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Abstract

Homotopy type theory is a field lying at the intersection of functional programming and vari-
ous mathematical fields including algebraic topology, homological algebra and higher category
theory. In this paper, we implement a primitive version of Darcs patch theory in homotopy
type theory, as laid out theoretically in the paper Homotopical Patch Theory by Angiuli,
Morehouse, Licata and Harper. For this we make use of the proof assistant Coq, and more
specifically its homotopy type theory library Coq-HoTT. To achieve our goals, we first re-
implement the integers and then use this new definition to successively implement all the
theoretical concepts put forth in the paper.
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Chapter 1

Introduction

1.1 Homotopy Type Theory

1.1.1 What is Homotopy Type Theory?

Homotopy type theory (HoTT for short) is a field lying at the intersection of functional
programming and various mathematical fields including algebraic topology, homological al-
gebra, and higher category theory. It aims to provide a novel set of foundational principles
which can be used in both mathematics and computing. It is a relatively recent field, dating
back to a paper in 1994 by Hofmann and Streicher [1]. Afterwards, the topic was greatly
expanded upon and refined in subsequent papers by Voevodsky [2] and Awodey and Warren
[3]. Since its inception, it has grown to encompass a wide variety of specializations, has been
implemented in both Coq and Agda, and has even developed a subdiscipline of its own [4], [5].

1.1.2 Differences With Other Foundations

Homotopy type theory stems from the field of type theory, which is an alternative to set
theory. Instead of considering every object either as a set or an assertion about a set, type
theory distinguishes between types (objects containing elements) and elements. Along with
sidestepping Russell’s paradox [6], this system introduces much greater depth and nuance in
the conceptual structure of equalities (otherwise denoted ‘paths’).

The way homotopy type theory expands on type theory is by introducing the univalence
axiom, which asserts that an equality between types is equivalent to an equivalence. As
such all isomorphic types are automatically considered equal to each other, meaning that, for
instance, there exists only one singleton type Unit [7] as opposed to many singleton types
or sets. Homotopy type theory also provides a unique geometric view of types, providing
its link to homotopy theory and by extension to algebraic topology. Under homotopy type
theory types are commonly interpreted as spaces, with the elements of each type serving as
points within the space and equalities between elements as paths or identifications within the
space. Under this interpretation, it is possible to model geometrical objects such as circles
and toruses as types.

3



1.1.3 Key Example: The Circle

In homotopy type theory we have a core construct of a higher inductive type. This construct
is quite similar to an ordinary inductively defined type, and similarly is built up from a series
of constructors. It fundamentally consists of one or more point constructors and one or more
path constructors. Point constructors are used to generate the points, which is to say the
elements, of the higher inductive type. The path constructors, then, are used to specify paths
between these elements and indicate when points are deigned to be equal. If we take the
trivial case when the point constructor provides a single point x and the path constructor is
the identity path stating that x = x, the higher inductive type remarkably takes on the form
of the homotopical notion of a circle [8]. See below.

Figure 1.1: the circle as a higher inductive type.

As it turns out, the fundamental group of this type (its group of homotopy equivalence classes)
is exactly the type Z of the integers. This has led to the development of many techniques
applicable to the integers but designed for and named after the circle [9]. Similar techniques
have also been used to prove additional relations, such as that the product of two circles in
the theory is geometrically equivalent to the torus [4], [10].

One ordinarily interacts with inductive types through its induction principle, which reduces it
to its constructors. Similarly, one interacts with a higher inductive type through its recursion
principle and its induction principle. The recursion principle is responsible for assigning
mappings from a higher inductive type to some other type, which we will call A. It does this
by:

1. Assigning mappings from every point constructor x to an element a of type A.

2. Assigning mappings from every path constructor to paths a, b, ..., z.

The induction principle, meanwhile, takes a mapping P from the point constructors to the
universe type and:

1. Assigns mappings from a point constructor x to an element a of type P x.

2. Maps every path constructor to some operation on the aforementioned members.

It must be noted that the recursion principle is in fact a weaker form of the induction principle,
being the case where P is a constant type family.
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1.2 Darcs Patch Theory

Darcs (an acronym for Darcs Advanced Version Control System) is a version control system
which abstracts many of the traditional operations one would expect in version control sys-
tems back to the two elementary operations of pushing and pulling [11]. Separate branches do
not explicitly exist, allowing for the merge and the branch operation to be expressed simply
as a node being brought into the same state as another node.

Another hallmark feature of Darcs patch theory is its view of repositories as sets of patches
[12]. When combined with the aforementioned abstracting away of commands this allows the
core functionality of the theory to be expressed in particularly few lines of code, which is
useful both for creating a solid foundation on which more complex operations can be built
and for implementing versions of Darcs in other programming languages. In this paper, we
make use of the ease of portability associated with this system to partially implement it in
homotopy type theory.

1.3 Problem Formulation

In this paper, we seek to implement the first of the homotopical patch theories set out in the
paper Homotopical Patch Theory by Angiuli, Morehouse, Licata and Harper [13]. We do this
within the framework of Coq-HoTT, which is an implementation of homotopy type theory in
the proof assistant Coq [14]–[17].

The paper Homotopical patch theory formulates a theoretical way to implement Darcs patch
theory in homotopy type theory. It does this through three high-level formulations, each of
which adds more features to the theory. The first patch theory the authors propose treats
nodes as integers and only allows for a patch to add or subtract from a node by a certain
integer amount. Their second patch theory expands on this by instead treating nodes as
collections of strings, and patches as a series of replace-at operations which replace a certain
line with another. Their third patch theory builds on this again by considering proper patch
histories and adding additional constraints.

As this thesis only implements the first of these patch theories, we only discuss this one in
detail. The first patch theory is implemented as a higher inductive type, with nodes being
treated as elements and patches as paths between nodes. Patches can be translated to other
types by means of interpreters, and the paper proposes two of these. The first interpreter
sees patches as bijections between integers, with the left- and right-hand sides of the bijec-
tion being interpreted as the contents of the node before and after the patch respectively.
The second interpreter sees patches as bijections between booleans. Under this interpreter,
nodes are seen to contain boolean values and a patch either leaves a node unchanged (if it
is interpreted as a bijection mapping true to true and false to false), or inverts it (if it is
interpreted as a bijection mapping true to false and false to true).

Besides proposing the structure of the patch theory and the two interpreters, the paper also
proposes a merge operation for patches. This operation is envisioned as taking a pair of
patches and returning the patches necessary to bring them into the same state. The opera-
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tion satisfies two laws known as reconcile and symmetric. The reconcile law requires that
the returned patches indeed bring the patches given as arguments into the same state. The
symmetric law, meanwhile, requires that the merge operation is commutative. The paper then
proceeds to lay out a rough approach for how to implement the merge operation, which we
will mostly be following in our paper.

1.3.1 Related Work

Swierstra and Löh [18] give a more general overview about how one would go about imple-
menting a version control system in a system of formal logic. Mimram and Di Giusto [19]
provide a different high-level description of a patch theory within the related mathematical
field of category theory. Reynolds [20] provides an alternative proposal for implementing a
patch theory using Hoare logic. Lastly, Jason [21] provides an implementation of a simple
version control system in the programming language Haskell.

1.4 Overview of the Paper

In Chapter 2, we lay out some of the preliminary knowledge needed to understand both ho-
motopy type theory in general as well as its implementation in Coq known as Coq-HoTT.

In Chapter 3, we reimplement the integers as to make them simpler to work with in our
implementation of the patch theory. In Chapter 4, we use the encode-decode principle to
prove that these integers form a set, allowing us to use many properties common to all sets.

In Chapter 5, we implement most of the patch theory as laid out in Homotopical patch the-
ory. We also create the interpreters proposed for this patch theory in order to enable us to
demonstrate consistency of the model with the theory.

In Chapter 6, we complete the implementation of our patch theory by defining the merge
principle. We then demonstrate consistency of this principle by providing proof of two key
properties. Lastly, in Chapter 7 we conclude our paper and discuss possible future work.

For the code of our implementation, see here.
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Chapter 2

Preliminaries

2.1 Homotopy Type Theory

2.1.1 Paths and Equivalences

First of all, it is important to distinguish paths from equivalences. A path is a direct, a priori,
equality. It indicates that two elements are not just indistinguishable from each other but the
exact same thing. In this paper, we indicate paths using the notation x = y. An equivalence,
on the other hand, indicates that two types are functionally equal. That is, they contain both
the same elements and have the same higher dimensional path structure (something we will
come back to in Section 2.1.5 and Section 2.1.6). In this paper, we indicate an equivalence
using the notation x ≃ y.

2.1.2 Introduction, Elimination and Computation rules

Paths in homotopy type theory are considered types, and along with types come the concepts
of an introduction, elimination, and computation rule. The introduction rule for paths states
that a path can be constructed between types only if all its elements match [6]. Conversely,
the elimination rule states that if there exists a path between two elements, then all its com-
ponents must match.

The computation rules for paths allow one to identify or ‘extract’ either endpoint of a path.
These rules make use of an application operation ap, which applies a function to both end-
points, and a projection operation pr, which extracts a certain element from a type. Together
the introduction, elimination, and computation rules form the basic bedrock on which all
composite operations can be built.

2.1.3 Basic Notation

One of the most elementary types in homotopy type theory is the type Unit containing only
a single element [7]. When working with Coq-HoTT, we commonly denote this element with
tt. The unit type, like paths, comes accompanied with an introduction, elimination and com-
putation rule. The introduction rule for the unit type states that it comes equipped with a
single element tt. The elimination rule states that for any mapping P : Unit → Type, we have
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an induction function unit_ind : P tt → (forall x : Unit, P(x)) which allows for the mapping
to only be defined on tt. The computation rule proceeds to state that forall (p : P tt),

unit_ind p tt ≃ p. In natural language: the induction principle does not change where tt

maps to.

Another elementary type in homotopy type theory is the type Empty containing no elements.
The introduction rule for the type Empty states that it does not come equipped with any
elements. The elimination rule states that for any mapping P’ : Empty → Type we have an
induction function which makes it vacuously hold. Applying this induction function is com-
monly referred to as empty-induction. The computation rule for Empty does not exist, given
that the type does not contain any elements.

