b}(Jb∗a∗K)

Yet we must show that such derivation trees actually do guarantee that the
language of an expression is contained in the closure.

Proposition 4.2.2 (App. A [5]).

JeK ⊆ clH(L)↔ `H,L e

26

4.3 Computation of the closure

Besides the proof system, there is another method for determining such
closures, and this method is somewhat related to transducers. Consider the
language L = {b} and let the set of hypotheses be H = {a ≤ bb∗, bb ≤ b}.
We want to determine the H-closure of L, and we do this step by step. We
are applying one hypothesis at a time. At first, we can only use bb ≤ b on
b. We get a new word bb after the first step. The second step is to use our
hypotheses on bb. There is again only one option, bb ≤ b. Thus we get one
new word bbb after the second step. We keep taking steps an infinite number
of times. Each step results in a string of b’s with an extra b concatenated
to the end. After a countable number of steps, we group the words and
have the set {b, bb, bbb, bbbb, bbbbb, . . . }. This set is not the closure yet! After
a countable number of steps, we have the set Jbb∗K. We can translate this
whole set to a by using a ≤ bb∗. Thus clH(L) = Ja+ bb∗K since there are no
hypotheses that can be used on a.

Mathematically, the procedure of taking steps is a form of induction
called transfinite induction1. In the example, we take a countable number
of steps and then one more step (hence the name transfinite). One such step
can define a new word. In mathematical terms:

stH(L) =
⋃
{uJeKv | e ≤ f ∈ H,u, v ∈ Σ∗, uJfKv ⊆ L}

So in our example with L = {b} and H = {a ≤ bb∗, bb ≤ b}, we would have:

stH({b}) = {ubbv | u, v ∈ Σ∗, ubv ∈ {b}} ∪ {uav | u, v ∈ Σ∗, uJbb∗Kv ⊆ {b}}
= {bb} ∪∅
= {bb}

Any next step, stα+1
H (L), is calculated as taking a step from the previous

result, stH(stαH(L)):

stH(stH({b})) = stH({bb})
= {ubbv | u, v ∈ Σ∗, ubv ∈ stH({b})} ∪ {uav | u, v ∈ Σ∗, uJbb∗Kv ⊆ stH({b})}
= {ubbv | u, v ∈ Σ∗, ubv ∈ {bb}} ∪ {uav | u, v ∈ Σ∗, uJbb∗Kv ⊆ {bb}}
= {bbb}

1Transfinite induction is induction on ordinal numbers.

27

Any step after an infinite amount of steps (stλH(L)) is calculated by
grouping all the previous steps together (

⋃
α<λ st

α
H(L)):

stωH(L) =
⋃
α<ω

stαH(L)

= {b} ∪ {bb} ∪ {bbb} ∪ . . .
= {b, bb, bbb, . . . }
= Jbb∗K

All these steps derive new words, and when we do all the steps (that is,
we do not find new words after taking a step), we have all the words in the
closure. In other words:

clH(L) =
⋃

Ord(α)

stαH(L)

Definition 4.3.1 ([5]). The step-by-step method is defined inductively in
the following way.

• The first step: st0(L) = L.

• The successor step: stα+1
H (L) = stH(stαH(L)).

• The limit step: if λ is a limit ordinal, then stλH(L) =
⋃
α<λ st

α
H(L).

A step is defined as:

stH(L) =
⋃
{uJeKv | e ≤ f ∈ H,u, v ∈ Σ∗, uJfKv ⊆ L}

The step-by-step method is one effective way of determining closures. It
is also the method that resembles how transducers work.

28

Chapter 5

Relation between
transducers and H-closures

Up until now, we have discussed both transducers and H-closures. Both
definitions were discussed in chapters 3 and 4 respectively. This chapter
presents and proves our two new theorems that relate to the two notions. H-
closures and iterated transducers are functions on languages, and in specific
circumstances, they are the same function.

5.1 Hypotheses and transducers

Let us take a look at figure 5.1. The transducer T in this figure can translate
any instance of the subword ba to ab. We can try some language and see
what happens. Suppose L = {bbaa}. Then fT (L) = {bbaa, baba}. We will
see something particular happening if we try to iterate T a few times.

fT (L) = {bbaa, baba}
fT 2(L) = {bbaa, baba, abba, baab, abab}
fT 3(L) = {bbaa, baba, abba, baab, abab, aabb}

q0 q1

a/a, b/b

b/a

a/b

Figure 5.1: A transducer that may translate ba to ab.

