BACHELOR’S THESIS COMPUTING SCIENCE

s %
S 5
S Q
1, @7
MiNne €

RADBOUD UNIVERSITY NIJMEGEN

Towards a Formalization of L# in Coq

Author: First supervisor/assessor:
Sander Suverkropp Dr. Freek Wiedijk
51019051

Second assessor:
Dr. Jurriaan Rot

August 30, 2022

Abstract

In active automata learning, we learn the behaviour of an automata with
the help of a teacher that answers queries. L is an algorithm for active
automata learning of Mealy machines. It is based on a constructive form of
inequality called apartness. In this thesis, I formalized the preliminaries for
the L# algorithm in Coq. This includes partial Mealy machines, observation
trees, apartness and hypothesis construction.

Contents

I;l Introductiod

.1 Partial functions and Kleene
0.2 Mealy machinesl
2.3 Trees and functional simulationsl
.4 Apartnesd

}2 Mealy machines and apartnesé
sta.

3.2 Overviewl
21 Exampld.
3.3 Hypothesid
3.4 The L# algorithm

|4 Implementation in Cod

1.1 Coqg and stdpd
1.2 Mealy machines’
1.3 Observation trees and apartnessl
1.4 vaothesis]
1.4.1 Hypothesis constructiod
1.4.2 Hypothesis existencd
1.4.3 Hypothesis uniquenesé

b Related workl

b Conclusion4

10
10
11
12
15
16

19
19
19
20
21
23
24
25

27

28

33

Chapter 1

Introduction

Active automata learning was introduced in 1987 by Dana Angluin [2]. In
active automata learning, a learner learns a regular language L with the
help of a teacher. The learner can ask two types of queries to the teacher:
“Is this word part of L?” and “Is L the language accepted by automata H?”

Active automata learning is used in formal methods to analyse and ver-
ify systems without complete specifications [§, [16]. In these cases, active
automata learning is used to construct a behavioural model of the system.
Then, the model can be checked for certain properties.

In the same paper, Angluin also introduced the L* algorithm [2], which
can learn regular languages in polynomial time. Various improvements have
been made on this algorithm [[17, 12, 13, B, 9]. Isenberner showed that these
algorithms all fit into a single framework [[10].

Active automata learning can also be applied to many other types of
automata. For instance, L* has been adapted to different types of au-
tomata, like non-deterministic automata [3], mealy machines [19, 14], I/O
automata [[I]] and visibly pushdown automata [10].

Many of these algorithms are similar to L*, but with various improve-
ments. The L# algorithm [24], which learns Mealy machines, differs in that
tries to establish apartness of observations, instead of equivalence of obser-
vations. Apartness is a constructive form of inequality [L1]. In other words,
it tries to determine which inputs must lead us to different states, instead of
determining which inputs might lead to the same state. As its data structure
it only uses a partial Mealy machine called an observation tree. This makes
it simpler to implement than some other algorithms, while also achieving
the worst-case time complexity.

In this thesis I work towards a formalization of L# in the formal proof
management system Coq [21]. Coq allows us to state and prove theorems
and to export verified programs. It checks all proofs are valid, so we can
verify that all proofs are completely correct.

I have not formalized the algorithm itself, but I have formalized Mealy

machines and the observation tree and apartness relation that the algorithm
relies on. In addition, I have formalized the construction of a hypothesis.
This is a Mealy machine that is given to the teacher for an equivalence query.

In Chapter 2, I will give background information about Mealy machines,
observation trees and the apartness relation. Chapter 3 gives an overview of
the L# algorithm, and explains in detail how hypothesis construction works.
Chapter 4 discusses the formalization in Coq.

Appendix A contains a code listing of the formalization. The full code
can also be found at:
https://qitlab.science.ru.nl/ssuverkropp/bachelor-thesis/-/tree/cal83462d8
714edaf45d92dd115a4651896472b9

https://gitlab.science.ru.nl/ssuverkropp/bachelor-thesis/-/tree/ca183462d8714edaf45d92dd115a4651896472b9
https://gitlab.science.ru.nl/ssuverkropp/bachelor-thesis/-/tree/ca183462d8714edaf45d92dd115a4651896472b9

Chapter 2

Mealy machines and
apartness

A Mealy machine is a type of finite-state machine that produces outputs
when given inputs. As such, it represents a function from input words to
output words. The L# algorithm learns this function for some hidden Mealy
machine. It uses a partial Mealy machine to store the information that has
been gathered about the hidden Mealy machine thus far. In this chapter,
we define partial Mealy machines and their semantics, as well as functional
simulations which relate them and an apartness relation on states in Mealy
machines. This chapter is based on Section 2 of [24]. Some of the proofs are
taken from the appendix in the preprint version [23]. The names the lemmas
refer to the names of the corresponding lemma in the Coq formalization.

2.1 Partial functions and Kleene star

First, we need some definitions and notations around partial functions. A
partial function f: X — Y is defined as a set f C X x Y, where for every
x € X, there is at most one y € Y such that (z,y) € f. This forms a
function from some subset of X to Y.

If (z,y) € f, we say that f is defined on z, and write f(x)] and f(z) = y.
Ifforally €Y, (z,y) ¢ f, f is undefined on x, and we write f(x)T.

Partial functions from X to Y are partially ordered by C. For f,g: X —
Y, we say that f C g if f C g as sets. Equivalently, for all z € X,

f@)l = g(@)} Nf(z) = g(x).

The composition of partial functions f: X =Y andg:Y — Z,isgo f:
X — Z defined as follows. go f(x)| if f(z)) and g(f(x))J. Then we have
go f(x) =g(f(x)).

Given an alphabet X, we define X" to be the set of all words of length n
over that alphabet:
¥0 = {e}
Yt =Ja:0|a€ B AT EX]

Then X* is the set of all words of any length over X..

o=
1€N
We write a : o for the concatenation of a letter a € ¥ and a word o € ¥*,
and oy o9 for the concatenation of two words o1, 09 € X*.

2.2 Mealy machines

A Mealy machine [15] is a finite-state machine, similar to a deterministic
finite automaton (DFA). Where a DFA accepts certain input words based on
accepting and non-accepting states, a Mealy machine produces an output.
For each input letter, one output letter is generated, which is determined by
both the state and input. For the input and output, we fix finite alphabets
I and O.

Definition 2.2.1. A partial Mealy machine is a quadruple (Q,qo,d,\),
where

e () is a finite set representing states

e o € @ is the initial state

e 0:Q x I — (Q is a partial function giving the next state
e A: @ x I — O is a partial function giving the output

We require that § and A are defined on the same pairs, so §(q,i)] <=
Mg, i)

We use a superscript to differentiate between the components of different
Mealy machines, so QM refers to the set of states of the Mealy machine M.

Notation 2.2.2. We write ¢ o, q for 6(q,i) = ¢’ and \(q,i) = o.

A Mealy machine M is considered complete when 6 and AM are total
functions.

We can extend the transition functions § and A to apply them to input
words instead of input letters. For ¢ on words, we compose the d function
with itself once for each input letter. For A on words, we concatenate the
output letters from the transitions for each input letter. The semantics of
states in a Mealy machine is defined by how it transforms input words into
output words.

Definition 2.2.3. We define the function 6* : Q x I — @ inductively by

*(q,€) = q.
6*(¢g;a:0) = 6%(8(q,a),0).
We define the function A*Q) x I* — O* inductively by

A (g,e) =€

A (q,a:0) = Xq,a): X" (6(q,a),0).

Note that both of these definitions use the composition of partial functions,
so A* and 0* are undefined if one of the transitions is undefined. From now
on, we will omit the star, and also use 6 and A on words.

The semantics [¢] of a state ¢ is defined as a partial function from words
in I to words in O by

lal(o) = A(g, o).

Figure @ shows an example of a Mealy machine with states () =
{90,491, 92,93,q4}. This Mealy machine is not complete because there are
no outgoing transitions from ¢4, and because there is no outgoing transition
from g3 with input a.

For the initial state ¢y, the semantics over input word aba is as follows:

[90](aba) = A(qo, aba) = B A(q1,ba) = BB A(q1,a) = BBA

On the other hand, for ¢, the semantics over aba is not defined, since
the third letter would be

A(d(q1,ab),a) = N(gs,a)T .

We can define equivalence of states and Mealy machines if their semantics
are identical.

Definition 2.2.4. Two states ¢ and ¢’ of a Mealy machine are equivalent
if [¢] = [¢']. Two Mealy machines M and N are equivalent if their initial
states are equivalent. We write this as ¢ ~ ¢ for states and M ~ N for
Mealy machines.

In the example from Figure @, we can see that gy ~ ¢o.

2.3 Trees and functional simulations

In the L# algorithm, a Mealy machine is created that resembles a part of
a hidden Mealy machine. We can formalize this notion using functional
simulation. This is a function that maps the states of one Mealy machine
to the states of another, while preserving transitions between states.

Figure 2.1: An example of a Mealy machine over the sets I = {a,b} and

O ={A, B}

Definition 2.3.1. Let M and N be two Mealy machines. A functional
simulation f : M — N is a function f: QM — QY with

e f(@)")=q, and
. i/o . i/o .
o if g = g2 in M, then f(q1) — f(g2) in N.

With this definition of a functional simulation, we can now relate this to
the semantics of states in the Mealy machines.

Lemma 2.3.2 (func_sim sem). If f : Q™ — QV is a functional simulation,
then for all g € QM,

lal C [f ()]

Proof. For all words o € I*, if [¢](0)], we need to show that [f(q)](o)d,
and that ¢ = [f(¢)](c). This can be proven by structural induction
on the word. For the empty word, the semantics of a state are defined to
be e regardless of the state or Mealy machine. This makes the statement
trivially true.

For a non-empty word, say ¢ = ¢ : 7, we know that there must be a transition

q Z/—O> ¢'. The semantics is defined to be

lal(i:7) = o:['](7).

Because f is a functional simulation, that means f(q) —ZLO—> f(¢). Now we
can write

[f(@I :7) =0 [£(@)](7).

With the induction hypothesis stating that [¢](7) = [f(¢)](7), we can
conclude that [¢] C [f(q)]- O

Definition 2.3.3. A Mealy machine T is a tree if, for all states ¢, there is
exactly one input word access(q) such that §(gd?, access(q)) = g. It is called
an observation tree of a Mealy machine M if it is a tree and there exists a
functional simulation f: 7T — M.