When we formulate statements as types in homotopy type theory, we have the property that a
statement holds if and only if we can construct one of its elements. Given that it is impossible
to identify an element in the empty type and always possible to identify one in the unit type,
we arrive at the logical conclusion that when we interpret the two types as statements, the
empty type translates to “false” while the unit type translates to “true”.

Functions in homotopy type theory are defined in a way much analogous to functional pro-
gramming. That is, there exists an identity function idmap which takes an argument and
leaves it unchanged and fundamentally only single-argument functions exist. Functions with
more than one arguments are subsequently defined in a composite way using a currying op-
eration o. There also exists a notion of an anonymous / lambda function, for which we use
the notation fun <args> ⇒ <return>.

The two most important computation rules for functions are those of beta- and eta-conversion.
The beta-conversion rule states that the following equivalence holds:

(fun x ⇒ f(x))(a) ≃ f(a)

while the eta-conversion rule states that the following equivalence holds:

f ≃ (fun x ⇒ f(x))

2.1.4 Path Induction

The path induction principle of homotopy type theory states each path can be constructed
from the identity path 1. More concretely, is says that given:

1. A type family C, taking two elements x and y of some type A and outputting some type
family B(p) indexed by a path p : x = y.

2. A function c(x) : = C x x 1.

We have a function f(x, y, p) : = C(x, y, p) such that f(x, x, 1) = c(x) [6]. Because of this
inductive definition of paths, it is always possible to use induction to reduce paths back to
the identity path as long as one end is open. This operation is called path induction, and
it serves as one of homotopy type theory’s core tenets. Some other important operations for
paths are as follows:
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- ˆ: forall (A : Type) (x y : A), x = y → y = x, which gives the inverse of a given path.

- ap: forall (A B : Type) (f : A → B) (x y : A), x = y → f x = f y, which can be used to
make functions applicable to paths.

- transport: forall (A : Type) (P : A → Type) (x y : A), x = y → (P x → P y), which
transforms a path a = b into a function mapping a to b.

Together these operations give way to a wide variety of properties, the following of which
have particular relevance to our paper:

- For all paths p : x = y and q : y = z, we have that (p @ q)ˆ = qˆ @ pˆ [inv_pp].

- Given a type A, a function P : A → Type, two points x y : A, a path p : x = y, and
the image u of x in P, we have that transport P p u = transport_idmap (ap P p) u

[transport_idmap_ap].

- Given a type A, a function P : A → Type, three points x y z : A, paths p : x = y and
q : y = z, and the image u of x in P, we have that transport P (p @ q) u = transport P q

(transport P p u) [transport_pp].

- Given a type A, two functions B C : A → Type, two points x1 x2 : A, a path p : x1 = x2,
a function f : B x1 → C x1, and the image y of x2 in B, we have that transport (fun

x : A ⇒ B x → C x) p f y = transport C p (f transport B pˆ y) [transport_arrow].

- Given a type A, three points x y1 y2 : A, and paths p : y1 = y2 and q : x = y1, we have
that transport (fun y : A ⇒ x = y) p q = q @ p [transport_paths_r].

- Given a function f : A → B, two points x y : A, and a path p : x = y, we have that (ap

f p)ˆ = ap f pˆ [inverse_ap].

- Given a function f : A → B, two points x y : A, and a path p : x = y, we have that ap

f pˆ = (ap f p)ˆ [ap_V].

- Given a function f : A → B, three points x y z : A, and paths p : x = y and q : y = z,
we have that ap f (p @ q) = ap f p @ ap f q [ap_pp].

- Given a type A, two points x y : A, and a path p : x = y, we have that 1 @ p = p

[concat_1p].

- Given a type A, two points x y : A, and a path p : x = y, we have that p @ 1 = p

[concat_p1].

- Given a type A, two points x y : A, and a path p : x = y, we have that p @ pˆ = 1

[concat_pV].

- Given a type A, two points x y : A, and a path p : x = y, we have that pˆ @ p = 1

[concat_Vp].

- Given a type A, points x y z : A, and paths p : x = y and q : y = z, we have that (p @ q)

@ qˆ = p [concat_pp_V].
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- Given a type A, points x y z : A, and paths p : x = y and q : y = z, we have that p @ (pˆ

@ q) = q [concat_p_Vp].

- Given a type A, points x y z : A, and paths p : x = y and q : y = z, we have that pˆ @

(p @ q) = q [concat_V_pp].

- Given a type A, points x y z t : A, and paths p : x = y, q : y = z and r : z = t, we have
that (p @ q) @ r = p @ (q @ r) [concat_pp_p].

- Given a type A, points x y z t : A, and paths p : x = y, q : y = z and r : z = t, we have
that p @ (q @ r) = (p @ q) @ r [concat_p_pp].

2.1.5 hLevels

We already briefly mentioned that types have a higher dimensional path structure, however
this is not always the case. For contractible types [22], we have the special property that
there exists a path between every element. This implies that the type only contains one
element, meaning every contractible type is exactly the type Unit. Propositions under homo-
topy type theory meanwhile have the special property that the type of paths between them
is contractible. In other words: every means of proving that two propositions are equal is
equivalent to each other. For sets we do not have this property, however we do have the
property that the type of paths between them is a type of propositions. We thus arrive at a
three-tiered system, with contractible objects at the bottom and set-like objects at the top,
and with us moving down one level when we consider a path between objects.

Homotopy type theory further generalizes this system to the concept of truncations. Under
this system, contractible objects are seen as (-2)-truncated objects, mere propositions as (-
1)-truncated objects and sets as 0-truncated objects. A 1-truncated object would logically
be an object for which a proof of equality forms a set, a 2-truncated object an object for
which a proof of equality forms a 1-truncated object, etcetera. In Chapter 4, we use this
novel construct to show that our new definition for the integers forms a set.

A good advantage of this system is that it gives us a certain ‘ceiling’ to the path space of types.
Since there is exactly one element in a contractible object, we have a lemma path_ishprop

that all paths within a mere proposition exist. After all, these paths all correspond to that
single element. This further propagates to higher truncation levels, protecting us from the
otherwise common issue of having to compute the behavior of the path space up the trun-
cation levels ad infinitum. In general, hLevels are a useful tool in homotopy type theory for
keeping the necessary workload manageable.

2.1.6 Equivalences

Requirements for an equivalence

In homotopy type theory, two types A and B are called equivalent to each other when there
exists an equivalence between them. This is the case when:
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1. There exists a bijection (as defined by set theory) between A and B.

2. The path spaces of A and B are the same.

In Coq-HoTT, we denote such an equivalence using the type Equiv A B. To construct an
element of such a type we provide an element of the type Build_Equiv, which requires the
following:

1. A function f from A → B

2. A function g from B → A.

3. A proof eisretr that f o g is equivalent to the identity map.

4. A proof eissect that g o f is equivalent to the identity map.

5. A proof eisadj that for every element x : A, eisretr (f x) = ap f (eissect x).

Here, the first four properties prove that there exists a bijection between A and B constructed
through f and g, as defined in the context of set theory. The fifth property then proves that
the path spaces of A and B are equivalent. It must be noted that after we have provided the
first function f, we end up with a type IsEquiv f which we can construct using the remaining
conditions. This secondary type is occasionally used instead of Equiv to define properties for
equivalences.

It may be noted that hLevels can be used to circumvent proving that the path spaces of
two types are equivalent. If we know that the types are both mere propositions, for exam-
ple, then we automatically know that their path spaces are the same. As such, if we deem
it unnecessary to prove that the path spaces are equal we can instead employ the function
equiv_isequiv to remove the condition eisadj from the proof of IsEquiv f.

Similar to functions, equivalences also have a composition and an inverse operation. In this
paper and in Coq-HoTT we denote these by oE and ˆ=1 respectively. There are also some
other properties relating to equivalences which are provided by Coq-HoTT in the form of
lemmas. Of these, the following have particular relevance to our paper:

- Given types A and B and a function f : A → B there exist paths between all proofs of
IsEquiv f. In other words: the type of equivalences between two types A and B is a mere
proposition / (-1)-truncated object [path_equiv].

- Given types A and B, if there exists an equivalence between A and B then there also exists
one between B and A [equiv_inverse].

- Given types A and B, if there exists a path between A and B then there also exists an
equivalence between them [equiv_path].

- Given types A and B and a path p between them, equiv_path B A (pˆ) = (equiv_path A

B)ˆ=1 [equiv_path_V].
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- Given types A and B, a function f : A → B, a proof H that A and B form an equivalence
through f, two points x and y in A, and a proof that f x = f y, we have that x = y

[equiv_inj].

- If there exists an equivalence between two types A and B, the types have the same
truncation level [istrunc_equiv_istrunc].

2.1.7 Univalence

The univalence axiom is one of the central tenets of homotopy type theory. Put simply, it
states that an equivalence between types is equivalent to a path. The axiom has greatly ex-
panded the scope of the field and provided some of the most key separations from set theory.
One consequence of the axiom, for example, is that it implies that there must exist some type
which is not a 0-truncated object, namely the type Type containing all types. One analogue
to the univalence axiom is the function extensionality axiom, which states that a homotopy
between function is equivalent to a path. This axiom also sees some minor applications in
our model, see Section 2.2.2 and Section 5.2.1.

In Coq-HoTT, the univalence axiom is implemented on one end by equiv_path : A = B →
A ≃ B, which is distinct from the lemma path_equiv we encountered above, and on the other
end by a lemma called path_universe_uncurried : A ≃ B→ A = B. For this last lemma we have
a variety of useful properties, of which the following are of relevance to our paper:

- We have that path_universe_uncurried fˆ=1 = (path_universe_uncurried f)ˆ

[path_universe_V_uncurried].

- We have that path_universe_uncurried (equiv_compose g f) = path_universe_uncurried

f @ path_universe_uncurried g [path_universe_compose_uncurried].

- We have that path_universe 1%equiv = 1 [path_universe_1].

- We have that transport idmap (path_universe_uncurried f) z = f z

[transport_path_universe_uncurried].

- We have that path_universe_uncurried (equiv_path A B p) = p

[path_universe_uncurried_equiv_path].

- We have that transport idmap (path_universe_uncurried f)ˆ z = fˆ=1 z

[transport_path_universe_V_uncurried].

- If two equivalences f and g are definitionally equal, then there exists a path between
path_universe_uncurried f and path_universe_uncurried g [path2_universe].
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2.2 Working with Coq-HoTT

2.2.1 Structures

In Coq-HoTT, there are a variety of structures used to create types. In this section, we will
go through them one by one.

