
Bachelor’s Thesis Computing Science

Fuzzing Zigbee using Z-Stack

Tom Rust
s1040068

June 10, 2022

First supervisor/assessor:
Dr. Ir. Erik Poll

Second assessor:
Dr. Katharina Kohls

Abstract

Nowadays, a lot of houses contain smart devices. While they can be a bless-
ing for their users, they can also become a weak spot in their home security.
This weakness typically sits in their communication interface, common forms
of communication are Bluetooth (LE), Wi-Fi, Z-Wave and Zigbee. Zigbee is
based on top of the IEEE 802.15.4 standard and is most commonly used as
a way of communication for smart home devices, such as smart light bulbs
or thermostats. This bachelor thesis will focus on breaking the security of
Zigbee using a technique called fuzzing.

Fuzzing is a way of testing the implementation of the communication
interface on the target device. With fuzzing, you typically send a lot of data
to the target device, a common example is setting the package length to 0
and sending a lot of data. In this case, fuzzing is applied to find a mistake
in the Zigbee implementation of a Philips Hue light bulb.

The results show that using a Zigbee adapter running the Z-Stack firmware
it is possible to fuzz most fields of the Application layer of the Zigbee pro-
tocol and some fields of the Network layer and the MAC layer. A second
Zigbee adapter operating as a Zigbee sniffer is required to verify which fields
can actually be fuzzed. It was found that fuzzing other fields is very difficult
because the Z-Stack firmware running on the Zigbee adapter takes care of
a large part of the Zigbee Network Protocol Stack. In the end, no bugs in
the Zigbee implementation of the Philips Hue light bulb were discovered.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Research Question . 3
1.3 Content . 3

2 Preliminaries 5
2.1 Zigbee . 5

2.1.1 General concept . 5
2.1.2 Network Layers . 6
2.1.3 Security . 7

2.2 Fuzzing . 8
2.2.1 General concept . 8
2.2.2 Black box and white box 8
2.2.3 Examples . 9
2.2.4 Fuzzing Zigbee . 9

2.3 Zigbee Hardware . 9
2.3.1 Zigbee Adapter A: Sonoff Zigbee 3.0 USB 10
2.3.2 Zigbee Adapter B: CC2531 10
2.3.3 Philips Hue . 11
2.3.4 Zigbee2MQTT . 12

2.4 Z-Stack API . 13
2.4.1 General Layout . 13
2.4.2 SYS PING . 13
2.4.3 AF DATA REQUEST 13
2.4.4 AF DATA REQUEST EXT 14

3 Experiments 15
3.1 Flashing Zigbee Adapter A 16
3.2 Initial test with Zigbee2MQTT 17
3.3 Sniffing the serial connection to Adapter A 18

3.3.1 Attempt 1: Sniffing serial bus using cat 19
3.3.2 Attempt 2: Sniffing serial bus using Interceptty 20
3.3.3 Sniffing more data using Interceptty 23

1

3.4 Sniffing Zigbee traffic over the air 24
3.4.1 Flashing Zigbee Adapter B 25
3.4.2 Installing Software . 25
3.4.3 Sniffing basic Zigbee Traffic 26
3.4.4 Sniffing advanced Zigbee packages 27

3.5 Actively fuzzing Zigbee . 31
3.5.1 Crash Detective . 31
3.5.2 Creating our fuzzer . 32
3.5.3 Fuzzing the AF DATA REQUEST command 34
3.5.4 Fuzzing the AF DATA REQUEST EXT command . . 37
3.5.5 Brief experiment: Fuzzing the APP MSG command . 40

4 Related Work 41

5 Future Work 42
5.1 Custom Zigbee Firmware . 42
5.2 Touchlink . 42
5.3 Fuzzing as a method for testing 42
5.4 DDOS attack on Zigbee . 42
5.5 Other Z-Stack Commands . 43

6 Conclusions 44

A Appendix 48
A.1 Results for experiment 3.3.3 48
A.2 Results for experiment 3.4.4 48

2

Chapter 1

Introduction

1.1 Motivation

Zigbee connected devices are installed in many households. For the inhabi-
tants’ sake, it is important that these devices do not become a weak spot in
their security. However, Zigbee has much more possibilities: In the United
States, it is also used to gather energy data on a much larger scale1. Fur-
thermore, Zigbee may also be used in Wireless Body Area Networks[19].
This means that all sorts of sensors are integrated in your body, measur-
ing motion, temperature, heart rate and thus overall health. In any case,
breaking the security of Zigbee can have nasty consequences.

1.2 Research Question

The goal of this thesis is finding a method to test the implementation of
the network interface of Zigbee devices. So with this in mind, the research
question is:

Can we find bugs in Zigbee connected devices using fuzzing?

This comes with some sub questions:

1. Can we send Zigbee messages in any order?

2. Can we send fully customized Zigbee messages?

3. How low on the network stack can we send messages?

1.3 Content

This thesis is focused on testing the security of Zigbee connected devices.
In the Chapter 2, the basics concepts of this thesis will be explained. This

1https://hackaday.com/2022/01/13/remoticon-2021-hash-salehi-outsmarts-his-smart-meter/

3

includes a comprehensive guide to the Zigbee protocol in section 2.1 and an
explanation of the security aspect of Zigbee. Since fuzzing is an important
part of this research, section 2.2 is devoted to explain the concepts and
techniques of fuzzing. Section 2.3 is about the hardware related aspect of
this research. Our main focus is on using the Z-Stack API to fuzz. An
introduction to the Z-Stack is given in section 2.4. With all the background
explained, Chapter 3 will include the experiments. These experiments will
be based on the research question. Chapter 6 will review the outcome and
give a conclusion.

4

Chapter 2

Preliminaries

This chapter is devoted to explaining the background information required
to understand the experiments in chapter 3. In section 2.1 we cover the
theoretical side of Zigbee. Fuzzing is covered in section 2.2 and in section
2.3 we introduce the hardware that is used during the experiments. Finally,
in section 2.4 we give an introduction to the Z-Stack API.

2.1 Zigbee

In this section the theoretical side of Zigbee will be explained. We begin in
section 2.1.1 with the general concept of Zigbee and then we will go into the
network layers of Zigbee in section 2.1.2. In section 2.1.3 we will cover the
security related part of Zigbee.

2.1.1 General concept

Zigbee devices can be divided up into 3 different types:[5]

1. The coordinator: Coordinators, also known as PAN coordinators, are
the smartest nodes in the network. There can only be one coordina-
tor and it is tasked with managing connections, keys and commands.
Coordinators should never be battery powered.

2. A router is typically a Zigbee device that is connected to power and
has a specific function, such as operating a light. It may also serve
as a node in a path to another node, so other lights may talk to this
light in order to talk to the coordinator. Hence, it should be always
listening and not be battery powered.

3. An end node is similar to a router, but it only communicates with
its direct parent. Furthermore, the information stream is from the
end node to its parent, this means the end node does not need to be

5

listening the entire time and can be battery powered. Typical usages
of battery powered end nodes are sensors or simple buttons.

Personal Area Network

PAN or Personal Area Network is the Zigbee equivalent of a Local Area
Network (LAN) for the Internet. However, Zigbee devices are typically
not required to connect to something outside their PAN. However, there
are so-called PAN bridges to connect to other Personal Area Networks[10].
When two Personal Area Networks are physically in close proximity. They
should be on another channel to avoid interference. Hence, one of the PAN
coordinators will then decide to switch.

2.1.2 Network Layers

As stated before, the Zigbee protocol is based on the IEEE 802.15.4 protocol.
While the IEEE 802.15.4 takes care of the MAC layer and physical layer,
Zigbee takes care of the higher layers and the security (see figure 2.1).

Figure 2.1: Zigbee Network Protocol Stack[17]

The MAC (Medium access control) layer is the first layer that is inter-
esting to us. This layer is very similar to the equally named MAC layer in
the OSI network model1. In Zigbee, there can be two different modes of
transmission[26]. Beacon-enabled and non-beacon-enabled communication.

1https://en.wikipedia.org/wiki/Medium_access_control

6

With beacon-enabled communication, the coordinator broadcasts beacons,
when other devices receive such a beacon, they will send their data frame
back. In comparison, with non-beacon-enabled communication, the devices
look to see if the channel is idle, if so, then they will transmit. Otherwise,
they will wait and then look again. The MAC frames consist of a header,
payload and tail. In the header the destination and source are defined, along
with control information and a serial number.

Network Layer. As explained before, Zigbee devices can function as a
mesh network. This is implemented in the Network Layer[24]. Services such
as devices joining and leaving, addressing and neighbour and route discovery
are also implemented in this layer.

The highest defined layer is the Application layer[17]. This layer itself is
split up into 3 different sub-layers:

1. The application objects (APO): This layer controls the hardware and
can control up to 240 application objects. An application object can
for example be an LED or a sensor.

2. Zigbee device object: This part of software keeps track of the Zigbee
related operations: service delivery, security and binding.

3. Application support sub layer: This layer forms an interface for the
Network and Application layer. Upper application layers can use ser-
vices such as: key establishment, key transport, device removal, key
request, key change, entity authentication and permissions configura-
tion table.

More detailed information about the network layers can be found in section
3.4.4 where we will inspect captured Zigbee messages.

2.1.3 Security

The security of Zigbee is based on a 128-bit AES algorithm and offers the
following features:[12][16]

• Freshness: Protection against replay attacks.

• Frame integrity checking: Protection against data being modified by
parties without the key.

• Entity authentication service: Allow devices to communicate with a
shared key.

• Data encryption: Encrypt data by using a symmetric cipher with a
key shared by 2 or more devices.

7

All these features are implemented in the Network layer and result in the
Application Layer benefiting from these features. Zigbee relies on a Trust
Center, this takes care of allowing new devices, maintaining and distribut-
ing keys and managing key configuration. Typically, this is done by the
coordinator. Zigbee uses 3 different keys:

• The network key: This key is shared between all devices on the net-
work. This can be obtained through key transport or it can be pre-
installed.

• The master key: This key should be unique for each device and can
be used as an initial shared secret when link keys are generated.

• Link keys: Link keys are shared between two devices, these are typi-
cally used in general practice.

2.2 Fuzzing

This section explains the concept of fuzzing, this will be done first in section
2.2.1, then we will make a distinction between black box and white box
fuzzing in section 2.2.2. This is followed by some examples of fuzzing on
other protocols, such as Wi-Fi in section 2.2.3. In section 2.2.4 we will look
into possible issues when fuzzing Zigbee.