In the L# algorithm, we will build an observation tree of the hidden
Mealy machine to store the information which we have accumulated.

2.4 Apartness

In the L# algorithm, we build a complete Mealy machine out of an obser-
vation tree to give to the teacher. In doing this, we unify some states. We
can never know for sure which states in the observation tree correspond to
the same state in the hidden Mealy machine. Instead, we use the notion of
apartness to look at the states that do not correspond to the same state in
the hidden Mealy machine.

Definition 2.4.1. Two states q; and ¢o are considered apart if there is some
input word o such that [¢1](0)), [g2] (o)) and [q1] (o) # [¢2] (). The word
o is then called the witness.

Notation 2.4.2. If two states ¢ and ¢’ are apart, we write ¢ # ¢’. If the
word o is the witness of this, we write o - q # ¢.

To illustrate this, we can apply it in Example @ The state g4 is not
apart from any state, since it has no outgoing transitions. The states ¢y and
q1 are apart: [go](a) = B, while [¢1](a) = A. This makes a a witness, so
we can write a - g # ¢/. With input b, both ¢g and ¢ give B as output, but
another transition with input b reveals that they are in fact apart.

Note that for states in a complete Mealy machine, q # ¢ iff ¢ % ¢.

We can now relate apartness to functional simulation, by showing that a
functional simulation can never map two states that are apart to two states
that are equivalent.

Lemma 2.4.3 (apart_func_sim). Let f : M — N be a functional simulation,
and q¢,¢ € QM. If q# ¢, then

flq) # f(d).

Proof. Let o be a witness of ¢ # ¢’._Then we know that [¢](c)!, [¢'](c))

and [4](0) # [¢](0). By Lemma P39, we know that [/(¢)](0) = [4](0)
and [f(¢")](c) = [¢'](c). Using this, we see that

[f(@)](o) = ldl (o) # [d](0) = [f(d)](0). -

When two state r, 7’ are apart, then we can show that a third state g
must be apart from at least one of them if its semantics are defined on a
witness for r # r’. This property is called weak cotransitivity.

Lemma 2.4.4 (weak cotrans). Let r,r',q € Q™, and o € I*. If o - r#1/,
and [q](o){, then r # q or v’ #q.

Proof. Because o is a witness of r # 1/, we know that [r](o)] and ['](c)],
and we assumed that [¢](c)}. If both [r](c) = [¢](c) and [*'] (o) = [q] (o),
then it follows that [r](c) = [r'](c). This contradicts our assumption, so

r# qorr #q. O

This lemma can be used to reveal apartness relations during learning.
For example, in figure @, we noted earlier that bb - gg # g1, but g4 is not
apart from any state. If we add transitions for the word bb to g4, g4 will be
apart from at least one of ¢y and g¢;.

Chapter 3

The L# algorithm

In automata learning, the goal is to learn the behaviour of a hidden Mealy
machine. The L# algorithm accomplishes this using an observation tree
to store the information that has been collected about the hidden Mealy
machine. In addition, it uses apartness to keep track of the states in the
observation tree that cannot be equivalent.

Most of this chapter is based on Section 3 of [24]. Some of the proofs
are from the appendix in the preprint version [23].

3.1 Framework

We use the MAT model, which stands for Minimally Adequate Teacher.
This model was first proposed by Angluin in her seminal paper [2]. In this
framework, a learner tries to learn the behaviour of a hidden automata with
the help of a teacher. The teacher answers to two types of queries. In the
original version for DFA’s, these were the membership query and equivalence
query.

The membership query indicates whether a word is accepted by the
hidden DFA. The equivalence query checks if a given DFA is equivalent to
the hidden DFA. If it isn’t, a word is returned that is accepted by one, but
not the other.

The L* algorithm introduced by Angluin in the same paper accomplished
this in a polynomial number of queries. It uses an observation table to store
the information from the membership queries.

The semantics of a Mealy machine does not correspond to some language,
but produces output words. To adapt the framework to this, the membership
query is replaced by an output query, which gives the output word given a
certain input word. Given a hidden Mealy machine M, the output query is
formally defined as follows:

OutputQuery(c): Returns the corresponding output word N (¢}, o).
The equivalence query checks if a given Mealy machine is equivalent to M.

10

If it isn’t, an input word is given for which H and M give different outputs.

EquivalenceQuery(H): Returns yes if H ~ M. Otherwise it returns
no, together with an input word o such that A(a}!,o) # ¢!, o).

In practice, there is no teacher. The behaviour that we want to learn
is from a system that is treated as a black box. That means we can give
inputs and receive outputs, but we cannot observe the inner workings of
the system. In this situation, the equivalence query can’t be answered with
complete certainty. Instead, the equivalence query is approximated. One
way to do this is using conformance testing [[7].

In conformance testing, we try to verify whether a system meets its
specifications. In this case the specifications are given in terms of the Mealy
machine. To do this, we generate a test suite. Ideally, we want the system to
pass the test suite if and only if it corresponds to the given Mealy machine.
This is impossible to do in general. However, with an additional assumption,
like a maximum size for the Mealy machine that the system corresponds to,
it is possible.

3.2 Overview

The algorithm builds an observation tree T recording the results from all
output queries. Initially T' consists of only the initial state ¢y and an empty
transition function. The observation tree is split into three parts.

e The basis S C @ consists of the states that must represent different
states in the hidden Mealy machine. All states in the basis are pairwise
apart. That is, for every pair of distinct states in the basis ¢, ¢’ € S, q #
q we know that ¢ # ¢'. Initially, the basis consists of only the initial
state, S = {qo}-

e The frontier FF C @ consists of the states that are not in the basis,
but can be reached in one transition from a state in the basis. That
is,

F={qeQ\S|3d €S icld(gi)=q}
These are the candidates to be added to the basis S.
o The remaining states @ \ (SU F)).

Because the states that are added to the basis are always chosen from
the frontier, the basis has the shape of a tree. More formally, all states in
the basis except for the initial state can be reached by a transition from
a state in the basis. Conversely, if for a state ¢ € @Q there is a transition
d(g,i) € S, ¢ must be in the basis.

Whenever we use an output query, the observation tree will be expanded
to include the results from the output query.

11

The algorithm consists of four rules, through , which applied
non-deterministically. These rules can be found in Section B.4. The algo-

rithm halts only when it gets a response of yes to an equivalence query.
The first rule adds states from the frontier to the basis. The second and
third rule expand the observation tree with output queries. The fourth rule
creates a hypothesis to use with the equivalence query. This is a complete
Mealy machine that is created from the basis of the observation tree. If the
answer is to the equivalence query is no, or if the hypothesis contradicts the
information already encoded in the observation tree, then output queries are
used to prevent the same hypothesis from being generated again.

Below is an example to illustrate how the algorithm works. The details
are given in Section B.4.

3.2.1 Example

Suppose we are learning the Mealy machine in Figure @

Figure 3.1: The hidden Mealy machine M

Initially, our observation tree will consist of only the initial state tg,
without any transitions. To indicate that the initial state is in the basis, it

is coloured red.
(il

Figure 3.2: T1: The initial observation tree

When there are no outgoing transitions from a state in the basis, we use
output queries to get them. This is Rule . The output queries a and b
will return_A and B respectively, allowing us to expand our observation tree
to Figure @ Blue is used to mark the states in the frontier.

All states in the basis have outgoing transitions, and the states in the
frontier aren’t apart from all the states in the basis, so now we can construct
a hypothesis for an equivalence query. A hypothesis is a Mealy machine
consisting of the states in the basis, that is partially consistent with the

12

Figure 3.3: T5: The observation tree after one step

information we have. Constructing a hypothesis is Rule . This will

look like Figure @
o

a/A

Figure 3.4: Hi: The hypothesis generated from 75

This hypothesis is completely consistent with the observation tree, so
we will use an equivalence query. Since this hypothesis is not equivalent
to the hidden Mealy machine, we get a counterexample, for example bba.
We always use an output query on the counterexample, which extends the
observation tree to Figure@

Figure 3.5: The observation tree after processing the equivalence query

Now tg and to are apart. This means the frontier state to is apart from
all states in the basis, so we can add it to the basis. This is Rule .
Afterwards, we can also add t3 to the basis, since it is now in the frontier,
and it is apart from both ¢y and ¢2. The next step is to use output queries
to obtain outgoing transitions form the basis again. This results in Figure

At this point, we could create another hypothesis. When we create a
hypothesis, every frontier state is mapped to one state in the basis from
which it is not apart. The transition going to that frontier state will then be
replaced by a transition going to that state in the basis. For example, if ¢;

13

Figure 3.6: The observation tree after one step

is mapped to tg, the transition ¢ a/—A> t1 will be replaced by tg a/—A> to as we
have seen in the first hypothesis. This time, there are multiple states in the
basis, and the frontier states are not yet apart from any of them. We will
use Lemma to extend the apartness relation until we can map every
frontier state onto just one basis state. This is Rule @ For example, to
find out whether a state is apart from t3 or ¢ty we can observe the output
with input a. If the output is A, it is apart from ¢3 and if the output is C
it is apart from tg. An output of B makes it apart from both. Doing this
gives us the observation tree in Figure B.7.

Figure 3.7: The observation tree when after output queries to distinguish
between ty and t3

Now t1 # t3, t4 # t3 and t5 # t3, while tg is apart from both ¢y and ¢».
Using more output queries we can also find apartness between ¢ # to and
ty # top and t5 # to. Then all states in the frontier are apart from all but
one state in the basis. We can map t; and t5 to fg, t4 to to, and tg to ts.
When we use this to construct another hypothesis, the result is identical to
the hidden Mealy machine. This hypothesis is accepted by the equivalence

query.

14

3.3 Hypothesis

In the fourth rule of L#, we create a Mealy machine on which we can use the
equivalence query using the observation tree. This is called a hypothesis.

We assume an observation tree 1" with basis S and frontier F'. The
apartness relation and access function always refer to the observation tree
T.

A hypothesis is constructed by building a Mealy machine whose states
are the basis of T'. Transitions from the basis to the frontier in T need to be
replaced by transitions to the basis in the hypothesis. To do this, we map
the states in the frontier to states in the basis. We require that transitions
in a hypothesis give the same output as their corresponding transitions in
T, but a hypothesis might give different outputs for longer input words.