Firstly, we have Definitions, Propositions, and Lemmas. These keywords are all treated analo-
gously, and can be used to define most types without a recursive aspect (including assertions).
Usually, the keyword Definition is used to define proper types, Proposition is used to define
assertions and Lemma is used to define prerequisites required to prove a particular Definition.
There is also the Axiom structure, which serves a similar role to a Lemma however does not
necessitate a proof. Usually, one seeks to transform all axioms into lemmas before concluding
a proof.

Next, there is the Inductive notation. This can be used to define an inductive structure for
a given type by providing both the base element(s) of that type and the functions acting on
those elements. Each member of the inductive type is indicated on a separate line with a
vertical bar (| ) before it. For instance, the inductive type of the positive integers consisting
of a number 1 and a successor function is defined as follows:

Inductive Pos : Type :=
| one : Pos

| succ : Pos → Pos.

Match-notation is used to provide case analysis in a more readable form than the ordinary
induction tactic. It starts with the statement match <args> with and ends with the keyword
end. In between, the various cases are worked out in a similar notation to Inductives however
with the specific case indicated before the symbol ⇒ . If a case distinction is recursive (like
is commonly the case when basing a definition on Inductives), the surrounding type receives
a special label known as a Fixpoint. For instance, if we want to construct positive number
addition on the Inductive type Pos using match-notation, we would arrive at the following
definition:

Fixpoint pos_add (x y : Pos) : Pos :=
match x, y with

| one, one ⇒ succ one

| succ p, one ⇒ succ (succ p)
| one, succ q ⇒ succ (succ q)
| succ p, succ q ⇒ succ (succ (pos_add p q))
end.

A Global Instance is a special keyword which can be used to provide properties about the
hLevels of other types (more on that next section). Using such a keyword registers the
proof as a typeclass, allowing tactics such as apply to automatically find it. Furthermore,
type constraints can be defined for lemmas which allow them to only be used when certain
typeclasses are in the context. In terms of syntax the structure operates much analogously
to a regular Definition, and as such the Global Instance which proves that, for instance, the
positive numbers for a set is constructed with the following signature:
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Global Instance hset_pos : IsHSet Pos.

2.2.2 Tactics

Coq-HoTT offers a wide variety of tactics to modify a proof state. In this subsection, we will
go over those tactics which are of most relevance in the paper.

Firstly, there are intro and intros. These tactics take a goal which starts with either an
implication or a forall, and modify the proof state to move either the condition of the im-
plication or the variable in the forall to the assumptions. The name of this assumption is
determined automatically if no argument is specified, or set to the argument if is. The tactic
intro performs a single introduction while intros performs it recursively (with additional ar-
guments specifying additional assumption names). The tactic revert is the opposite of these
tactics, taking the name of an assumption as an argument and modifying the proof state to
bring that assumption back into the goal. To illustrate this more clearly, take the following
proof state:

A : Type

______________________________________(1/1)
forall x y : A, x = y → y = x

If we apply the tactic intros, the two variables x and y are moved into the assumptions as
well as the condition x = y. This then gives us the following state:

A : Type

x, y : A

X : x = y

______________________________________(1/1)
y = x

If it now turns out that we need to keep the implication to be able to properly close the proof,
we can either go back and modify our tactic to intros x y, or bring the variable back using
revert X. Either way we obtain the following:

A : Type

x, y : A

______________________________________(1/1)
x = y → y = x

Next, there is rewrite. This tactic takes the name of an assumption as an argument and
tries to use that assumption to modify the goal. For example, if we take the proof state we
obtained after applying intros and apply the tactic rewrite X, we obtain the following state:

A : Type

x, y : A

X : x = y

______________________________________(1/1)
y = y
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Next up is reflexivity. In the event that the goal of a proof state simplifies to a reflexive
equality, reflexivity closes that goal as completed. For instance we could apply reflexivity

in the above proof state to complete our proof.

The tactic pose takes the name of an existing lemma and adds its contents to the assumptions.
Alternatively, it also allows one to provide such contents directly as the argument.

The tactic enough functions similarly to pose, however instead adds an element of the argu-
ment it is given to the assumptions. It then proceeds to create a second branch where the
existence of such an element can be proven as a goal.

The tactic apply takes the name of an existing lemma and tries to apply it to the current
goal. Using the above example again, assume that the type A was instead the type Unit. This
would give us the following proof state:

x, y : Unit

X : x = y

______________________________________(1/1)
y = x

The lemma path_unit states that any two elements in Unit are equal, and so in this case we
can close off the proof without even needing our condition X by making use of the tactic apply

path_unit.

In the event that the goal is exactly equal to some variant of a lemma we know, the tactic
exact immediately closes the proof state. In practice this lemma is able to do the same things
as apply, and which one is more convenient depends on the specific circumstance. A variant
of exact is refine, which allows for holes to be left which are subsequently transformed into
separate branches. This process also involves beta-reduction to simplify the branches and
goals. However, since this last step can occasionally decrease rather than increase compre-
hensibility a variant tactic simple refine is offered which does not perform it.

The tactics cbn and simpl simplify a goal by applying a variety of reduction rules. The key
distinction between the two is that while cbn unfolds and simplifies objects defined through
match-notation, simpl does not.

The tactic induction takes an element whose type is defined through induction or case dis-
tinction and either starts a proof by induction or splits the cases of the argument up. It does
this by creating a separate branch for every base and inductive case. In the case of objects
defined through induction, it also adds an inductive hypothesis to the assumptions where
applicable. The tactic destruct operates much like induction, however is solely concerned
with splitting up goals and assumptions defined through case distinction.

The tactic split splits up a proof state where the goal is somehow a conjunction of two
subgoals. This could be through an actual conjunction, however it is also capable of splitting
up goals which are 2-tuples or product types (although these are essentially the same in Coq-
HoTT).
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The tactic funext operates much like intro, however introduces a variable on both sides of
an equality instead. This tactic is not possible on every equality however, and in particular
might require first applying the lemma path_equiv.

2.2.3 Higher Inductive Types

In Coq-HoTT, higher inductive types are defined in a separate module using the syntax
Module Export <name>. ... End <name>.. The point constructor is defined in a special Private
Inductive structure as to obfuscate its number of elements outside of the module, necessitat-
ing the use of the recursion and induction principles to interact with it. The path constructors
are defined separately using Axioms. The recursion and induction principles, meanwhile, are
defined in two parts. They use a Definition for the point constructor mapping and an Axiom

for the path constructor mapping.

2.2.4 Environment

For the implementation created in our paper we used a variety of constructs provided by the
Coq-HoTT library. More specifically, we set up out environment as follows:

From HoTT Require Import Basics Types.

Context ‘{Univalence}.

In terms of lemmas we only needed to import the very basics. As such the lemmas provided
by Basics and Types were deemed enough. Aside from that we also added the univalence
axiom to our context as a typeclass (achieved using the ‘{} notation), allowing us to use
path_universe_uncurried and its related lemmas. Together this gave us all the tools necessary
to tackle the problem at hand.
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Chapter 3

Integers

In the previous chapters, we discussed the basics of homotopy type theory and patch theory,
and made a start with the implementation by defining the environment used for working
with homotopical patch theory. In this chapter, we continue to develop the prerequisites by
defining the positive numbers and integers as types.

Coq-HoTT’s integers are defined in terms of bitstrings. While this is usually a very elegant
way to define such numbers (requiring relatively few recursive calls and allowing for more
efficient multiplication than a definition using a successor function), this makes them rather
cumbersome to work with when performing induction. As such, before we are able to provide
a clean implementation of the patch theory we first need to reimplement the positive numbers
using a successor function. This then allows us to redefine the integers using this new type
of positive numbers. In total we need the following:

1. An inductive definition of the positive numbers as a type Pos (Section 3.1).

2. An addition function pos_add for positive numbers (Section 3.1).

3. A proof pos_add_comm that positive number addition commutes (Section 3.1).

4. A proof hset_pos that the positive numbers form a set (covered in chapter 4, Sec-
tion 4.1.1).

5. An definition of the integers as a type Int (Section 3.2.1).

6. A successor function int_succ and predecessor function int_pred for the integers (Sec-
tion 3.2.1).

7. A proof equiv_int_succ that the successor and predecessor functions for the integers
form an equivalence (Section 3.2.2).

8. An addition function int_add for the integers (Section 3.2.3).

9. A proof int_add_comm that integer addition commutes (Section 3.2.4).

10. A proof hset_int that the integers form a set (covered in chapter 4, Section 4.2.1).
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3.1 Positive Numbers

The type of positive numbers can be defined as the inductive type containing the number 1
and a successor function. In Coq-HoTT syntax, this gives the following type:

Type 3.1.1

Inductive Pos : Type :=
| one : Pos

| succ : Pos → Pos.

Positive number addition can then be defined relatively straightforwardly through case dis-
tinction as follows:

Type 3.1.2

Fixpoint pos_add (x y : Pos) : Pos :=
match x, y with

| one, one ⇒ succ one

| succ p, one ⇒ succ (succ p)
| one, succ q ⇒ succ (succ q)
| succ p, succ q ⇒ succ (succ (pos_add p q))
end.

Indeed, it holds that:

- 1 + 1 = 2

- (n+ 1) + 1 = n+ 2

- 1 + (m+ 1) = m+ 2

- (n+ 1) + (m+ 1) = (n+m) + 2

We choose a four-case definition here as it results in the two arguments being treated equiv-
alently. If instead we had only defined two cases, one for each of the possible values of x, the
operations pos_add x y and pos_add y x would be evaluated quite differently and we would
need to apply induction much more often in order to show that they are equivalent.

The proposition pos_add_comm that positive number addition operation commutes has the
following signature:
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Type 3.1.3

Proposition pos_add_comm : forall (x y : Pos), pos_add x y = pos_add y x.

We prove this using induction. Applying the tactic induction x, y gives us the following four
branches:

______________________________________(1/4)
pos_add one one = pos_add one one

______________________________________(2/4)
pos_add one (succ y) = pos_add (succ y) one
______________________________________(3/4)
pos_add (succ x) one = pos_add one (succ x)
______________________________________(4/4)
pos_add (succ x) (succ y) = pos_add (succ y) (succ x)

The reason we use induction x, y here rather than applying induction x and induction y

separately is that it results in a more powerful inductive hypothesis. This will be necessary
in almost all our inductive proofs to prove the final branch.

