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Abstract

The NIST Lightweight Cryptography competition has reached its final round,
leaving just 10 cryptographic algorithms in the running. Among these
10 finalists is an ARX-based submission named SPARKLE. In this paper,
SPARKLE’s ARX-box Alzette is tested using differential and linear crypt-
analysis. In particular, its collision resistance against differential collision at-
tacks using 2-dimensional querysets is determined in a keyed hashing setup,
and the clustering of its linear trails is observed and explained.
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Notations

F2 The field with elements {0, 1}

Fn
2 The vector space with n dimensions, with elements in {0, 1}.

word An element of the set F32
2

branch A pair of words

#A The number of items in set A

⊕ XOR / Exclusive OR

∥ Bitstring concatenation

x ≪ n Bitstring x left rotated by n bits

x ≫ n Bitstring x right rotated by n bits

x≪ n Bitstring x left shifted by n bits

x≫ n Bitstring x right shifted by n bits

ARX Add-Rotation-XOR
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Chapter 1

Introduction

1.1 NIST Lightweight Cryptography Competition

The National Institute of Standards and Technology (NIST) is an orga-
nization regarding technical standards that is part of the U.S. Depart-
ment of Commerce. NIST is the main driving force behind standardiz-
ing cryptographic algorithms, responsible for standardizing algorithms like
DES and AES. In 2015, NIST announced a new cryptographic competition
for lightweight cryptography designed for microcontrollers and other IoT
devices, of which the winning algorithm becomes the new cryptographic
standard for these devices [9]. Submissions for the competition closed in
February 2019.
NIST urges researchers to do as much research as possible on all candidates
of this competition, so that they have as much research as possible to help
them decide the winner. This is because there is a knowledge gap present in
these candidates, since all candidates are new or newly improved algorithms.
This knowledge gap is most apparent in the finalist SPARKLE [2], because
it is an ARX-box based cipher and ARX is notoriously more difficult to
research.

1.2 SPARKLE

SPARKLE is a family of cryptographic permutations based on ARX-boxes.
It is the core of the hash function family ESCH and authenticated encryption
scheme SCHWAEMM, which are finalists in the NIST Lightweight cryptog-
raphy competition. SPARKLE comes in three versions corresponding to
three block sizes, SPARKLE256, SPARKLE384 and SPARKLE512 [2].
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1.3 Research Question

To test SPARKLE’s security strength, it will be tested against differential
and linear cryptanalysis in this paper. First, the collision resistance of its
ARX-box Alzette will be tested in a differential collision attack in a keyed
hashing setup, followed by an inspection of the clustering of its linear trails.
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Chapter 2

Preliminaries

This chapter contains the specifications of SPARKLE/Alzette and all back-
ground information required for chapter 3, where Alzette’s security against
differential collision attacks is determined in a keyed hashing setup and the
clustering of linear trails in Alzette is observed.

2.1 SPARKLE’s specification

SPARKLE consists of multiple instances of a non-linear 64-bit mapping
called Alzette, defined in section 2.2, and a linear layer that combines and
shuffles the output of these instances. The structure of SPARKLE is de-
picted in figure 2.1.

Figure 2.1: SPARKLE’s structure where zi is 64-bit input (xi, yi) to its
corresponding Alzette instance [2].

To be secure, ciphers need to be non-linear, and all its output bits have
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to depend on all bits of the input (diffusion). In the case of SPARKLE,
the ARX-boxes provide non-linearity and internal diffusion on every branch
while the linear layer combines the output of the ARX-boxes to provide
diffusion between all branches.

2.1.1 ARX

The principle behind ARX is to alternate between addition and XOR. De-
spite the fact that both addition and XOR are linear in their own right, they
are non-linear when defined in terms of one another. In modular addition
words are interpreted as integers, while they are interpreted as vectors with
binary components in XOR.
An attacker has to choose which representation he uses in his attack, making
the other operation non-linear.

2.1.2 Linear Layer

SPARKLE’s linear layer is denoted Lnb in figure 2.1. It employs a Feis-
tel structure, with Mhb as its Feistel function, where nb is the number of
branches and hb = nb

2 .

Definition 1. Mhb [2]:
Let hb be an integer > 1. Mhb is the permutation of (F32

2 )w such that
Mhb((x0, y0), ..., (xhb−1, yhb−1)) = ((u0, v0), ..., (uhb−1, vhb−1))
where (ui, vi) must satisfy the following equations:
ty ←

⊕hb−1
i=0 yi, tx ←

⊕hb−1
i=0 xi,

ui ← xi ⊕ ℓ(ty),∀i ∈ {0, ..., hb− 1},
vi ← yi ⊕ ℓ(tx),∀i ∈ {0, ..., hb− 1},
where all indices are taken modulo hb and where ℓ : F32

2 → F32
2 is a permu-

tation defined as:
ℓ(x) = (x ≪ 16)⊕ (x ∧ 0x0000ffff),
where x ∧ y denotes the bitwise AND of x and y.
This means that if y and z are in F16

2 so that y∥z ∈ F32
2 , then

ℓ(y∥z) = z∥(y ⊕ z).

