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Abstract

Tongue diagnosis is considered an effective and non-invasive technique commonly used to
carry out secondary diagnosis at any time and anywhere. Automated supervised machine
and deep learning models have become a disruptive technology that leverages computerized
algorithms to dissect complex data. Among the many clinical applications of such models,
diagnostic imaging has the most promise due to its cognizant detection and ability to
quantify various diseases. However, with the existence of various models adopting diverse
strategies for distinct diseases, the search for the best fitting supervised machine and deep
learning model becomes a strenuous task. This paper focuses on diagnosing a prevalent
autoimmune disease known as chronic gastritis. Contrary to the standard invasive methods
of diagnosis, we perform automated tongue image analysis on a tongue image dataset
using a set of well-established supervised machine learning models and a pre-trained deep
neural network. The primary objective of this paper is to accurately distinguish and
classify images of tongues infected with chronic gastritis from healthy ones using supervised
machine learning models. The secondary objective of the paper is to perform a comparative
study between the performance of the tested models, thus answering the research question:
“Which supervised machine / deep learning model yields the best performance in diagnosing
autoimmune diseases via tongue image analysis?”. The resultant experimental values
of the pre-trained ResNet-50 convolutional neural network revealed the highest average
accuracy of 90% among the supervised machine learning models. The model produced a
precision of 81.81%, recall of 90%, F1 score of 85.71%, and an AUC of 0.9. It yielded the
best performance for solving our binary classification problem.

Keywords- Supervised machine learning, Deep learning, Chronic gastritis, Autoimmune
diseases, Tongue image analysis, Deep neural network, Convolutional neural network
(CNN), Diagnostic imaging.
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Chapter 2

Introduction

Tongue image classification is defined as a significant element in Traditional Chinese
Medicine (TCM) [62]. In recent decades, Chinese physicians have predicted a patient’s
health condition by examining the tongue’s color, shape, and structure. However,
inconsistent results are a massive limitation for traditional tongue inspection approaches
[64]. With the advancement in digital clinical imaging tools and pattern recognition
models, computer-aided tongue analysis is considered to be remarkable in TCM since the
attained results have proven to be accurate, reliable, and consistent.

Supervised machine learning has revolutionized the diagnostic imaging landscape by
introducing robust, data-driven, and statistical approaches to recognize patterns,
self-learn, and accurately classify images. According to [20] AI-enabled systems and
models will overtake and be more reliable than human medical practitioners by 2050 at
the latest. The present bottleneck of the healthcare workforce and the staggering
amount of human-made diagnostic errors [12] has led to automation taking a crucial role
in healthcare. We strongly believe in investing and pivoting to machine learning-driven
automated medical assistants to analyze a voluminous amount of cases. Simultaneously,
doctors can focus on anomalies and erratic data. Automated diagnosis in an
environment of limited human interaction is the need of the hour. Clinical applications
have been greatly benefited by the constant improving in learning ability of such models.
These models have the potential to become medical assistants to doctors and alleviate
heavy repetitive, time-consuming workload [20]. In modern artificial intelligence,
supervised machine learning consists of a family of models, each having its strengths and
weaknesses. The models mainly differ in the strategy and the type of data they deal
with. With an array of such models and countless diseases, the task of finding the right
pair that yields optimal performance is a laborious task requiring an accurate
comparative study. In this study, we narrow down the compared models to five
supervised machine learning and a deep neural network. These models aim to be the
best classifier by attempting to analyze a dataset of tongue images and classify them as
infected with chronic gastritis or healthy.

Chronic gastritis affects the stomach’s inner lining and is hard to detect without medical
intervention as the symptoms tend to appear slowly over time. According to [45] half the
world’s population will encounter some form of gastritis at some point in their life. The
traditional invasive way of diagnosing chronic gastritis is by performing an
esophagogastroduodenoscopy (EGD). However, due to the autoimmune nature of chronic
gastritis, symptoms affect the color, texture, and geometric nature of the patient’s
tongue. These features can be leveraged by supervised machine learning models to
perform an efficient tongue image analysis for the diagnosis of chronic gastritis. There is
a bottleneck of trained doctors in healthcare and a growing number of patients with
autoimmune diseases. Additionally, there is limited research and data on machine
learning based tongue analysis applications as most diseases in this scope have
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established traditional methods of diagnosis. This resulted in a large research gap and
has paved the path to finding innovative, efficient, and non-invasive automated
diagnostic imaging techniques. Machine learning in diagnostic imaging is a broad field
with diverse approaches and numerous models. Through an extensive comparative study,
this paper aims to find and reason the best performing machine learning model for our
binary image classification problem.

The rest of this paper is organized as follows: Chapter 3 introduces critical concepts and
theory that we build on in this thesis. Chapter 4 highlights previous related research
from experts in this domain, some of which we drew inspiration. Chapter 5 explains our
study’s methodology, models, and implemented techniques. Chapter 6 showcases the
results of each model. In chapter 7, we compare the performance of the models, reason
our observations and rank the models. Lastly, in chapter 8, we summarise our
conclusions, highlight the limitations of this study and discuss how we can expand our
study in the future.

2.1 Clinical background

This section provides a rudimentary biological overview of autoimmune diseases, chronic
gastritis and its symptoms.

2.1.1 Chronic Gastritis

Autoimmune disease spawn when the body’s natural defense system cannot distinguish
between its cells and foreign cells, causing the body to attack normal cells mistakenly.
Physical and visual changes to the tongue are common symptoms of such diseases. Chronic
gastritis is the type of gastritis that hails from an autoimmune cause. It affects the mucus-
lined layer of the stomach, known as the gastric mucosa. This inner lining is inflamed
or irritated over an extended period causing stomachache, nausea, and vomiting [62].
Without proper treatment, chronic gastritis can progress over several months and years
to the point where the stomach lining is extensively damaged. This puts the patient at
risk of peptic ulcers, gastric polyps, anemia, and even non-cancerous tumors.

2.1.2 Tongue symptoms

There are many versions of chronic gastritis. We are interested in the most common
variant which is type “A” chronic autoimmune gastritis. The human tongue can indicate
signs of various illnesses, reflected by its surface coating, texture, chromatic, and
geometric features. Type “A” chronic gastritis tends to form a yellow thickened coating
on the human tongue caused by a bacterium called Helicobacter Pylori [47]. It is
important to note that this coating can also be attributed to an autoimmune cause that
affects acid secretion from the stomach [48].

Figure 2.1: (a) Slight yellow pigmentation and coating on the tongue caused by Heli-
cobacter pylori [26](b) Infection of the stomach’s inner mucus-lined layer [36].
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Chapter 3

Preliminaries

This chapter sheds light on core theoretical concepts and terminology this thesis
incorporates and builds on. We provide fundamental background knowledge on
supervised machine learning, K-fold cross-validation, convolutional neural networks, loss
functions, optimization algorithms, machine learning roadblocks, and some popular
evaluation techniques.

3.1 Binary image classification problems

The process of labeling and categorizing images based on a set of classification rules is
known as image classification. When the data can only be classified between two classes,
we encounter a binary classification problem. In this context, “binary” refers to the two
possible classes. Binary image classification consists of defining the two target classes
and training a model to recognize, differentiate and classify varying images using sample
labeled images. Our use case is a binary classification problem as we wish to classify
tongue images as infected or healthy.

3.2 Supervised machine learning

Supervised machine learning is a subcategory of machine learning (ML) and artificial
intelligence (AI) that learns a mapping from the input to the output variables. The
algorithm learns how the variables relate to the answer by providing rich insights that
predict future outcomes based on historical patterns [33]. These models are distinguished
by their training approach to classify data or predict outcomes using labeled datasets.
The models modify their parameters as input data is fed into it until the model has been
fitted to the best of its ability. This branch of machine learning is “supervised” as it
uses a training set to teach models to yield the desired output. This training dataset
includes inputs and correct outputs, which allow the model to learn over time. The
algorithm measures its accuracy through the loss function, adjusting until the error has
been sufficiently minimized.

Two popular use cases of supervised ML are regression and classification problems. We
are interested in the latter as our focus is on diagnostic imaging.

3.2.1 Deep learning

Deep Learning is a subfield of supervised machine learning. Deep learning works on the
same underlying principles of supervised machine learning. However, these models incor-
porate an artificial neural network whose structure is inspired by biological neural networks
[23]. The structure is composed of nodes in layers that apply a nonlinear transformation to
its input and uses what it learns to create a statistical model as output. We dive in-depth

7



into the structure and its attributes in section 5.16. While traditional machine learning
algorithms are shallow, deep learning algorithms are stacked in a hierarchy of increasing
complexity and abstraction. The goal of deep learning/statistical inference is to reduce
the generalization risk (true risk) [23].

3.2.2 Transfer learning

Transfer learning (TL) is an ML approach that enables models to use previously gained
knowledge from one task to solve another related task. The performance of models that
use transfer learning is directly proportional to the similarity between the datasets of the
two tasks. Transfer learning is the application of knowledge gained from completing one
task to help solve a different but related problem. Transfer learning comes into effect as
the model’s last few layers are active and retrained on datasets of similar classification
problems. This state-of-the-art approach has proven advantageous for deep neural net-
works that solve image classification problems [50, 23]. This is due to the trend of low-level
image features (lines, corners) learned on one dataset repeating in another.

Let’s assume we have two domains DO and DN each consisting of a feature set
“X = {x1, x2, ..., xn}” and marginal probability distribution “P (X)”. The respective
task in each domain “TO” and “TN” consists of a label space “Y ” and predictive function
“f(X → Y )” that attempts to predict the respective label for every new instance the
respective feature space. Transfer learning aims to improve the predictive function of a
new task in the new domain by using knowledge from the old task in the old domain.

Therefore, fN in DN (X,P (X)N performing TN (Y, fN ) is improved by using knowledge
in DO(X,P (X)N from TN (Y, fO) [50, 23, 66].

3.3 K-fold cross validation

When we encounter situations with scarce data availability, the train/validation split
further decreases the size of the training set. The model is trained on fewer instances,
which can hinder the performance. We can mitigate this problem using K-Fold Cross
Validation (CV). The K parameter determines the number of groups into which the
given data sample is split. The original training data is split into K non-overlapping
subsets [4]. The model training and validation are executed K times, each time training
on “K - 1” subsets and validating on a different subset (the one not used for training in
that round). Finally, the training and validation errors are estimated by averaging over
the results from the K experiments [4].

The first fold acts as a validation set. K-fold CV uses a performance measure PMi (ex:
MSEi), computed on the observations in the held-out fold. After repeating the above
process K times, we get K estimates of the test error. The average of these estimates
produces the K-fold CV estimate. We can represent the K fold CV in the equation
below. [16, 4].

CVK =
1

k

K∑
i=1

PMi (3.1)

Where PMi is the performance measure of fold i.

Higher K (number of folds) infers that the model is trained on a more extensive training
set and tested on a smaller test fold. Hence, this leads to a lower prediction error as the
models see more of the available data. However, a very large K restricts the number of

8



possible sample combinations, thus limiting the number of distinct iterations. This could
lead to high sensitivity of noisy data [4]. Lower K infers that the model is trained on a
smaller training set and tested on a more extensive test fold. This leads to greater scope
for the data distribution in the test fold to differ from the training set [4]. Hence, we
should expect a higher prediction error on average. However, a lower K weakens the
strength of the cross-validation as we are using smaller splits. Therefore a lower K could
lead to less reliable results.

Figure 3.1: Iterative working of K-fold cross validation (File:K-fold cross validation EN.svg
- Wikimedia Commons, 2022)

3.4 Neural Networks

Artificial neural networks (ANNs) are a series of algorithms that endeavors to recognize
underlying relationships in a set of data through a process that mimics the way the hu-
man brain operates. Their computational architectures are loosely inspired by biological
neuron processes in our brain [8, 43]. Synapses in the brain allow neurons to receive, ana-
lyze, and transfer signals to one another. Similarly, neural networks have nodes connected
by edges to imitate this behavior. Knowledge is acquired by implicitly learning simple
mathematical rules instead of explicitly programming them. Such artificial neurons have
adaptable synapses that can change their synaptic strengths, which defines the learning
process. Knowledge is stored in such connections. Mimicking the ability to activate a neu-
ron requires the neural networks to incorporate activation functions [8]. These functions
specify how the weighted sum of the inputs is converted into an output, aid the network in
learning complicated patterns and control the transition at each artificial neuron. When
these nodes are connected hierarchically, they are called a deep neural network.

3.4.1 Functionality

Untouched input is sent to the first layer’s input neurons. After processing the input, the
first layer passes it to the neurons of the next layer. The subsequent layer processes the
input from the previous layer, potentially transforming it and passing it to the next layer.
This cycle is repeated from layer to succeeding layer until the last layer is reached. The
activation mechanisms of the output neurons that make up the NN’s result repeatedly
alter the process before it reaches the final layer [35, 43]. The weight value given to an
edge determines how important an edge is. As a result, the weights can alter the strength
of the signal as it travels between neurons. In other words, most data required for the
network to function is encoded in the weight values.
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Forward propagation is the process of receiving an external input, processing it, and
generating output. Most frequently, training a NN entails enabling the network to
complete the required task on a subset of data observations, assessing its performance
through a loss function, and then carrying out backpropagation [35]. In order to
implement backpropagation, the algorithm must propagate the supervision generated by
the loss backward. This starts with the output layer and propagates towards the input
layer. During backpropagation the edge weights are adjusted per the estimated error.
The network mistake rate is reduced by repeating these forward and backward processes.