Branches 1-3 immediately hold through reflexivity, since the definitions on the right- and
left-hand sides unfold to the same terms. For the fourth branch, unfolding the definitions
using the tactic cbn gives the following:

x : Pos

IHx : forall y : Pos, pos_add x y = pos_add y x

y : Pos

______________________________________(1/1)
succ (succ (pos_add x y)) = succ (succ (pos_add y x))

Here the goal is simply the inductive hypothesis instantiated to y and with the successor
operation applied twice to both the left- and right-hand sides. As such, the branch can be
resolved by using the tactic exact (ap (succ o succ) (IHx y). With this, we have completed
our definition of the necessary basic types associated with the positive numbers.

3.2 Integers

3.2.1 Basics

For our purposes, integers can best be defined as the disjoint union of the number zero with
the types of positive numbers with positive and negative sign. This definition allows for
easy application of induction while keeping the formulation of the addition function relatively
straightforward. In Coq-HoTT syntax, this results in the following:
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Type 3.2.1

Inductive Int : Type :=
| zero : Int
| pos : Pos → Int

| neg : Pos → Int.

As mentioned previously (Item 6), we require a successor function as well as a predecessor
function for this type. Our successor function can be defined using case distinction as follows:

Type 3.2.2

Definition int_succ (i : Int) : Int :=
match i with

| zero ⇒ pos one

| pos p ⇒ pos (succ p)
| neg p ⇒ match p with

| one ⇒ zero

| succ q ⇒ neg q

end

end.

Indeed, we have that:

- succ(0) = 1

- For all integers n ≥ 1, succ(n) = n+ 1

- succ(−1) = 0

- For all integers n ≥ 2, succ(−n) = −(n− 1)

Where succ is the successor function. In a similar way, our predecessor function can be defined
as follows:
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Type 3.2.3

Definition int_pred (i : Int) : Int :=
match i with

| zero ⇒ neg one

| pos p ⇒ match p with

| one ⇒ zero

| succ q ⇒ pos q

end

| neg p ⇒ neg (succ p)
end.

Indeed, we have that:

- pred(0) = −1

- pred(1) = 0

- For all integers n ≥ 2, pred(n) = n− 1

- For all integers n ≥ 1, pred(−n) = −(n+ 1)

Where pred is the predecessor function.

3.2.2 Proof of equivalence

In order to prove that these two functions form an equivalence, we need to prove that they
cancel when composed either of two ways (see Section 2.1.6). As such, we need to prove

Type 3.2.4

Lemma int_succ_pred : int_succ o int_pred == idmap.

and

Type 3.2.5

Lemma int_pred_succ : int_pred o int_succ == idmap.

The proofs of these two statements proceed identically, and so we only consider the proof
of the first lemma. We start by moving the argument x to the assumptions using the tactic
intro x. After this, we apply induction on x to obtain the following three branches:
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______________________________________(1/3)
int_succ (int_pred zero) = zero

______________________________________(2/3)
int_succ (int_pred (pos p)) = pos p

______________________________________(3/3)
int_succ (int_pred (neg p)) = neg p

For the first branch the definitions unfold to make both sides of the equality the same, and
so we can immediately close the branch using reflexivity. The second and third branches
are proven in quite similar ways (the only difference being whether pos or neg is used), and
so we only consider the proof of the second branch. The way the definitions of this branch
unfold depends on whether the positive number p is in the base case or in the inductive case.
As such, we apply induction again on p to obtain the following two branches:

______________________________________(1/2)
int_succ (int_pred (pos one)) = pos one

______________________________________(2/2)
int_succ (int_pred (pos (succ p))) = pos (succ p)

For both of these branches their definitions unfold to make both sides of the equality the
same, and so we can immediately close them off using reflexivity.

Now it must be shown that these functions form an equivalence. To do this, we must provide
a construction of the following statement:

Type 3.2.6

Definition equiv_int_succ : Equiv Int Int.

In Coq-HoTT, an element of type Equiv can be constructed using the type Build_Equiv (see
Section 2.1.6). We therefore start the proof using simple refine (Build_Equiv _ _ _ _). This
requires us to fill in two things:

1. A function used to construct the relevant equivalence.

2. A proof that this function forms an equivalence.

After slotting in the function int_succ in the first branch, we can use the tactic simple refine

(isequiv_adjointify _ _ _ _) in the second branch. This allows us to construct an element of
the required type by providing:

1. An inverse function to int_succ.

2. Proofs that int_succ cancels when composed with this inverse function either of two
ways.

22



The key advantage here of using isequiv_adjointify is that we do not have to provide a proof
that the two proofs of cancellation in Item 2 are analogous, which can be quite non-trivial.

In the branches created by the simple refine we slot in int_pred, int_succ_pred and int_pred_succ

respectively. This completes the proof.

3.2.3 Integer addition

Next up is to define integer addition. We provide a definition by case distinction, giving us
the following structure:

Type 3.2.7

Definition int_add (x y : Int) : Int :=
match x, y with

| zero, y ⇒ ?1?
| x, zero ⇒ ?2?
| pos p, pos q ⇒ ?3?
| neg p, neg q ⇒ ?4?
| pos p, neg q ⇒ ?5?
| neg p, pos q ⇒ ?6?
end.

Here, terms of the form ?_? indicate holes to be filled in. Once again, we define all cases to
ensure symmetry in how the function is evaluated.

The addition of some number with zero is again that number. As such the first two cases
return y and x respectively. For two integers with the same sign, their addition is that of their
absolute values (embedded Pos value) modified with their sign. As such the third and fourth
cases return pos (pos_add p q) and neg (pos_add p q) respectively. For two numbers with
different sign we run into some problems. In these cases, we need to perform a subtraction
operation of some sort on the numbers, which we have not yet defined. In order to get around
this we define a new function int_pos_sub which takes two positive numbers x and y and
returns x = y as an integer. In the fifth and sixth cases we can then call int_pos_sub p q and
int_pos_sub q p respectively, giving us the following definition:

Type 3.2.8

Definition int_add (x y : Int) : Int :=
match x, y with

| zero, y ⇒ y

| x, zero ⇒ x

| pos p, pos q ⇒ pos pos_add p q

| neg p, neg q ⇒ neg pos_add p q

| pos p, neg q ⇒ int_pos_sub p q
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| neg p, pos q ⇒ int_pos_sub q p

end.

We define our type int_pos_sub as follows:

Type 3.2.9

Fixpoint int_pos_sub (x y : Pos) : Int :=
match x, y with

| one, one ⇒ zero

| succ p, one ⇒ pos p

| one, succ q ⇒ neg q

| succ p, succ q ⇒ int_pos_sub p q

end.

Indeed, we have the following computation rules for addition:

- 1− 1 = 0

- (p+ 1)− 1 = p

- 1− (q + 1) = −q

- (p+ 1)− (q − 1) = p− q

3.2.4 Commutativity of integer addition

Lastly for this chapter, we need to prove that integer addition is commutative. To do this,
we provide a proof of the following proposition:

Type 3.2.10

Proposition int_add_comm : forall (x y : Int), int_add x y = int_add y x.

Applying induction on x and y through induction x as [ | p1|p1], y as [ | p2|p2] gives us the
following nine branches:

______________________________________(1/9)
int_add zero zero = int_add zero zero

______________________________________(2/9)
int_add zero (pos p2) = int_add (pos p2) zero
______________________________________(3/9)
int_add zero (neg p2) = int_add (neg p2) zero
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______________________________________(4/9)
int_add (pos p1) zero = int_add zero (pos p1)
______________________________________(5/9)
int_add (pos p1) (pos p2) = int_add (pos p2) (pos p1)
______________________________________(6/9)
int_add (pos p1) (neg p2) = int_add (neg p2) (pos p1)
______________________________________(7/9)
int_add (neg p1) zero = int_add zero (neg p1)
______________________________________(8/9)
int_add (neg p1) (pos p2) = int_add (pos p2) (neg p1)
______________________________________(9/9)
int_add (neg p1) (neg p2) = int_add (neg p2) (neg p1)

In branches 1-4 and 6-8, the definitions unfold in such a way that we can immediately apply
reflexivity. This leaves us with the goals in branches 5 and 9.

Unfolding the definitions of these branches using cbn gives us two very similar proof states.
Branch 5 gives

p1, p2 : Pos

______________________________________(1/1)
pos (pos_add p1 p2) = pos (pos_add p2 p1)

while branch 9 gives

p1, p2 : Pos

______________________________________(1/1)
neg (pos_add p1 p2) = neg (pos_add p2 p1)

For both of these states, the core property that needs to be proven is that positive number
addition commutes. Fortunately, a proof of this is already available in the form of our earlier
pos_add_comm. Careful investigation of the goals shows us that, in fact, the only thing sepa-
rating them from the statement pos_add_comm p1 p2 is the application of pos in branch 5 and
neg in branch 9. As such, these two branches can be closed off with the tactics exact (ap pos

(pos_add_comm p1 p2)) and exact (ap neg (pos_add_comm p1 p2)) respectively.

We have now defined the basic types associated with the positive numbers and integers and
can start applying the encode-decode principle.
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Chapter 4

Encode-Decode

The encode-decode principle is a strategy often employed in homotopy type theory to char-
acterize the path space of a certain type. It proves that a type has a certain h-level by
characterizing the path space. In particular this is done by proving that the path space is
equivalent to some type with an h-level that is one lower. For instance, in order to show that
the integers form a set (a 0-type) the encode-decode principle requires one to show that the
paths between integers are equivalent to some type of propositions (a (-1)-type).

The equivalence required by encode-decode is proven using isequiv_adjointify by showing
that:

1. There exists a function which maps elements from the first type to the second (which
we call encode_[type]).

2. There exists a function which maps elements from the second type to the first (which
we call decode_[type]).

3. That these two functions cancel when composed either of two ways (encode_decode_[type]
and decode_encode_[type])

This is sufficient to prove that the functions define an equivalence, which proves that the
types they map to are equivalent.

If isequiv_adjointify is not used it also becomes necessary to prove that the proofs that the
functions cancel are analogous. This is used to better characterize the higher path space,
which becomes necessary when working with such an equivalence on a deeper level.