The linear layer Lnb applies the corresponding Feistel function Mnb,
rotates the right branches by 1 branch to the left, after which it swaps the
left branches and the right branches. The exact algorithms describing the
linear layers used in the three different branch-width versions of SPARKLE
are given below:
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Algorithm 1 L4 [2]
Input/Output: ((x0, y0), ..., (x3, y3)) ∈ (F32

2 × F32
2 )4

(tx, ty)← (x0 ⊕ x1, y0 ⊕ y1)
(tx, ty)← ((tx ⊕ (tx ≪ 16)) ≪ 16, (ty ⊕ (ty ≪ 16)) ≪ 16)
(y2, y3)← (y2 ⊕ y0 ⊕ tx, y3 ⊕ y1 ⊕ tx)
(x2, x3)← (x2 ⊕ x0 ⊕ ty, x3 ⊕ x1 ⊕ ty)
(x0, x1, x2, x3)← (x3, x2, x0, x1)
(y0, y1, y2, y3)← (y3, y2, y0, y1)
return ((x0, y0), ..., (x3, y3))

Algorithm 2 L6 [2]
Input/Output: ((x0, y0), ..., (x5, y5)) ∈ (F32

2 × F32
2 )6

(tx, ty)← (x0 ⊕ x1 ⊕ x2, y0 ⊕ y1 ⊕ y2)
(tx, ty)← ((tx ⊕ (tx ≪ 16)) ≪ 16, (ty ⊕ (ty ≪ 16)) ≪ 16)
(y3, y4, y5)← (y3 ⊕ y0 ⊕ tx, y4 ⊕ y1 ⊕ tx, y5 ⊕ y2 ⊕ tx)
(x3, x4, x5)← (x3 ⊕ x0 ⊕ ty, x4 ⊕ x1 ⊕ ty, x5 ⊕ x2 ⊕ ty)
(x0, x1, x2, x3, x4, x5)← (x4, x5, x3, x0, x1, x2)
(y0, y1, y2, y3, y4, y5)← (y4, y5, y3, y0, y1, y2)
return ((x0, y0), ..., (x5, y5))

Algorithm 3 L8 [2]
Input/Output: ((x0, y0), ..., (x7, y7)) ∈ (F32

2 × F32
2 )8

(tx, ty)← (x0 ⊕ x1 ⊕ x2 ⊕ x3, y0 ⊕ y1 ⊕ y2 ⊕ y3)
(tx, ty)← ((tx ⊕ (tx ≪ 16)) ≪ 16, (ty ⊕ (ty ≪ 16)) ≪ 16)
(y4, y5, y6, y7)← (y4 ⊕ y0 ⊕ tx, y5 ⊕ y1 ⊕ tx, y6 ⊕ y2 ⊕ tx, y7 ⊕ y3 ⊕ tx)
(x4, x5, x6, x7)← (x4 ⊕ x0 ⊕ ty, x5 ⊕ x1 ⊕ ty, x6 ⊕ x2 ⊕ ty, x7 ⊕ x3 ⊕ ty)
(x0, x1, x2, x3, x4, x5, x6, x7)← (x5, x6, x7, x4, x0, x1, x2, x3)
(y0, y1, y2, y3, y4, y5, y6, y7)← (y5, y6, y7, y4, y0, y1, y2, y3)
return ((x0, y0), ..., (x7, y7))
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2.2 Alzette

Alzette is a non-linear 64-bit mapping, providing non-linearity and diffusion
within its branch. It relies on ARX, which is why its creators have dubbed it
an ARX-box. It has a Feistel-like structure, as shown in figure 2.2. Its exact
definition is given in algorithm 4. Alzette generally consists of 4 rounds,

Figure 2.2: Alzette’s structure [2, 3]

where every round consists of a linear and non-linear step. As shown in
algorithm 4, one round of Alzette is made up by the following three steps:

1. x← x+ (y ≫ n)

2. y ← y ⊕ (x ≫ n)

3. x← x⊕ c

In section 3.2, the five round version of Alzette is used, meaning the following
three lines are added to the end of algorithm 4:

1. x← x+ (y ≫ 31)

2. y ← y ⊕ (x ≫ 24)

3. x← x⊕ c

9



Algorithm 4 ARX-Box Alzette (Ac) [2, 3]
Input/Output: (x, y) ∈ F32

2 × F32
2

x← x+ (y ≫ 31)
y ← y ⊕ (x ≫ 24)
x← x⊕ c
x← x+ (y ≫ 17)
y ← y ⊕ (x ≫ 17)
x← x⊕ c
x← x+ (y ≫ 0)
y ← y ⊕ (x ≫ 31)
x← x⊕ c
x← x+ (y ≫ 24)
y ← y ⊕ (x ≫ 16)
x← x⊕ c
return (x, y)

2.3 Keyed Hashing

A keyed hashing function F is defined as follows [1]:
F = K ×M −→ A,
with:

• K: The finite key space

• M : The finite message space

• A: The finite digest space that forms an additive group

Figure 2.3: A high level overview of Keyed Hashing

A keyed hashing function has a message and key as input, and a digest as
output. The message and the key can be any length with padding (as long
as the length of the key is at least as long as the message), but the digest
always has a fixed length. The goal of a keyed hashing function is to make it
difficult to generate collisions for an attacker that does not know the secret
key.
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To turn any fixed-length permutation function into a keyed hashing func-
tion, multiple keyed hashing setups can be used:

Figure 2.4: Serial keyed hashing setup [8].