Definition 3.3.1. A Mealy machine H contains the basisif QF = S, and for
all ¢ € S, 6" (qo,access(q)) = q. A hypothesis is a complete Mealy machine

H that contains the basis, such that if ¢ Z/—O> pin T, then ¢ Z/—O> p in H
and —p # p’ for some p’ € S. A hypothesis H is consistent if there exists
a functional simulation from 7" to H. An input word o is said to lead to
conflict if 6" (qo, o) # 67 (qo, 0).

The frontier F' consists of all states that can be reached from the basis
in one transition.

Definition 3.3.2. A state ¢ € F' is called:
e isolated, if for all ¢’ € S, q # ¢';
e identified, if ¢ # ¢ for all but one ¢’ € S.

With these definitions, we can say something about the existence and
uniqueness of a hypothesis.

Lemma 3.3.3 (hypothesis_existence, hypothesis_unique). If none of the states
in the frontier are isolated, there exists a hypothesis. If the basis is complete
and all states in the frontier are identified, the hypothesis is unique.

Proof. Because a hypothesis must contain the basis, Qf and qéq are fixed.
The only requirement for the output function is that for any transition in

the basis A7 (q,7) = o, we must have A\ (g,i) = 0. Such an output function

always exists, and if the basis is complete, this defines a unique function A¥.
Consider a relation R C (S x I) x S defined by

R:={((g,9),p) | 67 (g, i) V(6" (q,9) #) }.

For H to contain the basis, the transition function must map each pair
(g,7) in the basis for which 67 (q,4) is also in the basis, to 67 (g,). Since the

15

basis is pairwise apart, this requirement is fulfilled exactly when —=(6" (g,) #
67 (q,1)). For H to be a hypothesis, we must also have —(67 (¢, 1) # 67 (¢, 1))
for all other transitions. Thus, a transition function 6 makes H a hypoth-
esis if and only if it is some subset of R.

For every pair (¢,7) € S x I there are three cases:

1. d(q,7) € S: Because the basis is pairwise apart, this means that (g, 1)
is only related to (q, 7).

2. §(q,i) € F: The pair (q,1) is related to all states p € S from which
0(q,17) is not apart. If §(g,) is not isolated, there is at least one such
state, and if §(q,) is identified, there is exactly one such state.

3. 0(q,4)T: In this case (q,1) is related to all states in the basis.

If all pairs (q,i) are related to at least one state, some complete function
6" C R exists. In the first and third case, the pair (g,4) is always related
to some p € S. In the second case, the pair is related to some p € S if the
frontier state 6 (g, 4) is not isolated. Thus, a hypothesis exists if none of the
states in the frontier are isolated.

If all pairs (gq,i) are related to exactly one state, R forms a transition
function for 6. That means that the hypothesis is unique. In the first
case, the pair (g,4) is only related to 67 (g,i). In the second case, the pair
is related to exactly one state if 67 (q,4) is identified. In the third case, the
pair might be related to many states, but this case will not occur if the basis
is complete. So, if all states in the frontier are identified and the basis is
complete, the hypothesis is unique. O

This result informs us when output queries need to be used to gather
more information, and when a unique hypothesis can be constructed to pro-
vide in an equivalence query. While isolated states exist, no hypothesis
can be constructed, so we need to add them to the basis. When multiple
hypotheses can be constructed, output queries are used to extend the ob-
servation tree until only one is left. This avoids using costly equivalence
queries when output queries can be used as well.

3.4 The L" algorithm

The L# algorithm consists of four rules which are applied nondeterministi-
cally. The algorithm is shown in pseudocode in Algorithm m The rules are
as follows:

(R1) If a state in the frontier is isolated, that is to say, apart from all states
in the basis, it must represent a different state in M, so it is added to
the basis.

16

(R2) If for a certain state g in the basis there is no outgoing transition for
some input i, we can use an output query with access(q)i to define this
transition. This then also extends the frontier.

(R3) If a state ¢ in the frontier is not apart from two different states r and r’
in the basis, we can use rule (R3). If o F r# 1/, then we use an output
query with access(q)o. Lemma ensures that ¢ is now apart from
at least one of r and 7.

(R4) If none of the frontier states are isolated, and all outgoing transitions
from the basis are defined, we can create a hypothesis. Then we check
that it is consistent with the information in the observation tree. If
it isn’t, we use output queries to ensure that this hypothesis won’t
be generated in the future. If it is consistent, we use an equivalence

query.

If neither of rules and are applicable, rule must be applicable,

so the algorithm never blocks. This also means that rule (R3) is not strictly
necessary. However, by using and prioritizing rule (R3) above rule R4), the
algorithm becomes much faster.

Algorithm 1 The L# algorithm
procedure LSHARP

do q isolated for some q € F — > Rule
S« Su{q}
67 (q,4)t for some g € S,i € [— > Rule

OuUTPUTQUERY (access(q)1)
0 =(qg#) A=(q#7"), for some q € F,r,7’" € S,r #r'" — > Rule

o < witness of r # r’
OuTPUTQUERY (access(q)o)

] F has no isolated states, and the basis S is complete — > Rule
H < BUILDHYPOTHESIS
(b,0) - CHECKCONSISTENCY (H)
if b = yes then
(b, p) < EQUIVQUERY(H)
if b = yes then: return H
else: o < shortest prefix of p such that 67 (qo, o) # 67 (qo, o)
end if
PROCCOUNTER(H, o)
end do
end procedure

Algorithm m shows the L# algorithm in pseudocode. It is important
to note that whenever OUTPUTQUERY is used, the result will be used to

17

update the observation tree T'.

In the fourth rule of the algorithm, three subroutines are used: BUILD-
HyproTHESIS, CHECKCONSISTENCY and PROCCOUNTER. BUILDHYPOTH-
ESIS simply picks one of the possible hypotheses that are proven to exist by
Lemma . CHECKCONSISTENCY checks whether the given hypothesis is
consistent. If it isn’t, an input word is returned, for which the hypothesis
and observation tree give different outputs. PROCCOUNTER uses a number
of output queries to ensure that the given hypothesis will not be generated
again. The details of these subroutines can be found in the original paper
about L7 [24].

Since the algorithm only halts if the equivalence query returns yes, the
correctness of the algorithm is proven by showing it terminates. This in turn
can be done by showing that each of the rules expands .S, F' or # restricted
to S x F. These are all bounded by the size of the hidden Mealy machine.
Again, the details of this proof can be found in the original paper about
L7 [24).

18

Chapter 4

Implementation in Coq

I formalized everything from Chapter E and Section @ in Coq. In short,
this consists of partial Mealy machines, the observation trees and the con-
struction of the hypothesis. I also proved Lemma , which states the
hypothesis exists and is unique under certain circumstances. The entire for-
malization consists of 774 lines of Coq code. It can be found in Appendix
@. For this, I used the stdpp library [22].

4.1 Coq and stdpp

Coq is a formal proof assistant based on the Calculus of Inductive Construc-
tions. It allows one to state theorems and prove them using proof tactics.
These proof tactics manipulate the hypotheses and goals of the proof.

It can also be used to write algorithms as a functional programming
language. These algorithms must always be proven to terminate. We can
also prove other properties about these algorithms. Program extraction can
then be used to extract an algorithm with certain verified properties.

The stdpp library is a Coq library that is created to serve as an exten-
sion of the standard library [22]. It provides additional data structures like
finite maps, as well as lemmas about them. It uses typeclasses for com-
mon properties like finiteness or countability and overloaded notations like
monad notations.

4.2 Mealy machines

Mealy machines are formalized as a record consisting of a set of states, an
initial state and a transition function, together with a number of type class
instances. The transition function is represented with a gmap. This is a type
for finite maps from stdpp. This means that the map is defined on only
finitely many inputs.

19

Record mealy (input output : Type) " {Countable input} := Mealy {
Q :> Set;
egDecisionQ : EgDecision Q;
finiteQ : Finite Q;
qo : Q;
transition : gmap (Q * input) (Q * output)
}.

In order to define a gmap on Q * input, we need it to be countable. This is
why we need countability of the input and the states. Since gmap limits the
number of transitions to a finite number, we do not need to require that
the set of state and set of inputs are finite. The finite transition function
then makes sure that only a finite number of inputs and states are actually
used. For the input we do this, and we will only later require that there are
finitely many inputs.

Only requiring countability of the set of states instead of finiteness in this
definition caused problems with conflicting type classes later. The count-
ability of the set of states would then be derived from the finiteness in some
cases, while a separate definition would be used in other cases. This is why
finiteness of q is required here. To define this, the equality of states needs
to be decidable, so an instance of EqDecision Q is needed as well.

From the transition function, functions delta and lambda can be derived.
Their outputs are option Q and option output to represent the fact that they
are partial functions. Similarly, we define the semantics as follows.

Fixpoint sem (q : Q M) (is : list input) : option (list output) :=
match is with
| [1 => Some []

| i :: is => "(q',0) « transition !'! (qg,i); (o ::.) <$%$> sem q' is
end.

In this definition, monad notation is used to compose partial functions.

4.3 Observation trees and apartness

The definition for a functional simulation is a straightforward translation to
Coq. With the definition of a tree, the access function is included in the
definition.
Definition tree (T:mealy input output) (access:T->list input) : Prop :=

v (q:T),

repeat delta (g0 T) (access q) = Some g
/\ V is, repeat delta (q0 T) is = Some q -> is=access (.

The alternative was to have an existential quantifier in the definition. In
this version, the definition would look like this

Definition tree (T:mealy input output) : Prop :=
3 (access:T -> list input), V (q:T),
repeat delta (g0 T) (access q) = Some ¢
/\ V is, repeat delta (q0 T) is = Some q -> is=access (.

20

Figure 4.1: The example of an observation tree from Figure 1 in [24]

However, with this version the access function cannot be used in definitions
of types in set. This makes the definition of contains basis more complex.

To check whether the created definitions were correct, I formalized the
example from Figure 1 in [24], used to illustrate trees and functional simula-
tion. Figure shows this example. In this example, the colours represent
how the function f maps states from the left Mealy machine to the states
of the right Mealy machine.