29

Any further iterations of T will not lead to more elements (there are only six
permutations of bbaa). Therefore fT<ω(L) = {bbaa, baba, abba, baab, abab, aabb}.
With this in mind, let H = {ab ≤ ba} and consider clH(L). From chapter 4,
we know that clH(L) =

⋃
α stαH(L). Some calculations lead to the following:

stH(L) = {baba}
st2H(L) = {abba, baab}
st3H(L) = {abab}
st4H(L) = {aabb}

For α > 4, stαH(L) = ∅. We can therefore see that⋃
Ord(α)

stαH(L) = {bbaa, baba, abba, baab, abab, aabb} = clH(L)

One may notice that it happens to be the case that

clH(L) = {bbaa, baba, abba, baab, abab, aabb} = fT<ω(L)

Even more surprising, the phenomenon is not a coincidence. For specific
hypotheses and transducers, such equalities arise. We can find two types of
such equalities, one given we have a transducer and another given a set of
hypotheses.

5.2 From a transducer to hypotheses

The first theorem shows that given a transducer T , we can modify T to Tc
such that we can create a set of hypotheses of the form fTc(w) ≤ w with the
property that the ω-iteration yields the H-closure. A transducer T is not
sufficient since T may not be able to read the context. Take for example
bbababaa with ab ≤ ba as an hypothesis. We want to apply the hypothesis
in the middle of the word, bbababaa. The transducer T is thus supposed to
let the words bba and baa intact. Therefore we need a new transducer Tc
that can do that. The construction of Tc is relatively simple: we add two
states, a start, and an accepting state, that both read context. The start
state reads letters and will transition into the T where the hypotheses are
applied. After that is done, we transition to the accepting state and read
the rest of the word. The claim is that the ω-iteration of Tc will be the same
as the H-closure with H = {fTc(w) ≤ w | w ∈ Σ∗}.

30

qs qfT ′

x/x

ε/ε ε/ε

x/x

Figure 5.2: The form of transducer we need for the proof of theorem 5.2.1

Theorem 5.2.1. Let T = 〈Q, q0,Σ,Σ, R, F 〉 be a transducer over the alpha-
bet Σ. Then there exists a transducer Tc such that H = {fTc(w) ≤ w | w ∈ Σ∗},
L a language and clH(L) = fT<ω

c
(L).

Proof. We define Tc = 〈Qc, qs,Σ,Σ, Rc, Fc〉 whereQc = Q∪{qs, qf}, Fc = {qf}
and Rc as the union of R, {〈qs, ε, ε, q0〉}, {〈qt, ε, ε, qf 〉 | qt ∈ F},
{〈qs, x, x, qs〉 | x ∈ Σ} and {〈qf , x, x, qf 〉 | x ∈ Σ}. The states qs and qf are
the initial and final states of Tc respectively and are not part of the orig-
inal transducer T . The transition relation Rc is a union of the transition
relation R and additional rules that preserve context. E.g., the new rules
translate letters to themselves. The two ε-to-ε rules ensure we transition
in and out of the transducer T . See figure 5.2 for an illustration. This Tc
now has the property ufT (w)v ⊆ ufTc(w)v ⊆ fTc(uwv) for every u, v ∈ Σ∗

and w ∈ L. We can see that since if a word w1 ∈ ufT (w)v then it has the
form uw2v with w2 ∈ fT (w). The word w2 therefore is a translation. The
adjusted transducer Tc translates a word w2 the same as T would do. There-
fore ufT (w)v ⊆ ufTc(w)v. The transducer Tc is designed have the ability to
preserve context. This means that fTc(uwv) must contain ufTc(w)v.

• We prove fT<ω
c

(L) ⊆ clH(L). Assume that w ∈ fT<ω
c

(L). Then def-
inition 3.2.2 tells us there is an i ∈ N such that w ∈ fT i

c
(L). We

perform induction on the number i of applications of fTc . Suppose
i = 0. Then w ∈ fT 0(L) = L and therefore we can use (1) according
to definition 4.2.1. We conclude w ∈ clH(L). Now we assume that if
v ∈ fT i

c
(L) then v ∈ clH(L) (IH). Suppose w ∈ fT i+1

c
(L). By defini-

tion, we know there must be a w′ ∈ L such that w ∈ fT i+1
c

(w′). Then
using some rewriting we conclude the following:

fT i+1
c

(w′) = fTc(fT i
c
(w′)) =

⋃
v∈f

Ti
c
(w′)

fTc(v)

Therefore there is some v ∈ fTc(w′) such that w ∈ fTc(v). We can now
construct a derivation tree.