2.2.1 General concept

Sutton et al.[20] claims that the term fuzzing is not really existent in main-
stream vocabulary in 2007. Nowadays, it is quite mainstream in security
analysis but less well-known in other parts of Computing Science. Fuzzing
can be seen as closely related to boundary value analysis. Which is a form of
testing where we try edge cases[9], so test cases will be on the boundary of
what is an allowed value or very close to it on either side. Fuzzing is defined
as a method for discovering faults in software by providing unexpected input
and monitoring for exceptions. This is a rather generic definition but it con-
veys the general idea. Key parts of the definition here are that we provide
unexpected input, which is similar to boundary value analysis. This input
includes input that does not adhere to the standard[13] or uses a part of the
standard that is not regularly used, another example is setting the length
value to 0 and still sending a lot of data. The second part is monitoring
the target device or piece of software for exceptions or undefined behaviour.
With software, this can often easily be done using logs.

2.2.2 Black box and white box

The concept of black box and white box is easily explained by looking at
black box and white box testing. White box testing[15] is mainly done by the

8

programmers that make the code and thus have access to it. This typically
consists of unit tests[23]. In black box testing, the tester only has access to
the functions the program exposes, without knowing what is exactly going
on. So with a white box, the tester knows what is going on, whereas with a
black box, he does not know what happens. When we apply this to fuzzing,
we can define black box[25] as fuzzing a program with a black box. So we
only have access to a program and its outcome. More interesting is a white
box fuzzer, these are typically based on a grammar[7] and generate their
data inspired by a program analysis. White box fuzzers are however much
more demanding.

There also exists a combination of black box and white box fuzzing,
namely grey fuzzing[2]. This is a bit in between, there is certain information
available about the program, but a full analysis is not possible.

2.2.3 Examples

Fuzzing is a technique that is mainly applied to software directly, for exam-
ple, in this article[6] they explain that it can be used to test websites easily
for malicious data. It is also shown that this can prove very valuable for
software testing.

Fuzzing software on other devices is less theoretical and more practical, it
is almost always a form of black box fuzzing, because otherwise you would
simply run the program on your own computer. Some researchers have
successfully used a fuzzing attack on a Wi-Fi connected UAV[8]. Here they
send a very large JSON(JavaScript Object Notation) object which triggers
a buffer overflow. This gives an idea of the scale of possibilities that fuzzing
gives.

2.2.4 Fuzzing Zigbee

Fuzzing in general is mostly done on communication implementations, since
Zigbee is relatively new and runs on devices that are typically accessible
from the street, it makes for a good target. However, due to the fact that
Zigbee is only accessible using dedicated non-standard hardware, it may be
difficult to fuzz the lower levels of the Zigbee protocol stack[18].

2.3 Zigbee Hardware

In this section the hardware related part of Zigbee will be explained. This
begins with a part on Zigbee Adapter A and why it was chosen in section
2.3.1. Followed by a small part on Zigbee Adapter B in section 2.3.2. In
section 2.3.3 we will look at the target device, which in our case is a Philips
Hue light bulb. We will also look at the part of software that is closest to
the hardware in section 2.3.4, which is Zigbee2MQTT[11]

9

2.3.1 Zigbee Adapter A: Sonoff Zigbee 3.0 USB

The adapter chosen for this is the Sonoff Zigbee 3.0 USB dongle plus, see
Figure 2.2. This seems like a good choice, because it has the new CC2656P
chipset2. This adapter is widely available throughout the world, also at
redistributors in the Netherlands3. This adapter is able to have firmware
flashed to it, which we do in section 3.1.

Figure 2.2: Sonoff Zigbee 3.0 USB dongle plus

Software

This adapter will run the Z-stack firmware from Texas Industries. This
means that the adapter implements most of the Zigbee stack. We can inter-
face this using the Z-Stack API[21]. More information on the Z-Stack API
can be found in section 2.4. We will write this firmware to the adapter in
section 3.1.

2.3.2 Zigbee Adapter B: CC2531

In order to gain a proper insight at Zigbee level, we will use a second adapter
to sniff Zigbee traffic. We use the Zigbee CC2531 USB-dongle from Itead4,
see Figure 2.3. This adapter uses the CC2531 chipset from Texas Industries.
This chipset is less advanced than the CC2656P from section 2.3.1, but it is

2https://www.ti.com/product/CC2652P
3https://opencircuit.nl/product/sonoff-zigbee-3.0-usb-dongle-plus
4https://itead.cc/product/cc2531-usb-dongle/

10

capable enough to run sniffing firmware, see section 2.3.2. This adapter is
widely available throughout the world, also at redistributors in the Nether-
lands5. Technically, we could use either adapter for sniffing or fuzzing pur-
poses. However, there are working examples of sniffing using Adapter B and
it would probably not benefit from the more powerful chipset that Adapter
A has.

Figure 2.3: Zigbee CC2531 USB-dongle

Software

This adapter will run the PACKET−SNIFFER firmware from Texas Indus-
tries6. We will write this firmware to the adapter in section 3.4.

2.3.3 Philips Hue

The devices that we fuzz are Philips Hue light bulbs, see Figure 2.4. These
light bulbs are very popular and installed in many households in the Nether-
lands. There is no particular reason that these are chosen above other Zigbee
light bulbs, since the experiments could also be done with other Zigbee con-
nected devices. However, these Philips Hue Light bulbs are available at the
New Devices Lab in the Mercator.

5https://opencircuit.nl/product/zigbee-cc2531-usb-dongle
6https://www.ti.com/tool/PACKET-SNIFFER

11

Figure 2.4: Philips Hue white and colour

2.3.4 Zigbee2MQTT

The software that provides an interface for the user to interact with Zigbee
devices is Zigbee2MQTT. First the protocol MQTT will be explained and
then we generally explain how Zigbee2MQTT works.

MQTT

MQTT stands for Message Queuing Telemetry Transport7. It is a lightweight
network protocol which functions using the Publish–subscribe pattern8. This
means that MQTT consist of a broker and multiple clients. The broker is
the main node which is in the centre of all communication. These clients
subscribe or publish to topics at the broker. If something changes, then
clients subscribed to the topic will be notified.

Zigbee2MQTT

Zigbee2MQTT exposes the Zigbee network to MQTT, it does this internally
by using the Zigbee Herdsman library9. There also is a useful web interface
which basically acts as an MQTT client. We will use Zigbee2MQTT to
learn more about communicating with Zigbee devices. Zigbee2MQTT is
open source10.

7https://en.wikipedia.org/wiki/MQTT
8https://en.wikipedia.org/wiki/Publish-subscribe_pattern
9https://github.com/Koenkk/zigbee-herdsman

10https://github.com/Koenkk/zigbee2mqtt

12

2.4 Z-Stack API

The Z-Stack API is the interface for the firmware that is running on Adapter
A. It uses the serial port for communication. The documentation, which is
both available online11 and in a manual[21] contains all information. Some
interesting aspects will be explained. In particular, the commands for the
following operations:

1. Ping.

2. Transmitting data, both inside the PAN and outside the PAN.

We will use the term serial frame to discuss one transmission, which corre-
sponds with a single command.

2.4.1 General Layout

In Figure 2.5 we can see the general layout of all serial frames. Any frame
will begin with the SOF (0xfe). This is followed by the length of the bytes
between Command and FCS. After this, there are two bytes containing the
command, followed by the corresponding data for this command. At the end
of every frame we have a checksum (FCS), which is the XOR of all bytes
but the SOF. (see section 2.1.1 of the Z-Stack API)

Figure 2.5: Serial frame general layout

2.4.2 SYS PING

The SYS PING serial frame is displayed in Figure 2.6. This can be used to
confirm that the serial connection is working. This means that this serial
frame will not result in a Zigbee message. To send a ping, we set the
command to (0x21 0x01). The frame will then look like: 0xFE 0x00 0x21
0x01 0x20. (see section 2.2 of the Z-Stack API)

2.4.3 AF DATA REQUEST

The AF DATA REQUEST command (displayed in Figure 2.7) can be used to
send messages to the application framework of another device. It is for

11https://software-dl.ti.com/simplelink/esd/simplelink_cc26x2_sdk/2.30.00.

34/exports/docs/zstack/html/zigbee/mt_interface.html

13

Figure 2.6: Serial frame SYS PING

example used by Zigbee2MQTT to control the Philips Hue light and for
example change colour.

This command requires the command to be set to 0x24 0x01. Fur-
thermore, parameters need to be set for: Destination Address, Destination
Endpoint, Source Endpoint, ClusterId, TransId, Options, Radius, Len and
data. Most notably are the ClusterId and data. Where the ClusterId spec-
ifies what type of command it is, such as LightOnOff or ChangeBrightness.
The data actually contains a payload for the Application Framework. We
will be sniffing this command in section 3.3.2 and fuzzing it in 3.5.3. More
information can be found in section 3.2.1.1 of the Z-Stack API.

Figure 2.7: Serial frame AF DATA REQUEST

2.4.4 AF DATA REQUEST EXT

According to the Z-Stack API, this command can be used to send an inter-
pan message. In other words, we can use it to communicate with devices on
other networks. The corresponding command is 0x24 0x02. It requires the
following parameters: Destination address mode, Destination Address, Des-
tination Endpoint, Destination Pan Id, ClusterId, TransId, Options, Radius,
Message Length and Message (see Figure 2.8). Destination address mode
can be set to 0x02 for a short notation or 0x03 for a long notation. We will
fuzz using this command in experiment 3.5.4 and more information can be
found in section 3.2.1.3 of the Z-Stack API.

Figure 2.8: Serial frame AF DATA REQUEST EXT

14

Chapter 3

Experiments

The ultimate goal of these experiments is to fuzz on a Zigbee level. To
accomplish this, we can either use Zigbee Adapter A (see section 2.3.1)
or Zigbee Adapter B (see section 2.3.2). We use Zigbee Adapter A for
fuzzing purposes, because it is much more powerful and supports the newest
Zigbee 3.0 standard. Furthermore, we can use Zigbee Adapter B for sniffing
packages between Zigbee Adapter A and the SUT. Our system under test
(SUT) is a Philips Hue Light (see section 2.3.3). A high level example of
our fuzzing setup is displayed in Figure 3.1.