I used new Inductive types for the input and output sets, and for the
states of the Mealy machines. To prove that these types are countable or
finite, I used bijections with fin types. fin n is a type with n instances,
for which proofs of countability and finiteness are provided in stdpp. The
proofs that this is an observation tree are straightforward, but slow in terms
of processing time. On my machine, it took 12 seconds to process the proof
that this is a tree. This is mainly due to the need to show that the provided
access function gives the only input word leading to a specific state. To
prove this, every input word that ends up in some state is checked for every
state.

To define apartness in Coq, I first defined what a witness is, and then
derived the definition for apartness from that.

Definition witness : list input -> M -> M -> Prop := A is ql g2,
is Some (sem gl is) /\

is Some (sem g2 is) /\
sem gl is <> sem @2 is.

Definition state apart : M -> M -> Prop := A q p,
i is, witness is q p.

Lemmas and and their proofs could be translated to Coq in

a very straightforward manner.

4.4 Hypothesis

To make the definitions and prove the lemmas detailed in Section @, we
need to work in a context with an observation tree with a basis and frontier.

21

To do this, I used a Section, with various context statements corresponding
to the assumptions in Section B.3.

Context "{Finite input, EqDecision output, Inhabited output}.

Context (T:mealy input output) “{tree T access T}.

Context (basis:T -> bool) (basis q0 : basis (g0 T)).

Context (basis apart: V q p, basis q -> basis p -> = (q # p) -> q = p).
Context (basis tree: V q p i, delta T q i = Some p -> basis p -> basis q).

On the input type, we require a typeclass instance of Finite so we can go
through all inputs. For the output type, we require typeclass instances of
EqDecision and Inhabited. The EqDecision output instance is needed to ensure
that it is decidable whether a transition should be in the basis or not. The
Inhabited output instance is needed to construct a hypothesis when some
basis states are missing outgoing transitions.

Next, we have some assumptions about the basis. These are that the
initial state is part of the basis, that the basis is pairwise apart, and that the
basis has the shape of a tree. Without the last assumption, a state might
be part of the basis, even though it can only be reached through states that
are not part of the basis. Then the hypothesis constructed in the proof of
Lemma B.3.3 would not necessarily contain the basis.

To define a hypothesis, we need a type with all the states in the basis of
T. For this purpose we use a sigma type HS. Inhabitants of this type consist
of a pair of a state ¢ and a proof that ¢ is in the basis. Note that qre is
notation from stdpp for exist q e.

Definition HS := { q:T | basis q}.

Instead of defining a hypothesis in terms of Mealy machines, I defined
it in terms of a transition function. This makes the definitions simpler,
since the transition function is the only part of the hypothesis that is not
predetermined by the observation tree in all cases.

Section hypothesis.
Context (h:gmap (HS * input) (HS * output)).
Definition Hy : mealy input output :=
Mealy HS _ HS_fin ((q0® T) r basis_q0@) h.

Definition contains basis : Prop :=
Y (q:T) (e: basis q),
repeat delta (g0 Hy) (access T gq) = Some (q t e).

Definition hypothesis :=
contains basis
/\ complete Hy
/\'Y (q p:T) (i:input) (o:output) (e:basis q),
transition T !'! (q,i) = Some (p,o0) ->
3 (p': Hy), transition Hy !! (qre:Hy,i) = Some (p',0) /\ —-p# p'.

Definition consistent := hypothesis A 3 f : T->Hy, func_sim f.

Definition leads to conflict "{contains basis} : list input -> Prop :=

22

A is,
iqgaqle,
repeat delta (g0 Hy) is = Some (g t e)
/\ repeat delta (g0 T) is = Some ql
/\ q # ql.
End hypothesis.

4.4.1 Hypothesis construction

Lemma is translated into two parts in the Coq code: the lemmas
hypothesis existence and hypothesis unique. Before the proof of these lem-
mas can even start, a construction of a hypothesis is needed. This _con-
struction largely follows the construction given in the proof of Lemma .
Because of the way a hypothesis is defined in the Coq code, only a transi-
tion function is needed here. This transition function in turn is based on a
filtered list called h list using the list to map function.

Let transition_in basis : ((HS * input) * HS) -> Prop :
A '(qlr , 1, g2t),
delta T gl i = Some g2 /\ basis q2.

Let new transition fits : ((HS * input) * HS) -> Prop :
A '(qlr , i, g2r),
match delta T gl i with
| None => True
| Some ql' => - (ql' # q2) A frontier ql'
end.

Definition find output : HS -> input -> output
:= A q i, match lambda T ('q) i with
| Some o => o
| None => inhabitant
end.

Definition add output:
((HS * input) * HS) -> ((HS * input) * (HS * output))
= A '(q,1i,p), ((g, 1), (p, find output q 1i)).

Let h list := add output <$> (filter
(A x, transition in basis x v new transition fits x)
(enum (HS * input * HS))).

The transition in basis function is for transitions ¢ ﬂ q where ¢,d’ €
S. Turning this into a separate category makes the proofs simpler, since
transitions within the basis are usually already a case that has to be handled
separately.

The new transition fits function is very similar to the constraint in the
proof of Lemma . However, it excludes transitions within the basis that
are already captured by transition_in basis by requiring that (g,) is in the
frontier. This is done to avoid duplicates and simplifies later reasoning.

The add_output function takes a triple and adds a fitting output to it. In
case there is no outgoing transition, the inhabitant provided by the Inhabited
typeclass is used.

23

A great difficulty of this definition is that it implicitly requires that the
functions transition_in basis and new transition fits are decidable. For
the former, this is relatively straightforward. For the latter, however, we
need to show that apartness is decidable. Because there are infinitely many
input words that could function as a witness for apartness, this is not easily
derived. Using the access function, we can find a maximum length for input
words for which the semantics of a state can be defined in a tree. This length
is defined below by max _access len. The lemma tree max_len prove that this
is the maximum length for which the semantics of a state can be defined.

Definition max access len (T:mealy input output)
(T-> list input) -> nat :=
A access, list max (map (length o access) (enum T)).

Lemma rev _tree max len {T:mealy input output} (access:T -> list input)
(tree®: tree T access)
YV (is:list input) (q:T),
is Some (sem g is) -> length is = (max_access len T access).

Now we can enumerate all input words shorter than this length. Deciding
whether two states are apart then amounts to deciding whether there is a
witness in that list of input words. In Coq, that means destructing an
expression as follows.
destruct

(existsb
(A is:list input, bool decide (witness is x y))

(lists shorter _than (max access len T access T))
) eqgn:E.

In this expression, existsb is a boolean expression indicating whether there
exists an element in a list fulfilling a requirement.

4.4.2 Hypothesis existence
The first part of Lemma , which states a hypothesis exists if no states

in the frontier are isolated, is encoded in Coq as follows:

Theorem hypothesis existence :
(V(q:T) (Fq:frontier q), —isolated q Fq) -> (3 h, hypothesis h).

To prove this, we need to show three things: that h contains the basis,

that it is complete, and that given a transition ¢ l/—o> pin T, h has a transition
from (g,) to some state that is not apart from p.
To show that h contains the basis, we first show that h preserves all
transitions that are in the basis.
Lemma h_preserves transition :
V (g ql: T) (e:basis q) (el:basis ql) (i:input) (o:output),

transition T !! (g, i) = Some (qgl, o) ->
h 'l ((gqre):HS, i) = Some ((ql t el):HS, o).

24

With this lemma, we can show that h contains the basis with structural
induction on the input word access(q). This uses induction on the end of
the word, using ref ind.

Next, we show that h is complete. For a given pair of a state and an
input ¢, i, we have three different cases to consider: the case where §7 (¢,)1,
the case where §7 (¢,) is in the basis, and the case where 67 (q,1) is in the
frontier.

For the last part, I have defined another lemma: h_preserves output. This
lemma states that if a transition exists in T', the output of the corresponding
transition in h is the same.

Lemma h _preserves output :
(V(q:T) (Fq:frontier q), —isolated q Fq) ->

(Vg e i, is Some (transition T !! (q,1i)) ->
lambda T q i = lambda (Hy h) (qre) 1i).

With this lemma, we can show that h is a hypothesis by making a case
distinction on whether the result of the transition is in the basis or in the
frontier.

4.4.3 Hypothesis uniqueness

The second part of Lemma , which states the hypothesis is unique if all
frontier states are identified and the basis is complete, is encoded in Coq as
follows:

Theorem hypothesis unique (BC:basis complete) (FI:frontier identified):
3 h, V ho, hypothesis h0 -> h=ho.

In order to prove this, we first show that h list can be interpreted as a
function. This means that for any two pairs (x1,y1) and (x2,y2) in h_list,
T1 = 9 implies y; = yo.

Lemma h_list functional : basis_complete -> frontier_identified ->
vV x yl y2, (x, yl) € h list -> (x, y2) € h_list -> yl = y2.

With the help of this lemma, we can show that every pair of an input
and state only occur once as the first part of a pair in h_list.

Lemma NoDup h list :
basis complete -> frontier identified -> NoDup h list.*1.

This allows us to use the lemma elem of list to map, which states that
a transition is in the gmap h if it is in h list. In order to prove the lemma
hypothesis unique, we have to prove that the transitions of any hypothesis
ho must be equal to that of h. Given an input ¢ and a state ¢, we distinguish
two cases: 07 (q,4) is in the basis, or 7 (¢,4) is in the frontier. In the first
case, we use the lemma h preserves transition to show that the transition in
h is identical to the transition in 7', and then we show that the transition in

25

ho must be identical to that too. In the second case, we can use the lemma
elem of_list to_map to show that h sends (g,) to the only state in the basis
that is not apart from 67(g,i). The state that he sends (g,i) must be the
same state, since all states in the frontier are identified.

26

Chapter 5

Related work

As far as I could find, no work has previously been done on formalizing
active automata learning algorithms. Mealy machines have been formalized
in Coq [6, 4], but I could not find an implementation of Partial Mealy
machines in Coq. Mealy machines have also been formalized in Isabelle,
another proof assistant [18].

Apart from L#, several other algorithms for active automata learning
of Mealy machines exist. First of all, L* has been adapted to Mealy ma-
chines [[19, [14]. The L* algorithm uses an observation table as its main data
structure. In this table, every cell corresponds to some input word. Every
row represents a prefix, and every column represents a suffix. The prefixes
can be compared to states in the basis and frontier, while the suffixes are
similar to witnesses of apartness in L#.