Figure 3.2: Deep neural network for binary classification

A neural network is trained for one cycle during an epoch using all of the training data.
We only use each piece of information once within an epoch. Each epoch consists of one
or more batches in which the neural network is trained using a portion of the dataset.
The number of epochs should be set to a finite positive integer. The number of training
samples that are processed in each iteration is changed is known as the batch size. The
quantity of complete iterations through the training dataset is the number of epochs.
The size of a batch must be greater or equal to the number of samples in the training
dataset [9]. The epochs and batch size are both hyperparameters for the learning
algorithm of the neural network.

The network evaluation is carried out on an untouched test set, while a set of training
data is utilized to learn the appropriate weight values.

3.5 Convolutional neural networks.

In the field of deep learning, a convolutional neural network (CNN) is a class of deep
neural networks that are most commonly applied to analyze visual imagery. CNN is a
network that employs convolutional layers. The mathematical term “convolution” refers
to the processing of an input signal with another “convolutive” signal by computing a
“sliding” dot-product. [54]. We can represent this as:

f ∗ g(x) =
∫

f(z)g(x− z)dz (3.2)

Likewise, CNNs perform convolutions using a kernel over the input data to produce a
feature map. The feature map is the output of each layer in a CNN and gives an
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in-depth insight into the detected features by the CNN. Convolutions, non-linearities,
and pooling operations are interleaved to make sense of the spatial coherence of the
input (typically an image) and generate an appropriated output. Convolutional layers
are typically arranged to gradually decrease the spatial resolution of the representations
while increasing the number of convolutional channels (feature maps) [10, 3]. In
traditional CNNs, the representations encoded by the convolutional blocks are processed
by one or more fully-connected layers before emitting output.

Figure 3.3: A CNN searching for various patterns and performing feature extraction
by leveraging various sized kernels for each respective convolutional layer to accurately
classify the MNIST image dataset [21]

3.5.1 Layers in a CNN

Convolutional layer

These layers perform convolutions using small-scaled filters/kernels that hover over the
images in a set direction. Typically, the filter’s size is smaller than the original image.
Each filter produces an activation map after it convolves with the image. This kernel
window operates a scalar product between the weights and the input values, generating
an output value for each slide. Once the first kernel slides over the entire image, we can use
another to obtain an output with the number of given channels. In this iterative manner
we can perform feature extraction.

We can represent a convolution of input matrix X : nh ∗ nw, kernel matrix W : kh ∗ kw,
scalar bias: b and output matrix Y: (nh − kh + 1) ∗ (nw − kw + 1)

yi,j =
h∑

a=1

w∑
b=1

w−a,−b ∗ xi+a,j+b (3.3)

This results in Y = X ∗W + b where W and b are learnable parameters.

Pooling layers

Deep learning models are computationally expensive. Pooling layers attempt to reduce
computational complexity by encapsulating the existence of features in sub-regions of the
feature maps. Downsampling feature maps leads to a resolution reduction.
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Figure 3.4: Representation of a convolution layer that applies a 2*2 filter on a padded
image with a stride of 2.

Non-linearity layer

Non-linearity layer refine and bound the produced output. The non-linearity layer converts
the images to a reduced form, but ensures that important features and components of the
images are not lost.

Fully connected layers

Layers where every node is connected to a node in the previous and subsequent layers
are known as fully connected layers. Feed forward neural networks accommodate fully
connected layers.

CNN receives an image as its input ( data with three dimensions: height, width, and the
number of channels that corresponds to the color scale). Each neuron analyzes
information within a particular receptive field of the image. The neurons are arranged in
layers such that they can identify simple patterns in the first layer and increasingly
complicated patterns in the succeeding layers.

3.5.2 Loss function

The “loss” in a neural network is its prediction error. This is done by calculating the
gradients, which are used to update the weights in the neural network. This iterative pro-
cess enables neural networks to train. The loss function quantifies the difference between
the actual outcome and the predicted outcome. There are multiple loss functions, each
specialized for different types of problems and machine learning models [53]. The equation
below represents the binary cross entropy loss function.

Loss = −1

z

z∑
i=1

yi ∗ logŷi + (1− yi) ∗ log(1− ŷi) (3.4)

• yi is the target label for training example i.

• ŷi is the i-th scalar value in the model output.

• z is the number of training examples.
The above expression is equivalent to the average result of the categorical binary cross
entropy loss function applied to many independent classification problems, each problem
having only two possible classes with target probabilities ŷi and (1− ŷi).
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3.6 Optimisation algorithms

For a deep learning problem, we usually define a loss function first. Given the loss function,
we can use an optimization algorithm in an attempt to minimize the loss. A loss function
is often referred to as the objective function of the optimization problem. By tradition
and convention, most optimization algorithms are concerned with minimization. Although
optimization provides a way to minimize the loss function for deep learning, the goals of
optimization and deep learning are fundamentally different [42]. The former is primarily
concerned with minimizing an objective. In contrast, the latter focuses on finding a
suitable model, given a finite amount of data. Training error and generalization error
generally differ since the objective function of the optimization algorithm is usually a loss
function based on the training dataset. The goal of optimization is to reduce the training
error (empirical risk).

3.7 Underfitting and overfitting

When the model is too “simple” for the provided data caused by wrong initial assumptions,
we term this setback as underfitting. This results in possible accurate initial predictions,
high training error, and a high testing error. Such models have a high bias.1

Overfitting occurs when models are too “complex” for the provided data as it models the
training data too well, resulting in wrong predictions for test/new data. Such models
may have a low training error but tend to have a high test error. Overfit models have a
high variance2.

3.8 Vanishing and exploding gradient problem

The partial derivative of the loss function eventually approaches a value near zero and
“vanishes” as the network’s layers increase. Consequently, the value of the product of
derivatives starts to decline.

The derivative of certain activation functions used to build the neural network gives rise
to the vanishing gradient problem. The sigmoid function is an example of an activation
function that compresses a vast input space into a narrow input area between 0 and 1.
As a result, the output of the sigmoid function hardly changes when the input changes
significantly. The derivative shrinks by dividing the gradients of subsequent layers by the
gradients of early levels (layers close to the input layer). Therefore, if the gradients of
later layers, for instance, are less than 1, their multiplication disappears relatively
quickly. As neural networks backpropagate, learning is diminished in the early layer [17].
Using the LeakyReLU activation function can mitigate the vanishing gradient problem.
LeakyReLU maps the values less than zeros to a minimal positive number instead of zero
[29].

The exploding gradient problem is the exact reverse of the vanishing gradient. It is the
scenario when the gradients become too large due to a large accumulation of gradient
errors. This problem can be found in deeper layers that have exceptionally large changes
to the parameters compared to the minimalist change in the early layers. This results in
the weights not being updated. Initializing smaller weights and lower learning rates and
using a standard loss function can help prevent exploding gradients.

1The error caused by incorrect assumptions by the machine learning model is known as the bias
2The difference between the machine learning model between the training and test data is termed as

the variance
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3.9 Evaluation techniques

In this section we discuss popular evaluation techniques used in the field to evaluate the
performance of a machine learning classifier.

3.9.1 Confusion matrix

The confusion matrix is a class by class summary of prediction results by a classifier on
a classification problem. The number of correct and incorrect predictions are represented
with count values among each class. Apart from the errors being made by the classifier,
the confusion matrix gives in-depth insight into the type of errors being made [15, 40].
Our paper deals with a binary classification problem so our confusion matrix is a 2*2 grid.
In this way, we assign the healthy row as “negative” and the infected row as “positive“.
We then assign the healthy column of predictions as “true” and the infected as “false“.
This results in four important components that make up our confusion matrix:

1. True positives (TP): correctly predicted infected images.

2. False positive (FP): incorrectly predicted infected images.

3. True negative (TN): correctly predicted healthy images.

4. False negative (FN): incorrectly predicted healthy images.

3.9.2 Evaluation metrics

Calculating the accuracy of the model is the standard way to assess the performance
of NNs and supervised machine learning models [40]. Additionally, we calculate the F1
score, recall, and precision to gain in-depth knowledge of how sensitive the model is to
certain labels. Accuracy is the measure of correctly predicted data points out of all the
data points. Precision refers to the number of true positives divided by the total number
of positive predictions. The recall is the ratio between the numbers of positive samples
correctly classified as positive to the total number of positive samples. Finally, the F1 score
is defined as the harmonic mean between precision and recall. Co-relating the components
of the confusion matrix and the performance metrics mentioned above, we get the following
equations:

1. Accuracy = TP+TN
TP+FP+FN+TN

2. F1 Score = 2TP
2TP+FP+FN

3. Precision = TP
TP+FP

4. Recall = TP
TP+FN

3.9.3 ROC curve and AUC.

The receiver operating characteristic curve (ROC curve) is a graphical representation of
the performance of the classification model under all classification thresholds. The x-axis
is the false positive rate, whereas the y-axis is the true positive rate. The classification
threshold is inversely proportional to the number of classified positives. In diagnostic
imaging, ROC curves are a great way of representing the connection/tradeoff between
diagnosis specificity and sensitivity. The total area under the curve (AUC) is the area
below the ROC curve. AUC measures how well predictions are ranked and the quality
of the model’s prediction independent of the chosen classification threshold [40]. In our
scenario, the higher the AUC, the better the model is at distinguishing between infected
and healthy tongue images.
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When a model in binary classification provides us with a score rather than the prediction
itself, we typically need to apply a threshold to turn the score into a prediction. It is
apparent to pick 0.5 as a threshold because the score’s purpose is to convey the
perceived likelihood of obtaining the infected class per our model [30]. It makes sense to
change the forecast to 1, if having infected images is more likely than having healthy
images. The natural cutoff of 0.5 assures that the likelihood of infected images being
present is larger than the probability of healthy images. The Scikit-Learn module uses
0.5 as the default threshold.
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Chapter 4

Related Work

In this chapter, we describe state-of-the-art research for automated tongue image
analysis, diagnostic imaging using supervised machine learning models, feature
extraction, and comparative studies between supervised and deep models for
classification problems.

Our research revolves around perfecting and automating tongue image analysis. In this
process, we aim to extract and draw patterns between the desirable features from the
tongue images, which are iteratively trained until the model can classify and produce a
diagnosis. Diagnostic tongue image analysis is a niche field of research that has seen
quite some exploration but is evolving relatively slowly, with beginnings focusing on
automated tongue image detection and segmentation.

4.1 Proposed tongue segmentation framework

Obafemi-Ajayi et al [31] propose a fully automatic tongue detection and tongue
segmentation framework, which is an essential step in computer-aided tongue image
analysis. This framework and its variants have been widely used in forthcoming clinical
research and studies. It is important to note that the product of this study is not specific
to any disease but performs tongue detection and segmentation without adjusting any
parameters. Inspired by [31] David Zhang et al [60] propose cutting-edge methods to
perform tongue image segmentation along with other preprocessing/image augmentation
tasks. Their method captures gross shape features in the parameter space by leveraging
a steep decent method on its energy function. They use a bi-elliptical deformable
contour (BEDC) model [34] that is based on a bi-elliptical deformable template (BEDT)
[34]. The second so-called “Snake” approach is made by combining a polar edge
detector, and active contour model (ACM) techniques [14]. It resulted in an average true
positive percent of 97.1%.

4.2 Tongue analysis by a VGG 19 CNN

Rajakumaran and Sasikala’s tongue diagnosis system [39] uses a VGG 19 CNN model to
perform feature extraction on a dataset of 996 tongue images. The study classifies the
tongue images across 12 autoimmune and heart diseases (some of which are
organ-specific gastritis) using a Random forest and Gaussian naive Bayes models. The
results show that the deep neural network and random forest combination performed the
best with the precision, recall, accuracy, and F1-Score of 93.80%, 93.70%, 93.70%, and
93.68% respectively.
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4.3 Image Acquisition

Kim et al, Zhang et al, and Jiang et al [49, 7] used CCD cameras to outline tongues,
whereas Zhang et al [7] placed D65 fluorescent tubes around the 8-bit resolution CCD
camera to maintain uniform illumination. It is important to mention that we observe a
growing trend of smartphone camera usage in studies focusing on building Tongue
Diagnosis Systems (TDS) [60, 49]. The reason for this pivot to essentially lower
resolution cameras and images is to be able to create accurate and robust models that
works swiftly on mobile applications. This leads to the creation of flexible models that
can process and diagnose tongue images captured in different environments, lumination
and quality. Therefore these studies deal with noise removal by using a varied sizes of
kernels and filters. Dulam, Ramesh and G [11] and Rajakumaran and Sasikala’s TDS
[39] deal with noise removal by using a specific sized Gaussian kernel, which in theory is
used as a filter. However, the core results of the research by Otsu and Hsu et al [18, 19]
under consideration by Hu et al [19] showed actual promise for the usage of smartphone
cameras for tongue region segmentation and tongue diagnosis. The algorithm was tested
in smartphones such as Samsung Galaxy S2 and S3 and performed exceptionally well.