(IH)
v

(3), fTc(v) ≤ v ∈ H
(w)w∈fTc (v) (2)

fT<ω
c

(L)

31

By induction, we have constructed a finite proof tree and we may
conclude fT<ω

c
(L) ⊆ clH(L).

• Let uwv ∈ fT<ω
c

(L) such that w ∈ f
T j
c
(w′) for some w′ ∈ L and j ∈ N.

The goal is to establish that ufTc(w)v ⊆ fT<ω
c

(L). When this holds, we
know by definition of H-closure that clH(L) ⊆ fT<ω

c
(L). Applying fTc

gives us ufTc(w)v ⊆ ufTc(fTcj (w
′))v ⊆ fTc(ufT j

c
(w′)v). So we can ob-

tain ufTc(w)v from earlier translations. We obtain ufTc(w)v ⊆ fT<ω
c

(L).
Thus we have u{w}v ⊆ fT<ω

c
(L) implies ufTc(w)v ⊆ fT<ω

c
(L). Since

clH(L) is the smallest set for which such property holds, we conclude
clH(L) ⊆ fT<ω

c
(L).

5.3 From hypotheses to a transducer

The second theorem arises when we start with hypotheses instead of trans-
ducers. These hypotheses need to be of a particular kind. Due to the nature
of transducers, we can only consider hypotheses of the form e ≤ w where e is
an expression and w a word. Was there an inequation of the form e ≤ f with
f a regular expression, then a transducer would need to read all the words in
JfK. To arrive at the theorem we will discuss later in this section, it is vital
to discuss the construction of a transducer-based on a set of hypotheses.

Definition 5.3.1. Let H = {ei ≤ w | w ∈ Σ∗ ∧ i ∈ N} with ei a regular
expression. A transducer constructed by H is a transducer built using the
algorithm below:

1. Start with a state q0.

2. For each hypothesis ei ≤ w, create the rule 〈q0, w, ei, q0〉. After this
for-loop, we have a transducer T ′.

3. Add states qs, the initial state, and qf , the accepting state.

4. Add rules 〈qs, ε, ε, q0〉, 〈q0, ε, ε, qf 〉.

5. For each x ∈ Σ, add the rules, 〈qs, x, x, qs〉 and 〈qf , x, x, qf 〉.

6. We now have constructed our desired transducer T .

Figure 5.3 shows what such a constructed transducer resembles. The
main point of this transducer is that every use of hypothesis is some sequence
of transition within T ′, just like in 5.1 with the hypothesis {ab ≤ ba}.
Furthermore, the states qs and qf are context readers. As seen with the
H-closures, we use context to apply hypotheses within a word. Such context
readers therefore allow bbbaaa to be translated to bbabaa. As an illustration,
see figure 5.4.

32

qs qfT ′

x/x

ε/ε ε/ε

x/x

Figure 5.3: General form of a transducer constructed via definition 5.3.1

q0

q1

q2

qs

qf
a/b

b/ε

ε/a

a/b

a/a, b/b

a/a, b/b

ε/ε

ε/ε

Figure 5.4: A constructed transducer from the hypothesis ba∗b ≤ aba.

Here T ′ consists of all the states and transitions in the circle. Again here,
the states qs and qf are context readers. We first read some or possibly no
letters in state qs.
Then, after applying the hypothesis ba∗b ≤ aba zero or more times, we read
the remaining letters in state qf .

The claim is that iterating this constructed transducer an infinite number
of times will coincide with the H-closure over the same hypotheses.

Theorem 5.3.2. Let H = {ei ≤ w | w ∈ Σ∗ ∧ i ∈ N} with ei a regular
expression. Let T be a transducer over the alphabet Σ constructed by H and
L a language. Then fT<ω(L) = clH(L).

Proof. We prove separately fT<ω(L) ⊆ clH(L) and clH(L) ⊆ fT<ω(L).
When we esthablished this, we can conclude that fT<ω(L) = clH(L)

• The goal is to show fT<ω(L) ⊆ clH(L). Assume w ∈ fT<ω(L). When
using the same reasoning as in the previous proof, we know that
w ∈ fT i(w′) for some i ∈ N and w′ ∈ L. We perform induction
on the number i of applications of fT . Suppose i = 0. We can now
apply (1) from the proof system, and thus we conclude w ∈ clH(L).
Now suppose that if v ∈ fT i(w′) for an w′ in L, then v ∈ clH(L).