Secondly, TTT can also be adapted to Mealy machines [10]. The TTT
algorithm has a better theoretical complexity than L*, and performs better
in practice. The TTT algorithm uses a binary discrimination tree to keep
track of the input suffixes used to discriminate between states. This allows
it to use fewer output queries than L* adaptions to discriminate between
states.

Lastly, [20] describes an algorithm using an observation tree like L.
However, it does not prove correctness, and does not give an exact complex-
ity. In a practical evaluation, it compares favourably to adaptions of L* and
TTT.

The algorithm formalized in this thesis, L#, is competitive with TTT
and adaptions of L*, and when adaptive distinguishing sequences are used,
it is the fastest of these [24].

27

Chapter 6

Conclusions

We have discussed Mealy machines and the L7 algorithm. We have formal-
ized partial Mealy machines, observation trees and apartness in Coq.

In addition, we have formalized the construction of a hypothesis, and
we have proved that this results in a hypothesis and that it is unique if the
basis is complete and the frontier is identified.

In hindsight, it might have been better to prove the existence and unique-
ness of a mapping from the frontier to the basis with certain properties,
instead of proving that the entire transition function exists and is unique.
Then we could separately prove that this mapping from the frontier to the
basis can be used to construct a hypothesis. This would have meant that the
proofs for existence and uniqueness of the hypothesis would not have to deal
with transitions within the basis, which are identical for any hypothesis.

Future work could use the work in this thesis to formalize the L# al-
gorithm itself. One way to define a teacher with an output query and an
equivalence query is shown below. With this definition, there only needs to
be a proof that the queries correspond to some hidden Mealy machine. This
way, we can use this fact to prove that the algorithm terminates in Coq,
but when we extract the program, we can also run it with other teachers.
Record teacher := Teacher {

outputQuery : list input -> list output;
equivQuery : Y (H:mealy input output) " (complete H), equivAns;
teacherConsistent : 3 (M:mealy input output),

complete M

/\ Y is : list input, Some (outputQuery is) = sem (g0 M) is

/\ V (H:mealy input output) (CH: complete H),

match (equivQuery H CH) with
| equiv => mealy equiv M H

| nonEquiv is => sem (0@ M) <> sem (qO H)
end

The main difficulties of formalizing the L# algorithm will probably con-
sist of the non-determinism and the termination. One way of handling the
non-determinism is to make a deterministic variant, by for example deciding

28

a rule with a lower number always goes first. Proving termination of the
main algorithm and of the subroutines will then remain.

29

Bibliography

1]

Fides Aarts and Frits Vaandrager. Learning i/o automata. In Inter-
national Conference on Concurrency Theory, pages 71-85. Springer,
2010.

Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87-106, 1987.

Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker.
Angluin-style learning of nfa. In IJCAI volume 9, pages 1004—1009,
2009.

Fritjof Bornebusch. Cog meets CAaSH: proposing a hardware design
synthesis flow that combines proof assistants with functional hardware
description languages. PhD thesis, Universitdt Bremen, 2021.

Ana Cavalcanti and Dennis Dams. FM 2009: Formal Methods: Second
World Congress, Eindhoven, The Netherlands, November 2-6, 2009,
Proceedings, volume 5850. Springer, 2009.

Solange Coupet-Grimal and Line Jakubiec. Hardware verification using
co-induction in coq. In Yves Bertot, Gilles Dowek, Laurent Théry,
André Hirschowitz, and Christine Paulin, editors, Theorem Proving in
Higher Order Logics, pages 91-108, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

Falk Howar and Bernhard Steffen. Active Automata Learning in Prac-
tice, pages 123-148. Springer International Publishing, Cham, 2018.

Hardi Hungar and Bernhard Steffen. Behavior-based model construc-
tion. International Journal on Software Tools for Technology Transfer,
6(1):4-14, Jul 2004.

Muhammad Naeem Irfan, Catherine Oriat, and Roland Groz. Angluin
style finite state machine inference with non-optimal counterexamples.
In Proceedings of the First International Workshop on Model Inference
In Testing, pages 11-19, 2010.

30

[10]

[11]

[12]

[13]

[14]

[19]

[20]

[21]

22]

Malte Isberner. Foundations of active automata learning: an algorith-
mic perspective. PhD thesis, 2015.

Bart Jacobs and Herman Geuvers. Relating apartness and bisimulation.
Logical Methods in Computer Science, 17, 2021.

Michael J Kearns and Umesh Vazirani. An introduction to computa-
tional learning theory. MIT press, 1994.

O. Maler and A. Pnueli. On the learnability of infinitary regular sets.
Information and Computation, 118(2):316-326, 1995.

T. Margaria, O. Niese, H. Raffelt, and B. Steffen. Efficient test-based
model generation for legacy reactive systems. In Proceedings. Ninth
IEEFE International High-Level Design Validation and Test Workshop
(IEEE Cat. No.04EX940), pages 95-100, 2004.

George H. Mealy. A method for synthesizing sequential circuits. The
Bell System Technical Journal, 34(5):1045-1079, 1955.

Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black Boz
Checking, pages 225—-240. Springer US, Boston, MA, 1999.

Ronald L Rivest and Robert E Schapire. Inference of finite automata
using homing sequences. Information and Computation, 103(2):299—
347, 1993.

Robert Sachtleben, Robert M. Hierons, Wen-ling Huang, and Jan Pe-
leska. A mechanised proof of an adaptive state counting algorithm. In
Christophe Gaston, Nikolai Kosmatov, and Pascale Le Gall, editors,
Testing Software and Systems, pages 176-193, Cham, 2019. Springer
International Publishing.

Muzammil Shahbaz and Roland Groz. Inferring mealy machines. In
Ana Cavalcanti and Dennis R. Dams, editors, F'M 2009: Formal Meth-
ods, pages 207-222, Berlin, Heidelberg, 2009. Springer Berlin Heidel-
berg.

Michal Soucha and Kirill Bogdanov. Observation Tree Approach: Ac-
tive Learning Relying on Testing. The Computer Journal, 63(9):1298—
1310, 07 2019.

The Coq Development Team. The Coq Reference Manual, Release
8.15.2. May 2022.

The Iris Development Team. Coq-std++. URL: https://gitlab.mpi-sws
.org/iris/stdpp/ (accessed on August 25 2022).

31

https://gitlab.mpi-sws.org/iris/stdpp/
https://gitlab.mpi-sws.org/iris/stdpp/

[23] Frits Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten Wif3-

[24]

mann. A new approach for active automata learning based on apartness.
arXiv preprint arXiv:2107.05419, 2021.

Frits Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten Wif3-
mann. A new approach for active automata learning based on apartness.
In International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 223-243. Springer, 2022.

32

Appendix A

Coq code

Below is the Coq code of the formalization. Note that the lemma numbers
in the comments refer to the numbering in [ll. It can also be found at:
https://gitlab.science.ru.nl/ssuverkropp/bachelor-thesis/-/tree/cal83462d8
714edaf45d92dd115a4651896472b9

From stdpp Require Import fin maps gmap finite fin option.

Record mealy (input output : Type) " {Countable input} := Mealy {
Q :> Set;
egDecisionQ : EgDecision Q;
finiteQ : Finite Q;

qo : Q;
transition : gmap (Q * input) (Q * output)
}.
Arguments Q { P
Arguments transition { .
Arguments g0 { =} .
Arguments Mealy { =}

Section instances.
Context “{Countable input} {output:Type} {M:mealy input output}.
Global Instance eqDecQ : EgDecision M := eqDecisionQ input output M.
Global Instance finQ : Finite M := finiteQ input output M.

End instances.

Definition complete {input output:Type} "{Countable input} (M : mealy
< input output) :=
Y (9q:Q M) (i:input), is Some (transition !! (q,1i)).

Section semantics.
Context "{Countable input} {output:Type}.
Context {M : mealy input output}.

Definition lambda : Q M -> input -> option output := A q i,
snd <$> (transition !! (q, 1)).

Definition delta : Q M -> input -> option (Q M) := A q i,
fst <$> (transition !! (q, 1)).

Fixpoint repeat delta (q:Q M) (is:list input) : option (Q M) :=
match is with

33

https://gitlab.science.ru.nl/ssuverkropp/bachelor-thesis/-/tree/ca183462d8714edaf45d92dd115a4651896472b9
https://gitlab.science.ru.nl/ssuverkropp/bachelor-thesis/-/tree/ca183462d8714edaf45d92dd115a4651896472b9

| nil => Some q
| i::is' => q' « delta q i; repeat delta q' is'
end.

Lemma repeat delta app Some : V isl is2 q q',
repeat delta q isl = Some q' ->
repeat delta q' is2 = repeat delta q (isl ++ is2).
Proof.
induction isl.
- intros. inversion HO. done.
- intros is2 q q'. simpl. destruct (delta q a). 2:done. apply IHisl.
Qed.

Lemma repeat delta app None : V isl is2 q,

repeat delta q isl = None -> repeat delta q (isl ++ is2) = None.
Proof.
induction isl.
- done.

- simpl. intros is2 q. destruct (delta q a). 2:done. apply IHisl.
Qed.

Fixpoint sem (q : Q M) (is : list input) : option (list output) :=
match is with
| [1 => Some []
| 1 :: is == '(q',0) « transition !! (qg,i); (o ::.) <$> sem q' is
end.

Lemma is Some repeat delta sem :
Y is g, is Some (repeat delta q is) o is Some (sem q is).
Proof.
split; revert q; induction is; (try done); intros; simpl;
[destruct HO as (ql & HO) | destruct HO as (os & HO)1; simpl in HO;
[unfold delta in HO | unfold delta]; destruct (transition !! (q, a));
try done; simpl; destruct p; simpl in HO.
- apply fmap_is Some. apply IHis. done.
- simpl. apply IHis. elim fmap_is Some with (cons o) (sem gl is).
intros. apply Hl. done.

Qed.
Lemma sem length :
YV is q os,
sem q is = Some os -> length is = length os.
Proof.

induction is; intros.

- inversion HO. tauto.

- simpl in HO. destruct (transition !! (qg,a)); [..|done].
destruct p, os. simpl in HO. destruct (sem ql is); done.
simpl. rewrite IHis with ql os; [tauto]|].
destruct (sem gl is) eqn:S.
all: simpl in HO; rewrite S in HO; inversion HO; tauto.