4.4 Key differences and expansion of our work

In parallel with multiple previous studies, we use mainstream supervised machine
learning models on a binary classification problem. However, we can see a few areas
where previous work in this field can be expanded.

1. While most studies utilize two or three similar supervised machine learning models;
we worked with five distinct ML models and a reliable pre-trained deep neural
network. This gives extensive depth to our paper as we can draw more
comparisons, thus filling in our targeted research gap.

2. We use a pre-trained ResNet-50, which handles the vanishing gradient problem and
is known to deliver higher accuracy in image classification tasks when compared to
other established deep learning models such as VGGNet and GoogleLeNet [61, 21].

3. While most studies focus on solving multi-label classification problems with a wide
array of diseases to diagnose, we narrowed it down to binary classification problems
for diagnosing one specific autoimmune disease. This is advantageous as we are
able to reason and draw in-depth conclusions about the feature extraction part of
our process as well as show focused results in our confusion matrix. That being
said, our models will still be expandable to other autoimmune diseases as we
finetune the parameters to identify geometric, chromatic, and textural changes in
the tongue, which are common autoimmune disease symptoms.
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Chapter 5

Methodology

This chapter provides a complete overview of our data pipeline. We explain all methods
and techniques used in our experiments, from data reprocessing to model evaluation. This
chapter consists of in-depth insight into each model and its inner working. We motivate
our model selections and reason all our decisions and design choices.

5.1 Hypothesis

After studying the dataset, interpreting the classification problem, and understanding the
various pros and cons of the selected models, we made a hypothesis prior to commencing
the experiments. We predicted the pre-trained ResNet-50 would be the best performing
model due to its reputable performance with image classification problems. Moreover, we
predicted a better feature extraction by the model due to its ability to execute rigorous
convolutions on the images. However, CNNs like ResNet-50 thrive in terms of performance
when provided with large datasets due to their inherent complexity. So we accounted for
the limited tongue dataset in our hypothesis. This led us to our subsequent hypothesis,
which predicted that the RBF SVC model would be a close second if not equivalent to the
pre-trained ResNet-50 in terms of performance.

5.2 Data description

The tongue dataset in this paper is a union of two datasets from external tongue image
analysis studies that collected these images for a clinical study on autoimmune disease-
related tongue symptoms. Due to privacy requests1 from both parties, the majority of
images in the datasets and codebase are sealed, and the details of their origin are pri-
vate. For the sake of convenience, we have labeled these sub-datasets as TongueSetA
and TongueSetB. We were assured by the authors that both datasets consisted of images
that are infected with chronic gastritis and healthy tongue images. Our dataset has a
cumulative size of 300 images.

The images in both sub-datasets were captured on a horizontal plane, with the subject
opening her mouth and sticking her complete tongue out. Images were confined to the
lower face region encapsulating the lips, tongue, and chin of the subject. Due to the near
identical camera lens aperture and illumination settings, the image resolution, quality,
and axis of the capture of both datasets are nearly identical. For the most part, this
avoided any irreducible errors that may have arisen due to dataset differences that
cannot be solved by image augmentation.

1All parties entered a verbal agreement that all images besides the sample ones present in this thesis,
the codebase we developed, and details of origin/metadata is sealed.
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5.2.1 TongueSetA

TongueSetA consists of 30 tongue images that have been collected over the south Asian
subcontinent in 2019. The images were of size 650 x 450 pixels in the .png format. The
dataset consists of 15 ill-tongue images and 15 healthy ones. The images were captured
in uniform illumination by using dental lighting and a Sony DSC-RX10M4.

5.2.2 TongueSetB

TongueSetB consists of 270 tongue images in png format that have been collected over
North America in 2018. The images were of size 768 x 576 pixels in the .bmp format. The
dataset consists of 70 ill-tongue images and 200 healthy ones. The images were captured
in uniform illumination by using standard D65 fluorescent tubes with a 6-bit CCD camera.
The images were captured at a straight vertical angle with the subjects on a dental saddle
seat.

5.3 Data pipeline

We illustrate the implemented data pipeline of our study in figure 5.1. The process starts
with initial image prepossessing steps on the raw tongue dataset and ends with evaluating
the prediction and performance of each model.

Figure 5.1: Visualization of the data pipeline

5.4 Image preprocessing

We resized the image to a 224 * 224 pixel frame. This is done to facilitate mini-batch
learning as we need to specify a uniform size for the images in each batch [39, 60]. Addi-
tionally, this strengthens the model’s convergence ability. All images then went through
a 5x5 gaussian blur kernel. This is a common practice used after we have downsampled
images and prior to image resampling [39, 28]. Using a gaussian blur avoids spurious
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high-frequency attributes in downsampled images. The preprocessing for the convolu-
tional neural network consisted of an extra step. We converted the colored images to
grayscale ones. Colored images have multiple channels leading to multiple convolutions,
and a larger computational workload [28]. Whereas grayscale images store values in a
single array (black and white) hence requiring only a single convolutional, which results in
a significant reduction in computational workload. It is important to note that we did not
implement any of the preprocessing steps for the pre-trained ResNet-50 besides resizing
the images to a 224 * 224 pixel frame and applying the Gaussian blur. We explain and
motivate the exact techniques used for each model in the following sections.

5.5 Image segmentation

This paper analyzed the tongue and the tongue alone. Therefore we had to segment the
images in such a way that we have efficient background-foreground extraction. We used a
graph-cut based image segmentation method inspired by [25] known as the GrabCut algo-
rithm [41]. This method was used to extract the tongue alone as foreground and blacken
the remainder as background for all models. We give the algorithm a specified bound-
ing box around the tongue. The algorithm then starts segmenting by estimating the color
distribution of the tongue by using a Gaussian mixture model. We explored other segmen-
tation methods, such as edge/region-based and threshold segmentation methods. However,
we selected the GrabCut algorithm due to its robust nature and insensitivity to unknown
position-frequency correlations that many methods can not efficiently execute[41]. The
GrabCut algorithm was used in the prepossessing of all the models besides the pre-trained
ResNet-50. The network learns background-foreground extraction independently while
training.

Figure 5.2: (a) Is a raw tongue image from TongueSetA. (b) The tongue is segmented
and outlined by the GrabCut algorithm. (c) The segmented image is passed through a
Gaussian blur and downsampled to 223*223 pixels.

5.6 Feature Extraction

We followed a kindred feature extraction process to that of Dulam, Ramesh, and G
[11].There are three main categories of tongue features that we built our models to analyze.
These are the geometric, textural, and chromatic features of the tongue. From these three
categories, we obtained and analyzed nine meta-features of the tongue. We manually ex-
tracted the features from the tongue dataset which were used during the training of all the
tested machine learning models besides the the pre-trained ResNet-50. The pre-trained
ResNet-50 learns to extract features while training and did not require us to extract the
three feature categories.
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5.6.1 Geometric Features

Different parts of the tongue correlate with different diseases. Chronic gastritis symp-
toms usually affect the lower half of the tongue. We break down the tongue into seven
geometric-based attributes to extract this area as a feature. Some are trivial and self-
explanatory, such as tongue surface area, height, width, and height-width ratio. The
remaining attributes are:

Figure 5.3: Extracted geometric features from a sample tongue image

Smaller half distance

We select between the lesser values attribute between the height and the width. This
attribute is then halved and makes up the smaller half distance.

Circle area

This is the area that is formulated using the smaller half distance of the tongue. This
region of the tongue is prone to exhibiting chronic gastritis symptoms.

Circle area ratio

The ratio between the circle area and the total area of the tongue. Circle area ratio is
useful for extracting the infected yellow coating region of the tongue.

5.6.2 Chromatic features

We used the RBG scale to classify the tongue images into two color classes: pink (255,
182, 193) and yellow (255,255,0). We calculated the Manhattan distance between the
individual RGB values of each pixel and the base color values. The images are then
classified into one of the two color classes based on the average Manhatten distance of the
pixels in the foreground that we obtain from the GrabCut algorithm. A healthy tongue
is usually pinkish red and is classified into the healthy pink class. In contrast, a tongue
infected with chronic gastritis has a yellowish region on the smaller half area of the tongue
due to Helicobacter Pylori bacterial growth [11, 45].

5.6.3 Textural Features

Besides the yellowish pigmentation, chronic gastritis tends to create a coating over the
tongue’s surface. This affects the tongue’s texture. A healthy tongue has a smooth texture,
whereas an infected tongue has a coating over most of the tongue’s surface area [45, 11, 36].
Out of the three feature classes, textural attributes are the hardest to extract and interpret
from preprocessed images. We binarized two sample tongue images to showcase textural
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differences between infected and healthy tongues. We did not involve binarization in our
preprocessing but as a visualization tool to showcase this feature in this paper.

Lack of coating as textural features are clearly
exhibited. This may be a healthy tongue.

Possible coating in the circle area of the tongue
surface. This could be due to chronic gastritis.

Figure 5.4: Binarization performed on two sample tongue images.

5.7 Test train split

In modern-day healthcare, sensitive data such as tongue imagery is minimal. Datasets
of tongue images infected with type A chronic gastritis are very scarce as traditional
diagnosis methods don’t require tongue imagery. In this study, we dealt with a relatively
small dataset consisting of a limited amount of infected images. Since our study dealt
with a low amount of infected tongue images and involved a deep neural network, we used
a 90/10 test-train split. This was the optimal balance given our constraints as a CNN
requires a test set of at least 30 images to be effective [38]. 90% of images (270 images)
were allocated to the training set. The training split fed to machine learning models
enabling them to self-learn and make the predicted diagnosis. We had a 1:3 dataset size
ratio between TongueSetA and TongueSetB. Therefore we have 195 healthy images (13
images from TongueSetA and 172 images from TongueSetB) and 75 healthy images (14
images from TongueSetA and 61 images from TongueSetB)..

The validation set, also known as the test split, is used to evaluate the final model
objectively. The validation dataset is unseen data and is not used for training. After the
model is done training, it attempts to classify the respective unseen images. We can
evaluate the performance and derive the model’s accuracy based on how well the model
performs in the testing phase. Our validation/test split consists of 30 images, of which
20 are healthy, and ten are infected. Two healthy images from TongueSetA and 18
healthy images from TongueSetB make up the healthy images of the validation set. One
infected image from TongueSetA and nine infected from TongueSetB make up the
infected images in the validation set.

5.8 Implementing K Fold Cross Validation

With the previously mentioned data scarcity hurdles in place and a high risk of overfitting,
we resorted to implementing K-fold cross-validation (CV) in all the models besides the
pre-trained ResNet-50. Cross-validation is generally not used in deep learning models due
to more significant computational expense. We used transfer learning instead.
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Figure 5.5: Visualisation of the used test- train split

Finetuning specific critical hyperparameters in each model can lead to better
performance. This can be done by using a higher-level cross-validation construct known
as GridSearchCV. GridSearchCV takes a cross-validation engine like K-fold CV as an
argument to perform a grid search over a predefined set of hyperparameters. This
iterative technique produces the best fitting value for the selected hyperparameter at
each fold. We take the mode over the produced values and set the respective
hyperparameter of that value. In theory, this style of finetuning should yield the best
model performance. It is essential to select the appropriate number of folds (K) when
implementing K-fold CV on any problem. The number of folds is directly proportional to
the variance and inversely proportional to the bias in the error estimates. The default
value of the “K” parameter in GridSearchCV per Scikit-learn is five. This means five
folds of CV occurs with each grid search iteration. We changed the “K” to 10 as a
10-fold CV is reputed to perform well in practice and is not computationally intensive.
We selected the respective hyperparameter for each model based on its magnitude of
impact on model performance. We deeply motivate our selection when we explain the
relationship between the finetuned hyperparameter and the respective model. In the
table below, we state the finetuned hyperparameter for each model as per the
Scikit-learn library.

Model Finetuned hyperparameter Grid

KNN n neighbors [1, 3, 5...33]

Logistic Regression
C

(inverse of regularization strength)
[1, 5, 10...500]

SVC
C

(inverse of regularization strength)
[1, 5, 10....500]

Decision tree classifier max depth [3,5,7,9]

Random Forest max depth [3,5,7,9]

Table 5.1: Finetuned hyperparamters for each model
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It is important to note that the upper bounds of the grid for each model’s
hyperparameter were intended to be large values that were nowhere near the optimal
value. We wanted to track how the CV performs over a large grid size. We set the upper
bound of the KNN model using the following heuristic. The square root of the number of
images in the training set is the ideal value for n neighbors [22]. We doubled this value
and set it as our upper bound for the grid of the n neighbors hyperparameter.
Traditionally, nearly all decision trees and random forest models for binary classification
problems similar to our dataset size have a max depth between 3-7. Hence we set the
upper bound to nine for the grids of these two models. We explain the details, impact,
and motivation for the selection of each hyperparameter in the respective model’s section.

5.9 Setting the seed

Randomness is very prominent in machine learning models. Non-determinism can impact
results stability, model convergence rate, and quality. Therefore despite using previous
input and script, reproducing exact results is a challenging task. Randomness can appear
in many phases of machine learning. Upsampling data in data preprocessing, random data
splitting in K-fold CV, and random weight initialization can cause randomness.