Figure 3.1: High level fuzzing setup

In this part of the bachelor thesis we will perform the actual experiments.
A brief reading guide summarizing the key parts of the experiments follows:

• We flash the Z-Stack firmware to Adapter A in section 3.1.

• In section 3.2 we install Zigbee2MQTT and pair our SUT to verify
that we have a working setup.

• In section 3.3 we look at sniffing the serial traffic to Adapter A. Using
Interceptty we can sniff some interesting data in section 3.3.3.

15

• In section 3.4 we gain a better understanding of Zigbee messages over
the air by sniffing Zigbee traffic. Furthermore, we compare the serial
frames to their corresponding Zigbee messages in section 3.4.4.

• Finally, in section 3.5 we will actually fuzz Zigbee messages using
Adapter A.

3.1 Flashing Zigbee Adapter A

The goal of this experiment is to have custom firmware on Zigbee Adapter
A, with this firmware we should be able to send custom messages. Flashing
is quite straight-forward, since we can use the USB connection for flashing.

To flash the adapter, we follow the tutorial1 on the manufactures’ web-
site2. This means we first have to download the coordinator firmware3, since
this is the role that we want to play. For this adapter, the Sonoff Zigbee
3.0, the CC1352P2 CC2652P launchpad coordinator firmware is suggested.
We can flash this using the automatic upload tool from JelmerT4. We can
use the following command to flash the firmware.

./cc2538−bsl.py −ewv −p /dev/ttyUSB0 −−bootloader−sonoff−usb
↪→ CC1352P2 CC2652P launchpad coordinator 20211217.hex

This should give the following result, which means a successful flash:

Opening port /dev/ttyUSB0, baud 500000
Reading data from ./CC1352P2 CC2652P launchpad coordinator 20211217.hex
Firmware file: Intel Hex
Connecting to target...
CC1350 PG2.0 (7x7mm): 352KB Flash, 20KB SRAM, CCFG.BL CONFIG at 0

↪→ x00057FD8
Primary IEEE Address: 00:12:4B:00:24:C0:A9:2A

Performing mass erase
Erasing all main bank flash sectors

Erase done
Writing 360448 bytes starting at address 0x00000000
Write 104 bytes at 0x00057F980

Write done
Verifying by comparing CRC32 calculations.

Verified (match: 0xba5c19c5)

1https://sonoff.tech/wp-content/uploads/2022/01/SONOFF-Zigbee-3.

0-USB-dongle-plus-firmware-flashing-.pdf
2https://itead.cc/product/sonoff-zigbee-3-0-usb-dongle-plus/
3https://github.com/Koenkk/Z-Stack-firmware/tree/master/coordinator/

Z-Stack_3.x.0
4https://github.com/JelmerT/cc2538-bsl

16

3.2 Initial test with Zigbee2MQTT

The goal of this experiment is to test our setup and if all communications
are working properly. If this experiments succeeds, we have a working setup
to work from. To test our setup, we will be using Zigbee2MQTT(see section
2.3.4).

Hardware setup and data flow

The setup consists of a computer running Zigbee2MQTT, in this computer
the Zigbee Adapter A is plugged in. Communication is shown in this dia-
gram.

Figure 3.2: Data flow diagram for Zigbee2MQTT

To test if the setup was working, we will set up Zigbee2MQTT. As shown
in Figure 3.2, Zigbee2MQTT acts as a bridge to let internet capable devices
communicate over MQTT with Zigbee devices.

Setting up software

Zigbee2MQTT requires a folder to work in. The following folder was created
for this purpose /home/tom/zigbee2mqtt−data. Inside this folder we will create
a configuration file. This file must be named configuration.yaml and contains
these lines when starting:

permit join: false
mqtt:
base topic: zigbee2mqtt
server: mqtt://mqtt

serial:
port: /dev/ttyUSB0
adapter: auto

frontend:
port: 8080

17

Installation of the actual program Zigbee2MQTT using Docker seems
the simplest. So, let us create the following docker-compose file: (Notice
that we also create a simple MQTT server, which is required for internal
communication.)

version: ”3”
services:
mqtt:
image: eclipse−mosquitto:2.0
restart: unless−stopped
volumes:

− ”./mosquitto−data:/mosquitto”
ports:

− ”1883:1883”
− ”9001:9001”

command: ”mosquitto −c /mosquitto−no−auth.conf”

zigbee2mqtt:
container name: zigbee2mqtt
restart: unless−stopped
image: koenkk/zigbee2mqtt
volumes:

− /home/tom/zigbee2mqtt−data:/app/data
− /run/udev:/run/udev:ro

ports:
− 8080:8080

environment:
− TZ=Europe/Berlin

devices:
− /dev/ttyUSB0:/dev/ttyUSB0

After following the tutorial5, the Zigbee2MQTT server was running on port
8080.

Connecting devices

Adding the Philips Hue light is easy. According to the guidance page6 we can
use the built-in Touchlink7 functionality. After using Touchlink to factory
reset the bulb, it would automatically register itself to Zigbee2MQTT, which
means we can control it. As we can see from Figure 3.3, the Philips Hue
bulb is added to the user interface and controlling the light is possible.

3.3 Sniffing the serial connection to Adapter A

The ultimate goal of this thesis as explained in section 1 is to find a way
to control the adapter without using the regular user interface that Zig-

5https://www.zigbee2mqtt.io/guide/installation/02_docker.html
6https://www.zigbee2mqtt.io/devices/9290012573A.html
7https://www.zigbee2mqtt.io/guide/usage/touchlink.html

18

Figure 3.3: Zigbee2MQTT Philips Hue

bee2MQTT uses so that we can fuzz the connected device. To work towards
that, we will in this experiment be looking at the data that flows from
Zigbee2MQTT to the adapter. Recall from the communication diagram in
Figure 3.2 on page 17 belonging to the previous experiment that the data
from Zigbee2MQTT uses a serial communication channel. This serial com-
munication level is the lowest level that we can use to communicate with
the adapter. Firstly, we try to use cat in section 3.3.1 to look at this data,
but this is not successful. In section 3.3.2 we will use Interceptty to suc-
cessfully inspect traffic. Other possibilities to control the Zigbee adapter
include using the Zigbeehertsman library. For simplicity, we will use the
term serial frame as to discuss one transmission/command over the serial
communication channel.

3.3.1 Attempt 1: Sniffing serial bus using cat

Beware, this experiment was unsuccessful, please take a look at section 3.3.2
for a proper way to sniff the serial port.

19

So, it seems like a good start to observe the data that is sent over this
serial communication channel. The adapter is mounted on /dev/ttyUSB0.
We are going to try to see the communication that happens between Zig-
bee2MQTT and the adapter, which hopefully gives some insight in how it
works.

To do this, we will be using cat to listen to the port

cat /dev/ttyUSB0

Unfortunately, this only gives gibberish in the terminal and it seems to be
interfering with the connection from Zigbee2MQTT as it gives a lot of errors
in the log. This means that we can observe two direct problems:

1. The data is (possibly) encoded, so we must decode it.

2. Only reading the data from the serial channel interferes with Zig-
bee2MQTT, since controlling the light does work a bit, but the state
does not update when running cat.

3.3.2 Attempt 2: Sniffing serial bus using Interceptty

This time, we will use a proper program to sniff the traffic going to Zigbee
Adapter A. For this, we will use Interceptty8. Interceptty basically acts like
a Man-in-the-middle on a serial level (see Figure 3.4).

Setup

Installation is explained well in the README file. What we will do is mount
the Zigbee adapter on port /dev/ttyUSB0 (as usual). Using Interceptty we
will make a virtual mapping to /dev/pts/2. Zigbee2MQTT will now connect
to /dev/pts/2. Interceptty will forward all traffic between these ports and
also show it in the terminal (or output it to a file).

Figure 3.4: Serial port sniffing setup using Interceptty

8https://github.com/geoffmeyers/interceptty

20

Preparation

Before we can do this, we need to prepare a few things:

1. Let Interceptty create a virtual port. This looks like /dev/pts/X. We
can find X by simply doing ls /dev/pts/ before Interceptty is running
and while it is running to find which port is created. For now, we
assume this is port /dev/pts/2.

2. Configure Zigbee2MQTT to use port /dev/pts/2: We do this by setting
port: /dev/pts/2 in the Zigbee2MQTT configuration file, see section 3.2.

3. We need to change the Zigbee2MQTT docker-compose file from section
3.2 such that it can see the new port. Adding it as a device does not
seem to work, but we can mount the entire virtual ports folder to the
container by adding − /dev/pts:/dev/pts to the volumes.

To perform this experiment, we will run Interceptty in the first terminal and
start the Zigbee2MQTT docker in another.

Note: this method may sometimes fail to set up a proper connection
between Zigbee2MQTT and Adapter A. This can be fixed by configuring
Zigbee2MQTT to use the adapter directly at port /dev/ttyUSB0 and then
start it. When started, we can start Interceptty and point Zigbee2MQTT
to the virtual port. Afterwards, we can restart Zigbee2MQTT.

Results

We start Interceptty using:

interceptty /dev/ttyUSB0

The output will be in the following format, according to the Interceptty
manual (man interceptty).

Output lines are in this general format:
< 0x54 (T)
> 0x4b (K)
ˆ Direction
ˆˆˆˆ Hex code (to real device)

ˆˆˆ ASCII character (to real device)
ˆˆˆˆ Hex code (from real device)

ˆˆˆ ASCII character (from real device)

When we now start our Zigbee2MQTT Docker container, we see a lot of
communicating between the adapter and Zigbee2MQTT. Now, when we turn
on the light from within Zigbee2MQTT, we see the following happening.

< 0xfe
< 0x0d
< 0x24
< 0x01

21

< 0x18
< 0x99
< 0x0b
< 0x01
< 0x06
< 0x00
< 0x04
< 0x00
< 0x1e
< 0x03
< 0x01
< 0x05
< 0x01
< 0xb9

Note: Interceptty also shows the ASCII character corresponding to a byte,
but these are omitted since they provide us with no information. We can
now decode this data using the Z-Stack API, see section 2.4.3. Using a
simple python program9 we can convert the serial frame to a more under-
standable format, as displayed in Figure 3.5.