Qed.
End semantics.

Section functional simulation.
Context " {Countable input} {output:Type}.

Arguments mealy { }.
Definition state equiv {M N:mealy input output} : Q M -> Q N -> Prop :=
A gl g2, V is, sem gl is = sem g2 is.

Definition mealy equiv : relation (mealy input output) := A M N,
state_equiv (g0 M) (g@ N).

34

Definition func_sim {M N:mealy input output} : (M -> N) -> Prop :=
AT,
f (g0 M) = g0 N /\
¥V ql g2 i o, transition !! (ql,i) = Some (g2, o) ->
transition !! (f ql,i) = Some (f g2, o).

Definition partial function inclusion {A B}:
relation (A -> option B) := A f g,
Vab, fa=Someb ->ga= Somehb.

(*lemma 2.4%*)

Lemma func_sim sem : V {M N:mealy input output} (f:M -> N),
func_sim f -> V q:M, partial function inclusion (sem q) (sem (f q)).

Proof.

unfold partial function inclusion. intros M N f FS q is. revert q.

induction is; try done. intros g os S. simpl in *.

destruct (transition !! (g, a)) eqn:T. 2: inversion S.

destruct p. destruct FS as [FS1 FS2]. rewrite FS2 with gq ql a o.

2:done. simpl in *. destruct (sem gl is) eqn:D; inversion S.

rewrite IHis with gl 1; done.

Qed.

(* Trees *)
Definition tree (T:mealy input output) (access:T->list input) : Prop :=
v (q:T),
repeat delta (g0 T) (access q) = Some q
/\ V is, repeat _delta (g0 T) is = Some q -> is=access (.

Definition observation tree (T M:mealy input output) : Prop :=
(3 ac, tree T ac) /\ 3f: T->M, func_sim f.

Definition max access len (T:mealy input output)
(T-> list input) -> nat :=
A access, list max (map (length o access) (enum T)).

Lemma tree max len {T:mealy input output} (access : T -> list input)
— " (tree T access)
YV (is:list input) (q:T),
(max_access_len T access) < length is -> - is Some (sem q is).
Proof.
intros. intro. apply is Some repeat delta sem in H1.
rewrite repeat delta app Some with (access q) is (g0 T) q in HI1;
[| apply tree0].
destruct Hl as (q' & H1l). destruct tree® with gq'. apply H3 in H1.
apply Nat.lt 1t add 1 with
(list max (map (length - access) (enum T))) (length is) (length
— (access q)) in HO.
rewrite <- app length in HO. rewrite H1 in HO.
apply list max 1t with
(map (length - access) (enum T)) (length (access q')) in HO.
revert HO. apply Exists not Forall. apply Exists exists.
exists ((length o access) q'). split.
- apply in_map. apply elem of list In. apply elem of enum.
- simpl. nia.
- intro. apply map_eq nil in H5. apply elem of nil with q.
rewrite <- H5. apply elem of enum.
Qed.

Lemma rev_tree max len {T:mealy input output} (access:T -> list input)

— (tree0®: tree T access)
YV (is:1list input) (q:T),

35

is Some (sem g is) -> length is = (max_access len T access).
Proof.
intros. apply Nat.le ngt. intro.
elim tree max len with access is q; done.
Qed.

End functional simulation.
Notation " x ~= y " := (state equiv x y) (at level 70, no associativity).

Module tree example.

Inductive inp := alb.

Inductive out := A|B|C.

Inductive Tstates := tO|tl|t2|t3|t4|t5.

Inductive Mstates := mO|ml|m2.

Definition fin2inp : nat -> inp := A x, match x with
| 0 =>a
| =>b
end.

Definition inp2fin : inp -> nat := A x, match x with
| a=>0
| b =>1
end.

Local Instance EgDecInp: EqDecision inp. solve decision. Qed.

Local Instance CountableInp : Countable inp.

Proof.

apply inj countable' with inp2fin fin2inp. intro. destruct x; done.
Defined.

Local Instance EgDecisionTstates : EgDecision Tstates.

solve decision. Qed.

Local Instance EgDecisionMstates : EgDecision Mstates.

solve decision. Qed.

Definition fin2Tstates : (fin 6) -> Tstates := A n,
match n return Tstates with
| 0%fin => t0
| 1%fin => t1
| 2%fin => t2
| 3%fin => t3
| 4%fin => t4
| =>t5
end.
Definition fin2Mstates : fin 3 -> Mstates := A n,

match n return Mstates with
| 0%fin => mO
| 1%fin => ml

| == m2
end.
Local Instance FiniteTstates : Finite Tstates.
Proof.
apply surjective finite with fin2Tstates. unfold Surj. intro.
destruct y;

[exists 0%fin]|
exists 1%fin|
exists 2%fin|
exists 3%fin|
exists 4%fin|
exists 5%fin].
all:done.
Qed.
Local Instance FiniteMstates : Finite Mstates.
Proof.
apply surjective finite with fin2Mstates. unfold Surj. intro.
destruct y; [exists 0%fin|exists 1%fin|exists 2%fin]; done.

36

Qed.

Definition T tr : gmap (Tstates * inp) (Tstates * out) :=
[(tO a):=(tl, A)l>
(<[(tO, b):=(t2, B)]>
(<[(t2, a):=(t5, A)]>
(<[(t2, b):=(t3, B)]>
(<[(t3 a) =(t4, O)]>
2)))).
Definition M _tr : gmap (Mstates * inp) (Mstates * out) :=
<[(m0, a):=(md, A)]l>
(<[(mO, b):=(ml, B)]>
(<[(ml, a):=(mO, A)]>
(<[(ml, b):=(m2, B)]>
(<[(m2 a):=(ml, C)1>
(<[(m2, b):=(m2, B)]>
@)))))-
Definition T : mealy inp out := Mealy Tstates t0 T tr.
Definition M : mealy inp out := Mealy Mstates = mO M tr.

Definition f : T -> M := A t,
match t with
| tO|tl|t5 => m@

| t2]|t4 => ml
| t3 => m2
end.
Lemma f funcsim : func sim f.
Proof.
unfold func_sim. split. done. intros. simpl in *. unfold T tr in H.
unfold M tr. destruct ql, i; simpl map; inversion H; done.

Qed.

Definition access T :
match t with

| t0 => nil
tl => cons a nil
t2 => cons b nil
t3 => cons b (cons b nil)
t4 => cons b (cons b (cons a nil))
t5 => cons b (cons a nil)

T -> list inp := A t,

|
|
|
|
|
end.
Lemma T _tree :

Proof.
unfold tree.

tree T access T.

intros. split.

destruct q; simpl; unfold delta; simpl; unfold T tr;
simplify map eq; tauto.
destruct q; intros is H; simpl in H.

all: repeat (destruct is; simpl in H; try (inversion H; tauto);
destruct i; unfold delta in H; simpl in H; unfold T tr in H;
simpl map; simpl in H).

Qed.

Lemma T_obs_tree :
Proof.

unfold observation tree. split. exists access T. apply T tree.
exists f. apply f funcsim.

Qed.

observation_tree T M.

End tree example.

Section apartness.

Context

37

"{Countable input} "{EqDecision output} {M:mealy input output}.

Definition witness : list input -> M -> M -> Prop := A is ql g2,
is Some (sem gl is) /\
is Some (sem g2 is) /\
sem gl is <> sem @2 is.

Definition state apart : M -> M -> Prop := A q p,
3 is, witness is q p.

Global Instance witness dec :

YV (is:1list input) (ql g2:M), Decision (witness is ql g2).
Proof.

solve decision.

Qed.

Lemma apart irreflexive : VYq, — (state apart q q).
Proof.
intro. unfold state apart. intro. destruct HO.
destruct HO as (& & HO). destruct HO. tauto.
Qed.

End apartness.

Notation " p # q " := (state_apart p q) (at level 60, no associativity).

Section apartness lemmas.
Context "“{Countable input, EgDecision output}.
(* lemma 2.7 *)
Lemma apart_func_sim :
V {T M:mealy input output} (f:T-
func sim f ->q #p -> - f q ~=
Proof.
intros TM f g p FS A. unfold state apart in A.
destruct A as (is & ((outl & S1) & (out2 & S2) & N)).
unfold not, state equiv. intro HO. apply N. rewrite S1. rewrite S2.
rewrite <- func sim sem with f q is outl.
rewrite <- func_sim sem with f p is out2. all: done.
Qed.

(* lemma 2.8 *)
Lemma weak cotransitivity :
Y (M : mealy input output) (r r' q : M) (is : list input),
(witness is r r') /\ (is _Some (sem q is)) -> (q # r) \/ (q # r').
Proof.
intros. destruct HO as [W E]. destruct W as (H1 & H2 & N).
inversion E. destruct H1 as (outl & S1). destruct H2 as (out2 & S2).
destruct (decide (x = outl)) as [->|]; [right | left];
unfold state apart; exists is; repeat split; try done.
- rewrite HO. rewrite <- S1. tauto.
- rewrite HO. rewrite S1. intro. inversion Hl. done.
Qed.
End apartness lemmas.

Arguments transition { =}
Arguments lambda { }

Arguments delta { }
Section hypothesis construction.
Context "{Finite input, EqDecision output, Inhabited output}.
Context (T:mealy input output) "{tree T access T}.
Context (basis:T -> bool) (basis g0 : basis (q0 T)).
Context (basis apart: V q p, basis q -> basis p -> - (q # p) -> q = p).

38

Context (basis tree: V q p i, delta T q i = Some p -> basis p -> basis

Definition HS := { q:T | basis q}.
Instance HS fin : Finite HS.
Proof.

apply sig finite. solve decision. apply finiteQ.

Qed.

Lemma HS eq : V(q q':T) (e:basis q) (e':basis q'),
(qre:HS) = (q're':HS) « q =q"'.

Proof.

intros. split. intros. inversion H1l. done.

intro. apply sig eq pi. intro. apply Is true pi. done.

Qed.

Section hypothesis.
Context (h:gmap (HS * input) (HS * output)).
Definition Hy : mealy input output :=
Mealy HS _ HS_fin ((q@ T) r basis_q0) h.

Definition contains basis : Prop :=
vV (q:T) (e: basis q),
repeat delta (g0 Hy) (access T q) = Some (q t e).