Seed Nr Seed value

1 12243

2 24323

3 16787

Table 5.2: The set seeds and their respective value in each model

Computers are deterministic and do not generate actual random values. Therefore
introducing and setting a “seed” in our pipeline can lead to output reproducibility. The
seed is a random number/vector used to initialize a pseudorandom number generator.
The seed only affects random values. In our study, we set a random seed to the weight
initialization parameter in each model. We repeated this process thrice with a random
seeds for each cycle. We then averaged the result. We were aware that this approach
would not be too practical on the KNN model as there is no training period which we
explain in section 5.12.1.

5.10 Training machine learning models

We adopted a consistent approach to training and evaluating the models. After data
preprocessing, test/train split, and performing K-fold cross-validation(except for the pre-
trained ResNet-50), we began the training phase of our models. In the scope of our binary
classification problem, training a model infers teaching the model to classify tongue images
based on identifying distinguishable features. The model is explicitly told the correct
output for every input. If the model produces the wrong results, it adjusts its parameters
to provide better results in the next round of training. Although each model has unique
characteristics and approaches, the “supervised” training style remains constant.

5.11 Logistic Regression

Logistic regression models are typically used in machine learning for solving binary classifi-
cation problems. It returns the probability of a particular event taking place by construct-
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ing the event’s logarithm of the odds as a linear combination of the independent variables2.
We used a logistic regression classifier for our binary multivariable classification problem.

5.11.1 Motivation for using the logistic regression classifier

Unlike linear regression, logistic regression provides discrete output. Logistic regression
classifiers are well known for their impressive performance in binary classification prob-
lems. Moreover, logistic regression models have historically proven to be computationally
efficient to train with a straightforward implementation [11].

5.11.2 Important characteristics of the logistic regression classifier

• The basic assumptions logistic regression models are the absence of multicollinearity,
independence of errors, lack of strongly influential outliers, linearity in the logit for
continuous variables, and independence of errors.

• These models are generally not sensitive to outliers because the sigmoid function
tapers the outliers.

• Logistic regression classifiers are effective only on linearly separable data. This
limitation of the classifier leads to poor performance on non-linearly separable data.

5.11.3 Sigmoid function

The y-coordinate of the sigmoid function bounds any value to a probability as it ranges
from 0 and 1. Binary classification problems expect a binary output and not a probability.

σ(x) =
1

1 + e−x
(5.1)

where:
σ(x) ∈ [0, 1] = Probability x ∈ R = input

Figure 5.6: Graphical representation of the sigmoid function

Therefore by setting a threshold, we can map the resultant probability of the sigmoid
function to a binary output. The standard threshold in classification problems is 50%. In
the case of diagnostic imaging, images that produce a probability more significant than
the threshold are classified as infected. In contrast, ones that fall under the threshold are
classified as healthy. We can represent the threshold with y being the final prediction.

y ∈ [0, 1] y =

1 σ(x) ≥ threshold

0 σ(x) < threshold
(5.2)

2We represent dependant variables/features as x and the predictions/ response variables as y
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Altering the threshold depends on the application. If the model is sensitive to false
positives, we increase the threshold, whereas models with a high recall tend to have a
lower threshold. Logistic regression uses this combination of a preset threshold and
sigmoid function to classify data.

5.11.4 Decision boundary

Decision boundaries are boundaries used by the model to make decisions. The area en-
closed by these decision boundaries is known as the decision region. In binary classification
problems, graphically represented data points that fall on the side of the decision bound-
ary are classified into one class. In contrast, the data points that fall on the other side
are classified into the second class. We can represent the decision boundary for the multi-
dimension logistic regression model as:

b+ wTx = 0 (5.3)

where:

1. b is the intercept bias term.

2. wT is the transpose of the weight array that consists of the weights of the independent
variable “x”.

5.11.5 Training a multidimensional logistic regression classifier

The logistic regression classifier uses the logistic sigmoid function to perform binary
classification to the 0.5 (50%) threshold set. Images are then mapped to a class based on
where they lie on the decision boundary. Our logistic regression classifier uses the
popular L-BFGS optimization algorithm (“Limited memory Broyden Fletcher Goldfarb
Shanno”) [6]. The L-BFGS algorithm enables the model to train by iteratively
finetuning the weights and bias.

σ(b+ wTx) =
1

1 + e−(b+wTx)
[x,w ∈ Rd] (5.4)

where:

1. d is the input dimension.

The above process is done automatically using the sklearn.linear model.LogisticRegression
class in the scikit-learn library. We finetune the “C” hyperparameter based on the
cross-validation results. The “C” parameter is the inverse of the model’s regularisation
strength. Regularization is crucial as it prevents the model from overfitting by penalizing
extreme parameters and outlier values in the training data. Low values of “C” leads to a
tradeoff between model complexity and cost of data fitting. High values of “C” reflects
real-world data by giving high weight to training data.

After the training phase, the model classified the unlabelled images in the test set. We
evaluated the model’s objective performance using the selected evaluation metrics.

5.12 K-Nearest Neighbors (KNN)

K-Nearest neighbors (KNN) is a non-parametric supervised learning algorithm that can be
used on regression and classification problems. In this paper, we focus on the KNN classi-
fier. The “K” is the number of nearest neighbors considered for every image classification.
The model classifies an image by:
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1. Finding the class with the most number of neighboring images classified to it.

2. The image is then classified to the most common class among the K nearest neigh-
bors.

5.12.1 Lazy learner

KNN is a unique supervised learning algorithm known not to require training on the
dataset. While most supervised learning models make predictions on the test set by
training on the training set, KNN does not require the traditional machine learning training
phase. Instead, the model trains by sorting the entire image dataset to find the K nearest
neighbors at each iteration. Therefore KNN makes accurate predictions by analyzing
image data similarities/relations and refined distance metrics.

KNN is coined as “Lazy learner” as it does not learn/formulate a discriminative function
from the training set but memorizes the training dataset instead. A common
misconception is that KNN becomes computationally cheaper with no training phase.
Although there may be an absence of a training phase in KNNs, the prediction phase is
computationally expensive. The model searches through the entire dataset for the K
nearest neighbors of every prediction. Without a training phase and no optimization
function fitted to the data, KNN does not have a loss function that can be minimized
during “training”.

5.12.2 Euclidean distance

KNN models require a distance function to calculate the distance between the image data
to find the nearest neighbors. There are several types of distance functions. In this paper,
we focus on the Euclidian distance function as it is used in the KNeighborsClassifier class
of the sci-kit learn library. The Euclidean distance is the Pythagorean distance between
the respective Cartesian coordinates of two plotted points representing an image in the
dataset.

Euclidean distance(p, q) =

√√√√ d∑
i−1

(qi − pi)2 (5.5)

where:

1. p is a point with Cartesian coordinates (p1, p2 . . . pd).

2. q is a point with Cartesian coordinates (q1, q2 . . . qd).

3. d is the input dimension.

5.12.3 Curse of dimensionality

KNNs require large amounts of data to handle problems that involve numerous features.
Hence there is a high risk of overfitting as it is hard to distinguish between noise and
actual data. KNN performs the best with low dimensionality (as demonstrated in a study
by Gu and Shao in 20143). In high-dimensional data, multiple points are often arranged
in a circular shape with the query point at the center. Therefore the distance from the
query point to all arranged data points is nearly identical. The phenomenon when the
calculated Euclidean distance is incompetent under high dimensional data due to nearly
equidistant vectors to the search query vector is known as the curse of dimensionality.

3As of 8/20/2022 this study is no longer publicly available
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5.12.4 Choosing the K value

We must select the correct K that fits our image data when implementing a KNN on
a classification problem. Low values of K lead to weak predictions and a decrease in
accuracy. The precision and recall become more sensitive to outliers. Hence there is a
high chance of overfitting. However, high values of K may lead to underfitting.

We used two variants of KNN with differing K values. The first KNN model had a K of
1. There was no form of cross-validation and hyperparameter finetuning prior to
assigning the K for this model. We anticipated sub-optimal performance from this KNN.
However, we wanted to showcase the impact of selecting the appropriate K value on
performance. The second variant of the KNN had a K value of 15. We obtained this
value by finetuning the “n neighbors” parameter by 10-fold GridSearchCV as explained
in section 5.8.

5.12.5 Working of model

The following pseudocode represents the inner working of a KNN classifier. We load in
the datapoints and set K to a positive integer value.

Algorithm 1 K Nearest Neighbors

Input: k > 0, Loaded Data
Output: Predicted class
Distances [ ]
K −Neighbors [ ]
size = Number of datapoints
for 1 to size :

Distances [ ] .insert (Euclidean Distance ( test data, for each: training data row))
▷Euclidean distance between test data and each row of training data.

end for
Sort.Distances[ ]

▷Sorts the distances in ascending order
K-Neighbors [ ] = Top K rows(Distances [ ])

▷Returns the top K rows in the sorted distances array.
Predicted class = Mode (K-Neighbors [ ])

▷Returns the most frequent class of these rows.
return Predicted class

5.13 Support Vector Classifier (SVC)

Support Vector Machines (SVMs) perform the classification by constructing a hyperplane
such that all points of infected images are on one side of the hyperplane, whereas all
healthy images are on the other side. Support Vector Classifiers (SVCs) are an extension
of maximal margin classifiers. SVMs may use linear non-linear approaches to classify data,
whereas SVCs use linear approaches. While there could be multiple such hyperplanes, SVC
tries to find the one that best separates the two classes that maximizes the distance to
points in either class. This distance is called the margin, and the points that fall exactly
on the margin are the supporting vectors. SVC solves a convex optimization problem that
maximizes this margin where the points of each class should be on the correct side of the
hyperplane.
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5.13.1 Motivation of using SVCs

SVCs are known to be versatile, easy to interpret, and robust. However, our core reason
for implementing SVCs in this study is their impressive performance on smaller datasets.
The generalization error in SVCs is greater than or equal to the dataset’s ratio of support
vectors to samples. Therefore, a smaller dataset leads to a more generalizable SVC model,
producing better results.

5.13.2 Hyperplane

A hyperplane is a flat affine subspace of dimension n−1 in an n-dimensional search space.
The hyperplane is used to segregate data points from different classes. Machine learning
models such as SVCs make their predictions using a hyperplane. We can mathematically
define a hyperplane in an n-dimensional search space with the following equation:

β0 + β1x1 + β2x2 · · ·+ βnxn = 0 (5.6)

where:

1. n is the input dimension.

2. β0, β1...βn, are the parameters.

3. x is a data point, with coordinate vector: {x1, x2....xn}T

If the above equation is satisfied, the hyperplane lies precisely between the two classes.
However, if one of the following inequalities is satisfied, then point xi is classified as the
class of the respective side of the hyperplane.

β0 + β1x1 + β2x2....+ βnxn > 0 (5.7)

β0 + β1x1 + β2x2....+ βnxn < 0 (5.8)

5.13.3 Soft margin

SVCs tend to misclassify a few training images with the hope of a better performance in
classifying the remaining images. Therefore they are termed soft margin classifiers. The
margin is “soft” and relatively smaller as the model allows some images to be classified
on the wrong side of the margin. SVC leverages support vectors to make its predictions.
Support vectors are observations that lie on the margin or the wrong side.

5.13.4 The “C” hyperparameter

SVMs introduce “slack variables.” These variables permit each and every observation to
be on the wrong side of the margin or hyperplane. Slack acts as a penalty for incorrect
classifications. Observations classified correctly have a slack of 0, and observations classi-
fied incorrectly have a positive slack. Moreover, each slack variable informs the model of
the relative location of the respective observation from the margin and hyperplane. They
allow individual observations to be on the wrong side of the margin or the hyperplane.

Slack variables are regulated by the hyperparameter “C.” If “C” is 0, the classifier is not
penalized by slack. Therefore the optimization can afford to use in the entire search
space. Hence large misclassifications would be acceptable. However, the decision
boundary itself would be linear, which may lead to underfitting. A high value of “C”
infers that even a small slack is highly penalized, so the classifier cannot afford to
misclassify a data point. This may lead to very complex decision boundaries and hence
overfitting. Additionally, the “C” hyperparameter regulates the bias-variance tradeoff in
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the SVC. High values of “C” lead to wider margins. This results in a greater number of
support vectors as observations on the wrong side of the margin/hyperplane. This leads
to low variance and high bias. However, lower values of “C” result in narrow margins
and a lesser number of support vectors. Therefore lower values of “C” leads to a low bias
but high variance. Hence it is crucial to choose an appropriate “C”. We set the value of
“C” by finetuning the “C” hyperparameter by 10-fold cross-validation as explained in
section 5.8.

5.13.5 Kernelization

Linear SVCs can address linearly separable problems by finding the best fitting hyperplane.
However, in most real-world situations, data is not linearly separable. Therefore, this
approach does not work. Instead, we use the “kernel trick” to transform lower dimension
input space into a higher one. The model uses the same feature space. However, it does
not compute the coordinates of higher dimensional data. Transforming lower dimensional
data to a high one can make non-linearly separable data linearly separable. The model
can then find the best fitting hyperplane to begin the classification.