Command Data

SOF 0xfe

LEN 0x0d

CMD0 0x24

CMD1 0x01

DstAddr 0x18

DstAddr 0x99

DstEndpoint 0x0b

SrcEndpoint 0x01

ClusterId 0x06

ClusterId 0x00

TransId 0x04

Options 0x00

Radius 0x1e

Len 0x03

Data 0x010501

FCS 0xb9

Figure 3.5: Sniffed serial frame

9https://gitlab.science.ru.nl/trust/z-stack-python/-/blob/main/

Interceptty_Scraper.py

22

3.3.3 Sniffing more data using Interceptty

In this attempt of sniffing serial communication, we will be sniffing more
examples of commands to the light bulb to see which parameters change
during normal use. We do that using the same setup as in section 3.3.2.
We will send commands to the light bulb and then sniff the data to Zigbee
Adapter A, as displayed in Figure 3.4. Recall from Figure 3.5 how a serial
frame looks like. Some columns are omitted in Figure A.1 since they hold
the same value for each row. Using the Z-stack API (see section 2.4.3) it
will be explained why these are excluded from the table in Figure A.1.

• SOF, this is the start of a serial frame, which is always 0xfe

• CMD0 and CMD1 hold the values 0x24 and 0x01, which means an
AF DATA REQUEST according to section 3.2.1.2 from the Z-stack API.

• DstAddr holds the value 0x1899, which is the beginning of the address
of our Philips Hue light bulb (in different endianness), see Figure 3.3.

• DstEndpoint, SrcEndpoint also remain the same, namely 0x0b and
0x01.

• Options, which is 0x00, meaning no special options are used. These
options may be interesting while fuzzing in section 3.5

• Radius, which is constantly 0x1e, this refers to the number of hops
allowed. Recall (from section 2.1.1) that Zigbee is a mesh protocol.

We are now left with the following fields:

• LEN, this is the total length of the frame.

• ClusterId, 2 bytes, specifying the cluster Id, in our case this is either
0x0600, 0x0800 and 0x0003. A different cluster means a different type
of command. For example:

– 0x0600 is used for on/off commands.

– 0x0003 is used for Color Control.

– 0x0800 is used for Brightness control.

• TransId, The transaction sequence number, this seems to be a number
that increases each time.

• Len, The length of Data.

• Data, The actual data being sent to the application framework of the
Light Bulb.

23

• FCS, The Frame Check Sequence, this is a XOR of all bytes starting
from LEN.

So, using this serial interface we can send Zigbee traffic over the air. In
section 3.4.4 we will find out how this traffic translates into Zigbee messages.

3.4 Sniffing Zigbee traffic over the air

In section 3.3 we have sniffed the serial communication between Zigbee
Adapter A and Zigbee2MQTT. However, in this experiment, we focus on
sniffing the aerial communication between Zigbee Adapter A and the Philips
Hue Light bulb (SUT). For a visual representation, see Figure 3.6. For sim-
plicity, we will refer to our intercepted packages as Zigbee messages. This
is used to discuss an over-the-air transmission using Zigbee.

Before we actually start fuzzing, we try to do some sniffing on Zigbee
level10. Our goal is to see actual Zigbee traffic, such that later we can see if
we are actually fuzzing. We do this by using a second Zigbee adapter, see
2.3.1. This adapter is connected to a computer running Wireshark11 (see
Figure 3.6).

Figure 3.6: Zigbee Sniffing setup: Adapter B eavesdrops on communication
between Adapter A and the Philips Hue light.

We install the required firmware on Zigbee Adapter B in section 3.4.1
and install Wireshark on the computer in section 3.4.2. After that, we sniff
some basic on/off commands in section 3.4.3 and we determine our options
with Zigbee Adapter A in section 3.4.4.

10https://www.zigbee2mqtt.io/advanced/zigbee/04_sniff_zigbee_traffic.html#

with-cc2531
11https://www.wireshark.org/download.html

24

3.4.1 Flashing Zigbee Adapter B

Firstly, we will download the firmware from Texas Industries12 (We need
PACKET−SNIFFER, not PACKET−SNIFFER−2).

Now, we can unzip the package and convert it to a programmable format:

unzip swrc045z.zip −d PACKET−SNIFFER
7z e PACKET−SNIFFER/Setup SmartRF Packet Sniffer 2.18.0.exe bin/general/

↪→ firmware/sniffer fw cc2531.hex
objcopy −−gap−fill 0xFF −−pad−to 0x040000 −I ihex sniffer fw cc2531.hex −O

↪→ binary /packet sniffer.bin

This gives us the packet sniffer.bin file in our directory.
Unfortunately, flashing this adapter is much more complicated than

Adapter B in section 3.1. This is mainly because Adapter A does not require
additional hardware to enter the flashing mode. To flash Adapter B, there
are multiple options13. Since the tutorials are well explained, we will only
briefly look at flashing the adapter using a ESP8266 microcontroller14.

We require CCLoader, installation is trivial:

git clone git@github.com:RedBearLab/CCLoader.git
cd CCLoader/SourceCode/Linux
gcc main.c −o CCLoader

We will then need to flash our ESP8266 microcontroller with firmware
dedicated to flashing.
We need to install the CCLoader/Arduino/CCLoader/CCLoader.ino file. Since we
use an ESP8266, we will use the following pin configuration.

int DD = 14; //GPIO14=D5 on NodeMCU/WeMos D1 Mini
int DC = 4; //GPIO4=D2 on NodeMCU/WeMos D1 Mini
int RESET = 5; //GPIO5=D1 on NodeMCU/WeMos D1 Mini
int LED = 2; //GPIO2=D4

We now connect the ESP8266 to the adapter using the connections shown
in Figure 3.7.
When connected, we can start flashing by doing

CCLoader/SourceCode/Linux/CCLoader /dev/ttyUSB0 packet sniffer.bin 1

We now see the flashing commences and finishes.

3.4.2 Installing Software

We use Wireshark to inspect packages, Wireshark is commonly available
on all platforms and it allows for a Zigbee implementation. Installation

12https://www.ti.com/tool/PACKET-SNIFFER
13https://www.zigbee2mqtt.io/guide/adapters/flashing/flashing_the_cc2531.

html
14https://www.zigbee2mqtt.io/guide/adapters/flashing/alternative_flashing_

methods.html#via-arduino-uno-esp8266-with-ccloader-3min

25

ESP8266 CC Pin CC Name

GND 1 GND

D1 7 RESETn

D2 3 DC

D5 4 DD

Figure 3.7: Wiring Connections

of Wireshark and the Zigbee implementation whsniff15 is done using the
following commands:

cd Downloads/
sudo apt−get install −y libusb−1.0−0−dev wireshark
curl −L https://github.com/homewsn/whsniff/archive/v1.3.tar.gz | tar zx
cd whsniff−1.3
make
sudo make install

3.4.3 Sniffing basic Zigbee Traffic

In this section we actually sniff some basic Zigbee traffic. Basic in this case
means that we send a simple command to turn the Philips Hue light on
and off. We do that using a second Zigbee adapter connected to Wireshark.
Assuming that we have flashed the adapter (see section 3.4.1) and installed
both Wireshark and whsniff (see section 3.4.2).

Setup

Firstly, we create a pipe for Wireshark to connect to:

mkdir /tmp/pipes
mkfifo /tmp/pipes/whsniff

Now we start whsniff and Wireshark, configured to this pipe:

sudo whsniff −c 11 > /tmp/pipes/whsniff &
sudo wireshark −k −i /tmp/pipes/whsniff

In the first command, we say −c 11 to configure the channel to be 11. This
is the default for Zigbee2MQTT. We can add our Zigbee keys to Wire-
shark. The network key can be found in the configuration.yaml file (see sec-
tion 3.2). The Trust Center link key (see section 2.1.3) is (in our case):
5A:69:67:42:65:65:41:6C:6C:69:61:6E:63:65:30:39. These keys can be added to Wire-
shark via Edit, Preferences, Protocols, Zigbee, Edit.

15https://github.com/homewsn/whsniff

26

Results

After having done all this, we can see all Zigbee traffic flowing around. This
mainly consists of broadcasts every 15 seconds. When we turn the light on
and off in sequence, we see the following in Figure 3.8.

Source Destination Protocol Length Info

0x0000 0x9918 ZigBee HA 48 ZCL OnOff: On, Seq: 29

IEEE 802.15.4 5 Ack

0x9918 0x0000 ZigBee HA 50 ZCL: Default Response, Seq: 29

IEEE 802.15.4 5 Ack

0x0000 0x9918 ZigBee HA 48 ZCL OnOff: Off, Seq: 30

IEEE 802.15.4 5 Ack

0x9918 0x0000 ZigBee HA 50 ZCL: Default Response, Seq: 30

IEEE 802.15.4 5 Ack

Figure 3.8: Captured Zigbee messages from a Wireshark export

So when we inspect these packages, we see that 0x0000 requests 0x9918 to
turn on, on which 0x9918 gives the Acknowledgement. We can see the same
for the turn-off command.

3.4.4 Sniffing advanced Zigbee packages

We now need to figure out the following: Consider s to be a serial frame to
Adapter A and z to be the Zigbee message resulting from this frame (see
Figure 3.9). Since z is encrypted, we will also have z decrypted, which we
will call z′. Because encryption is done on the Adapter, we will focus on
the decrypted message z′. What is the relation between s and z′? When
we know how we can influence z and z′ using s, we can figure out our
possibilities to fuzz in section 3.5.

Figure 3.9: Adapter A transforms serial frame s into Zigbee message z.

We do this by combining experiment 3.4.3 and 3.3.3. Since looking
at plain bytes can be a little abstract, we will also include the command
from Zigbee2MQTT, represented by the variable m. This means we will be

27

sniffing both the serial traffic to Adapter A and the Zigbee traffic over the
air from Adapter A to the SUT, whilst also keeping track of the commands
being sent by Zigbee2MQTT. See Figure 3.10 for a visual representation of
our setup.

Figure 3.10: Visual representation of experiment 3.4.4, with serial frame s,
Zigbee message z and Zigbee2MQTT command m.

Setup

1. We start Zigbee2MQTT with Interceptty fuzzing the serial port, see
experiment 3.3.2. The logs from Zigbee2MQTT will be printed to a
terminal as well.