Figure 2.5: Parallel keyed hashing setup [8].

Both setups take a message of the form m1∥m2∥ . . . ∥ml−1∥ml and a key of
the form k1∥k2∥ . . . ∥kl−1∥kl, where all l keys are independent. The main
difference in the setups is that the parallel setup is parallelizable, while the
serial setup is not.
The possible messages for these setups are strings of elements of a block
space, where the block space G is the set of elements that form an additive
group. Both setups make use of a fixed-length permutation f . This function
f maps elements of the block space G to the digest space A.
Examples of such a permutation function f include the SPARKLE permu-
tations, and reduced-round SPARKLE permutations as seen in chapter 3,
where 1-round SPARKLE is plugged into the serial setup and tested against
differential collision attacks.

2.4 Differential Cryptanalysis

Differential cryptanalysis is a method of analysing how differences in the
permutation input affect corresponding differences in the permutation out-
put. In this paper, all differences are defined in terms of XOR (F2), but
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they could also be defined additively (modulo 232 for 32-bit words). Later
in section 2.4.2, it is discussed how these differences can be used for a col-
lision attack on keyed hashing. A pair of input difference α and output
difference β is called a differential. The probability of such differentials is
dependant on the non-linearity of a cipher. This non-linearity often comes
from S-boxes, which are lookup tables commonly used in block ciphers to
obscure the relationship between the key and ciphertext, but in the case of
SPARKLE, the differential probabilities stem from its ARX-box Alzette.

Definition 2. Differential probability [1]:
Let f : G → A be a block function and let α ∈ G, β ∈ A. The differential
probability denoted as DP(α, β) is:

DP (α, β) =
#{x ∈ G|f(x)⊕ f(x⊕ α) = β}

#G
(2.1)

In this paper, f is a permutation and G = A.

Definition 3. Differential trails [6]:
Let f : G→ A be a block function with r rounds and let (a, b) be a differential
of f . The differential trail Q of (a, b) in f consists of a sequence Q =
(q0, q1, ..., qr−1, qr) where q0 = a and qr = b.

Lemma 4. [6] Let f : G → A be a block function with r rounds and let
Q be a differential trail of the differential (a, b) in f consisting of sequence
Q = (q0, q1, ..., qr−1, qr) where q0 = a and qr = b. The differential probability
of trail Q is the number of message pairs with input difference a that follow
trail Q through f to end up with output difference b, divided by the total
number of message pairs with input difference a.

Lemma 5. [6] Let f : G→ A be a block function with r rounds and let (a, b)
be a differential of f . The differential probability of (a, b) is the sum of the
differential probabilities of all differential trails Q with q0 = a and qr = b.

2.4.1 Differential propagation in Alzette

To illustrate how differentials propagate through Alzette, a differential trail
is given below of the differential (80000100 00000080, 80404100 41004041).

x← x⊕ c

While the round constants have impact on the linear properties of Alzette,
they have no impact on its differentials, as (x⊕ c)⊕ (x⊕ δ ⊕ c) = δ.
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The propagation of differential (80000100 00000080, 80404100 41004041)
through ARX-box Alzette.

1: 80000100 00000080
2: x← x+ (y ≫ 31)
3: 80000000 00000080
4: y ← y ⊕ (x ≫ 24)
5: 80000000 00000000
6: x← x⊕ c
7: 80000000 00000000
8: x← x+ (y ≫ 17)
9: 80000000 00000000

10: y ← y ⊕ (x ≫ 17)
11: 80000000 00004000
12: x← x⊕ c
13: 80000000 00004000
14: x← x+ y
15: 80004000 00004000
16: y ← y ⊕ (x ≫ 31)
17: 80004000 0000c001
18: x← x⊕ c
19: 80004000 0000c001
20: x← x+ (y ≫ 24)
21: 80404100 0000c001
22: y ← y ⊕ (x ≫ 16)
23: 80404100 41004041
24: x← x⊕ c
25: 80404100 41004041

y ← y ⊕ (x ≫ n)

This operation changes the shape of the differential, but does not directly
impact the differential probability. This is because XOR and rotation are
linear in regards to differentials defined in terms of XOR, so the differences
propagate deterministically through this step. However, this does not mean
that this operation is not required for differential security strength. As
visible in line 8; x ← x+ (y ≫ 17) does not change the difference because
y = 00000000. Without y ← y ⊕ (x ≫ 17) on line 10, this would stay that
way, creating a differential with DP (α, β) = 1.

x← x+ (y ≫ n)

This operation is the source of the non-deterministic propagation of differ-
entials defined in terms of XOR in Alzette. As mentioned in section 2.1.1,
for XOR the input words can be seen as bit vectors with 32 dimensions.
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Since x+ y has a carry and vector addition (XOR) does not, this operation
becomes non-linear.
Given a message pair with difference δ = δx∥δy: (x∥y, x ⊕ δx∥y ⊕ δy), we
can look at a single bit position i in x and y where δxi = 1 to see how
differences propagate.
For example, let say yi = 1. Now the outcome of x← x+ y depends on xi.
Two things can happen (with probability 2−1) for a random x:

1. xi = 0; xi + yi = 1 and there is no carry.