RBF Kernel

There are several variants of kernels that are used to perform kernelization. In this study,
we experimented with an SVC having the standard linear kernel (no kernel trick is done
here) and an SVC with a Radial Basis Function kernel (RBF). The RBF kernel is widely
used due to its similarity with the Gaussian distribution. The RBF kernel performs
kernelization by computing the similarity between observations in the test set. The RBF
kernel can be mathematically defined with the following equation:

k(xm, xn) = exp

(
−∥xm − xn∥2

2σ2

)
(5.9)

where:

1. xm and xn are two observations

2. ||xm − xn|| is the Euclidean distance between the two observations

3. σ2 is a variance hyperparameter that can be either set by hand or automatically
computed through a predefined rule of thumb.

5.13.6 Training an SVC

Using the concepts we have explained in the previous section, we explain the SVC’s training
process on our dataset. The goal of SVC is to maximize the width of the margin. The
classifier uses support vectors to construct decision boundaries. Every training image is
classified based on its distance from the support vector.

We can represent the hyperplane equation in equation 5.8 as a dot product of two
vectors:

w⃗ = [β0, β1..., βn], x⃗ = [x0, x1..., xn] (5.10)

where:

1. w⃗ is the perpendicular vector to the straight line

2. x⃗ is the point on the straight line

We want to find: w⃗ · x⃗+ b = 0
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Defining the decision rule

For the sake of clarity we abbreviate infected images as “pos” and healthy images as “neg”.
We define the support vectors as:

w⃗ · x⃗pos + b = 1 or w⃗ · x⃗neg + b = 1 (5.11)

We represent the remaining images as:

w⃗ · x⃗pos + b > 1 or w⃗ · x⃗neg + b < 1 (5.12)

Defining the margin

The width of the margin is:
(x⃗pos − x⃗neg) · w⃗)

∥w∥
(5.13)

Since equation 5.13 equals 1 we can rewrite it as:

2

∥w∥
(5.14)

Finding the margin which is maximally equidistant between the two classes is equal to
minimizing the following formula.

1

2
∥w∥2 (5.15)

Optimizing the goal function

SVCs classify by maximising the margin such that they can construct by learning a appro-
priate decision boundary/separating hyperplane. However this is constrained optimization
problem as are preforming binary classification. SVCs optimize equation 5.15 by using the
“Lagrangian transform” [63]. From the “Lagrangian transform” we get two “Lagrangian
multipliers” that aim to turn a constrained optimization problem into an unconstrained
optimization problem. There we are able to maximize the margin without any constraints.
In the case of RBF SVC, we perform kernelization and increase the dimensionality to solve
ϕ(x) in equation 5.16.

Predictions

Finally, SVM uses the following equation to make predictions:

wTϕ(x) =
∑
n

αiynk(xn, x) (5.16)

5.14 Decision tree classifier

Decision trees are a non-parametric supervised learning algorithm used for classification
and regression tasks. This model incorporates a tree structure that is organized hierar-
chically. They consist of a root node, branches, internal nodes, and leaf nodes. Branches
represent potential alternative class predictions, whereas the leaf nodes represent the ac-
tual class. Besides the leaf nodes in a binary decision tree, all nodes have two branches
that signify a positive or negative response. Tree-based decision trees stratify the search
space into smaller decision regions. Predictions for observations are made based on either
the mean or the model of training observations for a given class. This paper examines a
binary decision tree classifier that aims to predict a qualitative response.
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5.14.1 Motivation for using decision trees

Decision tree classifiers widen our domain of tested supervised machine learning models
by introducing agile tree-based methods. These modes are known for their simplicity.
Decision trees are trivial to interpret and implement as they mirror the basic human
decision process through tree structures. Unlike most classification models, decision trees
efficiently manage qualitative predictors without the need to create indicator variables.

5.14.2 Gini impurity

The Gini index represents the purity of the dataset. In a decision tree classifier, the
Gini impurity is the probability that the classifier missclasifies a random observation.
Therefore decision trees with a low Gini impurity are desired. We calculate the Gini
impurity by subtracting the sum of squared probabilities of one class from another. We can
mathematically represent the Gini impurity of the dataset “D” in our binary classification
problem as follows:

G(D) =

C∑
i=1

p(i) ∗ (1− p(i)) (5.17)

where:

1. i is a class (C) which is 0 for healthy and 1 for infected.

2. p(i) is the probability of training observations being classified to class i.
The amount of impurity removed with each split is calculated by deducting the Gini
impurity of the entire dataset from the weight of a branch’s impurity. This resultant
value is termed the Gini gain. A higher Gini gain infers a better split.

5.14.3 Node purity

Node purity is a statistic used to determine whether we split at each node. When a node’s
data is evenly split, it is 100% impure. In the situation where all of its data is from a
single class, it is 100% pure. The Gini impurity is inversely proportional to node purity.
Therefore model optimization is done by reducing impurity and increasing node purity.

5.14.4 Max Depth hyperparameter

The max depth in a binary decision tree classifier is the number of nodes from the root
down to the furthest leaf node. Its depth signifies the number of splits the tree makes
before reaching the prediction. The sklearn.tree.DecisionTreeClassifier, class in the scikit-
learn library, sets the max depth of the decision tree to “None.” This means nodes are
expanded until all leaves are pure or until all leaves contain less than the minimum number
of samples required to split an internal node (this is 2 for binary classification problems).
It is essential that we bound the max depth to prevent overfitting. We finetune this
hyperparameter using a ten-fold GridSearchCV as explained in section 5.8. Theoretically,
the max depth of a decision tree classifier can be n− 1, where n is the number of training
samples. However, this is never the case as the model will undoubtedly overfit. Based on
similar binary classification problems of similar dataset sizes, we search for the optimal
max depth between 3 and 9.

5.14.5 Training a decision tree classifier

Training a decision tree classifier consists of two phases:

• Induction: Building the decision tree

• Pruning: Removing redundant sections of the tree.
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Induction

A decision tree classifier makes predictions by learning decision rules based on the training
data. During the training phase, the model adopts an inductive inference learning style.
It makes inductions based on the training data and creates a decision tree adhering to the
induced decision rules. The inner working of the inductive learning phase of our decision
tree classifier is as follows:

Algorithm 2 Decision tree classifier training

Input: labelled loaded training data “X”, max depth)
Output: Decision tree
while current depth is not greater than max depth all partitions are processed do

maxGain ⇐= 0
splitA ⇐= null

for all possible splits “s” in X do
Ggain ← Gini gain(s) ▷ The highest Gini gain gives the best split
if Ggain > maxGini then
maxGain ← Ggain

splitA ← s
end if

end for
Partition(X, splitA)

end while

Pruning

Pruning is a data compression approach that decreases the size of decision trees by deleting
redundant parts of the tree that do not impact the model’s classifying performance. Prun-
ing lowers the final classifier’s complexity, which increases predicted accuracy by reducing
the risk of overfitting.

In this study, we used a popular bottom-up pruning approach known as minimum cost
complexity pruning [37]. The technique uses a complexity parameter αi > 0, a cost
complexity measure Rα(T ) and a leaf node misclassification rate R(T ) where T is the
number of leaf nodes.

Rα(T ) = R(T ) + α|T | (5.18)

At each iteration, the sub-tree that minimizes Rα(T ) is pruned. We are then left with a
pruned final tree.

5.14.6 Shortcomings of decision trees

Despite their simplicity, decision trees do not have the same level of accuracy and per-
formance as other mainstream machine learning models. Decision trees are deterministic
and extremely greedy. Hence decision tree classifiers tend to overfit when fed in new data.
These models can turn out to be non-robust. We accounted for these drawbacks and hence
experimented with an approach that is an advantageous extension of decision trees which
is explained in the following section.

5.15 Random Forest

Ensemble methods are a group of machine learning techniques that combine similar model
predictions to compute their predictions. Random forests are an ensemble learning method
for tasks that require constructing multiple decision trees at training time. Random forests
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predict and classify an observation by selecting the most occurring predicted class from a
set of individual decision trees. They use two critical optimization techniques known as
bagging and boosting to make predictions. We explain these techniques in the following
sections.

5.15.1 Motivation for using random forests

Random forests are more robust than decision trees. They aggregate the predictions be-
tween multiple decision trees to counter overfitting. This approach reduces errors caused
by bias leading to higher accuracy. Although random forests are relatively more complex,
they introduce a new perspective in dealing with classification problems. In theory, com-
bining several base models makes random forests resistant to outliers and corrupt data.
This is a critical aspect that automated diagnostic assistants are expected to have.

5.15.2 Bootstrapping

Bootstrapping is a resampling technique for accurately determining a statistic. In an image
classification scenario, this strategy involves randomly resampling images in the dataset
without any replacement. These statistics are aggregate quantities that cannot be directly
observed (ex: standard deviation, mean). Bootstrapping on an image classification dataset
is done as follows.

1. Generate “B” sub-datasets 4 from the original image dataset X={x1, x2...xn}.

2. Calculate the mean of class instances from each sub-dataset.

3. Calculate the mean of the means from step 2.

5.15.3 Bagging

Bagging or bootstrap aggregation reduces variance in statistical learning models by aggre-
gating the predictions over multiple decision trees. In image classification tasks, bagging
works as follows.

1. The training set of images X={x1, x2...xn} are divided into “B” sub training sets.

2. Each training set is used to train a decision tree. We can denote the prediction of
each tree as f1(X), f2(X)...fn(X).

3. The average prediction of all decision trees is the final prediction. This is a simple
way to reduce the variance and increase the prediction accuracy of the model.

Bagging can be mathematically represented as follows:

fbag(X) =
1

B

B∑
b=1

fb(X) (5.19)

5.15.4 Random forest classifier

In a traditional bag decision tree, every node analyses all “n” features of training data
and chooses one feature and a threshold value where the split is optimal. Therefore a
split point is chosen. On the other hand, random forest classifiers only look at a subset of
the “n” features to choose the split point. A common heuristic followed in random forest
classification problems is the number of features a node considers equates to the square
root of the number of total features [28]. The binary classification problem in this study
consists of nine features. Therefore each node in our random forest classifier decides its

4Overlapping sub-datasets are allowed
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split point by considering three randomly selected features as three is the square root of
9. By implementing this heuristic, we reduced training time and increased performance.
The inner working of random forest classifiers is as follows:

1. Splits the data into overlapping sub-datasets

2. Trains each sub-dataset against a decision tree.

3. Determines predictions based on the mode of predictions from the decision trees.

Random forest classifiers are an enhanced version of the bagged decision trees. They can
decorrelate the decision tree with minor parameter adjustments. The main difference is
the number of parameters required to construct their structures. Bagged decision trees
can be constructed from one parameter. Random forests require only two parameters.
The first is the number of trees. The number of trees equals the number of sub-datasets
constructed from the total dataset. Additionally, random forests require each node’s
number of considered features to search for the optimal split point. These are all the “n”
features for bagged decision trees.

5.16 Residual Networks

Residual neural networks (ResNet) are a variant of convolutional neural networks designed
for computer vision tasks. In 2015, the ResNet model won the prestigious large-scale image
classification and detection competition ImageNet [44]. ResNets consist of residual blocks.
These blocks are stacks of layers oriented in a manner that allows adding the output of one
layer to another deeper layer within the respective residual block. However, adding layers
can increase the complexity and expressiveness of the network. ResNets overcome this
hurdle by introducing residual connections. These connections act as shortcuts that allow
the network to skip selected residual blocks. Residual connections facilitate information
flow across many layers (“information highways”) as inputs can forward propagate faster
through the residual connections across layers. These connections are advantageous as
they allow the ResNet to mitigate degradation/accuracy saturation as adding more layers
to a deep learning model leads to higher training error.

Figure 5.7: Residual block in a ResNet. The residual connection shown in the figure skips
two layers of 64 3*3 kernels each.

Identity mapping in residual blocks is done using the residual function: y = f(x ∗w+ x).
Information can move freely across the entire network by modeling residual functions as
identity mappings. The residual function makes it possible to represent any layer as a
function of the initial input. Additionally, residual connections optimize ResNets by
avoiding the vanishing gradient problem as they allow the passing of gradient
information through the layers and make it easier to fit the identity function.
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5.17 Pre-trained ResNet-50

The ResNet-50 is a pre-trained state-of-the-art residual network that is fifty layers deep.
It was trained on the ImageNet dataset, which consists of 1,281,167 training images and
50,000 testing images that seek to be classified between 1,000 classes.

5.17.1 Motivation for using a pre-trained ResNet 50

ResNet models are considered the “backbone” of several computer vision tasks [21]. They
have been extensively trained on the ImageNet dataset and can efficiently handle the van-
ishing gradient problem. We selected a pre-trained ResNet-50 over other ResNet variants
as we believe it provides a balance between computational cost and analysis depth. After
reflecting on other studies that show promise of desirable performance of ResNet-50 on
small-scale datasets[57, 32, 1], we felt it was the right fit for our dataset size.