2. We start Wireshark connected to Zigbee Adapter B in the same way
as in experiment 3.4.3.

We now have a sight on both serial frame s, Zigbee2MQTT logm and Zigbee
message z, which we will compare to find differences and similarities. See
Figure A.2 for s and Figure A.4 for m. For z it is a bit more complicated,
since z is encrypted (see section 2.1.3). Luckily, we know the keys from
Zigbee2MQTT and Wireshark can give us the decrypted payload z′ (see
Figure A.3).

Results

The format of serial frames s and their relation to Zigbee messages z and z′

is described in 3.11. More information on the serial frames can be found in
section 2.4.3. In Figure 3.12 we see the Zigbee protocol stack and the format
of Zigbee messages z and z′ is described in Figure 3.13. This information is
extracted from sniffed packages in Wireshark and can be found on page 30.

28

Figure 3.11: Serial frame format of AF DATA REQUEST (s). A z or z′ in a
field means that this field directly occurs in z or z′. DstAddr and Cluster
are 2 byte fields, Data has as many bytes as specified in Len. All other fields
are 1 byte.

When we put the tables next to each other, there are a few interesting
observations when comparing s with z′.

1. Destination endpoint, source endpoint and cluster are both available
in s and z′.

2. The data being sent in z′ is exactly the same as in s, but without an
extra length value.

3. There is a counter in z′, which is not in s

4. z′ has a 2 byte profile. Which in our case is Home Automation. How-
ever, this is not visible in s.

We can also compare s with z in Wireshark, this gives the following obser-
vations:

1. The destination address is visible in both s and z. In z, it is in the
MAC layer and the Network layer (see Figure 3.13). In both places,
they are represented in little-endian. This can be confusing, since we
read them in big-endian.

2. When we focus more on the Network layer in z, we see that the radius
from s is also visible.

This means there are a few ways to influence z and z′ by altering s. However,
there are not very many possibilities since the Z-Stack firmware running on
our adapter plays a very fundamental role in converting the serial frames to
Zigbee messages. In section 3.5.3 we will discuss how to use this to fuzz on
a Zigbee level.

29

Figure 3.12: Zigbee Network Stack.

Figure 3.13: Zigbee message z split up into layers.

30

3.5 Actively fuzzing Zigbee

In this section we perform the actual fuzzing experiments. First, we reason
about a crash detective in section 3.5.1. This is a way to determine whether
our SUT has crashed. Then, the programming basics and our setup are
explained in section 3.5.2. In section 3.5.3 we fuzz a connected device using
the command AF DATA REQUEST and in section 3.5.4 we fuzz an unpaired
device using the command AF DATA REQUEST EXT. Both section 3.5.3 and
3.5.4 first have a subsection regarding the fields to be fuzzed and also a
subsection on the results of the fuzzing. Finally, we unsuccessfully try to
fuzz using the AF MSG command in section 3.5.5.

3.5.1 Crash Detective

Foremost, a crash detective is a way for us to determine if the SUT (System
under test) has crashed. For a normal computer program running locally,
this is typically very trivial, since it will throw an error or stop working.
On the contrary, it is difficult to determine whether a piece of software has
crashed when you do not have access to the device it is running on. This is
a common problem with IoT devices. Research into a generic IoTFuzzer[3]
has been done successfully. What basically happens is that they reverse
engineer the app corresponding to an IoT device and then fuzz the device
via the internet until it gives back unexpected responses. However, our SUT
is not directly connected to the internet and we have no physical access to the
Philips Hue Light bulb other than its power usage. Nevertheless, remember
from experiment 3.4.3 that there is a broadcast frame every 15 seconds (see
Figure 3.14). We could use these frames to determine if our SUT has stopped
working, since it should send these broadcasts every 15 seconds.

Time Source Destination Protocol Length

65.222771 0x9918 Broadcast ZigBee 50

69.637147 0x0000 Broadcast ZigBee 50

80.303484 0x9918 Broadcast ZigBee 50

85.425507 0x0000 Broadcast ZigBee 50

Figure 3.14: Broadcast frames example from Wireshark.

31

3.5.2 Creating our fuzzer

In this section we discuss what our fuzzer looks like, how features are imple-
mented and why. The basic idea is explained in Figure 3.9. Since the fuzzer
uses the Z-stack API, this is the main reason for most choices. The setup
used will also be explained.

Fuzzing Program

For simplicity reasons we shall use Python to send the serial frames. Python
supports serial communication using the pyserial library:

python −m pip install pyserial

We use a serial frame to represent one command to the Z-stack API (which
runs on Adapter A, see section 2.4). Since we want to mutate bytes easily,
we use a list for a serial frame. This list contains all bytes. From 2.4.1 we
know that all frames end with a checksum. This can be computed using the
following function.

def byte xor(ba1, ba2):
return bytes([a ˆ b for a, b in zip(ba1, ba2)])

def computeFCS(data):
FCS = b’\x00’
for d in data[1:]: # See Z−stack API 2.2.1 (XOR over all but SOF)

FCS = byte xor(FCS, d)
return FCS

Some observations have to be made regarding our fuzzer.

1. There are quite a lot of bytes that we can change that influence the
Zigbee message. This means there are a lot of possible serial frames
that we can send. Imagine that we want to change 3 bytes, this means
(28)3 = 16.777.216 different possibilities. This costs an absurd amount
of time, especially if it is more than 3 bytes. Hence, we fuzz most fields
independently of other fields.

2. When we send more than 10 serial frames per second to Zigbee Adapter
A, we only see some of them appearing on Wireshark. This means
either Adapter A can only send 10 Zigbee messages per second or the
sniffer can only sniff 10 Zigbee messages per second. In any case, in
order to fuzz thoroughly, we can only send a finite number of Zigbee
messages per second. That is why we must consider a timeout between
each serial frame.

With this in mind, we use the following functions for sending data, gener-
ating random bytes and generating all 1 byte bytes.

32

def sendFrame(f):
for s in f:

ser.write(s)
time.sleep(TimeOut)

def getRandomBytes(size=32) −> []:
result = []
for i in range(size):

result.append(os.urandom(1))
return result

def getByteList(size=256) −> []:
result = []
for i in range(size):

result.append(i.to bytes(1, ’big’))
return result

The rest of the code is on GitLab16.

Setup

Before we start, we first have to start Adapter A and get it in the coordinator
mode. Followed by an initial pairing where Adapter A and the SUT get
paired. We do this by simply starting Zigbee2MQTT (see section 3.2) and
shutting it down. This only needs to be done once, since the devices will be
paired until a power reset.

After that, we can use the setup as displayed in Figure 3.15. Firstly, we
start our Zigbee sniffer with Wireshark as explained in section 3.4.3. For
extra information, we use Interceptty to sniff our serial traffic. We start this
using

interceptty /dev/ttyUSB0

Now we can connect to the virtual port using our Python fuzzer, we can
find this port in \dev\pts\ . With this setup, we can finally send our custom
messages over Zigbee on a small scale.

Initial results

After sending some messages, the following things were remarkable:

1. Using a different cluster field will result in the Zigbee message being
interpreted differently.

2. TransId does not influence the sequence number anywhere.

3. The sequence number in the data is displayed, but nothing seems to
be done with it.

16https://gitlab.science.ru.nl/trust/z-stack-python/-/blob/main/Serial_

Fuzzer.py

33

Figure 3.15: Visual representation of the fuzzing setup of the experiments
in section 3.5 with serial frame s and Zigbee message z.

3.5.3 Fuzzing the AF DATA REQUEST command

In this section we communicate with the Z-Stack firmware on Zigbee Adapter
A using the AF DATA REQUEST method from the Z-Stack API, see section
2.4.3. We use this command because it is the command used by Zig-
bee2MQTT to send data, which means that it has a good chance of working.
In this scenario, a Zigbee device is paired with a malicious coordinator (see
section 2.1.1 for information on coordinators). In our case, the coordinator
is Zigbee Adapter A and the Zigbee device is the Philips Hue Light bulb.

In the first part, the fields that we fuzz are explained and numbered.
Such that we can easily present the results in the second part. Finally, we
present a diagram with the Zigbee messages that show which parts of the
network stack we can change in Figure 3.17.

Fields to be fuzzed

In this section we will discuss which fields of the serial frame we alter in our
fuzzing attempt. In section 3.4.4 we sniffed serial traffic to Adapter A and
Zigbee traffic over the air to find similarities. Using these findings, we will
determine which fields of the frame to fuzz. See Figure 3.16 for the fields in
a serial frame.

1. We have full control of the Data field which results in the Zigbee Clus-
ter Frame. According to the Z-Stack API, this may have a length of
1 − 128 bytes. This means it is infeasible to fuzz all possible com-
mands. The second byte is used for the sequence number, we can also
fuzz this specifically.

2. The Data field is preceded by the Len field. We shall refer to this as
data-length. Remember from section 2.4.1 that we also have a length

34

value at the beginning of every serial frame (which we call frame-
length). However, these values seem unrelated to Zigbee messages.
Meaning that probably special nothing makes it onto the air.

3. Destination endpoint, source endpoint and cluster (1 byte, 1 byte and
2 bytes) are also being sent to the application layer

4. The destination address (2 bytes) can also be changed and may influ-
ence both the MAC and Network Layer. (See Figure 3.13.

5. Different values for radius influence the Network Layer.

6. The Options parameter is used to pass some extra parameters to
Adapter A. So trying different values might be interesting.

7. We tried different values for TransId, also in a weird order. This did
not result in our SUT crashing or even ignoring the Zigbee messages.

Figure 3.16: Serial frame of AF DATA REQUEST. A z means that changing
this field directly influences the Zigbee message that results from this frame.
f means that we fuzz this field.

Results

Because of time complexity, most fields were fuzzed separately. In total,
around 70000 Zigbee messages were generated which took around 2 hours.
The Philips Hue light bulb did not crash during these fuzzing attempts. In
Figure 3.16 the fields are displayed that have been fuzzed and in Figure 3.17
an example Zigbee message is displayed with only the fields that can be
influenced by us. Of these, only the destination addresses can be partially
controlled.

1. We have total control of the Zigbee Cluster Frame in Zigbee message z
by using the data field in s. The SUT responds to every combination
of data with an acknowledgement. Changing the sequence number
does not do anything special.

2. The data-length value seems to indicate which of the following bytes
need to be interpreted. The same holds for the serial-length value, we
see that all bytes after this length will be ignored by Adapter A.