2. xi = 1; xi + yi = 0 and there is a carry.

When there is a carry, the difference δxi propagates to the next bit, where
the same two things can happen again, based on xi+1 and yi+1. This means
addition can cause bits to shift to the left, with the probability halving at
each bit shift.
For example, the differential (80000100 00000080, 80404100 41004041) of
Alzette has probability 2−6, but x ← x + (y ≫ 24) on line 20 could also
have propagated to 80404300 0000c001, resulting in a different differential
with probability 2−7. Similarly, (80000300 00000080, 80404100 41004041) is
also a differential of Alzette of probability 2−7 (After x ← x + (y ≫ 31),
80000300 00000080 propagates to 80000000 00000080 at half the probability
of 80000100 00000080 doing the same).

2.4.2 Attack vector for keyed hashing

Given a differential of high probability (a, b) of block function f , collisions
can be created for both serial and parallel keyed hashing setups.

Serial setup

Figure 2.6 depicts how collisions can be generated in case of a serial keyed
hashing setup.
This makes use of a query set {M1,M2}, where M1 = m1||m2 and M2 =
m1 ⊕ a||m2 ⊕ b. As shown in figure 2.6, the digest of M1 and M2 will be
equal if f(m1⊕ k1⊕ a) = f(m1⊕ k1)⊕ b.
Given an input difference a and an output difference b, the probability of
getting a collision in this setup with a 2-message attack isDP (a, b) as defined
in definition 2.

Parallel setup

Figure 2.7 depicts how collisions can be generated in case of a parallel keyed
hashing setup.
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Figure 2.6: Serial keyed hashing setup, where a, b and 0 are differences
between input pairs and (a, b) is a differential over f [1, 8].

Figure 2.7: Parallel keyed hashing setup, where a, b and 0 are differences
between input pairs and (a, b) is a differential over f [1, 8].

This makes use of a query set {M1,M2}, where M1 = m1||m2 and
M2 = m1 ⊕ a||m2 ⊕ a. As shown in figure 2.7, the digest of M1 and M2
will be equal if f(m1⊕k1)⊕f(m1⊕k1⊕a) = f(m2⊕k2)⊕f(m2⊕k2⊕a).
Given an input difference a, the probability of getting a collision in this
setup with a 2-message attack is

∑
bDP (a, b)2. This probability is squared

since input difference a needs to propagate to an output difference b in both
f(m1⊕k1⊕a) and f(m2⊕k2⊕a) for a collision, and the sum is taken over
all possible values for b since it does not matter what b is, as long as both
f(m1⊕k1⊕a) and f(m2⊕k2⊕a) propagate to the same output difference
b.

15



2.4.3 Naive Querysets

From now on, given a message M = m1∥m2 and a differential d = (α, β),
the message m1⊕ α∥m2⊕ β will be written as M ⊕ d.
The simplest collision attack uses a single pair {M,M ′} as its queryset with
M ̸= M ′. The probability of getting a collision with this queryset is equal
to the differential probability of the difference between M and M ′. Thus
the best way of getting a collision this way is to choose M and M ′ such
that they differ by a high-probability differential d, giving you the queryset
{M,M ⊕ d}.
Now lets say the attacker sends 4 messages instead of only 2. Now he can
query two querysets {M,M ⊕ d} and {M ′,M ′ ⊕ d}, with M ̸= M ′ and
d being a high-probability differential, to get double the probability of a
collision as before with one queryset. However, this way there are more
potential pairings that are lost to the attacker, since there are only two
pairings with a high-probability difference.

2.4.4 Multidimensional Querysets

To make use of other possible pairings, the following 2-dimensional queryset
can be used: {M,M⊕d1,M⊕d2,M⊕d1⊕d2} where d1 and d2 are two high-
probability differentials. This 2-dimensional queryset is visualised in figure
2.8. In this queryset, there are 4 pairings with high probability differences,
namely M and M⊕d1, M and M⊕d2, M⊕d1 and M⊕d1⊕d2 and M⊕d2
and M ⊕ d1 ⊕ d2, giving you 4 chances at a collision as compared to 1 in
the queryset {M,M ⊕d1}. This also generalises to more than 2 dimensions,
giving you message sets of size 2n where n is the number of dimensions.
Assuming the differential probabilities are independent, this queryset gives
you a total differential probability of 2DP (d1) + 2DP (d2) + 2DP (d1⊕ d2).
However, as is described in section 3.1, these probabilities are typically not
independent.

Freedom of d1⊕ d2

The diagonals in figure 2.8 can also collide with probability DP (d1 ⊕ d2),
however when d1 and d2 are chosen to have the highest possible differential
probability, the differential probability of d1⊕ d2 is typically much smaller.
This is because while you choose d1 and d2, you can not choose what d1⊕d2
will be.
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Figure 2.8: 2-dimensional queryset {M,M ⊕ d1,M ⊕ d2,M ⊕ d1⊕ d2}

2.5 Linear cryptanalysis

While differential cryptanalysis studies how differences in the permutation
input affect corresponding differences in the permutation output, linear
cryptanalysis studies probabilistic linear relations between the permutation
input and output. If there is a linear relation between permutation input
and output of high probability, an attacker could use this relations to esti-
mate (bits of) the secret key. Below are some definitions needed to describe
these linear relations [6].