Definition hypothesis :=
contains basis
/\ complete Hy
/\'Y (q p:T) (i:input) (o:output) (e:basis q),
transition T !! (g,i) = Some (p,0) ->

3 (p': Hy), transition Hy !! (qre:Hy,i) = Some (p',0) /\ —-p# p'.

Definition consistent := hypothesis /\ 3 f : T->Hy, func_sim f.

Definition leads to conflict "{contains basis} : list input -> Prop :

A is,
3qgaqle,
repeat delta (g0 Hy) is = Some (q t e)
/\ repeat_delta (g0 T) is = Some ql
/\ q # ql.
End hypothesis.

Definition frontier (q:T) : Prop :=
- (basis q) /\
exists gl i, basis ql /\ delta T ql i = Some q.

Global Instance frontier dec : forall (q:T), Decision (frontier q).

Proof.
intro. solve decision.
Qed.

Definition isolated (q:T) (
vV ql:T, - basis ql1 \/ q # ql.

Definition identified (q:T) (frontier q:frontier q)
3 (ql:T) " (basis ql),

- (q#ql) /\ V (g2:T) " (basis g2), (g # g2 \/ 92 = ql).

Definition basis complete : Prop :=

V (q:T) (i:input), basis q -> is Some (transition T !!

Let transition_in_basis : ((HS * input) * HS) -> Prop :

A '(qlr , i, g2r),
delta T gl i = Some g2 /\ basis q2.

39

frontier q:frontier q) : Prop :

Instance tib decision : Vp, Decision (transition in basis p).
Proof.

intros. repeat (destruct p). destruct h, hO. solve decision.
Qed.

Global Instance fin_exists dec "{Finite A} {P: A->Prop}:
(Vv x:A, Decision (P x)) -> Decision (3 x:A, P x).
Proof.
intro. destruct (decide (Exists P (enum A))).
- left. apply Exists exists in e. destruct e as (x & Inx & Px).
exists x. tauto.
- right. intro. destruct H2. destruct n. apply Exists exists.
exists x. split. 2:done. apply elem of list In. apply elem of enum.
Qed.

Fixpoint lists shorter than “{Finite A} (n:nat) : list (list A) :=
match n with
| 0 =>1[[]]
| S m=> (lists shorter than m) ++
(map projl sig (enum {l : list A | length 1 = n}))
end.

Lemma In lists shorter than "{Finite A} (n:nat) :
¥ 1: list A, length 1 = n -> In 1 (lists shorter_than n).
Proof.
intros. induction n.
- simpl. inversion H2. apply nil length _inv in H4. left. done.
- apply in or_app. inversion H2.
+ right. apply in map iff. rewrite H4. exists (1 r H4). split. done.
apply elem of list In. apply elem of enum.
+ left. apply IHn. tauto.
Qed.

Lemma existsb false forall {A:Type} {P: A-> bool} {l: list A}
existsb P 1 = false -> V x, In x 1L -> = P Xx.

Proof.

intros. intro. induction 1. inversion H2. simpl in HO.

apply orb false elim in Hl. destruct Hl. inversion H2.

- rewrite H5 in H1l. rewrite H1 in H3. inversion H3.

- apply IH1; done.

Qed.

Instance exists witness dec :

YV x y: T, Decision (3 is, witness is x y).

Proof.

intros.

destruct

(existsb
(A is:list input, bool decide (witness is x y))
(lists shorter _than (max access len T access T))
) eqgn:E.

- left. apply Is true eq left in E. apply existb True in E.
apply Exists exists in E. destruct E as (is & I & W). exists is.
apply bool decide unpack in W. apply W.

- right. intro. destruct Hl as (is & W).

elim tree max len with access T is x.

+ done.

+ apply existsb false forall with is in E. exfalso. apply E.
apply bool decide pack. apply W. apply In lists shorter than.
apply rev_tree max len with x. done. destruct W as (Sx1 & Sx & N).
done.

40

+ destruct W. done.
Qed.

Let new transition fits : ((HS * input) * HS) -> Prop :=
A '(gqlr , i, g2t),
match delta T gl i with
| None => True
| Some gql' => - (ql' # g2) /\ frontier ql'
end.

Instance new transition fits dec :

V x : HS * input * HS, Decision (new_transition fits x).
Proof.

intros. unfold new transition fits.

destruct x as (((ql&)&i)&(g2&)), (delta T (ql) i).
all: solve decision.

Qed.

Definition find output : HS -> input -> output
= A q i, match lambda T ('q) i with
| Some o => o
| None => inhabitant
end.

Definition add output:
((HS * input) * HS) -> ((HS * input) * (HS * output))
= A '(q,i,p), ((q, 1), (p, find output q i)).

Lemma add output preserves : ¥V ql i 92 o p,
(qlr ir (qzr 0)) = addioutput p i p = (qlrquz)-

Proof.

intros ql i g2 o p AO. unfold add output in AO.

destruct p as ((pll&pl2)&p2). inversion AO. done.

Qed.

Let h list := add output <$> (filter
(A x, transition_in_basis x \/ new_transition_fits x)
(enum (HS * input * HS))).

Let h: gmap (HS * input) (HS * output) :=
list to map h list.

Lemma h preserves transition :
V (q ql: T) (e:basis q) (el:basis ql) (i:input) (o:output),

transition T !'! (q, i) = Some (ql, o) ->
h ' ((qre):HS, i) = Some ((ql r el):HS, o).
Proof.

intros. unfold h. apply elem of list to map'.
- intros. destruct x' as (q2 & ol). destruct g2 as (g2 & e2).
apply elem of list In in H2, H3. apply in map iff in H2,H3.
destruct H2 as ((pl&ql')&F1&I1), H3 as ((p2&g2')&F2&12).
destruct pl as (x1, il), p2 as (x2, i2).
unfold add output in F1, F2. simpl in F1, F2. inversion F1.
inversion F2. apply f equal2. 2:done. apply HS eq.
rewrite H7, H8, H9 in I2. apply elem of list In in I2.
apply elem of list filter in I2. destruct I2 as (D &). destruct D.
+ unfold tran51t10n in basis in H2. destruct H2 as (D&).
unfold delta in D. rewrite H1 in D. inversion D. tauto.
+ unfold new transition fits in H2. unfold delta in H2. simpl in H2.
rewrite H1 in H2. simpl in H2. destruct H2 as (& Fql).
destruct Fgql as (Bql &). elim Bql. tauto.
- apply elem of list In. apply in map iff.

41

exists ((q r e, i), ql r el). split.
+ unfold add output, find output. simpl. unfold lambda.
rewrite Hl. tauto.
+ apply elem of list In. apply elem of list filter.
split. 2:apply elem of enum. left. unfold transition in basis.
split. 2:done. unfold delta. rewrite Hl. tauto.
Qed.

Lemma list to map prop "{EgDecision K} "{Countable K} {A:Type}
¥V (P:A->Prop) (l:list (K*A)) (k:K),
let M := list to map l:gmap K A in
(Vv a, (k,a) €1 ->P a) -> is Some (M !! k) ->
Jda, M!! k=Some a/\Pa.
Proof.
intros. destruct H3 as (a & H3). exists a. split. done. apply H2.
apply elem of list to map_2. unfold M in H3. tauto.
Qed.

Lemma h_contains basis : contains _basis h.
Proof.
unfold contains basis. intros. remember (access T q) as is.
revert Heqis e. revert q. induction is using rev_ind.
- intros. simpl. apply f _equal. apply HS eq. pose proof tree® q.
destruct Hl. rewrite <- Heqis in Hl. inversion H1l. done.
- intros. destruct (repeat delta (g0 T) is) eqgn:RDis.
cut (Is true (basis gl)). intro el.
rewrite <- repeat delta app Some with is [x] (gO® (Hy h)) (ql r el).
+ destruct tree® with q. rewrite <- Heqis in H1.
rewrite <- repeat delta app Some with is [x] (g® T) gl in HI1.
2:done. simpl in H1l. unfold delta in H1.
destruct (transition T !! (ql, x)) egn:tql. 2:done.
destruct p. simpl in H1l. inversion H1l. simpl in H4.
rewrite H4 in tql. simpl. unfold delta. simpl.
rewrite h preserves transition with gl q el e x o; done.
+ apply IHis. destruct tree® with gql. apply H2. done.
+ destruct tree® with q. apply basis tree with gq x. 2:done.
rewrite <- Heqis in H1.
rewrite <- repeat delta app Some with is [x] (g0 T) gl in H1.
2:done. simpl in H1l. destruct (delta T ql x); tauto.
+ destruct tree® with . rewrite <- Heqgis in H1.
rewrite repeat delta app None with is [x] (g@ T) in H1; done.
Qed.

Lemma h_complete :

(V(q:T) (Fg:frontier q), —isolated q Fq) -> complete (Hy h).
Proof.
unfold complete. intros. simpl. unfold is Some.

destruct (h !! (qg,i)) eqgn:H2. exists p; tauto. exfalso.
apply not elem of list to map in H2. apply H2.
apply elem of list fmap. destruct (transition T !! ('q, i)) eqn:Tqi.

destruct p, (basis ql) eqgn:el.
- apply Is true true 2 in el. exists ((q, i), (ql r el, o)).
split. done. apply elem of list In. apply in _map iff.
exists (qg,i,ql r el). split.
{ unfold add output. simpl. repeat (apply f equal2); try tauto.
unfold find output. unfold lambda. rewrite Tqi. tauto. }
apply elem of list In. apply elem of list filter.
split. 2:apply elem of enum. left. destruct g as (q&e).
split. 2:tauto. unfold delta. simpl in Tgi. rewrite Tqi. tauto.
- assert (frontier ql) as Fql.
{ split. apply Is true false. tauto. exists ('q). exists 1i.
split. destruct q. tauto. unfold delta. rewrite Tqi. tauto. }

42

specialize H1 with gl Fql. unfold isolated in HI1.

assert (3 g2, - (- basis g2 \/ ql # qg2)).

{ apply Exists finite.
replace (A x : T, = (= basis x \/ ql # x))

with (not o A x, — basis x \/ ql # x).
2:reflexivity. apply not Forall Exists. solve decision. intro.
apply Hl. rewrite Forall finite in H3. tauto. }

destruct H3 as (g2 & H3). apply Decidable.not or in H3.

destruct H3 as (H3 & NA). destruct (basis g2) eqn:Bg2.