4.1 Positive Numbers

4.1.1 Positive Numbers as a Set

Before we develop the elementary patch theory, we must first prove that the positive numbers
and the integers form a set. As discussed in the preliminaries (see Section 2.1.5), a set in
homotopy type theory is also known as a 0-type, and in order to prove that some type is
an n-type it suffices to show that the type of paths between elements of the type forms an
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(n− 1)-type. For the positive numbers and the integers, this implies that the goal is to prove
that the paths between elements form a (−1)-type, or a mere proposition. To prove this, we
use the encode-decode principle.

Let us start laying out some Coq code. The statement hset_pos that the positive numbers
form a set is phrased in Coq as follows:

Type 4.1.1

Global Instance hset_pos : IsHSet Pos.

We use Global Instance here to set this property globally, enabling us to implicitly assume
it in the future.

As mentioned previously, the statement here is equivalent to the statement that the paths
between positive numbers form a (−1)-type. We can transform our goal into this by unfolding
IsHSet using intros x, y and then transforming the internal (−1)-type into a regular one using
refine Trunc_is_trunc. Coq automatically recognizes that a (−1)-type is a mere proposition
due to how the latter is defined, and so we are left with the goal

x, y : Pos

______________________________________(1/1)
IsHProp (x = y)

As discussed in Section 2.1.6, istrunc_equiv_istrunc proves that a type is an HProp by prov-
ing that it is equivalent to an HProp. After applying the tactic simple refine (istrunc

_equiv_istrunc _ _) we are left with the following three branches

x, y : Pos

______________________________________(1/3)
Type

______________________________________(2/3)
?A ≃ x = y

______________________________________(3/3)
IsHProp ?A

Here, the first branch requests the other type used in encode-decode, the second a proof of
equivalence between the two types, and the third a proof that the type defined in the first
branch is an HProp. In line with the naming conventions of encode-decode, we name the type
of the first branch code_Pos.

As code_Pos has to be equivalent to the type of paths between positive numbers, its structure
needs to be the same. That is, the type has to act on two positive numbers and be identifiable
if and only if the two elements are equal. This motivates the following definition:
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Type 4.1.2

Fixpoint code_Pos (x y : Pos) : Type :=
match x, y with

| one, one ⇒ Unit

| succ _, one ⇒ Empty

| one, succ _ ⇒ Empty

| succ p, succ q ⇒ code_Pos p q

end.

The numbers 1 and 1 are always uniquely equal to each other, and so the first case is mapped
to the unit type for which we can always identify an element. The number 1 and some number
greater than 1 are never equal to each other, and so the second and third cases are mapped
to the empty type. By the inductive definition of Pos, equality of two numbers greater than
1 can be demonstrated by removing one instance of succ from both sides and applying the
function again. This results in the recursive call in the fourth case. With the type code_Pos

now fully defined, we can slot it into the first branch and move on to proving the statement
in the second branch.

Next we show that code_Pos and the type of paths between positive numbers are equivalent.
We express this using the following definition:

Type 4.1.3

Definition equiv_Pos_encode {x y : Pos} : Equiv (code_Pos x y) (x = y).

As noted in Section 2.1.6, to construct an element of type Equiv A B we use the function
Build_Equiv. The type Build_Equiv takes an equivalence function equiv_fun : A → B and
a proof equiv_isequiv that this function can be used to construct an equivalence. As such,
we proceed with the tactic simple refine (Build_Equiv _ _ _ _), giving us one branch to
slot in equiv_fun and one to slot in equiv_isequiv. The type equiv_isequiv is not easily
constructed however, and so we first need to unpack it further using the tactic simple refine

(isequiv_adjointify _ _ _ _). This results in the following four branches:

x, y : Pos

______________________________________(1/4)
code_Pos x y → x = y

______________________________________(2/4)
x = y → code_Pos x y

______________________________________(3/4)
?equiv_fun o ?g == idmap

______________________________________(4/4)
?g o ?equiv_fun == idmap
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Here, ?equiv_fun refers to the function of the first branch and ?g to the function of the second
branch. In line with the encode-decode principle, we call the functions to be slotted into
these branches decode_pos, encode_pos, encode_decode_pos and decode_encode_pos respec-
tively. This completes the basics of our proof that the positive numbers form a set.

4.1.2 Encoding and Decoding

The type encode_pos takes a path between two positive numbers and return an element of
code_Pos. As such, it has the following signature:

Type 4.1.4

Definition encode_pos (x y : Pos) (p : x = y) : code_Pos x y.

As we have a path in the assumptions, we can proceed by path induction using the tactic
induction p (see Section 2.2.2). This then gives us the goal

x : Pos

______________________________________(1/1)
code_Pos x x

The result of code_Pos depends on the value of its argument x. As such we proceed by
induction on this argument to obtain:

______________________________________(1/2)
code_Pos one one

______________________________________(2/2)
code_Pos (succ x) (succ x)

In the first branch the goal unfolds to Unit, for which we can always find an element; tt. We
prove this using the tactic exact tt. In the second branch, we have the following situation:

x : Pos

IHx : code_Pos x x

______________________________________(1/1)
code_Pos (succ x) (succ x)

Unfolding the goal using cbn yields code_Pos x x, which is exactly our inductive hypothesis.
As such we can close off the branch using exact IHx.
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The function decode_pos has the following signature:

Type 4.1.5

Definition decode_pos : forall (x y : Pos), code_Pos x y → (x = y).

Given that the value of code_Pos depends on the value of the positive numbers, we start with
induction on these numbers using induction x, y. This gives the following branches:

______________________________________(1/4)
code_Pos one one → one = one

______________________________________(2/4)
code_Pos one (succ y) → one = succ y

______________________________________(3/4)
code_Pos (succ x) one → succ x = one

______________________________________(4/4)
code_Pos (succ x) (succ y) → succ x = succ y

In each of these branches, we start by applying intro c in order to put the code_Pos instance
we are given into the assumptions. In the first branch, doing this immediately yields a goal
that we can solve using reflexivity. In the second and third branches, the code_Pos instance
unfolds to the empty type, and so we can close it off with empty-induction using induction

c (see Section 2.1.3). In the fourth branch, unfolding the assumption c using cbn in c gives
us in the following proof state:

x : Pos

IHx : forall y : Pos, code_Pos x y → x = y

y : Pos

c : code_Pos x y

______________________________________(1/1)
succ x = succ y

As can be seen, we can now apply the inductive hypothesis by using c as an argument. We
create a new assumption p : x = y with the result of this application using the tactic pose (IHx

y c) as p. This assumption only differs from the goal by the fact that it lacks an application
of succ on both sides. Therefore, we can close of the branch using the tactic exact (ap succ

p). This completes the construction of encode_pos and decode_pos.

4.1.3 Cancellation of Encode and Decode

As per the encode-decode principle, we now need to prove that encode_pos and decode_pos

cancel when composed either of two ways. This is expressed using the types encode_decode_pos
and decode_encode_pos. The type encode_decode_pos has the following signature:
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Type 4.1.6

Lemma encode_decode_pos (x y : Pos) :
decode_pos x y o encode_pos x y == idmap.

As with int_succ_pred and int_pred_succ in Section 3.2, we start by extracting the argument
using intro p. This argument is a path, and so we can apply path induction using induction

p to obtain the following:

x : Pos

______________________________________(1/1)
decode_pos x x (encode_pos x x 1) = 1

Both encode_pos and decode_pos are constructed using induction on their argument, and so
we need to apply induction on x here as well. This leaves us with the following branches:

______________________________________(1/2)
decode_pos one one (encode_pos one one 1) = 1
______________________________________(2/2)
decode_pos (succ x) (succ x) (encode_pos (succ x) (succ x) 1) = 1

In the first branch the definitions unfold in such a way as to allow us to immediately apply
reflexivity. In the second branch we have the following situation:

x : Pos

IHx : decode_pos x x (encode_pos x x 1) = 1
______________________________________(1/1)
decode_pos (succ x) (succ x) (encode_pos (succ x) (succ x) 1) = 1

It may seem like applying cbn would be a logical first step here, with the hope that the
definitions once again unfold in such a way that we can apply the inductive hypothesis.
However, as encode_pos and decode_pos are defined in a proof-like style rather than a function-
like style, cbn would in this case also expand the functions themselves to their proofs. Instead
it is necessary to apply the less thorough tactic simpl (see Section 2.2.2). This results in the
following:

x : Pos

IHx : decode_pos x x (encode_pos x x 1) = 1
______________________________________(1/1)
ap succ (decode_pos x x (Pos_rect
(fun x0 : Pos ⇒ code_Pos x0 x0) tt (fun x0 : Pos ⇒ idmap) x)) = 1

While this may still seem to be too far ‘folded out’ to properly apply the inductive hypothesis,
Coq’s parser is intelligent enough to realize that the Pos_rect is equivalent to an application
of encode_pos. Since it also holds that ap succ 1 is equal to 1, we can close off the branch
using the tactic exact (ap (ap succ) IHx).
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The type decode_encode_pos has the following signature:

Type 4.1.7

Lemma decode_encode_pos : forall (x y : Pos), encode_pos x y o decode_pos x y == idmap.

We start by introducing all arguments, giving us the following state:

x, y : Pos

p : code_Pos x y

______________________________________(1/1)
encode_pos x y (decode_pos x y p) = p

We know that code_Pos is a mere proposition. As such it holds that any element of type
code_Pos v w, with v w : Pos, is equal to any other element of the same type. We know
that both sides of the equality are elements of the type code_Pos x y, and so we can use this
property to immediately close the branch. In this case this is done through the tactic apply

path_ishprop. This completes the construction of encode_decode_pos and decode_encode_pos.

4.1.4 Completing the Proof

At the end of Section 4.1.1, we obtained four branches in which the types encode_pos,
decode_pos, decode_encode_pos and encode_decode_pos needed to be slotted. Now that we
have all of these types fully defined, we can slot them in using apply’s. This gives us the
following final proof of equivalence:

Type 4.1.8

Definition equiv_Pos_encode {x y : Pos} : Equiv (code_Pos x y) (x = y).
Proof.
simple refine (Build_Equiv _ _ _ _).
2: simple refine (isequiv_adjointify _ _ _ _).
= apply decode_pos.
= apply encode_pos.
= apply encode_decode_pos.
= apply decode_encode_pos.
Defined.