33

Assume w ∈ fT i+1(L) meaning that w ∈ fT (v) for some v ∈ fT i(w′).

Important to note that fT (u) ≤ u ∈ H because fT (u) is regular and
due to the construction given in defintion 5.3.1. We construct a deriva-
tion tree with root fT<ω(L).

(IH)
v

(3), fT (v) ≤ v ∈ H
(w)w∈fT (v)

(2)
fT<ω(L)

By induction we can conclude fT<ω(L) ⊆ clH(L).

• We want to prove uwv ∈ fT<ω(L) implies uJeiKv ⊆ fT<ω(L) for any
ei ≤ w ∈ H. Let ei ≤ w ∈ H be given. Suppose u, v ∈ Σ∗ and
assume uwv ∈ fT<ω(L). The assumption gives us an w′ ∈ L and an j
such that uwv ∈ ufT j (w′)v. Note that the transducer can opt to write
everything it reads; hence ufT j (w′)v ⊆ fT j (uw′v) and thus context
u, v can be preserved. Furthermore, we can apply fT to uwv to get
fT (uwv). We may conclude ufT (w)v ⊆ fT (uwv). Now we can use the
construction of T : uJeiKv ⊆ ufT (w)v. This will allow us to finalize the
proof. We can apply fT on uw′v to get uJeiKv in j+ 1 iterations. This
means uJeiKv ⊆ fT<ω(L). We have now shown that uwv ∈ fT<ω(L)
implies uJeiKv ⊆ fT<ω(L) for any ei ≤ w ∈ H. Now, as a reminder,
clH(L) is the smallest set for which this implication hold. We conclude
clH(L) ⊆ fT<ω(L).

5.4 A comparison between transducers and H-closures

We established the theorems, and it is compelling to look at the conse-
quences. In several situations, we can choose which method we want to
use to determine the closure of some hypotheses; transducers or H-closures.
There can be said something for both methods. Each of them has its short-
comings which we will explore.

5.4.1 H-closures are more flexible

We said it multiple times, but transducers cannot read entire languages in
one go. For any set of hypotheses H if there is at least one inequation of the
from e ≤ f with f a regular language that is not a single word, we cannot
use transducers to determine the closure. To put it more concretely, suppose
we have a hypothesis b ≤ a∗.

34

In order to translate to a b, a supposed transducer needs to read
{ε, a, aa, aaa, . . . } in one go. One can see that it is not possible. Even the
transfinite induction method needs more than a countable amount of steps
before it can translate a∗ to b. Nevertheless, using the proof system or
the step-by-step method can yield an answer if one is looking for what the
H-closure might be.

Another reason one might avoid using transducers is because the ω-
iteration may be an infinite state machine for a transducer. Using transduc-
ers will not be helpful since we cannot easily reason with the ω-iteration.
Luckily, this can partially be solved. Efforts have been made to decrease
the size of infinite-state ω-iteration [4]. Given the right circumstances, that
is, finding a suitable pair of equivalence relations1F, P on Tω, the quotient
Tω/F ;P will preserve the transition relation. So even with an infinite state
machine, we can still tell what the closure will be. Nonetheless, finding this
pair of future and past bisimulations is a quest on its own, and it is not
always possible to find such a pair.

5.4.2 Transducers are more intuitive

With transducers, it is sometimes easier to see what the H-closure is. While
H-closures are more potent than transducers, they require intensive reason-
ing and proving using the proof system or transfinite induction. Transducers,
however, allow for some conceptualization. The hypothesis may be complex;
a transducer can make it easier to grasp what the inequations mean.

For example, consider the transducer that increments binary numbers.
We denote this by Tbin. This transducer Tbin is depicted in figure 5.5. This
transducer takes as an input a binary number x in little-endian (least sig-
nificant bit first) and returns x+ 1 in little-endian. Such an example could
be 3710 = 1001012. The reverse is 101001 and we apply the composed rule
q0101001→#

Tbin
011001q1. We see 1001102 = 3810. Binary increment is not

a hard to understand subject. However, we want to see what the closure
is, starting from a predetermined binary number. First, what should H be?
One can see that we have 1 ≤ ε, 1 ≤ 0, 01 ≤ 10, 001 ≤ 110, . . . , 01 ≤ 1, 001 ≤
11, Thus we get a rule whenever we have a carry, we add 1 to 0 or when
we “overflow”.
Hence H = {0n1 ≤ 1n | n ∈ N} ∪ {0n1 ≤ 1n0 | n ∈ N} ∪ {1 ≤ 0}.