35

However, we can get a very large Zigbee message with random data
when we set the data-length value to be very high (0xf0/127) and not
send those 127 bytes. What possibly happens is that we are reading
the memory of Zigbee Adapter A.

3. For destination endpoint, only values of 0x0b and 0xff are fully ac-
cepted by the SUT. This means that it will handle those commands.
Other values of destination endpoint will result in the SUT only send-
ing an acknowledgement.

For the source endpoint, only some values result in a Zigbee message
being sent. These values are (1− 6, 8, 10− 13, 47, 110, 242). All these
values seem to correspond to a different profile (Such as Home Au-
tomation and Telecom Automation). The SUT seems to respond only
to the Home Automation and ZZL profile.

When we change the cluster, we see that the Zigbee Cluster Frame is
interpreted differently.

4. When a known destination address is sent to Adapter A, it sends a
Zigbee message to that address. However, if the address is unknown
to Adapter A, it sends a route request. Furthermore, 0xFF 0xFF is
the broadcast address and works as expected.

5. Changing the radius has no effect on our setup, since we only have
2 Zigbee devices. This means messages do not have to travel across
multiple routers.

6. Trying all 255 different combinations for options in s does not crash
our SUT unfortunately. Options is a parameter for AF DATA REQUEST

and does not directly relate to a field in z.

7. Different values for TransId do not result in anything out of the ordi-
nary. Moreover, a strictly decreasing sequence does not do anything
special.

Figure 3.17: Fields in a Zigbee message that can be changed by using the
AF DATA REQUEST command.(All fields with ... are generated by the Z-
Stack firmware.) See figures 3.12 and 3.13 for more information.

36

3.5.4 Fuzzing the AF DATA REQUEST EXT command

In this section, we try to fuzz a device that is currently paired to another
coordinator. This means that our coordinator (Zigbee Adapter A) does not
know the address or security keys. This is a very common real life scenario,
since all Zigbee devices in domestic use should be paired to a coordinator in
order to function properly.

For this experiment, we use a second Philips Hue light bulb that is
still connected to the original Philips Zigbee Bridge. We first get the full
address using Touchlink and Zigbee2MQTT. After that, we try to fuzz it
using AF DATA REQUEST EXT from section 2.4.4.

Getting the Zigbee address and channel

In order to send messages to a light bulb we naturally require its address.
However, we also need the channel and PAN on which it is working. We
can retrieve the Zigbee address and channel using the Touchlink function-
ality that we also used in section 3.2. To do this, we start Zigbee2MQTT
and put Adapter A in close proximity to our light bulb. We then start
the Touchlink scan and find our Philips Hue Light Bulb. Resulting in the
address 0x0017880100dcc2b3 on channel 15. We also change our channel to
15 in Zigbee2MQTT by going to “Settings −→ Advanced −→ Channel”.
Removal of the coordinator backup.json file in the Zigbee2MQTT directory is
also necessary. Next, we need to configure our sniffer to sniff on channel 15.
This means we have to pass the argument −c 15 (see section 3.4.3). When
we now sniff traffic, we see broadcast messages from our new light bulb. In
which the Destination PAN is visible, which is 0x7cd7. We also see that the
short address is 0x0003.

Preparing a AF DATA REQUEST EXT frame

In section 2.4.4 we introduce the AF DATA REQUEST EXT command. This
command requires some preparation. For starters, we need to set the DstAd-
drMode. We collected the address and PanId in the previous section, so we
can fill these in (using the proper endianness). Furthermore, we can also
use the broadcast addresses, which means setting all bits to 1. The other
parameters of AF DATA REQUEST EXT were also used in section 3.5.3. We
had no success there tampering with these parameters. Hence, we will focus
on different parameters. DstEndpoint and SrcEndpoint are an exception be-
cause they may be interesting. This results in us reusing the values gathered
in experiment 3.3.2 (see Figure 3.5). This means:

• Cluster: 0x0600

• Options: 0x00

37

• Radius: 0x1e

• Trans: 0x04

• Len: 0x03

• Data: 0x010002.

Fields to be fuzzed

In this section we discuss which fields of the serial frame we use to fuzz. See
Figure 3.18 for a serial frame of AF DATA REQUEST EXT.

1. We try the address of the SUT and the broadcast address in both the
short and long notation (see section 2.4.4).

2. We try different values for SrcEndpoint and DstEndpoint.

3. We try different values for PanId, including the broadcast pan (0xffff)
and other interesting PanIds[1].

Figure 3.18: Serial frame of AF DATA REQUEST EXT. An f means that we
fuzz this field.

Results

When sending a serial frame to Adapter A, there are 3 possible outcomes.
Either the Z-Stack firmware does not know what to do with this serial frame
and does nothing, or it is transformed into a Zigbee message to which our
SUT can either respond or not.

1. Zigbee messages with the short notation only get transmitted when we
use the broadcast address. This is because the short address (0x0003)
is unknown to Adapter A. However, we cannot influence the PanId in
that case.

The long notation in combination with the DstEndpoint set to 0xfe
results in Zigbee messages being transmitted with control over the
PanId. If we send this to the exact address, we get an acknowledge-
ment back.

38

2. We can change the SrcEndpoint and DstEndpoint fields in any Zigbee
message.

3. We have control over the PanId, but we do not get any responses from
the SUT when we use the wrong PanId.

The Zigbee message resulting from the AF DATA REQUEST EXT serial com-
mand is shown in Figure 3.19. Because we are sending to an unknown device,
we do not know the security keys and thus we are sending the message in
plain text.

As stated before, we can get a reply (in the form of an acknowledgement)
from our SUT if we do the following:

• We set the correct address in 8 byte length.

• DstEndpoint is set to 0xfe

• Use the correct PAN (0x7cd7) or the broadcast PAN (0xffff)

Note that we can only get an acknowledgement. In other words, the SUT
does not actively respond by, for example, turning off. However, since we
can trigger a reaction without setting up a connection, we may possibly
perform a DDOS attack (See section 5.4).

Figure 3.19: Fields in a not encrypted Zigbee message that can be changed
by using the AF DATA REQUEST EXT command. (All fields with ... are
generated by the Z-Stack firmware.) See figures 3.12 and 3.13 for more
information.

39

3.5.5 Brief experiment: Fuzzing the APP MSG command

In this experiment we try to fuzz Zigbee messages using the APP MSG com-
mand (see figure 3.20 and section 3.3.1.1 of the Z-Stack API). Unfortunately,
sending this serial frame with valid data does not result in a Zigbee message
being transmitted. So this command does not seem suitable for use with
fuzzing.

Figure 3.20: Serial frame of the APP MSG command

40

Chapter 4

Related Work

Research has been done in attacking Zigbee using XBee1 devices[22]. In
their experiment, the XBee devices occupied all important roles: (Zigbee
Coordinator, target device and attacker). These XBee devices were used in
combination with microcontrollers or microprocessors such as an Arduino
or Raspberry Pi to set up an attack. They decided to only target these
XBee devices. This is the main difference when comparing their research
with our experiment. Since we targeted consumer grade hardware, such as
the Philips Hue Light bulbs that anyone can easily buy.

Their result was that they could send remote AT Commands2 to nodes in
a connected network not using encryption. With these AT Commands they
could reconfigure a device, for example to let it join a malicious network.

Research into Fuzzing Zigbee has been done using a Finite State Machine[4].
The FSM here is used to make the fuzzing attacks more targeted on a spe-
cific state a Zigbee device is in. Furthermore, it is also being used to monitor
if the devices are in the correct state, so as a method of crash detection.

1https://en.wikipedia.org/wiki/XBee
2https://en.wikipedia.org/wiki/Hayes_command_set

41

Chapter 5

Future Work

5.1 Custom Zigbee Firmware

It is possible to program CC2652P chip-sets. Like what we did in section
2.1.1. An interesting extension to this would be to program the CC2652P in
such as way that it does not handle any part of the network stack. There are
more Zigbee chipsets that support custom firmware and easy flashing, such
as the XT-ZB11. With fully custom firmware, fuzzing possibilities would
greatly increase.

5.2 Touchlink

In experiment 3.2 we make an initial connection to the Philips Hue light
bulb. We use the Touchlink2 functionality to reset the light bulb. Touchlink
is present in most chips made by Texas Industries. Touchlink has already
been shown to be a vulnerability[14]. However, Touchlink only works in
a proximity of around 10 centimetres, would it be possible to amplify the
Touchlink signal in a similar way that key-less cars are hacked?

5.3 Fuzzing as a method for testing

Fuzzing is primarily used as a method for security testing. However, could
it also be used for regular testing purposes by developers?

5.4 DDOS attack on Zigbee

In section 3.5.4 we managed to get a reply from an unpaired device. We
did this using the AF DATA REQUEST EXT command from the Z-Stack API.

1https://www.cnx-software.com/2021/12/27/xt-zb1-zigbee-ble-devkit-bl702-risc-v-module/
2https://www.zigbee2mqtt.io/guide/usage/touchlink.html

42

Since we got an acknowledgement, we know that we are communicating with
this device and we may perform a DDOS attack.

5.5 Other Z-Stack Commands

The Z-Stack API has more commands that lead to a Zigbee message being
sent over the air. For example, the ZDO MGMT PERMIT JOIN RSP command
sends a Zigbee message that initiates a pairing operation. There are prob-
ably around 10 more commands that can be fuzzed. Setting up such a
command only takes around half an hour, whilst the fuzzing process can
take much longer.

43

Chapter 6

Conclusions

We have flashed the Z-Stack firmware to the Sonoff Zigbee Dongle (see sec-
tion 3.1). This was very straightforward since flashing can be done over USB.
This Z-Stack firmware is the piece of software that takes a serial frame from
our Python fuzzer1 and transforms it into a Zigbee message over the air.
The Z-Stack firmware is responsible for most fields of any Zigbee message
and in particular most of the MAC Layer and the Network Layer of the Zig-
bee Network Stack (see Figure 3.12). This means that we can not fuzz most
fields of these layers and that we are thus limited in our fuzzing possibilities.

Flashing a CC2531 USB-Dongle for sniffing purposes turned out to be
considerably more difficult than the Sonoff Zigbee Dongle (see section 3.4.1).
This is mainly because the CC2531 requires an external flasher, even though
it is also connected via USB.

The addresses in both the serial frames and Zigbee messages are in little-
endian, whereas the way we read these addresses is in big-endian. This can
be confusing sometimes (see section 3.4.3).