Definition 6. A parity of a Boolean vector is a binary Boolean function
that takes the XOR of a specific selection of bits in the vector.

Definition 7. The linear mask w of a parity is a Boolean vector such that
bits included in the parity have a 1 in the same position in the linear mask
and a 0 otherwise. The parity of a vector x with linear mask w is denoted
wTx.

This means that a vector x with n bits has 2n different parities. This set
of parities is equal to the set of all linear binary Boolean functions of that
vector.

Definition 8. The correlation C(f, g) between two binary Boolean functions
f(x) and g(x) is defined as:

C(f, g) = 2× Prob(f(x) = g(x))− 1 (2.2)
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This implies that C(f, g) = C(g, f). The correlation ranges between
-1 and 1. If the correlation is not 0, the functions are correlated; If the
correlation is 1, the functions are equal; If the correlation is -1, the functions
are each other’s complement.

Definition 9. Real valued function:

f̂(x) = (−1)f(x) (2.3)

The real-valued function f̂(x) is -1 if f(x) = 1 and 1 if f(x) = 0.

Definition 10. The inner product of two binary Boolean functions f and g
is defined as:

⟨f̂ , ĝ⟩ =
∑
x

f̂(x)ĝ(x) (2.4)

This implies the following norm:

||f̂ || =
√
⟨f̂ , f̂⟩. (2.5)

This means the correlation can also be defined as:

C(f, g) =
⟨f̂ , ĝ⟩

||f̂ || × ||ĝ||
. (2.6)

For a Boolean function with n variables the norm is always the same, mean-
ing the last two equations can be rewritten in the following way:

||f̂ || =
√
2n. (2.7)

and:

C(f, g) =
⟨f̂ , ĝ⟩
2n

. (2.8)

2.5.1 Walsh-Hadamard transform

From now on the correlation between a binary Boolean function f(x) and a
parity wTx, C(f(x), wTx), will be written as F (w).
f̂(x) can be represented in terms of F (w) [6]:

f̂(x) =
∑
w

F (w)(−1)wT x (2.9)

This then gives us:

F (w) = 2−n
∑
x

f̂(x)(−1)wT x (2.10)

This transformation W : f(x) 7→ F (w) is called the Walsh-Hadamard trans-
form. This transformation can be used to create correlation matrices for the
linear masks of the components of a cipher such as S-boxes.
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2.5.2 Linear trails

Definition 11. Linear trails [6]:
Let f : G → A be a block function with r rounds and let (u, v) be a pair
of input and output masks. The linear trail U of (u, v) in f consists of a
sequence U = (u0, u1, ..., ur−1, ur) where u0 = u and ur = v.

Definition 12. Correlation contribution [6]:
The correlation contribution of a linear trail is the product of the correlation
of all its steps (u0, u1, ..., ur−1, ur). This contribution can be either positive
or negative.

Lemma 13. Linear approximation [6]:
Let f : G → A be a block function with r rounds and let (u, v) be a pair
of input and output masks. The correlation of a linear approximation (u, v)
is the sum over the correlation contributions of all linear trails with input
mask u and output mask v.

The steps that add round constants in Alzette (x ← x⊕ c in algorithm
4) influence the signs of individual linear trails. The designers of SPARKLE
have chosen these round constants so that these individual trails do not add
up in a constructive way in the largest linear approximations. The result
these round constants have on the correlation of the linear approximations
will be studied in section 3.2.2.
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Chapter 3

Research

This chapter is split into two sections, one covering an experiment that
tests Alzette against differential cryptanalysis and another covering an ex-
periment that describes observed dominant linear trails in Alzette.

3.1 Differential Cryptanalysis

In this section, an experiment is described that tests Alzette’s security
against differential collision attacks using multidimensional querysets. In
particular, this experiments gives insight into the grouping of differentials
in Alzette.

3.1.1 Differential grouping

As discussed in section 2.4.4, given a random message M and differentials
d, d1 and d2 with equal probabilities, a 2-dimensional queryset {M,M ⊕
d1,M ⊕d2,M ⊕d1⊕d2} should give you differential probability 2DP (d1)+
2DP (d2)+2DP (d1⊕d2) compared to DP (d) for queryset {M,M⊕d} if you
just add up the probabilities of the differentials. Adding up the probabilities
assumes that the probabilities are independent of each other, however, in
practice these probabilities are not independent.
Given two differentials d1 and d2 of probability p, the queryset {M,M ⊕
d1,M ⊕ d2,M ⊕ d1⊕ d2} gives 6 possible pairings for a collision, of which 4
have probability p and 2 have smaller probability. This means that you can
have more than one collision in a single queryset. However, for an attack
it does not matter how many collisions there are in a queryset, as long as
there is at least one. This means multiple collisions in a single queryset are
not desirable for an attacker, as they reduce the total number of querysets
in which a collision occurs. So while this queryset gives you more chances
at collisions, it could actually result in a smaller differential probability per
message queried. This means that the designers of a permutation function
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want its differentials to group together as much as possible, while an attacker
wants there to be as little grouping of the collisions as possible.