1“Suitable” here means a swapping pair F, P of future and past bisimulations. These
are all defined in [4, Section 2.2]

35

q0 q1

q2

1/0

0/1

0/0, 1/1

ε/1

Figure 5.5: A transducer that increments a binary number.

Suppose L = {101001}, 3710 in little endian binary. Note here that
we could have chosen any positive number to see the upcoming result; 37
is just a pseudo-random choice. What is clH({101001})? It is possible to
determine this with the use of the proof system 4.2.1 or the step-by-step
method in section 4.3. Both approaches are somewhat tedious and prone to
error since they require some non-obvious uses of these methods. However,
it is easy to see what the closure will be with transducers. We know that
by theorem 5.2.1 we need to take a look at the ω-iteration. It is not hard to
determine what the ω-iteration will be. What happens if we iterate Tbin only
twice? The first iteration increments 101001 to 011001. The second iteration
increments 011001 to 111001. Thus T 2

bin adds 2 to a binary number. If we
apply Tbin another time, we increment 111001 and get 000101. We have used
Tbin three times and incremented 101001 three times as well. It may not seem
surprising that the ω-iteration yields the language of all little-endian binary
numbers greater than or equal to 3710. Hence the closure clH({101001})
contains all little endian binary numbers greater than or equal to 3710.

The demonstration shows that transducers can be more efficient due to
their well-understood and straightforward behavior. We may even think of
more examples where we have a transducer performing some translation,
and the closure is intuitively found by reasoning with the ω-iteration.

36

Chapter 6

Related work

Other research can be classified into either two groups. On the one hand,
properties of iterated transducers or specific classes of transducers are con-
sidered. The research discusses, for instance, different representations of a
transducer[8]. Other examples include an algorithm that tries to reduce the
size of an infinite-state ω-iterated transducers.

On the other hand, H-closures are used in Kleene algebra with hypothe-
ses completeness theorems. In fact, completeness of Kleene algebra with
hypotheses is defined as “clH(JeK) = clH(JfK) implies that e ≤ f is deriv-
able from the Kleene algebra axioms and the hypotheses in H” [9]. Several
instances of such completeness theorems rely on lemma’s about the closures
described in [5].

Both these directions discuss only transducers or H-closures. We re-
searched the connections between the iterated transducers and the H-closures.
As far as we know, we are the first to do so. Below we discuss the details of
these different directions.

Length-preserving transducers

Latteux et al. [8] discuss the length-preserving transducers, the smallest
class of transducers. Here Latteux shows the equivalence between several
families of transductions. For instance, they showed that the smallest fam-
ily of length-preserving transductions, closed under union, composition and
iteration (Rat(T)) coincides with the family T T <ωT , the family of trans-
ductions of the form fT1◦fT<ω

2
◦fT3 where T1, T2 and T3 are length-preserving

transducers. Their main result comes down to the representation theorem,
where the equivalences with the statement “T is in Rat(T)” are shown. This
thesis shows a similar result regarding the equivalence between functions.
Although we do not specifically consider length-preserving transducers in
this thesis, we show that transducers and H-closures are alike in specific
circumstances.

37

Size reduction of T<ω

In the general case, T<ω has an infinite amount of states. Dennis Dams et
al. developed an algorithm in [4] to reduce the size to possibly a finite-state
transducer. They iteratively approximate T≤n and at each approximation,
they compute the needed bisimulations. Eventually, the result of this it-
eration leads to a quotient of T<ω that is semantically equivalent to T<ω

but reduced in size. Their result shows a different representation for some
ω-iterated transducers. Our result is similar yet different because we also
showed a different representation for some ω-iterated transducers. However,
the difference is that we compare ω-iterated transducer with closures under
hypotheses. This research, therefore, bridges a connection between trans-
ducers and language closures, while [4] deepens the knowledge about the
transducer.

H-closure properties

Although [5] does not primarily focus on H-closures themselves, Doumane
et al. describe H-closures and their properties are proven. With these prop-
erties, Doumane et al. prove different results regarding the decidability and
complexity of Kleene algebras with hypotheses. H-closures are a vital part
of that contribution. Our contribution provides a new property of the H-
closures. We do not discuss Kleene algebras at all, but we provide some new
insight regarding Kleene algebras with hypotheses.