5.17.2 Structure of ResNet-50

The traditional ResNet-50 uses a softmax activation function in the output layer. However,
our output layer consists of one neuron with a sigmoid activation function. We believe
a sigmoid activation function is a better fit for our binary classification problem as it
asymptotes the output range of 0 to 1. The structure of ResNet-50 is as follows:

Residual block Number of layers Output size in pixels Kernel size

Convolution 1 1 112 *112
[
7 ∗ 7, 64

]
Max Pooling 0 56*56

[
3 ∗ 3

]
Convolution 2 9 56*56

 1 ∗ 1, 64
3 ∗ 3, 64
1 ∗ 1, 256

*3
Convolution 3 12 28*28

1 ∗ 1, 1283 ∗ 3, 128
1 ∗ 1, 512

*4
Convolution 4 18 14*14

 1 ∗ 1, 256
3 ∗ 3, 256
1 ∗ 1, 1024

*6
Convolution 5 9 7*7

 1 ∗ 1, 512
3 ∗ 3, 512
1 ∗ 1, 2048

*3
Average pooling 0 1*1

[
3 ∗ 3

]
Output Layer 1 1*1 No kernel

Table 5.3: Structure of ResNet-50

It might be challenging to interpret the configuration of each residual block from the
table above. Hence we explain the working of one of the residual blocks. The second
convolution residual block consists of 64 kernels of size 1 * 1, 64 kernels of size 3 * 3, and
256 kernels of size 1 * 1. Each of these kernel sizes is implemented in its layer resulting
in three layers. These three layers are repeated thrice. Therefore we have nine layers in
the second convolution residual blocks.

36



Figure 5.8: Diagram representation of the ResNet-50 architecture

Stride and padding

Stride denotes pixels the kernel moves in each step of the convolution. Selecting the
appropriate stride is computationally essential as it can reduce spatial resolution and
reduce overlapping of receptive fields. We stuck to the default stride of a ResNet-50 which
is 2.

Padding is applied to the outer frame of the image. The filer covers more area on padded
images. This practice leads to a more accurate analysis of images by the CNN. We stuck
to the default padding of a ResNet-50 which is 2.

The output shape nh ∗ nw with a stride height sh, stride width sw, padding width pw and
padding height ph can be represented as:⌊

nh − kh + ph + sh
sh

⌋
∗
⌊
nw − kw + pw + sw

sw

⌋
(5.20)

where:

1. kh = kernel height

2. kw = kernel width

3. nh = kernel height

5.17.3 Freezing layers

Freezing layers in a deep neural network is a transfer learning technique that prevents
weights from being modified. Freezing is an efficient way to increase training speed with-
out minimal effect on accuracy. We froze all layers besides the last two layers. With
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computational resource constraints in place, this technique helped fasten the training pro-
cess.

5.17.4 Working of a pretrained ResNet-50

After we loaded the preprocessed image dataset into the pre-trained ResNet-50, the net-
work passed the input layer to subsequent layer per the ResNet-50 architecture. It per-
formed the respective convolution and pooling operations till we reached the final layer.
This process is termed forward propagation. The network then “backpropagates” using an
optimization algorithm that updates the weights enabling the network to “learn.” Back-
propagation reuses the stored intermediate values from forwarding propagation to avoid
duplicate calculations. We repeated this training process for 100 epochs. The network was
then evaluated based on its performance on the training set. In this section, we provide a
detailed insight into the training process of the ResNet-50.

5.17.5 Max and average pooling layer

This pooling layer has only one kernel. The kernel slides over the input, and it chooses
the maximum value among the covered ones for each channel and each slide. If we have
an input of “c” channels then the output also has “c” channels. Average pooling is a
deterministic pooling operation with no parameters and is used to calculate the average
value of the elements in the pooling window.

5.17.6 Network optimization

This section explains how the pretrained ResNet-50 optimizes using stochastic gradient
descent. We first show the inner working of gradient descent.

Algorithm 3 Gradient decent

for all e ∈ {0, 1, . . . E}
ŷ = f(X)
E(f) = BCE(ŷ, y)
we+1 = we − η∇wE(f)

• f is a classification model that outputs the predictions ŷ, in our case it is the ResNet-
50 model.

• E(f) is the Binary Cross-Entropy (BCE) loss. A high BCE leads to poor predictions.
Our objective consists of minimizing it bringing it as close as possible to 0.

• ∇wE(f) is the gradient, that is a vector containing the derivatives of E(f) for all
wj .

• η is the learning rate hyperparameter that scales the gradient updates.

Using the gradient descent we get the stochastic gradient descent algorithm as follows:

Algorithm 4 Stochastic gradient descent

for all e ∈ {0, 1, . . . , E}
Generate a random partition of the dataset X : B(X) = B1, . . . , Bb

for all k ∈ {0, 1, . . . , b}
Perform one step of gradient descent with Bk instead of X
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Bk is a mini-batch. With b mini-batches we can perform b weights updates in one epoch.
Based on the size of the mini-batch we have three subtypes of gradient descent:

1. b = 1: corresponds to the original case of gradient descent

2. b = |X|: we use only one observation per update. This method is called (Pure)
Stochastic Gradient Descent (SGD), but has the disadvantage that the weights
updates become sensitive to the noise present in a single image

3. 1 < b < |X|: we use a mini-batch of observations, neither too small, nor too large.

5.17.7 Batch normalisation

Through normalizing the inputs to the layers by re-centering and re-scaling, we used
batch normalization to make artificial neural networks faster and more stable. Batch
normalization is applied to specific layers5 and operates as follows

1. In the initial step of each training cycle, we normalize the inputs (of batch nor-
malization) by dividing along their standard deviation and subtracting their mean,
which is determined based on the statistics of the current minibatch.

2. Next, a scaling coefficient and scale offset are applied.

x′ =
x− E[x]√
var(x)

(5.21)

where:

1. x’ is the new value of a single image.

2. E[x] is its mean within a batch

3. var(x) is its variance within a batch.

From 5.25 we get the following equation where γ and β are learned per layer and make
sure that batch normalisation can learn the identity function.

x′′ = γ ∗ x′ + β (5.22)

Regularization is the main positive side effect of batch normalization. When the input
distribution to our network changes, an internal covariate shift occurs. Hidden layers
attempt to learn how to adjust to the new input distribution when it changes. This leads
to a longer training time. The pre-trained ResNet-50 uses batch normalization to reduce
the speed up the training process. We set each mini batch to a size of six images.

5.17.8 ADAM

In this paper, we used the ADAM optimization algorithm. ADAM adapts to the previ-
ous history of gradients obtained from “stochastic gradient descent”. It combines the best
properties of the AdaGrad and RMSProp optimization algorithms to provide an optimiza-
tion algorithm that can handle sparse gradients on noisy problems. ADAM is known to
have a quick computation time6 and fewer parameters for tuning, making it a convenient
choice for our diagnostic imaging use case [22]. The working of ADAM is as follows:

ADAM uses two state variables:

5Batch normalization can also be applied to all layers
6According to [65] SGD yields better results than ADAM over an extensive number of epochs.
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1. vt → β1vt−1 + (1− β1)gt

2. st → β2st−1 + (1− β1)g
2
t

β1 and β2 are nonnegative parameters which we set to 0.9 and and 0.99. gt is the
gradient w.r.t. stochastic objective at timestep t. st is the update biased first moment
estimate. vt is the update biased second raw moment estimate at time stamp t. η is the
learning rate. Since binary classification problems typically benefit a significant amount
of bias towards smaller values, we set v0 and s0 to 0. This is a common initialisation
when using ADAM [67]. We renormalise to:

v̂t =
vt

1− βt
1

, ŝt =
st

1− βt
2

(5.23)

We then rescale the gradient to get:

g′t =
ηv̂t

ŝt+ ∈
(5.24)

ADAM optimizes by using the following update function:

xt → xt−1 − g′t (5.25)

This process repeats until convergence is met.

5.18 Evaluating machine learning models

After the machine learning model finishes training on the training dataset, it attempts
to classify the unlabelled test/validation dataset. The model has never encountered this
dataset before and attempts to classify the images by finding patterns and using classifica-
tion rules it has learned from the training phase. Based on how well the model classifies on
the test set, we can evaluate the performance of the entire model on the image classification
problem. In this paper, we use the following evaluation metrics for every model:

• Confusion matrix.

• Average accuracy.

• Precision, recall and F1 score with their macro and weighted average between the
two classes.

• ROC cruve and AUC.

5.18.1 Statistical tests

In diagnostic imaging, models are evaluated based on their recall and specificity. In this
study, we encountered models that have identical said parameters. In order to distinguish
and rank models accordingly, we compared the performance of the best-trained classifiers
using the non-parametric McNemar’s statistical test. Counting the number of agreements
and disputes among the trained classifiers, as shown in table 5.4, is the first step in using
McNemar’s test.

Model 1: Correct Model 2: Wrong

Model 2: Correct +/+ +/-

Model 2: Wrong -/+ -/-

Table 5.4: Statistical distribution between two classifiers
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The second stage is to determine whether the error rates of the two classifiers are
comparable. The following formula computes the chi-square value and compares it to the
theoretical chi-square with one degree of freedom.

X−2 =

∣∣(η(−/+) − η(+/−)

∣∣− 1)2∣∣η(+/−) − η(+/+)

∣∣ (5.26)

Each η value checks the marginal homogeneity of two dichotomous variables. Assume we
have two variables. The first is the number of common positives and negatives from
model 1 and model 2 respectively. The second variable is the number of common
negatives and positives from model 1 and model 2 respectively. Therefore
η(−/+) − η(+/−) checks the marginal homogeneity between the two variables.

5.18.2 Bonferroni correction

The Bonferroni correction is applied to P values when numerous dependent or independent
statistical tests are run simultaneously on a single data set. It was created to address the
problem that as the number of tests increases, the risk of concluding that a significant
difference exists when it does not increase. The Bonferroni correction is obtained by
dividing the P values by the total number of comparisons. We adjusted the P value using
the Bonferroni correction when comparing various classifiers.
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Chapter 6

Results

In this chapter, we formalize our results for each model based on the evaluation metrics
and techniques we decided to use. We present the resultant value of the finetuned hyper-
parameter for each tested model via K-fold CV and plot the CV results. The confusion
matrices for each model were normalized row-wise to enhance the clarity of how well the
model identifies images within the infected and healthy class. The classification report of
each model represents the average model performance over three different seeds. We plot
and present each model’s ROC curve and AUC to showcase how well the model distin-
guishes images from either class at respective threshold settings. As per section 3.9.3, we
stuck to the Scikit-learn module default threshold of 0.5 for all ROC curves.

6.1 Logistic regression results

6.1.1 Cross validation results

After performing a 10-fold grid search CV on the logistic regression model, we obtained
the finetuned value of hyperparameter “C” to be: 110.
Based on the deductions and reasonings from [52, 24, 13], a “C” value of 110 for a small-
scale dataset is considered to be on the higher side. A high C value infers that the model
generates a hyperplane with smaller margins sensitive to outliers.

Figure 6.1: Grid search CV score of the logistic regression model
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6.1.2 Classification performance

The model delivers an 87% average accuracy. We derive an AUC of 0.85 from the ROC
curve. In modern-day diagnostic imaging, an AUC of 0.85 is considered “excellent” and has
good discriminatory ability [27]. 85% percent of the time, the model accurately determines
that a randomly chosen patient with a diagnosis has a higher absolute risk than a randomly
chosen patient without that diagnosis.

Confusion matrix ROC curve

Figure 6.2: Classification performance of the logistic regression model

We trust the model’s results, which produced an impressive weighted precision average.
The model performed slightly better in accurately predicting healthy images than
infected images.

Classification report of logistic regression

Precision Recall F1 score Support

Healthy tongues 0.90 0.90 0.90 20

Infected tongues 0.80 0.80 0.80 10

accuracy 0.87 30

macro avg 0.85 0.85 0.85 30

weighted avg 0.87 0.87 0.87 30

6.2 KNN results

6.2.1 Cross validation results

After performing a 10-fold grid search CV on the logistic regression model, we obtained
the finetuned value of hyperparameter “n neighbors” to be: 15.
Therefore, the KNN makes classifications based on the most occurring class of its 15
nearest neighbors
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Figure 6.3: Grid search CV score of the KNN model

6.2.2 Classification performance of KNN (K=1)

This KNN model did not undergo any cross-validation. We tested with a K=1 to showcase
the effect of the absence of cross-validation on a lazy learner model. The model produces
a 77% average accuracy. We derived an AUC of 0.75 from the ROC curve. In modern-day
diagnostic imaging, an AUC of 0.75 is considered “acceptable” and has decent discrim-
inatory ability [27]. 75% percent of instances, the model accurately determines that a
randomly chosen patient with a diagnosis has a higher absolute risk than a randomly
chosen patient without that diagnosis.

Confusion matrix ROC curve

Figure 6.4: Classification performance of the KNN (K=1)

The model misclassified 40% of the infected images. Since no cross-validation took place,
the n neighbors hyperparameter was not finetuned, resulting in a “K” that did not fit
with the dataset. KNN makes its predictions based on a single sample. This approach
makes the KNN susceptible to several types of distortions, including noise, outliers, and
corrupt data. Therefore the model was more inclined to classify images as healthy as
they make up two-thirds of the test set.
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Classification report of KNN (K=1)

Precision Recall F1 score Support

Healthy tongues 0.84 0.80 0.82 20

Infected tongues 0.64 0.70 0.60 10

accuracy 0.77 30

macro avg 0.74 0.75 0.74 30

weighted avg 0.77 0.77 0.77 30

6.2.3 Classification performance of KNN (K=15)

The model underwent 10-fold grid search cross-validation. We tested with a K=15 to
showcase the effect of the cross-validation on a lazy learner model. The model produces
an 87% average accuracy. We derive an AUC of 0.9 from the ROC curve. In modern-
day diagnostic imaging, an AUC of 0.9 is considered “outstanding” and has very good
discriminatory ability [27]. 90% percent of instances, the model accurately determines that
a randomly chosen patient with a diagnosis has a higher absolute risk than a randomly
chosen patient without that diagnosis.