We have discussed that we can only fuzz around 10 Zigbee messages per
second (see section 3.5.2). This is either because the Sonoff Zigbee Dongle
can only send around 10 Zigbee messages per second or the CC2531 USB-
Dongle can only sniff 10 Zigbee messages per second. In any case, this causes
quite a bottleneck when fuzzing on a large scale.

We have successfully used the Z-Stack firmware to fuzz Zigbee messages
(see section 3.5.3). Among the fuzzed fields were fields of the Application
Layer, such as the Zigbee Cluster, Destination endpoint and the Source
endpoint (see Figure 3.17). However, fuzzing on these fields did not result
in the Philips Hue Light crashing.

We were able to get a response from a Zigbee device that was not paired
to our Sonoff Zigbee Dongle (see section 3.5.4). This creates the possibility
for a DDOS attack.

1https://gitlab.science.ru.nl/trust/z-stack-python/-/blob/main/Serial_

Fuzzer.py

44

Bibliography

[1] Atmel. Atmel AT14615: ZigBee Broadcast Message Handling and Im-
plementation in BitCloud SDK. Atmel Corporation, August 2016.

[2] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, page 2329–2344, New York, NY, USA, 2017. Association for
Computing Machinery.

[3] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang
Lin, XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang,
and Kehuan Zhang. Iotfuzzer: Discovering memory corruptions in iot
through app-based fuzzing. In NDSS, 2018.

[4] Baojiang Cui, Shurui Liang, Shilei Chen, Bing Zhao, and Xiaobing
Liang. A novel fuzzing method for zigbee based on finite state machine.
International Journal of Distributed Sensor Networks, 10(1):762891,
2014.

[5] Sinem Coleri Ergen. Zigbee/IEEE 802.15. 4 summary. UC Berkeley,
September, 10(17):11, 2004.

[6] Patrice Godefroid. Fuzzing: Hack, art, and science. Communications
of the ACM, 63(2):70–76, 2020.

[7] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-
based whitebox fuzzing. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’08, page 206–215, New York, NY, USA, 2008. Association for
Computing Machinery.

[8] Michael Hooper, Yifan Tian, Runxuan Zhou, Bin Cao, Adrian P. Lauf,
Lanier Watkins, William H. Robinson, and Wlajimir Alexis. Securing
commercial wifi-based uavs from common security attacks. InMILCOM
2016 - 2016 IEEE Military Communications Conference, pages 1213–
1218, 2016.

45

[9] British Computer Society Specialist Interest Group in Software Testing.
BCS Software Component Testing Standard. BCS SIGIST, April 1997.

[10] Sewook Jung, Alexander Chang, and Mario Gerla. Comparisons of zig-
bee personal area network (pan) interconnection methods. In 2007 4th
International Symposium on Wireless Communication Systems, pages
337–341, 2007.

[11] Koen Kanters. Zigbee2MQTT. https://www.zigbee2mqtt.io/. (Ac-
cessed on 2022-05-29).

[12] Hongwei Li, Zhongning Jia, and Xiaofeng Xue. Application and anal-
ysis of zigbee security services specification. In 2010 Second Interna-
tional Conference on Networks Security, Wireless Communications and
Trusted Computing, volume 2, pages 494–497, April 2010.

[13] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian
Zhang. Fuzzing: State of the art. IEEE Transactions on Reliability,
67(3):1199–1218, 2018.

[14] Philipp Morgner, Stephan Mattejat, Zinaida Benenson, Christian
Müller, and Frederik Armknecht. Insecure to the touch: Attacking zig-
bee 3.0 via touchlink commissioning. In Proceedings of the 10th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
WiSec ’17, page 230–240, New York, NY, USA, 2017. Association for
Computing Machinery.

[15] Srinivas Nidhra and Jagruthi Dondeti. Black box and white box test-
ing techniques-a literature review. International Journal of Embedded
Systems and Applications (IJESA), 2(2):29–50, 2012.

[16] Olayemi Olawumi, Keijo Haataja, Mikko Asikainen, Niko Vidgren, and
Pekka Toivanen. Three practical attacks against zigbee security: At-
tack scenario definitions, practical experiments, countermeasures, and
lessons learned. In 2014 14th International Conference on Hybrid In-
telligent Systems, pages 199–206, Dec 2014.

[17] C. Muthu Ramya, M Shanmugaraj, and R Prabakaran. Study on zig-
bee technology. In 2011 3rd International Conference on Electronics
Computer Technology, volume 6, pages 297–301, 2011.

[18] Mengfei Ren, Xiaolei Ren, Huadong Feng, Jiang Ming, and Yu Lei. Z-
fuzzer: Device-agnostic fuzzing of zigbee protocol implementation. In
Proceedings of the 14th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WiSec ’21, page 347–358, New York,
NY, USA, 2021. Association for Computing Machinery.

46

[19] Shahnaz Saleem, Sana Ullah, and Kyung Sup Kwak. A study of ieee
802.15.4 security framework for wireless body area networks. Sensors
(Basel, Switzerland), 11(2):1383–1395, 2011. 22319358[pmid].

[20] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute
force vulnerability discovery. Pearson Education, 2007.

[21] Inc. Texas Instruments. Z-Stack Monitor and Test API (Revision
1.178), 2020.

[22] Ivan Vaccari, Enrico Cambiaso, and Maurizio Aiello. Remotely exploit-
ing at command attacks on zigbee networks. Security and Communi-
cation Networks, 2017, 2017.

[23] Denny Vrandečić and Aldo Gangemi. Unit tests for ontologies. In
Robert Meersman, Zahir Tari, and Pilar Herrero, editors, On the Move
to Meaningful Internet Systems 2006: OTM 2006 Workshops, pages
1012–1020, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[24] ChonggangWang, Kazem Sohraby, Rittwik Jana, Lusheng Ji, and Mah-
moud Daneshmand. Voice communications over zigbee networks. IEEE
Communications Magazine, 46(1):121–127, 2008.

[25] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley.
Scheduling black-box mutational fuzzing. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security,
CCS ’13, page 511–522, New York, NY, USA, 2013. Association for
Computing Machinery.

[26] Min Zhou and Zhang long Nie. Analysis and design of zigbee mac lay-
ers protocol. In 2010 International Conference on Future Information
Technology and Management Engineering, volume 2, pages 211–215,
2010.

47

Appendix A

Appendix

A.1 Results for experiment 3.3.3

See Figure A.1.

A.2 Results for experiment 3.4.4

See figures A.2, A.3 and A.4.