We now only need a proof that code_Pos is a mere proposition. Luckily, this task is not as
daunting as it initially might seem. The proof that a set is a mere proposition is written down
in Coq syntax as follows:
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Type 4.1.9

Global Instance IsHProp_code_pos : forall (x y : Pos), IsHProp (code_Pos x y).

Here, we make use of a Global Instance. This typeclass is usually employed to specify the
ambient environment of Coq-HoTT, allowing additional tactics to be used without any has-
sle. In this case, the Global Instance can be used to allow Coq to find the mere proposition
property itself any time some function requires it. Additionally, any time the property is all
that is required to satisfy the goal it allows for closing the branch using apply _.

By applying induction on the two arguments given we obtain the following four branches:

______________________________________(1/4)
IsHProp (code_Pos one one)
______________________________________(2/4)
IsHProp (code_Pos one (succ y))
______________________________________(3/4)
IsHProp (code_Pos (succ x) one)
______________________________________(4/4)
IsHProp (code_Pos (succ x) (succ y))

We can use the tactic apply _ in all of these branches to let Coq verify by itself that both of
the types that code_Pos can unfold to (namely Unit and Empty) are mere propositions. With
this, we are immediately done with the proof and can start filling in the branches of hset_pos.

In the type hset_pos, we were left with the following three branches at the end of Section 4.1.1:

x, y : Pos

______________________________________(1/3)
Type

______________________________________(2/3)
?A ≃ x = y

______________________________________(3/3)
IsHProp ?A

Here, ?A indicates the value of the first branch. The first branch was the type we wanted
to apply encode-decode with, which was code_Pos. We indicate this using the tactic apply

(code_Pos x y). The second branch was the proof of equivalence between code_Pos and paths
between positive numbers, which we stored in equiv_Pos_encode. As such we use apply

equiv_Pos_encode to complete this branch. The last branch was the proof that code_Pos is
a mere proposition, which we stored in hset_pos. While we could close this off using apply

hset_pos, it is more usual to let Coq find the proof itself using apply _. This completes the
proof that the positive numbers form a set.
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4.2 Integers

4.2.1 Integers as a Set

In the previous chapter, we defined the integers as follows:

Type 4.2.1

Inductive Int : Type :=
| zero : Int
| pos : Pos → Int

| neg : Pos → Int.

In order to prove that this type forms a set, we can use the same approach we used to prove
that the positive numbers formed a set. As such we create a new definition hset_int with the
following definition and proof, where code_Int (Type 4.2.3), equiv_Int_encode (Type 4.2.11)
and IsHProp_code_int (Type 4.2.12) are functions to be defined.

Type 4.2.2

Global Instance hset_int : IsHSet Int.
Proof.
intros x y; refine Trunc_is_trunc.
simple refine (istrunc_equiv_istrunc _ _).
= apply (code_Int x y).
= apply equiv_Int_encode.
= apply IsHProp_code_int.
Defined.
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For code_Int we derive the following definition:

Type 4.2.3

Definition code_Int (x y : Int) : Type :=
match x, y with

| zero, zero ⇒ Unit

| zero, pos _ ⇒ Empty

| zero, neg _ ⇒ Empty

| pos _, zero ⇒ Empty

| pos p, pos q ⇒ code_Pos p q

| pos _, neg _ ⇒ Empty

| neg _, zero ⇒ Empty

| neg _, pos _ ⇒ Empty

| neg p, neg q ⇒ code_Pos p q

end.

Since we once again encode to paths, this definition is quite similar to that of code_Pos. Once
again, we map equal elements to the unit type and inequal elements to the empty type. For
the cases (pos p), (pos q) and (neg p), (neg q), we now call code_Pos since whether the two in-
tegers are equal depends entirely on whether the numbers they contain as arguments are equal.

4.2.2 Encoding and Decoding

Analogously to encode_pos, encode_int has the following signature:

Type 4.2.4

Definition encode_int (x y : Int) (p : x = y) : code_Int x y.

Given that we have a path in the assumptions, we can apply path induction in order to only
have to define the reflexive case. This changes the proof state to the following:

x : Int

______________________________________(1/1)
code_Int x x

In order to prevent issues with the definition unfolding too far to be readable, we proceed to
make a new lemma encode_int_refl for this goal using case distinction. Afterwards, we can
complete the branch using the tactic apply encode_int_refl.

In the case where the argument is zero, we want the function to return an element of
code_Int zero zero ≡ Unit. As such we return tt. In the cases where the argument is pos p or
neg p, we need to return an element of type code_Pos p p. As such we return encode_pos p p 1.
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This gives us the following definition:

Type 4.2.5

Definition encode_int_refl (x : Int) : code_Int x x :=
match x with

| zero ⇒ tt

| (pos p) ⇒ encode_pos p p 1
| (neg p) ⇒ encode_pos p p 1
end.

With this, we have defined the type encode_int.

The type decode_int has the following signature:

Type 4.2.6

Definition decode_int : forall (x y : Int), code_Int x y → (x = y).

Same as in decode_pos, we perform induction on the two arguments x and y using the tactic
induction x as [ | p1|p1], y as [ | p2|p2]. Here, the as-clauses are used to give the values of
type Pos embedded in the pos and neg numbers proper names. We also apply the tactic intro

c in each branch in order to have our code_Int argument as an assumption rather than the
condition of an implication. This gives the following nine branches:

c : code_Int zero zero

______________________________________(1/9)
zero = zero

______________________________________(2/9)
zero = pos p2

______________________________________(3/9)
zero = neg p2

______________________________________(4/9)
pos p1 = zero

______________________________________(5/9)
pos p1 = pos p2

______________________________________(6/9)
pos p1 = neg p2

______________________________________(7/9)
neg p1 = zero

______________________________________(8/9)
neg p1 = pos p2

______________________________________(9/9)
neg p1 = neg p2
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In branches 2, 3, 4, 6, 7, and 8, the definition of code_Int unfolds to the empty type. As
such, we can close these branches off using empty-induction. In branch 1, we need to return
an element of zero = zero. As this is a reflexive path, we can return 1 using the tactic exact

1. In branches 5 and 9, unfolding the code_Int instance using cbn in c gives the following
proof state, where pos is replaced by neg in branch 9:

p1, p2 : Pos

c : code_Pos p1 p2

______________________________________(1/1)
pos p1 = pos p2

Given that we have a code_Pos instance here, we can try to use decode_pos to transform it
into its path equivalent. Doing this using the tactic pose (decode p1 p2 c) as p gives a new
assumption p of type p1 = p2. This assumption only differs from the goal by an application
of pos respectively neg on both sides, and so we can close the branches off using exact (ap

pos p) and exact (ap neg p) respectively. This completes the construction of encode_int and
decode_int.

4.2.3 Cancellation of Encode and Decode

The type encode_decode_int has the following signature:

Type 4.2.7

Lemma encode_decode_int (x y : Int) : decode_int x y o encode_int x y == idmap.

We start by extracting the argument using intro p. After this we apply path induction
using induction p to reduce the goal to the case where the arguments are equal, followed by
induction on this argument using induction x. This results in the following three branches:

______________________________________(1/3)
decode_int zero zero (encode_int zero zero 1) = 1
______________________________________(2/3)
decode_int (pos p) (pos p) (encode_int (pos p) (pos p) 1) = 1
______________________________________(3/3)
decode_int (neg p) (neg p) (encode_int (neg p) (neg p) 1) = 1

In the first branch, the definitions unfold to immediately give reflexivity. The second and third
branches once again only differ by whether pos or neg is used, and so their proofs proceed
largely identically. As such we only consider the proof for the second branch. In this branch
we have the following after applying cbn =[encode_int_refl]:

p : Pos

______________________________________(1/1)
ap pos (decode_pos p p (encode_int_refl (pos p))) = 1

The type decode_pos always returns a path, and so we can apply path induction on its
argument p. This results in the following two branches:
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______________________________________(1/2)
ap pos (decode_pos one one (encode_int_refl (pos one))) = 1
______________________________________(2/2)
ap pos (decode_pos (succ p) (succ p) (encode_int_refl (pos (succ p)))) = 1

In the first branch the definitions again unfold to immediately give reflexivity. In the second
branch, applying cbn unfolds the definitions too much and so we apply simpl. This gives the
following:

p : Pos

IHp : ap pos (decode_pos p p (encode_int_refl (pos p))) = 1
______________________________________(1/1)
ap pos (ap succ (decode_pos p p (Pos_rect (fun x : Pos ⇒ code_Pos x x)
tt (fun x : Pos ⇒ idmap) p))) = 1

We want to apply our inductive hypothesis here, but are prevented because we are not able to
move the ap succ outside of the ap pos (in the third branch we would have the same problem
with neg). To resolve this, we create a lemma pos_succ_change to prove that we can indeed
do this. Our lemma is of the following form:

Type 4.2.8

Lemma pos_succ_change (x y : Pos) (p : x = y) : ap pos (ap succ p) = ap int_succ (ap pos p).

As we have a path in the assumptions, we can try applying path induction to obtain the
following:

x : Pos

______________________________________(1/1)
ap pos (ap succ 1) = ap int_succ (ap pos 1)

At this point the left and right sides unfold to the same term, allowing us to close off the
proof using reflexivity.

After applying our lemma using the tactic rewrite pos_succ_change, we obtain the following:

p : Pos

IHp : ap pos (decode_pos p p (encode_int_refl (pos p))) = 1
______________________________________(1/1)
ap int_succ (ap pos (decode_pos p p (Pos_rect
(fun x : Pos ⇒ code_Pos x x) tt (fun x : Pos ⇒ idmap) p))) = 1

As we have that ap int_succ 1 is equal to 1, we can close off the branch using exact (ap (ap

int_succ) IHp). This completes the proof of encode_decode_int.

The type decode_encode_int has the following signature:
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Type 4.2.9

Lemma decode_encode_int (x y : Int) : decode_int x y o encode_int x y == idmap.