Confusion matrix ROC curve

Figure 6.5: Classification performance of the KNN (K=15)

By performing grid search CV and finetuning the number of neighbors, the model
improved its average weighted accuracy by 10%. In the comparative study, we only
consider the finetuned KNN (K=15) model as it is the better performing KNN model
out of the two.
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Classification report of KNN (K=15)

Precision Recall F1 score Support

Healthy tongues 0.89 0.85 0.87 20

Infected tongues 0.73 0.80 0.76 10

accuracy 0.83 30

macro avg 0.81 0.82 0.82 30

weighted avg 0.84 0.83 0.84 30

6.3 SVC results

6.3.1 Cross validation results

After performing a 10-fold grid search CV on the SVC with an RBF kernel, we obtained
the finetuned value of hyperparameter “C” to be: 145.
The deductions and reasonings from [52, 24, 13] infer that a “C” value of 145 for a small
scale dataset is considered to be relatively large. A high “C” value infers that the model
generates a hyperplane with smaller margins that is sensitive to outliers. This trend may
seem contradictory, as SVCs are known to have “large” margins. However, as mentioned
in section 5.13.3, SVCs incorporate soft margins treated as small margins when performing
cross-validation.

Figure 6.6: Grid search CV score of the SVC model with RBF kernel

6.3.2 Classification performance of SVC with linear kernel

This model does not perform kernelization and aims to find the best fitting hyperplane.
Therefore it struggles to classify non-linearly separable data. The model delivers an 83%
average accuracy. We derived an AUC of 0.8 from the ROC curve. In modern-day di-
agnostic imaging, an AUC of 0.8 is considered “excellent” and has good discriminatory
ability [27]. 80% percent of the time, the model accurately determines that a randomly
chosen patient with a diagnosis has a higher absolute risk than a randomly chosen patient
without that diagnosis
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Confusion matrix ROC curve

Figure 6.7: Classification performance of SVC with a linear kernel

Classification report of linear SVC

Precision Recall F1 score Support

Healthy tongues 0.86 0.90 0.88 20

Infected tongues 0.78 0.70 0.74 10

accuracy 0.83 30

macro avg 0.82 0.80 0.81 30

weighted avg 0.83 0.83 0.83 30

6.3.3 Classification performance of SVC with RBF kernel

This model performs kernelization and redefines the search space by introducing higher
dimensionality. The model delivers an 87% average accuracy. We derived an AUC of 0.85
from the ROC curve.

Classification report of SVC with a RBFkernel

Precision Recall F1 score Support

Healthy tongues 0.90 0.90 0.90 20

Infected tongues 0.80 0.80 0.80 10

accuracy 0.87 30

macro avg 0.85 0.85 0.85 30

weighted avg 0.87 0.87 0.87 30

Using the RBF kernel, the SVC improved with a 4% increase in average weighted
accuracy. We consider both variants of the SVC in the comparative study.
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Confusion matrix ROC curve

Figure 6.8: Classification performance of SVC with a RBF kernel

6.4 Decision tree results

6.4.1 Cross validation results

After performing a 10-fold grid search CV on the tree model, we obtained the finetuned
value of hyperparameter “max depth” to be: 5.

Figure 6.9: Grid search CV score of the decision tree model

6.4.2 Classification performance

The model delivers a 67% weighted average accuracy. We derived an AUC of 0.65 from
the ROC curve. In modern-day diagnostic imaging, an AUC of 0.65 is considered “not
acceptable” and has poor discriminatory ability [27]. 65% percent of the time, the model
accurately determines that a randomly chosen patient with a diagnosis has a higher abso-
lute risk than a randomly chosen patient without that diagnosis.
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Confusion matrix ROC curve

Figure 6.10: Classification performance of the decision tree model

Classification report of decision tree

Precision Recall F1 score Support

Healthy tongues 0.78 0.70 0.74 20

Infected tongues 0.50 0.80 0.55 10

accuracy 0.67 30

macro avg 0.64 0.65 0.64 30

weighted avg 0.69 0.67 0.67 30

6.5 Random forest results

6.5.1 Cross validation results

After performing a 10-fold grid search CV on the random forest model, we obtained the
finetuned value of hyperparameter “max depth” to be: 5.
Therefore, the random forest model makes classifications based on an ensemble of decision
trees with five as the max depth.

Figure 6.11: Grid search CV score of the random forest model
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6.5.2 Classification performance of random forest (no CV)

The model did not undergo any cross-validation. Therefore there was no bound on the max
depth for the model. The model produces a 57% average accuracy. We derived an AUC of
0.5 from the ROC curve. In modern-day diagnostic imaging, an AUC of 0.5 is considered
highly unreliable. [27]. 50% percent of instances, the model accurately determines that
a randomly chosen patient with a diagnosis has a higher absolute risk than a randomly
chosen patient without that diagnosis

Confusion matrix ROC curve

Figure 6.12: Classification performance of random forest model with no CV

Classification report of random forest (no CV)

Precision Recall F1 score Support

Healthy tongues 0.71 0.60 0.65 20

Infected tongues 0.38 0.50 0.43 10

accuracy 0.57 30

macro avg 0.55 0.55 0.54 30

weighted avg 0.60 0.57 0.58 30

6.5.3 Classification performance of random forest with CV

We wanted to illustrate the impact CV has on ensemble methods. By finetuning the
max depth of the random forest model, we indirectly finetune all the decision trees in the
ensemble. The model produces an 80% average accuracy. We derived an AUC of 0.8 from
the ROC curve.

By performing grid search CV and finetuning the number of neighbors, the model
improved its average weighted accuracy by 23%. In the comparative study, we only
consider the finetuned random forest.
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Confusion matrix ROC curve

Figure 6.13: Classification performance of random forest model with CV

Classification report of random forest with CV

Precision Recall F1 score Support

Healthy tongues 0.89 0.80 0.84 20

Infected tongues 0.67 0.80 0.73 10

accuracy 0.80 30

macro avg 0.78 0.80 0.78 30

weighted avg 0.81 0.80 0.80 30

6.6 Pre-trained ResNet-50 results

Deep learning models are relatively complex and computationally expensive. Therefore
splitting the dataset and training “K’ models is inefficient. Due to the ResNet’s rigorous
training and feature extraction methodology, we decided not to implement CV on the
ResNet-50.

6.6.1 Classification performance of pre-trained ResNet-50

The model produces a 80% average accuracy. We derived an AUC of 0.9 from the ROC
curve.

Classification report of ResNet-50

Precision Recall F1 score Support

Healthy tongues 0.95 0.90 0.92 20

Infected tongues 0.82 0.90 0.86 10

accuracy 0.90 30

macro avg 0.88 0.90 0.89 30

weighted avg 0.90 0.90 0.90 30
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Confusion matrix ROC curve

Figure 6.14: Classification performance of pre-trained ResNet-50

6.6.2 Trends over epochs

The accuracy of the ResNet-50 increases with the number of epochs and then saturates.
The binary cross entropy loss decreases with the number of epochs and then saturates. The
network is optimized by reducing the loss function and increasing its accuracy. Despite
having a small training dataset, we do not observe any unusual significant dips in the
accuracy vs. epochs trend. This observation infers that the initial learning parameters
were set appropriately, and the model does not overfit

Variation in accuracy with the number of epochs Variation in BCE loss with the number of epochs

Figure 6.15: Optimization of ResNet-50 over 100 epochs
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Chapter 7

Comparative analysis and
discussion

In this chapter, we compare, justify and rank the performance of our models. We present
our observations, motivate our deductions and justify the best fitting model for diagnosing
chronic gastritis’s clinical binary classification problem. We draw parallels between various
models and obtain a deeper insight into the dataset’s characteristics.

7.1 t-SNE visualization of the dataset

T-distributed Stochastic Neighbor Embedding (t-SNE) is a technique to visualize high-
dimensional data using feature extraction. T-SNE maximizes the distance between most
different observations in a high-dimensional space to a two-dimensional/three-dimensional
space. Similar observations that are in proximity of one another and may become clustered.
T-SNE maps observations to clusters and represents the data in a two or three-dimensional
space. We get an in-depth insight into the nature of our dataset using t-SNE. Our dataset is
five-dimensional. Principal Component Analysis (PCA) reduces dimensions and captures
visualization data. Therefore it is limited to capturing only the linear structures in the
features [5]. On that account, we opted to use t-SNE as a data visualization tool rather
than PCA as the latter struggles to visualize non-linear data.

Figure 7.1: 3D t-SNE visualisation of the entire dataset

The above visualization showcases the nature of our dataset. Our dataset is, for the
most part, linearly separable. We could construct a hyperplane that can split the
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infected images (yellow) from the healthy images (blue) with reasonable accuracy.

Figure 7.2: 2D t-SNE visualisation of the training dataset

The visualization of the training dataset shows clear linear separability. This
characteristic is probably why the SVCs and logistic regression model performed
considerably well.

7.2 Accuracy comparison

The average accuracy of a model is the gold standard for evaluating a machine learning
model. The decision-making ability of a machine learning model is strongly influenced by
its accuracy. According to Zare et al [59] an accuracy of 70% and higher is considered
“realistic model performance.” Accuracy within the range of 70%-90% is ideal as it is
consistent with industry standards. However, the contrast and reverberations of machine
learning models differing in produced accuracy depend on the use case. Since the stakes
are higher in automated clinical diagnostic imaging, models with higher accuracy are
given more weightage [59, 58]. Medical bodies have not set an agreed accuracy threshold
for considering diagnostic ML models. Additionally, ML models for automated tongue
analysis are scarce. Based on previous related research, most well-constructed models
produced an accuracy within 80-91% [11, 58, 39] depending on the target disease.

The pre-trained ResNet-50 produced the highest average accuracy with 90%. From
figure 6.15, we observed the pre-trained ResNet-50 converging towards the last 35 epochs
as fewer errors were made by the model during training and fluctuations in the learning
rate decreased. This infers that the optimization conducted by ADAM on the BCE loss
was effective. Our statements were supported by the accuracy trend in figure 6.15, which
shows an accuracy of roughly 90%. Despite its simplicity, the decision tree model
produced the lowest accuracy. The decision tree model changes its structure for every
new image leading to overfitting. Therefore the model struggled when fed into the test
dataset as it was greedy and not learning. The accuracy results from the logistic
regression, linear SVC, and RBF SVC led us to make an interesting observation
regarding the nature of our dataset. The RBF SVC kernel had a 3.33% percent higher
accuracy than the linear SVC. This should mean the dataset benefits from kernelization
and hence is not entirely linearly separable. However, the logistic regression model,
which thrives on linearly separable data, produced the same accuracy as the RBF SVC.
We reasoned this unusual correlation by analyzing the loss functions of each classifier.
Linear SVC attempts to reduce the hinge loss [56] whereas logistic regression attempts to
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Figure 7.3: Average accuracy of each model

reduce the log loss. According to [56], hinge loss is sensitive to noise, whereas log loss is
sensitive to outliers. Therefore we learned that our dataset consists of fewer outliers and
a reasonable amount of noise. When we applied the RBF kernel to the SVC, the accuracy
increased and was equivalent to that of logistic regression. Based on the performance of
these three models, we learn that our data is, for the most part, linearly separable.

7.3 Recall comparison

In diagnostic imaging and healthcare in general, it is paramount that diagnostic techniques
have minimal false negatives [2]. False negatives are the most harmful incorrect diagnosis
as infected patients are labeled healthy. Hence we critically analyze the produced recall
from each model. In our case, the recall is the probability that the classifier detects an
infected image.

Figure 7.4: Recall of each model

We observed an interesting performance increase with the random forest model.
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Although the ensemble model did not perform as well as most other models, it showed a
spike in the recall. According to Want et al[51], the impressive recall of random forests
can be attributed to the classifier’s random under-sampling, which removes class
imbalances. We drew parallels from our study to theirs[53] macrosomia prediction
random forest model attributed to a 62.11% increase in recall.

7.4 Precision comparison

Apart from accurately detecting infected images, we expect the classifiers to not misclas-
sify healthy images as infected. Therefore an optimal classifier has a minimum of false
positives. Although in modern-day diagnostic imaging, false positives may not be neces-
sarily “harmful” as false negatives, they can cause confusion and resource wastage and
hence are not desirable [2].

Figure 7.5: Precision of each model

Although the pre-trained ResNet has the best precision compared to its other error rates,
the model suffers a relatively high misclassification rate of healthy images. The logistic
regression model and an RBF SVC are trialing behind by only 1.81% , compared to the
10% difference in accuracy. The marginal difference could be caused by many reasons
ranging from lack of epochs [39, 28] to framework selection. The pre-trained ResNet-50,
logistic regression, and RBF-SVC nearly have the same probability of classifying infected
images as infected. Hence they roughly have the same amount of false positives.