48

C
o
m
m
a
n
d

D
a
ta

C
o
m
m
a
n
d

L
E
N

C
lu
st
er
Id

T
ra
n
sI
d

L
en

D
at
a

F
C
S

O
ff

0x
d

0
x
6
0x

0
0x

14
0x

3
0x

1
0x

15
0x

0
0x

b
8

O
n

0x
10

0x
8
0x

0
0x

15
0x

6
0x

1
0x

16
0x

4
0x

54
0x

0
0x

0
0x

fc

B
ri
gh

tn
es
s
50

0x
10

0x
8
0x

0
0x

16
0x

6
0x

1
0x

17
0x

4
0x

32
0x

0
0x

0
0x

98

B
ri
gh

tn
es
s
10

0
0x

10
0x

8
0x

0
0x

17
0x

6
0x

1
0x

18
0x

4
0x

64
0x

0
0x

0
0x

c0

B
ri
gh

tn
es
s
25

4
0x

10
0x

8
0x

0
0x

18
0x

6
0x

1
0x

19
0x

4
0x

64
0x

0
0x

0
0x

ce

C
o
lo
r
T
em

p
0

0x
10

0x
8
0x

0
0x

19
0x

6
0x

1
0x

1a
0x

4
0x

fe
0x

0
0x

0
0x

56

C
o
lo
r
T
em

p
1

0x
11

0x
0
0x

3
0x

1a
0x

7
0x

1
0x

1b
0x

a
0x

99
0x

0
0x

0
0x

0
0x

36

C
o
lo
r
T
em

p
2

0x
11

0x
0
0x

3
0x

1b
0x

7
0x

1
0x

1c
0x

a
0x

fa
0x

0
0x

0
0x

0
0x

53

C
o
lo
r
T
em

p
3

0x
11

0x
0
0x

3
0x

1c
0x

7
0x

1
0x

1d
0x

a
0x

72
0x

1
0x

0
0x

0
0x

d
c

C
o
lo
r
T
em

p
4

0x
11

0x
0
0x

3
0x

1d
0x

7
0x

1
0x

1e
0x

a
0x

c6
0x

1
0x

0
0x

0
0x

6a

R
ed

0x
11

0x
0
0x

3
0x

1e
0x

7
0x

1
0x

1f
0x

a
0x

f4
0x

1
0x

0
0x

0
0x

5a

G
re
en

0x
13

0x
0
0x

3
0x

1f
0x

9
0x

1
0x

20
0x

7
0x

79
0x

a1
0x

b
5
0x

52
0x

0
0x

0
0x

af

Y
el
lo
w

0x
13

0x
0
0x

3
0x

20
0x

9
0x

1
0x

21
0x

7
0x

b
6
0x

7d
0x

b
6
0x

6d
0x

0
0x

0
0x

b
e

B
ro
w
n

0x
13

0x
0
0x

3
0x

21
0x

9
0x

1
0x

22
0x

7
0x

18
0x

69
0x

4e
0x

7d
0x

0
0x

0
0x

ee

B
lu
e

0x
13

0x
0
0x

3
0x

22
0x

9
0x

1
0x

23
0x

7
0x

d
a
0x

4b
0x

b
4
0x

97
0x

0
0x

0
0x

1c

P
u
rp
le

0x
13

0x
0
0x

3
0x

23
0x

9
0x

1
0x

24
0x

7
0x

2d
0x

26
0x

b
8
0x

f
0x

0
0x

0
0x

14

O
ff

0x
d

0
x
6
0x

0
0x

25
0x

3
0x

1
0x

26
0x

0
0x

b
a

F
ig
u
re

A
.1
:
S
n
iff
ed

se
ri
al

d
at
a
w
it
h
th
ei
r
co
m
m
an

d
s

49

S
O
F

L
E
N

C
M
D
0

C
M
D
1

D
st
A
d
d
r

D
st
E
P

S
rc
E
P

C
lu
st
er
Id

T
ra
n
sI
d

O
p
ti
on

s
R
ad

iu
s

L
en

D
at
a

F
C
S

0
x
fe

0
x
0
d

0x
24

0
x
1

0
x
1
89

9
0x

b
0x

1
0x

06
00

0x
2

0x
0

0x
1e

0x
3

0x
01

03
01

0x
b
9

0
x
fe

0
x
1
1

0x
24

0
x
1

0x
18

99
0x

b
0x

1
0x

00
03

0x
3

0x
0

0x
1e

0x
7

01
04

0a
f4

01
00

00
0x

5c

0
x
fe

0
x
1
0

0x
24

0
x
1

0x
18

99
0x

b
0x

1
0x

08
00

0x
4

0x
0

0x
1e

0x
6

01
05

04
55

00
00

0x
ff

0
x
fe

0
x
1
0

0x
24

0
x
1

0x
18

99
0x

b
0x

1
0x

08
00

0x
5

0x
0

0x
1e

0x
6

01
06

04
a0

00
00

0x
08

0
x
fe

0
x
0
f

0
x
24

0
x
1

0x
1
89

9
0x

b
0x

1
0x

03
00

0x
6

0x
0

0x
1e

0x
5

01
07

40
00

00
0x

f9

0
x
fe

0
x
0
f

0
x
24

0
x
1

0x
1
89

9
0x

b
0x

1
0x

03
00

0x
7

0x
0

0x
1e

0x
5

01
08

40
fe

00
0x

09

0
x
fe

0
x
1
3

0x
24

0
x
1

0x
18

99
0x

b
0x

1
0x

00
03

0x
8

0x
0

0x
1e

0x
9

0x
01

09
07

79
a1

b
55

20
00

0
0x

91

0
x
fe

0
x
1
3

0x
24

0
x
1

0x
18

99
0x

b
0x

1
0x

00
03

0x
9

0x
0

0x
1e

0x
9

0x
01

0a
07

18
69

4e
7d

00
00

0x
ee

0
x
fe

0
x
1
3

0x
24

0
x
1

0x
18

99
0x

b
0x

1
0x

00
03

0x
a

0x
0

0x
1e

0x
9

0x
01

0b
07

2d
26

b
80

f0
00

0
0x

12

0
x
fe

0
x
1
0

0x
24

0
x
1

0x
18

99
0x

b
0x

1
0x

08
00

0x
b

0x
0

0x
1e

0x
6

01
0c

04
fe

00
00

0x
52

0
x
fe

0
x
1
1

0x
24

0
x
1

0x
18

99
0x

b
0x

1
0x

00
03

0x
c

0x
0

0x
1e

0x
7

01
0d

0a
99

00
00

00
0x

36

0
x
fe

0
x
1
2

0x
24

0
x
1

0x
18

99
0x

b
0x

1
0x

00
03

0x
d

0x
0

0x
1e

0x
8

0x
10

0e
02

10
40

21
c6
01

0x
0e

F
ig
u
re

A
.2
:
C
ap

tu
re
d
S
er
ia
l
fr
am

es
s

D
st
E
P

=
D
es
ti
n
at
io
n
E
n
d
p
oi
n
t

S
rc
E
P

=
S
ou

rc
e
E
n
d
p
oi
n
t

50

F
ra
m
e
C
o
n
tr
ol

F
ie
ld

D
es
ti
n
a
ti
o
n
E
n
d
p
oi
n
t

C
lu
st
er

P
ro
fi
le

S
ou

rc
e
en

d
p
oi
n
t

C
ou

n
te
r

Z
ig
b
ee

C
lu
st
er

L
ib
ra
ry

fr
am

e

0
x
00

0
x
0
b

0x
6
0x

0
0x

04
0x

01
0x

01
0x

59
01

03
01

0
x
00

0
x
0
b

0x
0
0x

3
0x

04
0x

01
0x

01
0x

5a
01

04
0a

f4
01

00
00

0
x
00

0
x
0
b

0x
8
0x

0
0x

04
0x

01
0x

01
0x

5b
01

05
04

55
00

00

0
x
00

0
x
0
b

0x
8
0x

0
0x

04
0x

01
0x

01
0x

5c
01

06
04

a0
00

00

0
x
00

0
x
0
b

0x
3
0x

0
0x

04
0x

01
0x

01
0x

5d
01

07
40

00
00

0
x
00

0
x
0
b

0x
3
0x

0
0x

04
0x

01
0x

01
0x

5e
01

08
40

fe
00

0
x
00

0
x
0
b

0x
0
0x

3
0x

04
0x

01
0x

01
0x

5f
01

09
07

79
a1

b
5
52

00
00

0
x
00

0
x
0
b

0x
0
0x

3
0x

04
0x

01
0x

01
0x

60
01

0a
07

18
69

4e
7d

00
00

0
x
00

0
x
0
b

0x
0
0x

3
0x

04
0x

01
0x

01
0x

61
01

0b
07

2d
26

b
8
0f

00
00

0
x
00

0
x
0
b

0x
8
0x

0
0x

04
0x

01
0x

01
0x

62
01

0c
04

fe
00

00

0
x
00

0
x
0
b

0x
0
0x

3
0x

04
0x

01
0x

01
0x

63
01

0d
0a

99
00

00
00

0
x
00

0
x
0
b

0x
0
0x

3
0x

04
0x

01
0x

01
0x

64
10

0e
02

10
40

21
c6

01

F
ig
u
re

A
.3
:
C
ap

tu
re
d
D
ec
ry
p
te
d
Z
ig
b
ee

p
ac
ke
ts

z
′

51

zigbee2mqtt | Zigbee2MQTT:info 2022−05−02 17:37:52: MQTT publish: topic ’
↪→ zigbee2mqtt/0x0017880102c89a03’, payload ’{”brightness”:254,”color”:{”hue
↪→ ”:66,”saturation”:88,”x”:0.4105263157894737,”y”:0.48947368421052634},”
↪→ color mode”:”xy”,”color temp”:252,”color temp startup”:153,”linkquality
↪→ ”:94,”state”:”ON”}’

zigbee2mqtt | Zigbee2MQTT:info 2022−05−02 17:37:55: MQTT publish: topic ’
↪→ zigbee2mqtt/0x0017880102c89a03’, payload ’{”brightness”:254,”color”:{”hue
↪→ ”:25,”saturation”:95,”x”:0.5267,”y”:0.4133},”color mode”:”color temp”,”
↪→ color temp”:500,”color temp startup”:153,”linkquality”:94,”state”:”ON”}’

zigbee2mqtt | Zigbee2MQTT:info 2022−05−02 17:37:58: MQTT publish: topic ’
↪→ zigbee2mqtt/0x0017880102c89a03’, payload ’{”brightness”:85,”color”:{”hue
↪→ ”:25,”saturation”:95,”x”:0.5267,”y”:0.4133},”color mode”:”color temp”,”
↪→ color temp”:500,”color temp startup”:153,”linkquality”:94,”state”:”ON”}’

zigbee2mqtt | Zigbee2MQTT:info 2022−05−02 17:38:00: MQTT publish: topic ’
↪→ zigbee2mqtt/0x0017880102c89a03’, payload ’{”brightness”:160,”color”:{”hue
↪→ ”:25,”saturation”:95,”x”:0.5267,”y”:0.4133},”color mode”:”color temp”,”
↪→ color temp”:500,”color temp startup”:153,”linkquality”:102,”state”:”ON”}’

zigbee2mqtt | Zigbee2MQTT:info 2022−05−02 17:38:19: MQTT publish: topic ’
↪→ zigbee2mqtt/0x0017880102c89a03’, payload ’{”brightness”:160,”color”:{”hue
↪→ ”:3,”saturation”:96,”x”:0.6307692307692307,”y”:0.3230769230769231},”
↪→ color mode”:”xy”,”color temp”:319,”color temp startup”:153,”linkquality”:94,”
↪→ state”:”ON”}’

zigbee2mqtt | Zigbee2MQTT:info 2022−05−02 17:38:22: MQTT publish: topic ’
↪→ zigbee2mqtt/0x0017880102c89a03’, payload ’{”brightness”:160,”color”:{”hue
↪→ ”:66,”saturation”:88,”x”:0.4105263157894737,”y”:0.48947368421052634},”
↪→ color mode”:”xy”,”color temp”:252,”color temp startup”:153,”linkquality”:98,”
↪→ state”:”ON”}’

zigbee2mqtt | Zigbee2MQTT:info 2022−05−02 17:38:23: MQTT publish: topic ’
↪→ zigbee2mqtt/0x0017880102c89a03’, payload ’{”brightness”:160,”color”:{”hue
↪→ ”:240,”saturation”:97,”x”:0.14912280701754385,”y”:0.06140350877192982},”
↪→ color mode”:”xy”,”color temp”:500,”color temp startup”:153,”linkquality”:91,”
↪→ state”:”ON”}’

zigbee2mqtt | Zigbee2MQTT:info 2022−05−02 17:38:27: MQTT publish: topic ’
↪→ zigbee2mqtt/0x0017880102c89a03’, payload ’{”brightness”:254,”color”:{”hue
↪→ ”:240,”saturation”:97,”x”:0.14912280701754385,”y”:0.06140350877192982},”
↪→ color mode”:”xy”,”color temp”:500,”color temp startup”:153,”linkquality”:98,”
↪→ state”:”ON”}’

zigbee2mqtt | Zigbee2MQTT:info 2022−05−02 17:38:32: MQTT publish: topic ’
↪→ zigbee2mqtt/0x0017880102c89a03’, payload ’{”brightness”:254,”color”:{”hue
↪→ ”:212,”saturation”:10,”x”:0.3131,”y”:0.3232},”color mode”:”color temp”,”
↪→ color temp”:153,”color temp startup”:153,”linkquality”:91,”state”:”ON”}’

zigbee2mqtt | Zigbee2MQTT:info 2022−05−02 17:38:38: MQTT publish: topic ’
↪→ zigbee2mqtt/0x0017880102c89a03’, payload ’{”brightness”:254,”color”:{”hue
↪→ ”:212,”saturation”:10,”x”:0.3131,”y”:0.3232},”color mode”:”color temp”,”
↪→ color temp”:153,”color temp startup”:454,”linkquality”:91,”state”:”ON”}’

Figure A.4: Zigbee2MQTT logs frames m

52