3.1.2 Grouping of Alzette’s differentials

To study the grouping of Alzette’s differentials, the queryset {M,M ⊕
d1,M⊕d2,M⊕d1⊕d2} has been queried to Alzette for a random messageM
and a sample size of 224. For the differentials d1 and d2, all 2-combinations
have been taken over the differentials given in table 3.1. The results of this
experiment are given in table 3.2.

α β

80000100 00000080 80404100 41004041

80000100 00000080 80c04100 410040c1

00804001 80400000 80000180 81808001

00804001 80400000 80000080 80808001

a0008140 000040a0 80000100 01008001

80020100 00010080 01010000 00030101

80020100 00010080 03010000 00030301

Table 3.1: Differential trails with probability 2−6 over ARX-box Alzette as
given in [3].

The higher the value in the column prob d1 & d2 in table 3.2, the bet-
ter the differentials d1 and d2 are for an attacker to use in a 2-dimensional
queryset, as a higher value means fewer double collisions per queryset. Thus
the best differentials to pick for a 2-dimensional queryset are (80000100
00000080, 80c04100 410040c1) and (00804001 80400000, 80000080 80808001),
with differential probability 1.87× 2−5.
It should also be noted that all tested 2-dimensional querysets where d1
α = d2 α have a differential probability of 2−5. This is because in these
querysets, the message M ⊕ d1 ⊕ d2 has no input difference with the mes-
sage M , since the input differences of d1 and d2 are the same, cancelling
each other out. This means that collisions in this queryset always come in
pairs, either with ∆ = d1 or ∆ = d2 (there can not be a double collision
with ∆ = d1⊕d2 since that would mean a collision with input difference 0).

21



Differentials Probability of double collisions*

d1 α d1 β d2 α d2 β prob d1 & d2 ∆ = d1 ∆ = d2 ∆ = d1⊕ d2

80000100 00000080 80404100 41004041 80000100 00000080 80c04100 410040c1 2−5 2−6 2−6 0

80000100 00000080 80404100 41004041 00804001 80400000 80000180 81808001 1.45× 2−5 1.89× 2−9 1.75× 2−7 1.56× 2−11

80000100 00000080 80404100 41004041 00804001 80400000 80000080 80808001 1.85× 2−5 1.89× 2−9 1.17× 2−12 0

80000100 00000080 80404100 41004041 a0008140 000040a0 80000100 01008001 1.58× 2−5 1.69× 2−10 2−6 1.02× 2−9

80000100 00000080 80404100 41004041 80020100 00010080 01010000 00030101 1.61× 2−5 1.25× 2−7 1.49× 2−9 1.97× 2−12

80000100 00000080 80404100 41004041 80020100 00010080 03010000 00030301 1.6× 2−5 1.25× 2−7 1.76× 2−9 2−11

80000100 00000080 80c04100 410040c1 00804001 80400000 80000180 81808001 1.47× 2−5 1.53× 2−9 1.74× 2−7 1.58× 2−11

80000100 00000080 80c04100 410040c1 00804001 80400000 80000080 80808001 1.87× 2−5 1.53× 2−9 1.13× 2−12 0

80000100 00000080 80c04100 410040c1 a0008140 000040a0 80000100 01008001 1.54× 2−5 1.79× 2−10 2−6 1.46× 2−9

80000100 00000080 80c04100 410040c1 80020100 00010080 01010000 00030101 1.61× 2−5 1.25× 2−7 1.5× 2−9 2−11

80000100 00000080 80c04100 410040c1 80020100 00010080 03010000 00030301 1.59× 2−5 1.25× 2−7 1.74× 2−9 1.98× 2−12

00804001 80400000 80000180 81808001 00804001 80400000 80000080 80808001 2−5 2−6 2−6 0

00804001 80400000 80000180 81808001 a0008140 000040a0 80000100 01008001 1.6× 2−5 1.22× 2−8 2−7 1.01× 2−10

00804001 80400000 80000180 81808001 80020100 00010080 01010000 00030101 1.57× 2−5 1.49× 2−7 1.61× 2−10 2−12

00804001 80400000 80000180 81808001 80020100 00010080 03010000 00030301 1.55× 2−5 1.49× 2−7 2−9 2−12

00804001 80400000 80000080 80808001 a0008140 000040a0 80000100 01008001 1.6× 2−5 1.87× 2−9 2−7 0

00804001 80400000 80000080 80808001 80020100 00010080 01010000 00030101 1.57× 2−5 1.5× 2−7 1.59× 2−10 2−12

00804001 80400000 80000080 80808001 80020100 00010080 03010000 00030301 1.55× 2−5 1.49× 2−7 2−9 2−12

a0008140 000040a0 80000100 01008001 80020100 00010080 01010000 00030101 1.51× 2−5 1.78× 2−7 1.03× 2−9 1.07× 2−11

a0008140 000040a0 80000100 01008001 80020100 00010080 03010000 00030301 1.5× 2−5 1.78× 2−7 1.2× 2−9 1.03× 2−11

80020100 00010080 01010000 00030101 80020100 00010080 03010000 00030301 2−5 2−6 2−6 0

* Probability that queryset {M,M ⊕ d1,M ⊕ d2,M ⊕ d1⊕ d2} leads to two
collisions with difference ∆ for random message M .
Table legend for table 3.2:

d1 α Input difference of differential d1.

d1 β Output difference of differential d1.

d2 α Input difference of differential d2.

d2 β Output difference of differential d2.

prob d1&d2 Probability of a collision in queryset {M,M⊕d1,M⊕d2,M⊕d1⊕d2}.