We start by applying induction on the two arguments x and y using induction x as [ | p1|p1],
y as [ | p2|p2], followed by bringing c into the assumptions in all branches using intro c. This
results in the following nine branches:

c : code_Int zero zero

______________________________________(1/9)
encode_int zero zero (decode_int zero zero c) = c

______________________________________(2/9)
encode_int zero (pos p2) (decode_int zero (pos p2) c) = c

______________________________________(3/9)
encode_int zero (neg p2) (decode_int zero (neg p2) c) = c

______________________________________(4/9)
encode_int (pos p1) zero (decode_int (pos p1) zero c) = c

______________________________________(5/9)
encode_int (pos p1) (pos p2) (decode_int (pos p1) (pos p2) c) = c

______________________________________(6/9)
encode_int (pos p1) (neg p2) (decode_int (pos p1) (neg p2) c) = c

______________________________________(7/9)
encode_int (neg p1) zero (decode_int (neg p1) zero c) = c

______________________________________(8/9)
encode_int (neg p1) (pos p2) (decode_int (neg p1) (pos p2) c) = c

______________________________________(9/9)
encode_int (neg p1) (neg p2) (decode_int (neg p1) (neg p2) c) = c

For branches 2-4 and 6-8 the assumption c unfolds to the empty type, and so we can immedi-
ately close them off using empty-induction with induction c. For the first branch, unfolding
the definitions in the goal as well as c using the tactics cbn in c; cbn gives us the following:

c : Unit

______________________________________(1/1)
tt = c

The only element of Unit is tt, and so we can close this branch off with induction c followed
by reflexivity.

In the fifth branch, unfolding the definitions gives the following:

p1, p2 : Pos

c : code_Pos p1 p2

______________________________________(1/1)
encode_int (pos p1) (pos p2) (ap pos (decode_pos p1 p2 c)) = c

Here, we see that while decode_int (pos p1) (neg p2) c did unfold to ap pos (decode_pos p1 p2

c), a similar thing did not happen to encode_int. We can make this happen by creating and
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applying a lemma encode_int_pos with the following signature:

Type 4.2.10

Lemma encode_int_pos {x y : Pos} {p : x = y}
: encode_int (pos x) (pos y) (ap pos p) = encode_pos x y p.

This lemma immediately holds by reflexivity after applying path induction on p. Applying
the lemma to our goal gives the following:

p1, p2 : Pos

c : code_Pos p1 p2

______________________________________(1/1)
encode_pos p1 p2 (decode_pos p1 p2 c) = c

This is exactly decode_encode_pos, and so we can close off the branch using the tactic apply

decode_encode_pos. The proof of the ninth branch once again proceeds in much the same
way, with us constructing an identical lemma for neg and finding that the resulting goal is
equal to decode_encode_pos. As such, we will not cover this proof in detail. With this, we
have reached the end of the proofs that encode_int and decode_int cancel.

4.2.4 Completing the Proof

Our final proof of equivalence proceeds in much the same way as that in Section 4.1.4, with us
slotting in respectively decode_int, encode_int, decode_encode_int and encode_decode_int.
This gives us the following construction:

Type 4.2.11

Definition equiv_Int_encode {x y : Int} : Equiv (code_Int x y) (x = y).
Proof.
simple refine (Build_Equiv _ _ _ _).
2: simple refine (isequiv_adjointify _ _ _ _).
= apply decode_int.
= apply encode_int.
= apply encode_decode_int.
= apply decode_encode_int.
Defined.

The proof that code_Int is a mere proposition also proceeds in the same way as code_Pos,
giving the following construction:
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Type 4.2.12

Global Instance IsHProp_code_int : forall (x y : Int), IsHProp (code_Int x y).
Proof.
induction x, y; apply _.
Defined.

With this, we have defined all components necessary to construct hset_int as elaborated
upon in Section 4.2.1 and have completed the application of the encode-decode principle for
the integers.
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Chapter 5

Patch Theory

In this chapter we build on the foundations constructed in Chapters 3 and 4 to construct
the first patch theory outlined in the paper Homotopical patch theory [13]. We construct the
higher inductive type of the first patch theory (Section 5.1), construct interpreters for integers
and booleans (Section 5.2), and prove all the properties outlined in the paper (Section 5.2.1).
In particular, we prove the following properties:

1. addsucc; that the interpretation of the path operation in the integers is the successor
operations for integers (Section 5.2.1).

2. addVsucc; that the interpretation of the inverse path operation in the integers is the
predecessor operation for integers (Section 5.2.1).

3. intcomp; that the concatenation of two path operations are interpreted in the integers
as the concatenation of the interpretations of the two operations (Section 5.2.1).

4. intzero; that the interpretation of the path operation with its inverse leaves the integer
zero unchanged (Section 5.2.1).

5. boolrefl1; that the interpretation of the path operation in the booleans cancels when
composed with itself (Section 5.2.1).

5.1 The HIT PT1

Now that we have a useful model for the integers, it becomes possible to define the higher
inductive type representing patches in the first patch theory. We call this HIT PT1 and define
it analogously to the first type R in Homotopical patch theory. The type PT1 is a higher
inductive type containing a point constructor num as well as a path constructor add1. In Coq
this becomes the following (see Section 2.2.3 for details):
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Type 5.1.1

Module Export PT1.
Private Inductive PT1 : Type :=
| num : PT1.
Axiom add1 : num = num.

As we have a higher inductive type, we require both a recursion principle and an induction
principle (see also Section 2.2.3). It would be possible to define the recursion in terms of the
induction principle since it is strictly weaker, however as this would result in some more work
later on we do not do this. The recursion and induction principles are implemented as follows:

Type 5.1.2

Definition PT1_rec {A : Type} (a : A) (p : a = a) (n : PT1) : A : =
match n with

| num ⇒ a

end.
Axiom PT1_rec_add1 : forall {A : Type} (a : A) (p : a = a),

ap (PT1_rec a p) add1 = p.

Definition PT1_ind (P : PT1 → Type) (b : P num) (l : add1 # b = b) (x : PT1) : P x : =
match x with

| num ⇒ b

end.
Axiom PT1_ind_add1 : forall (P : PT1 → Type) (b : P num) (l : add1 # b = b),

apD (PT1_ind P b l) add1 = l.
End PT1.

It should be noted that these types are defined in a module named PT1. This is to make the
higher inductive type opaque, which prevents exposing that the type only has one element
through making the induction principle invisible. With this, the type is able to accommodate
more complex patches than merely add1 by not specifying the right side of the equality.

5.2 Interpreters

With the higher inductive type defined we can create some interpreters. For this we use the
recursion principle with the tactic simple refine (PT1_rec _ _), where we supply:

1. A point x.

2. A path x = x between points.

We use this to define our basic interpreter I. After that we can use I to manually define the
corresponding interpreter interp for equivalences. For the interpreter of integers, our point
is the type of integers and the path the univalence axiom applied to the successor function.
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This gives the following function:

Type 5.2.1

Definition I : PT1 → Type.
Proof.
simple refine (PT1_rec _ _).
= exact Int.
= exact (path_universe_uncurried equiv_int_succ).
Defined.

Definition interp : (num = num) → (Int ≃ Int) :=
fun patch ⇒ equiv_path Int Int (ap I patch).

With this, our patch theory PT1 can be interpreted as the type of integers with addition. In
other words, we can interpret the nodes in our patch theory as being arbitrary integers and
the operation of moving between nodes as integer addition.

We also define an interpreter for the booleans. In this type, our point is the type of booleans
and the path the univalence axiom applied to the negation function. This gives the following
types:

Type 5.2.2

Definition I’ : PT1 → Type.
Proof.
simple refine (PT1_rec _ _).
= exact Bool.
= exact (path_universe_uncurried equiv_negb).
Defined.

Definition interp’ : (num = num) → (Bool ≃ Bool) :=
fun patch ⇒ equiv_path Bool Bool (ap I’ patch).

With this, our patch theory PT1 can be interpreted as the booleans with negation. The nodes
are now the values true and false, which we can move between using the negation operation.

5.2.1 Properties of Interpreters

Using these interpreters, all the properties posed in the paper by Anguili, Morehouse, Licata
and Harper can be proven. We start with addsucc, which can be written as the following
proposition:
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Type 5.2.3

Proposition addsucc : interp add1 = equiv_int_succ.

We would like to introduce an argument on both sides of the equality. However, due to both
sides being an equivalence attempting this using the tactic funext x fails. Instead, we need
to first extract the function implicit in the equivalence using apply path_equiv. After that we
can indeed apply funext x followed by cbn to obtain the following:

x : Int

______________________________________(1/1)
transport idmap (ap I add1) x = int_succ x

In our definition of I, we defined the path constructor add1 of the higher inductive type to
correspond to path_universe_uncurried equiv_int_succ. As such our term ap I add1 should
translate to path_universe_uncurried equiv_int_succ. Indeed, when we apply the tactic
rewrite PT1_rec_add1, we obtain the following goal:

x : Int

______________________________________(1/1)
transport idmap (path_universe_uncurried equiv_int_succ) x = int_succ x

At this point, the tactic transport_path_universe_uncurried can be used to close off the
branch using the tactic exact (transport_path_universe_uncurried equiv_int_succ x) (see
Section 2.1.7).

While the property is not listed in the paper Homotopical patch theory, it will later on also
be necessary to prove an analogous statement that the interpretation of the inverse of add1 is
the inverse of the successor function. As such we also include the proof of this property here.
The property can be phrased as the following proposition in Coq:

Type 5.2.4

Proposition addVsucc : interp (add1ˆ) = (equiv_inverse equiv_int_succ).

It should be the case that the interpretation of the inverse of some action on patches corre-
sponds to the inverse in the corresponding interpretation. For this we create the following
lemma:
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Type 5.2.5

Lemma interp_inverse (p : num = num) : interp pˆ = equiv_inverse (interp p).

Unfolding interp here using the tactic unfold interp gives us the following:

p : num = num

______________________________________(1/1)
equiv_path Int Int (ap I pˆ) = ((equiv_path Int Int (ap I p))ˆ=1)%equiv

The goal here is to move the inverse first outside the application of ap and then outside the
application of equiv_path. This we can do with the tactics rewrite ← inverse_ap and apply

equiv_path_V respectively. The latter tactic also closes the branch, completing the proof.

We can use the just-created lemma in addVsucc using the tactic rewrite (interp_inverse

add1). This gives the following:

______________________________________(1/1)
((interp add1)ˆ=1)%equiv = (equiv_int_succˆ=1)%equiv

This is exactly the Type 5.2.4 with an application of the inverse on both sides, and so we can
close the branch off using the tactic exact (ap equiv_inverse addsucc).

The next property we need to prove is intcomp, which is defined as the following proposition:

Type 5.2.6

Proposition intcomp : forall (p q : num = num), interp (q @ p) = (interp p) oE (interp q).