2:naive solver. apply Is true true in Bg2.

exists (q, i, ((q2rBg2), o0)). split. done. apply elem of list fmap.

exists (q,i1,92 r Bg2). split.

+ unfold add output. simpl. unfold find output. unfold lambda.
rewrite Tqi. tauto.

+ apply elem of list filter. split. 2:apply elem of enum.
right. unfold new transition fits. unfold delta. simpl.
destruct q as (g&e). simpl in Tqgi. rewrite Tqi. split; tauto.

- exists ((q, i), (q, inhabitant)). split. done.

apply elem of list fmap. exists (qg,i,q). split.

+ unfold add output. simpl. unfold find output. unfold lambda.
rewrite Tqi. tauto.

+ apply elem of list filter. split. 2:apply elem of enum.
right. unfold new transition fits. unfold delta. simpl.
destruct q as (g&e). simpl in Tqgi. rewrite Tqi. done.

Qed.

Lemma h preserves output :

(V(q:T) (Fq:frontier q), —isolated q Fq) ->
(Vg e i, is Some (transition T !! (q,1i)) ->
lambda T q i = lambda (Hy h) (qre) 1i).
Proof.

intros. destruct H2 as (p&tq). destruct p. unfold lambda. rewrite tq.
simpl. destruct (basis ql) egn:el.
+ apply Is true eq left in el.
rewrite h preserves transition with q ql e el i o; tauto.
+ assert (frontier ql).
{ split. apply Is true false. tauto. exists q, i.
split; auto. unfold delta. rewrite tq. tauto. }
unfold h. assert (H4:= H1 ql H2). unfold isolated in H4. symmetry.
apply fmap Some. apply list to map prop.
* intros. apply elem of list fmap in H3.
destruct H3 as ((p, q2) & A &). destruct p as (qge, i2).
unfold add output in A. simpl in A. inversion A. simpl.
unfold find output, lambda. simplify eq. simpl. rewrite tq. tauto.
* apply h _complete. tauto.
Qed.

(* Lemma 3.6 part 1 *)
Theorem hypothesis existence :
(V(q:T) (Fg:frontier q), —isolated q Fq) -> (3 h, hypothesis h).
Proof.
intros FI. exists h. repeat split.
apply h contains basis. apply h complete. tauto.

intros q p i o e tqT. destruct (basis p) eqn:Bp.
- apply Is true eq left in Bp. exists (prBp). split and.

2: apply apart irreflexive. simpl.

rewrite h _preserves transition with g p e Bp i o. tauto. tauto.
- assert (frontier p) as Fp.

{ split. apply Is true false. tauto. exists q,1i.

split. done. unfold delta. rewrite tqT. tauto. }
destruct (h _complete FI (qre:HS) i). destruct x as (p' & o').

43

exists p'. split.

+ assert (lambda (Hy h) (qre) i = Some o0').
{ unfold lambda. rewrite H1. tauto. }
rewrite <- h_preserves output in H2. unfold lambda in H2.
rewrite tqT in H2. simpl in H2. inversion H2. tauto. tauto.
exists (p,o0). tauto.

+ simpl in H1l. unfold h in Hl. apply elem of list to map 2 in HI.
apply elem_of list_fmap in Hl. destruct H1 as (((q1&i1)&p1)&AO&IL) .
inversion AO. simplify eq. simpl in *. simplify eq.
apply elem of list filter in IL. destruct IL as (IL&).
destruct IL.

* destruct pl, H1. simpl in H1l. unfold delta in H1.
rewrite tqT in H1l. inversion Hl. apply apart irreflexive.
* unfold new_transition fits in H1. unfold delta in HI.
simpl in Hl. rewrite tqT in H1. simpl in HI1.
destruct pl as (pl&e'), Hl. tauto.
Qed.

Definition frontier identified :=
(V(q:T) (Fg:frontier q), identified q Fq).

Lemma h list functional : basis complete -> frontier identified ->
vV x yl y2, (x, yl) € h list -> (x, y2) € h _list -> yl = y2.

Proof.

intros BC FI x yl y2 IL1 IL2. unfold h list in IL1, IL2.

destruct x as ((q&e) & i), yl as (ql & ol), y2 as (g2 & 02).

apply elem of list fmap in IL1,IL2.

destruct IL1 as (yl&AO01&IL1), IL2 as (y2&A02&IL2).

pose proof (add output preserves (qre) i gl ol yl AOl1).

pose proof (add output preserves (qre) i g2 02 y2 A02).

51mp11fy eq. apply f equalZ

unfold basis complete in BC. destruct (BC q i e) as ((q'&) & Tqgi).

apply elem of list filter in IL1,IL2.

destruct IL1 as (IL1&), IL2 as (IL2&).

destruct IL1, IL2;

unfold transition in basis, new transition fits, delta in H1, H2.

+ destruct gl as (ql&el), g2 as (q2&e2).
apply HS eq. destruct H1,H2. rewrite H1 in H2. inversion H2. done.

+ exfalso. simpl in H2. rewrite Tqi in H1,H2. simpl in H1, H2.
destruct gl as (ql&el), H1 as (H1&). inversion H1. simplify eq.
destruct g2 as (q2&e2), H2 as (&(H2& &)). done.

+ exfalso. simpl in Hl. rewrite Tqi in H1,H2. simpl in H1, H2.
destruct g2 as (q2&e2), H2 as (H2&). inversion H2. simplify eq.
destruct ql as (ql&el), H1l as (&(H1& &)). done.

+ simpl in H1,H2. rewrite Tqi in H1,H2.
destruct gl as (ql&el), g2 as (g2,e2). simpl in HI1, H2.
destruct H1 as (NAL&F), H2 as (NA2&). apply HS eq.
destruct FI with q' as (x& & &D). tauto.
destruct (D ql el), (D g2 e2); try done. simplify eq. tauto.

- unfold add output in A01,A02. inversion AOl. inversion A02. done.
Qed.

Lemma NoDup_h list :
basis complete -> frontier identified -> NoDup h list.*1.
Proof.
intros BC FI. apply NoDup fmap fst. apply h list functional; done.
apply NoDup fmap.
- unfold Inj. intros pl p2 AOQ.
destruct pl as ((x1&i1)&yl), p2 as ((x2&i2)&y2).
unfold add output in AO. simpl in AQ. inversion AQ. tauto.
- apply list.NoDup filter. apply NoDup enum.
Qed.

44

(* Lemma 3.6 part 2 *)
Theorem hypothesis unique (BC:basis complete) (FI:frontier identified):
3 h, ¥V ho, hypothesis hO® -> h=h0.
Proof.
exists h. intros h® HhO. apply map eq. intro i.
unfold hypothesis in HhO. destruct HhO as (CB & C & 0), i as (Hq & i).
destruct Hqg as (q & e), (BC g ie) as ((ql,o) & Tqgi).
destruct (basis ql) eqn:Bql.
- apply Is true true in Bqgl.
rewrite h preserves transition with g ql e Bql i o. 2:done.
unfold contains basis in CB.
assert (lambda (Hy h0) (q r e) i = Some o).
{ destruct (0 g g1 i o e Tqi). destruct Hl1. unfold lambda.
rewrite H1l. done. }
assert (repeat delta (q r e:Q (Hy h0)) [i] = Some (qlrBql:HS)).
{ rewrite repeat delta app Some
with (access T q) [i] (g0 (Hy he)) (qre).

assert (access T q ++ [i] = access T ql). apply tree0.

rewrite <- repeat delta app Some with (access T q) [i] (@ T) q.

unfold repeat delta. unfold delta. rewrite Tqi. tauto.

apply tree0®. rewrite H2. apply CB. apply CB. }

unfold repeat delta in H2. destruct (delta (Hy h0®) (qre) i) eqn:D;
inversion H2. rewrite H4 in D. unfold delta in D.
unfold lambda in H1.
destruct (transition (Hy h@) !! (g r e:(Q (Hy h@)), i)) eqgn:DH.
2:inversion D. simpl in DH. rewrite DH. simpl in H1,D. destruct p.
inversion Hl. inversion D. tauto.
- assert (frontier gql) as Fql.
{ split. apply Is true false. tauto. exists q. exists i.
split. tauto. unfold delta. rewrite Tqi. tauto. }
destruct (FI gl Fql) as (g2 & e2 & NA & I).
assert (h !! (g r e:HS, i) = Some (g2re2:HS, o0)).
{ unfold h. apply elem of list to map. apply (NoDup h list BC FI).
unfold h list. apply elem of list fmap.

exists (g r e, i, g2 r e2). split.

+ unfold add output. simpl. repeat apply f _equal2; try done.
unfold find output, lambda. simpl. rewrite Tqi. done.

+ apply elem of list filter. split. 2: apply elem of enum.
right. unfold new transition fits. simpl. unfold delta.
rewrite Tqi. done.

}
rewrite Hl. destruct (0 g gl i o e Tqi) as (g3 & Tr2 & NA2).
simpl in Tr2. rewrite Tr2. apply f _equal. apply f equal2. 2:tauto.
destruct g3 as (g3 & e3). simpl in NA2. destruct (I g3 e3).
+ done.
+ apply HS eq. done.

Qed.

End hypothesis construction.

Section teacher.
Context "{Finite input} (output : Type).

Inductive equivAns :=
| equiv : equivAns
| nonEquiv : list input -> equivAns.

Record teacher := Teacher {
outputQuery : list input -> list output;
equivQuery : Y (H:mealy input output) " (complete H), equivAns;
teacherConsistent : 3 (M:mealy input output),
complete M

45

/\ V is : list input, Some (outputQuery is) = sem (q@ M) is
/\ V (H:mealy input output) (CH: complete H),
match (equivQuery H CH) with
| equiv => mealy equiv M H
| nonEquiv is => sem (0@ M) <> sem (g0 H)
end
}

End teacher.

46

	Introduction
	Mealy machines and apartness
	Partial functions and Kleene star
	Mealy machines
	Trees and functional simulations
	Apartness

	The L# algorithm
	Framework
	Overview
	Example

	Hypothesis
	The L# algorithm

	Implementation in Coq
	Coq and stdpp
	Mealy machines
	Observation trees and apartness
	Hypothesis
	Hypothesis construction
	Hypothesis existence
	Hypothesis uniqueness

	Related work
	Conclusions
	Coq code