∆ = d1 Probability of collisions in both {M,M⊕d1} and {M⊕d2,M⊕d1⊕d2}.

∆ = d2 Probability of collisions in both {M,M⊕d2} and {M⊕d1,M⊕d1⊕d2}.

∆ = d1⊕ d2 Probability of collisions in both {M,M⊕d1⊕d2} and {M⊕d1,M⊕d2}.

Table 3.2: 2-dimensional probabilities

22



3.2 Linear Cryptanalysis

In this section, an experiment is described that determines the number of
dominant linear trails and their probabilities in the five rounds version of
Alzette.
The sign of the correlations have been left out in this chapter, since the sign
of a correlation is much less important than the size of the correlation for
security against linear cryptanalysis.

3.2.1 Deducing linear trails from correlations

The correlation of a linear approximation between an input and output
mask combination can be used to deduce properties of the dominant linear
trails in a cipher. This is possible by looking at the linear approximation’s
correlation in binary representation, since individual trails typically have a
correlation that is a power of two.
For example, given a linear approximation between two masks with binary
correlation 0.000010101 (0.041015625 in decimal), you can deduce the pres-
ence of three trails with contributions of 2−5, 2−7 and 2−9 respectively, which
all contribute positively to the correlation (or all contribute negatively).
Similarly, for a linear approximation with binary correlation 0.0000011010,
the same trails with contributions 2−5, 2−7 and 2−9 can be deduced. How-
ever, in this case the three trails do not all contribute positively/negatively
to the correlation, but instead the trails with contributions 2−5 and 2−9 con-
tribute positively and the trail with contribution 2−7 contributes negatively
(or the other way around).

3.2.2 Linear trails in Alzette

To determine the number of linear trails present in the five rounds version of
Alzette, the correlations for input mask 0000020180020180 and output mask
01c00181c1808081 of 100 randomly generated round constants were approx-
imated over a sample size of 224 random messages. Using the technique from
section 3.2.1, it was found that there are three dominant trails:

A Trail with correlation contribution 2−5

B Trail with correlation contribution 2−7

C Trail with correlation contribution 2−9

Since there are three dominant trails, the round constants fall into 8 groups
(sorted from largest to smallest correlations):

1. Group of constants where trails A,B and C are all either positive or
negative, and where smaller trails have the same sign. The binary
representation of this group starts with 0.0000101011 or 0.0000101010.
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2. Group of constants where trails A,B and C are all either positive or
negative, and where smaller trails have a different sign. The binary
representation of this group starts with 0.0000101001.

3. Group of constants where trails A and B are either positive or negative,
trail C has a different sign to trails A and B, and where smaller trails
have the same sign as A and B. The binary representation of this group
starts with 0.0000100111 or 0.0000100110.

4. Group of constants where trails A and B are either positive or negative,
trail C has a different sign to trails A and B, and where smaller trails
have a different sign to A and B. The binary representation of this
group starts with 0.0000100101.

5. Group of constants where trails A and C are either positive or negative,
trail B has a different sign to trails A and C, and where smaller trails
have the same sign as A and C. The binary representation of this group
starts with 0.0000011010.

6. Group of constants where trails A and C are either positive or negative,
trail B has a different sign to trails A and C, and where smaller trails
have a different sign to A and C. The binary representation of this
group starts with 0.0000011001.

7. Group of constants where trails B and C are either positive or negative,
trail A has a different sign to trails B and C, and where smaller trails
have the same sign as A. The binary representation of this group starts
with 0.0000010110.

8. Group of constants where trails B and C are either positive or negative,
trail A has a different sign to trails B and C, and where smaller trails
have a different sign to A. The binary representation of this group
starts with 0.0000010101 or 0.0000010100.

The correlations can be found in table A.1, and the code used to run the
experiment can be found in the appendix A.1.
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Chapter 4

Related Work

All SPARKLE documentation can be found in the official SPARKLE spec-
ification Schwaemm and Esch: Lightweight Authenticated Encryption and
Hashing using the Sparkle Permutation Family [2], together with the results
of the authors own differential and linear cryptanalysis of SPARKLE. Simi-
lar information be found for ARX-box Alzette in Alzette: a 64-bit ARX-box
(feat. CRAX and TRAX) [3].

Details regarding differential and linear cryptanalysis can be found in The
Design of Rijndael: AES — The Advanced Encryption Standard [6], where
they are applied to AES.

The methodology of generating collisions in keyed hashing using differen-
tial cryptanalysis is discussed in detail in an internal rapport by Radboud
on collision-resistance [1].