7.5 F1 score comparison

Per industry standard [2, 15, 10, 9] an F1 score greater than 80% is considered desirable.
Thus the pre-trained ResNet is the only model that fits in this category. Since the F1
score is the harmonic mean between precision and recall, we used it as a measure to obtain
an impression of how well the models perform under these two metrics.
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Figure 7.6: F1 score of each model

7.6 AUC comparisons

The AUC of a model is directly proportional to the model’s ability to classify healthy and
infected images accurately. The ROC curves of each model represent its recall graphically.
They help pinpoint the exact trade-off between the true positive and false-positive rates.
In our case, this was at the default preset threshold of 0.5.

Figure 7.7: AUC of each model

The AUC reflects the model’s accuracy. Excellent models have an AUC close to 1, such
as the pre-trained ResNet-50, Linear SVC, and logistic regression. Models with no class
separation capacity present have an AUC of 0.5. The decision tree classifier lies in the
proximity of this benchmark, signifying its weak distinguishing ability.

7.7 Ranking the models

At this point of our study, we have thoroughly evaluated the entire set of classifiers with the
established evaluation metrics. We then ranked the models to declare the best performing
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model on the tongue dataset.

Decision tree classifier

We start with the worst performing model, which is undeniably the decision tree
classifier. The model showcased the lowest performance in every evaluation metric. The
model was susceptible to overfitting and was not robust. Its low AUC indicates that the
classifier does not have the adequate distinguishing ability. The inference from the
model’s confusion matrix validates our claims as 40% of infected images (FN) were
misclassified, and so were 30% of healthy images (FP). The alarming amount of false
negatives and the general weak performance of the models makes them unsuitable for
chronic gastritis diagnosis via tongue images.

Random forest classifier

The Random forest showed reasonably good recall and hence the ability to detect
infected images. This impressive recall is reflected in the high AUC of the model.
Despite differing marginally, the ensemble-based classifier fell short in precision, F1
score, and overall accuracy. Diagnostic agents need to classify healthy images accurately
without high misclassification errors. The random forest performed considerably better
than the decision tree classifier, which supports the notion of ensemble-based diagnostic
assistants. The random forest model can potentially be considered for a recall-centered
automated chronic gastritis detection that strongly focuses on the infected image class.

Linear SVC

Linear SVC models performed neck to neck in nearly every evaluation metric with the
KNN classifier. KNN classified the infected images better than the linear SVC resulting in
a higher recall. In contrast, linear SVC classified the healthy images better than the KNN,
resulting in higher precision. They both produce the same accuracy and have the same
AUC. In diagnostic imaging, recall and precision are essential parameters for evaluating
classifiers. Regarding the F1 score, the KNN model has a marginal edge over the linear
SVC. Therefore we ranked the linear SVC lower.

7.8 Implementing statistical tests

KNN, RBF SVC, logistic regression, and the pre-trained ResNet-50 had nearly identi-
cal performances. Specifically between RBF SVC and logistic regression in nearly every
evaluation metric. We resorted to McNemar’s test to compare the proportion of errors
between the models. The test declares a result to be statistically significant if its value is
less than the Bonferroni corrected critical value. Since we compared four models with an
alpha of 0.05, the Bonferroni corrected critical value is the alpha divided by the number
of compared models, which is 0.0125. We did three iterations of tests.

Run 1

Models KNN RBF SVM Logistic regression
Pre-trained

ResNet-50

KNN X 0.93453 0.88453 0.34522

RBF SVM 0.93452 X 1.0000 0.84354

Logisitc Regression 0.88453 1.0000 X 0.01116

Pre-trained ResNet-50 0.34522 0.84354 0.01116 X

Table 7.1: McNemar’s test results for the first iteration
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Run 2

Models KNN RBF SVM Logistic regression
Pre-trained

ResNet-50

KNN X 0.62351 0.88453 0.01929

RBF SVM 0.62351 X 0.59943 0.84354

Logisitc Regression 0.88453 0.59943 X 0.23433

Pre-trained ResNet-50 0.01929 0.84354 0.23433 X

Table 7.2: McNemar’s test results for the second iteration

Run 3

Models KNN RBF SVM Logistic regression
Pre-trained

ResNet-50

KNN X 1.0000 0.66541 0.33243

RBF SVM 1.0000 X 0.23453 0.00964

Logisitc Regression 0.66541 0.23453 X 0.55643

Pre-trained ResNet-50 0.33243 0.00964 0.55643 X

Table 7.3: McNemar’s test results for the third iteration

Lower statistical errors indicate better model performance. We find a significant
proportion of errors between the pre-trained ResNet-50 and the logistic regression model
in the first iteration. Next, we find a significant proportion of errors between the RBF
SVC and the pre-trained ResNet-50 in the third iteration. All other combinations of
pooling dimensions in all other runs show no significant result.

KNN

We ranked the KNN classifier the lowest among the four models from the McNemar’s
tests. Before the tests, the KNN model had a noticeable discrepancy in performance,
which was validated by the statistical test. The “lazy” nature of the KNN model leads it
not to analyze the features optimally. KNNs do not elaborate image attributes to their
respective classes but rather identify pixel differences to make predictions. Nevertheless,
KNNs can perform image analysis on tongue images to detect chronic gastritis. They can
certainly be considered a potential candidate for diagnostic assistance.

Logistic regression vs RBF SVC

The logistic regression classifier produced impressive results. The model fitted well with
our data and kept the number of false negatives to a minimum. However, logistic regression
models do not work well with non-linearly separable data. In healthcare, such data is very
prominent and needs to be accounted. We ranked the logistic regression model lower
than the RBF SVC as RBF SVC efficiently deals with non-linearly separable data and is
versatile. The model works with the hinge loss, therefore making it resistant to outliers.
Both these models are promising candidates for tongue image analysis and can be applied
to a domain of related autoimmune diseases. These models thrive in situations with
resource constraints as they are computationally cheaper than deep learning models.

7.9 Pre-trained ResNet-50

The pre-trained ResNet-50 showcased impressive classification ability. It demonstrated
impressive feature mapping and was able to accurately identify patterns. The model
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produced the highest accuracy and had the least false negatives. The deep neural network
performed exceptionally well in terms of recall, precision, and F1 score. Moreover, the
transfer learning occurs smoothly, and the loss function is constantly optimized (figure
6.15). Although the residual model is complex and computationally heavy, its nature is
robust and does not overfit the dataset. We firmly believe that the results and performance
will improve if the same model is trained on a larger tongue dataset.

Figure 7.8: 2D t-SNE visualisation of the pre-trained ResNet-50 training dataset after
classification

We analyzed the misclassifications of the pre-trained ResNet-50. The model would
misclassify the same infected image as healthy (False negatives) and two healthy images
as infected (False positives). After investigating the learned embeddings, we concluded
that the model misclassified the infected image based on chromatic features and always
inferred it as pink. The two false negatives were caused due to wrong interpretation of
coating (textural feature) and color.

7.10 Ranking

In summary, we construct the following ranking of models based on how well they fit and
perform automated image analysis on a tongue dataset to solve the binary classification
problem of diagnosing chronic gastritis.

Ranking Model

1 Pre-trained ResNet-50

2 SVC with RBF kernel

3 Logistic regression classifier

4 KNN classifier

5 Linear SVC

6 Random forest classifier

7 Decision tree classifier
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7.11 Performance comparison with state of the art

In order to understand how this study’s results compare with state of the art, we performed
a comparative analysis between the performance of the best-performing model in our study
and state-of-the-art models in studies mentioned in the related work chapter. The table
below compares the image tongue analysis performance between the pre-trained ResNet-50
and state-of-the-art models. Although the state-of-the-art models performed image tongue
analysis, it is essential to note that they were designed to identify various tongue-related
diseases and not specifically type “A” chronic gastritis. Although the studies focus on
automated tongue image analysis for autoimmune/tongue-related disease detection, the
respective tasks are not entirely focused on diagnostic imaging of chronic gastritis with
Dulam, Ramesh and G’s [11] and Rajakumaran and Sasikala’s [39] study being the only
exceptions. Therefore we could not derive a direction comparison with our results.

Author Model Targeted disease Accuracy Precision Recall F1 score

Rajakumaran

and Sasikala [39]
VGG 19

Organ specific

chronic gastritis
93.70% 93.80% 93.70% 93.68%

Dulam,

Ramesh and G [11]
Linear SVC Chronic gastritis 60% 60% 60% 60%

Mansour,

Althobaiti,

Ashour[28]

ASDL-TCI with a

synergic network

Autoimmune diseases

(chromatic feature

extraction)

98.30% 98.4% 97.30% -

Song and Chao[46]
ResNet-50

and Inception v3

Autoimmune disease

classification
95.92% 91.19% 93.45% 92.66%

Our study
Pre-trained

ResNet-50
Chronic gastritis 90% 81.81% 90% 85.71%
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Chapter 8

Conclusions and future work

The primary contribution of this study is the comparisons and evaluation of various ma-
chine learning models and strategies that can best perform tongue image analysis for the
classification of chronic gastritis. The primary objective of this paper is achieved as most
of the developed models were able to distinguish and classify tongue images infected with
chronic gastritis accurately. Our initial hypothesis turned out to be accurate, and we fulfill
the second objective of this paper by declaring that the ResNet 50 was the best performing
model for the said binary classification task within this study.

Furthermore, the study finds that machine learning models can find a clear correlation
between the palette of a patient’s tongue and their healthiness by analyzing geometric,
chromatic, and textual features. This mapping can be leveraged to build better
classification models that analyze the demographic of the tongue for disease detection.

Moreover, we observe a poor performance in decision tree classifiers which may indicate
an incompatible approach for tongue analysis. However, the usage of ensemble methods
drastically improves performance and classification ability. Real-world clinical use cases
consist of resource and data scarcity constraints. Adopting a logistic regression classifier
or RBF SVC rather than a deep learning model can lead to optimal results in such
scenarios.

We believe that the results, trends, and observations we derived from our comparative
study showcased strong promise for using machine learning classifiers as automated
diagnostic assistants in healthcare.

8.1 Limitations

Despite adopting various approaches and techniques to mitigate data scarcity issues, the
major roadblock in this study was the small size of the tongue data set. More specifically,
the number of infected tongue images. Due to these constraints, we were forced to simplify
our data pipeline and focus on a binary classification problem rather than a multi-class
classification problem on various autoimmune diseases.

Although using a grayscale led to a lower computational work load, we believe that using
coloured images on the pre-trained ResNet-50 would lead to better performance [55].

8.2 Future work

We wish to extend our study in three phases.

Autoimmune diseases such as heart disease, hyperthyroid, and other gastritis variants
develop visual symptoms on the tongues. We wish to expand the use case of such models
into multi-label classifiers that can also accurately diagnose these diseases.
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Since our study showcases the correlation between tongue symptoms and patient
condition, we aim to explore the performance of state-of-the-art machine learning models
on a much larger dataset.

Finally, we will pivot to testing reliable algorithms, models, and appropriate data
processing techniques on a tongue dataset derived via a smartphone camera. This shift
will enable us to build a real-time versatile mobile diagnostic assistant that can
potentially be advantageous in healthcare.
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Appendix A

Appendix

The codebase of this study has been fully developed with the Python programming lan-
guage. Python is considered the best fit for machine learning and AI-based projects. The
libraries and frameworks used in this study support Python.

A.1 Scikit-learn

Scikit-learn (sklearn)1 is a popular machine learning library that supports classification,
regression, and clustering algorithms. We used this library extensively to build, train
and test the five core machine learning models. The table below lays out the sklearn
classes2 for each model and technique. We used OpenCV and scikit-image for some of the
preprocessing steps.

Scikit-learn library

Model sklearn class

Logistic regression sklearn.linear model.LogisticRegression

KNN sklearn.neighbors.KNeighborsClassifier

SVC sklearn.svm.SVC

Decision tree sklearn.tree.DecisionTreeClassifier

Random forest sklearn.ensemble.RandomForestClassifier

Technique Class

Gridsearch CV sklearn.model selection.GridSearchCV

GrabCut algorithm cv.grabCut

Test-train split sklearn.model selection.train test split

t-SNE sklearn.manifold.TSNE

Gray Scale rgb2gray

1The documentation of sklearn version 1.1.2 can be found here
2Click on the class to view its documentation
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A.2 PyTorch

PyTorch3 is an extensively used machine learning library that is specialised towards
the development of deep learning models. Pytorch was used to focilitate the working of
the pre-trained ResNet-50. We used the numpy 4 library to handle all mathematical
computations on multidimensional arrays. The table below lays out the used PyTorch
classes for the ResNet-50 and implemented deep learning techniques.

PyTorch library

Purpose PyTorch class

Pre-trained ResNet-50 torchvision.models.ResNet50 Weights

ADAM torch.optim.Adam

Test-train split torch.nn.BCELoss

BCE loss torch.utils.data.DataLoader

Gray Scale torchvision.transforms.Grayscale

A.3 Dataset and sample images

As mentioned in section 5.2, the TongueDataset is sealed per the owner’s instructions.
However, we display six raw sample images the owner let us publish. These six images
were not used in the study and serve as sample images to explain concepts in this thesis
and visualize the actual dataset. These images cannot be used for any purpose besides
viewing without the author’s consent.

Figure A.1: Sample tongue images courtesy of Dr. Ravi Teja

3The documentation of PyTorch 1.12 can be found here
4The documentation of numpy can be found here
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