38

Chapter 7

Conclusion

Transducers and H-closures look pretty different at first glance. Transducers
are a form of generalized automata with output, and they induce a function
from words to languages. H-closures are language closures under a set of
hypotheses. We took both notions under the loop and showed that they are
the same under specific circumstances. The research led to two theorems
about how transducers and H-closures are related. The first of the two the-
orems regards the construction of hypotheses. If we are given a transducer
T , then we can modify T to a transducer Tc such that it may leave letters
untouched. With the modified transducer, we can determine the closure of
a language L with H = {Tc(w) ≤ w | w ∈ Σ∗} by applying fT<ω

c
to L.

This theorem is demonstrated in section 5.4.2. It shows we can always
create a set of hypotheses H such that the ω-iteration of a transducer and
the H-closure coincide. Therefore it allows for intuitive reasoning about
what the closure might be. However, such a ω-iteration of a transducer may
be an infinite state machine.

The second theorem assumes we are given a set of hypotheses H with
inequations of the form e ≤ w, where ei is a regular expression. With
this set, we can create a transducer such that applying fT<ω to a language
L, we get the closure of L with H. We can use the second theorem in
situations where we want to derive the H-closure given a set of hypotheses
of the form H = {ei ≤ w | w ∈ Σ∗ ∧ i ∈ N}. However, using the closure
itself is counterintuitive. Then it is helpful to know that we can construct a
transducer that can also calculate the H-closure.

Both theorems may provide new insights or methods to derive closures,
or we can use the theorems for something completely different. It is needless
to say that the theorems enlighten a deeper relation between the finite-state
transducers and the H-closures.

39

A possible continuation of the work done is to look at the iteration
of transducers beyond the ω-iteration. The step-by-step method described
in 4.3 could take more than a countable number of steps. After the limit
step, we can take another step. We can take steps for every ordinal number,
and by performing all those steps, we can determine the H-closure. Is it
possible to do the same with the iteration of transducers? Can we iterate
past ω iterations of a transducer T? What will this mean for the relationship
between the H-closures and transducers if we can iterate T more than ω
times? These questions could be investigated in future research on this
subject.

40

Bibliography

[1] Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation,
and compiling. 1: Parsing. Prentice-Hall, 1972.

[2] James A. Anderson. Automata theory with modern applications. Cam-
bridge University Press, 2006.

[3] Ernie Cohen. Hypotheses in kleene algebra. Technical report, 1994.

[4] Dennis Dams, Yassine Lakhnech, and Martin Steffen. Iterating trans-
ducers. J. Log. Algebraic Methods Program., 52-53:109–127, 2002.

[5] Amina Doumane, Denis Kuperberg, Damien Pous, and Pierre Pradic.
Kleene algebra with hypotheses. In FoSSaCS, volume 11425 of Lecture
Notes in Computer Science, pages 207–223. Springer, 2019.

[6] Calvin C. Elgot and Jorge E. Mezei. On relations defined by generalized
finite automata. IBM J. Res. Dev., 9(1):47–68, 1965.

[7] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

[8] Michel Latteux, David Simplot, and Alain Terlutte. Iterated length-
preserving rational transductions. In MFCS, volume 1450 of Lecture
Notes in Computer Science, pages 286–295. Springer, 1998.

[9] Damien Pous, Jurriaan Rot, and Jana Wagemaker. On tools for com-
pleteness of kleene algebra with hypotheses. In RAMiCS, volume 13027
of Lecture Notes in Computer Science, pages 378–395. Springer, 2021.

[10] Jeffrey O. Shallit. A Second Course in Formal Languages and Automata
Theory. Cambridge University Press, 2008.

41

	Introduction
	Preliminaries
	Regular languages and regular expressions
	Automata

	Transducers
	Definition and properties
	Transducer normal form
	Regularity preservation of transducers
	Composing transducers

	-iteration
	Non-regularity of -iteration

	H-closures
	What are H-closures?
	A helpful proof system
	Computation of the closure

	Relation between transducers and H-closures
	Hypotheses and transducers
	From a transducer to hypotheses
	From hypotheses to a transducer
	A comparison between transducers and H-closures
	H-closures are more flexible
	Transducers are more intuitive

	Related work
	Conclusion