The multidimensional querysets studied in this paper can be seen as a more
specific version of polytopic cryptanalysis. Both polytopic cryptanalysis and
the experiment in section 3.1 look at sets with differences between elements,
whereas standard differential cryptanalysis only looks at differences between
message pairs. The difference between this paper and polytopic cryptanal-
ysis is that the querysets studied in section 3.1 are tailored specifically for
collisions, while polytopic cryptanalysis is more general. Details regarding
polytopic cryptanalysis can be found in Polytopic Cryptanalysis [10]. A sim-
ilar study on querysets using multiple differentials can be found in Multiple
Differential Cryptanalysis: Theory and Practice [5].

While not relevant for the attacks described in this paper, it should be noted
that there exist specialised types of differential cryptanalysis. These include
Higher-order diferential cryptanalysis [7], Truncated differential cryptanaly-
sis [7], Impossible differential cryptanalysis [4] and Boomerang attacks [11].
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Chapter 5

Conclusions

In this paper, SPARKLE has been tested with both differential and linear
cryptanalysis.
The collision resistance of its ARX-box Alzette against a differential collision
attack using 2-dimensional querysets has been studied in a keyed hashing
setup, of which the results can be found in table 3.2. The best 2-dimensional
queryset found had differential probability 1.87× 2−5.
This shows that, even for the 2-dimensional queryset with highest proba-
bility, the differential probabilities are not independent. If the differential
probabilities were independent, you would get a probability of 2DP (d1) +
2DP (d2)+2DP (d1⊕ d2). When d1 and d2 are chosen such that DP (d1) =
2−6 and DP (d2) = 2−6, this probability would lie somewhere between 2−4

and 1.5× 2−4, depending on what DP (d1⊕ d2) is for the chosen d1 and d2.

The clustering of Alzette’s linear trails has been studied for a specific in-
put/output mask combination, which lead to the observation that there are
three dominant trails with correlation contribution 2−5,2−7 and 2−9 respec-
tively. This caused round constants to fall into one of 8 groups as described
in section 3.2.2.

Further work could include increasing the number of dimensions in the dif-
ferential collision attack to more than two dimensions. Since this paper was
mostly focused on Alzette, SPARKLE was limited to one round. Further
work could also include extending the experiments done to multiple rounds
of SPARKLE, which would expand the scope to its linear layer as well.
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Appendix A

Appendix

A.1 Code

The code used to run the experiments can be found here:
https://github.com/TSpeel/Sparkle-thesis/

A.2 Linear cryptanalysis results

This table shows the correlation of 100 randomly generated round constants
for input mask 0000020180020180 and output mask 01c00181c1808081, sam-
pled over 224 random messages.
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rc − log2(|c|) rc − log2(|c|) rc − log2(|c|) rc − log2(|c|)

40555465 5.61 b3a9d47b 5.51 5942d277 5.29 978bda9f 4.72

42538192 5.59 34452fe4 5.51 20a76d2c 5.28 9106722f 4.71

3f44b42f 5.58 cab8ed62 5.5 5f1c3b1d 5.28 8a37a4a7 4.64

429c63ae 5.58 b43b8a8d 5.5 581d5898 5.28 8e9edbe3 4.64

44a9d499 5.58 b15d90df 5.49 a7054d8c 5.27 0ae81014 4.63

c43bdeec 5.58 31d48e1d 5.49 27720ce7 5.27 702e08ce 4.63

b9bf8796 5.58 30948165 5.48 5cc3b8df 5.26 73fa47e7 4.63

c3f33ece 5.58 523a4254 5.36 5c7656e2 5.25 f6915da7 4.62

3d789a1a 5.58 52b3b4a7 5.35 a096afd5 5.24 f3f215f2 4.62

be811cce 5.57 d1286714 5.35 6518be93 4.78 f2312bcb 4.62

3d54d5ec 5.57 2fcfda16 5.34 9f4e0155 4.77 74acae12 4.62

3bec6afd 5.57 d23660f8 5.34 6091b7ec 4.77 76556c4f 4.62

4666ffe5 5.56 ab7dfeb0 5.33 1d19c0fc 4.77 88d3a127 4.62

4641eaf1 5.55 56ba1aa7 5.33 e771d074 4.76 79f1d074 4.61

b84f540f 5.55 5446d427 5.33 e66ac4a8 4.76 074632cd 4.6

ba34fe94 5.55 558597ef 5.32 1b11d627 4.76 7e1fc1df 4.6

c4d94b76 5.55 29552f94 5.32 9e050bb1 4.75 04595a44 4.6

390bef3a 5.54 aadda9b9 5.32 e759ad29 4.75 84e33dd3 4.6

c6b73613 5.54 2e25ced3 5.32 968bc50d 4.74 040f3d9a 4.59

456582f8 5.54 2b3b3ade 5.32 97218447 4.74 8374fac8 4.59

b5f5eee1 5.53 2d66db51 5.31 96a2e730 4.74 7949c9bb 4.59

b61d8f10 5.52 d832a428 5.31 e81422fc 4.74 85b5adab 4.58

b4ef942a 5.52 a6326cea 5.3 171e029f 4.73 808aef56 4.58

cebb15cb 5.51 54a50e46 5.3 93c49633 4.73 046500d0 4.58

c83a3584 5.51 21daf2d6 5.29 956077d5 4.73 7eb03c2b 4.57

Table A.1: Correlations
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