Unfolding the interp function results in the following proof state:

p, q : num = num

______________________________________(1/1)
equiv_path Int Int (ap I (q @ p)) =
equiv_path Int Int (ap I p) oE equiv_path Int Int (ap I q)

Now, the goal is clearly to move the composition operation outside of both the ap function
and the equiv_path function. In order to move it out of the ap function, we can use the tactic
rewrite (ap_pp I q p). This gives the following:

p, q : num = num

______________________________________(1/1)
equiv_path Int Int (ap I q @ ap I p) =
equiv_path Int Int (ap I p) oE equiv_path Int Int (ap I q)
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To move the composition outside of equiv_path and close off the branch, we use the tactic
exact (equiv_path_pp (ap I q) (ap I p)).

The next property we need to prove is intzero, with the following signature:

Type 5.2.7

Proposition intzero : interp (add1 @ add1ˆ) zero = zero.

A function composed with its inverse should not result in any change. We indicate this fact
using the tactic rewrite concat_pV to obtain the following:

______________________________________(1/1)
interp 1 zero = zero

This goal then holds immediately through reflexivity, since interp maps 1 to an identity map-
ping for the integers and so the value zero remains unchanged.

Lastly, we need to prove the property boolrefl1. This type has the following signature:

Type 5.2.8

Proposition boolrefl1 : (ap I’ add1) @ (ap I’ add1) = 1.

Applying the computation rule for add1 gives us the following goal:

______________________________________(1/1)
path_universe_uncurried equiv_negb @ path_universe_uncurried equiv_negb = 1

We would like to move the composition here to within the application of path_universe_

uncurried so we can compose the two applications of equiv_negb together. This can be done
using the tactic rewrite← (path_universe_compose_uncurried equiv_negb equiv_negb). This
results in the following goal:

______________________________________(1/1)
path_universe_uncurried (equiv_compose equiv_negb equiv_negb) = 1

In order to be able to use the property that double negation cancels we need to replace this
path_universe_uncurried with a path_universe. There is no set tactic for this, and so we
instead replace the left hand side and then immediately prove the second branch using the
tactic 2: reflexivity.
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In order to proceed from this point on we need to show that a double negation results in net
no action. For this we create a new lemma equivs_cancel. This lemma has the following
signature:

Type 5.2.9

Lemma equivs_cancel : (equiv_negb oE equiv_negb) == 1%equiv.

For this lemma we can use the tactic intros [ | ] . This essentially starts a proof by case
distinction, and since we are working with booleans here we obtain the following two branches:

______________________________________(1/2)
(equiv_negb oE equiv_negb) true = 1%equiv true

______________________________________(2/2)
(equiv_negb oE equiv_negb) false = 1%equiv false

Both of these we can immediately close off using reflexivity, completing the proof.

We can now apply the lemma to the goal using the tactic rewrite (path2_universe equivs_

cancel). This results in the following goal:

______________________________________(1/1)
path_universe 1%equiv = 1

This is proven in the proposition path_universe_1, and so we close off the proof using the
tactic apply path_universe_1. With this, we have proven all properties in Homotopical Patch
Theory that are necessary to construct the merge principle.
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Chapter 6

Merge

Before we are able to properly tackle the merge principle as described in the paper Homotopical
patch theory, we require two key components:

- An application of the encode-decode principle on the patch theory (Types 6.2.3 and
6.2.4).

- A proof that decode translates composition of patch histories to integer addition (Type
6.3.1).

In the first three sections of this chapter, we define these principles and create the scaffolding
that will later be useful to prove some of the more challenging propositions that the merge
principle requires. In the following two, we implement the merge operation itself along with
its two key properties; the reconcile principle stating that the merge operation indeed unifies
the two patches and the symmetry principle stating that merging is commutative.

6.1 The Encode-Decode Principle

We define our function encode as follows:

Type 6.1.1

Definition encode {x : PT1} : (num = x) → (I x) :=
fun p ⇒ transport I p zero.

In this function, we first transport our earlier-defined interpreter over the patch, translating
the patch to an operation +n: Int → Int which maps each integer x to the integer x+n. After
this, we apply this operation to zero in order to obtain the integer n. We choose to phrase the
argument here as an element of num = x instead of num = num in order to be able to use path
induction and enable it to be applied to arbitrary patch histories.

We define the function decode as follows:
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Type 6.1.2

Definition decode {x : PT1} : (I x) → (num = x).

While we would like to use integer induction here, we cannot since the interpreter is applied
to an arbitrary element rather than num. We can get around this by first using the induction
principle of the patch theory, however this means that we also need to provide an analogue
function for the element add1. Applying the induction principle using the tactics revert x

and simple refine (PT1_ind _ _ _) thus results in the following two branches:

______________________________________(1/2)
(fun x : PT1 ⇒ I x → num = x) num
______________________________________(2/2)
transport (fun x : PT1 ⇒ I x → num = x) add1 ?b = ?b

For the first branch, simplifying the goal using cbn gives us the following:

______________________________________(1/1)
Int → num = num

We need to provide a function with the given signature, which we call looppow. We define the
function as follows:

Type 6.1.3

Definition looppow (i : Int) : (num = num) :=
match i with

| zero ⇒ 1
| pos p ⇒ looppow_pos p

| neg p ⇒ (looppow_pos p)ˆ
end.

where looppow_pos is defined as follows:

Type 6.1.4

Fixpoint looppow_pos (p : Pos) : (num = num) :=
match p with

| one ⇒ add1

| (succ p) ⇒ (looppow_pos p) @ add1

end.
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Later on, we will need to show that these functions commute with add1. We define the type
looppow_pos_comm_add1 as follows:

Type 6.1.5

Lemma looppow_pos_comm_add1 (p : Pos) : add1 @ (looppow_pos p) = (looppow_pos p) @ add1.

We start off with induction on the argument p. This gives us the following two branches:

______________________________________(1/2)
add1 @ looppow_pos one = looppow_pos one @ add1

______________________________________(2/2)
add1 @ looppow_pos (succ p) = looppow_pos (succ p) @ add1

The first branch holds immediately through reflexivity. For the second branch, we transform
looppow_pos (succ p) into looppow_pos p @ add1 using an application of enough. This gives us
the following:

p : Pos

IHp : add1 @ looppow_pos p = looppow_pos p @ add1

______________________________________(1/1)
add1 @ (looppow_pos p @ add1) = (looppow_pos p @ add1) @ add1

We next use the tactic concat_p_pp to make the left side (add1 @ looppow_pos p) @ add1, then
remove the concatenation with add1 on both sides using the tactic refine (ap (fun z ⇒ z @ add1)

_). This gives us the goal add1 @ looppow_pos p = looppow_pos p @ add1, which is exactly the
inductive hypothesis.

We define the type looppow_comm_add1 as follows:

Type 6.1.6

Lemma looppow_comm_add1 (p : Pos) : add1 @ (looppow (pos p)) = (looppow (pos p)) @ add1.

Unfolding using the tactic cbn =[looppow_pos] gives us the goal add1 @ looppow_pos p = looppow_

pos p @ add1, which immediately holds through looppow_pos_comm_add1. As such we can close
off the branch using the tactic exact (looppow_pos_comm_add1 p).

We can now provide looppow to the first branch of the definition of decode using the tactic
exact looppow. The second branch of this definition then becomes the following:

______________________________________(1/1)
transport (fun x : PT1 ⇒ I x → num = x) add1
(looppow : (fun x : PT1 ⇒ I x → num = x) num) =

(looppow : (fun x : PT1 ⇒ I x → num = x) num)
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Now, we can move the argument given to looppow to the assumptions using funext i and
intro i and change it from I num to Int using cbn in i. This gives us the following:

i : Int

______________________________________(1/1)
transport (fun x : PT1 ⇒ I x → num = x) add1 looppow i = looppow i

We can derive the left hand side here as follows:

transport (fun x : PT1 ⇒ I x → num = x) add1 looppow i

= ⟨rewrite transport_arrow⟩
transport (paths num) add1 (looppow (transport I add1ˆ i)

= ⟨rewrite transport_paths_r⟩
looppow (transport I add1ˆ i) @ add1

= ⟨rewrite transport_idmap_ap⟩
looppow (transport idmap (ap I add1ˆ) i) @ add1

= ⟨replace by path_universe_uncurried_equiv_path⟩
looppow (transport idmap (path_universe_uncurried

(equiv_path Int Int (ap I add1ˆ))) i) @ add1

= ⟨replace by addVsucc⟩
looppow (transport idmap (path_universe_uncurried equiv_int_succˆ=1) i) @ add1

= ⟨rewrite path_universe_V_uncurried⟩
looppow (transport idmap (path_universe_uncurried equiv_int_succ)ˆ i) @ add1

= ⟨rewrite transport_path_universe_V_uncurried⟩
looppow (equiv_int_succˆ=1 i) @ add1

= ⟨cbn⟩
looppow (int_pred i) @ add1

This gives us the goal looppow (int_pred i) @ add1 = looppow i. At this point, we can apply
induction on the argument using induction i and simplify the resulting branches. This gives
the following:

______________________________________(1/3)
add1ˆ @ add1 = 1
______________________________________(2/3)
looppow match p with

| one ⇒ zero

| succ q ⇒ pos q

end @ add1 = looppow_pos p

______________________________________(3/3)
(looppow_pos p @ add1)ˆ @ add1 = (looppow_pos p)ˆ

The first branch holds immediately through the lemma concat_Vp. In the second branch,
applying induction on the argument p and simplifying the branches using cbn results in the
following two branches:
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______________________________________(1/2)
1 @ add1 = add1

______________________________________(2/2)
looppow_pos p @ add1 = looppow_pos p @ add1

The first branch holds immediately through the lemma concat_1p. The second branch holds
through reflexivity.

For the third branch, applying induction and simplifying the branches gives the following:

______________________________________(1/2)
(add1 @ add1)ˆ @ add1 = add1ˆ
______________________________________(2/2)
((looppow_pos p @ add1) @ add1)ˆ @ add1 = (looppow_pos p @ add1)ˆ

In the first branch, we have the following derivation:

(add1 @ add1)ˆ @ add1 = add1ˆ

⇒ ⟨rewrite inv_pp⟩
(add1ˆ @ add1ˆ) @ add1 = add1ˆ

⇒ ⟨rewrite concat_pp_p⟩
add1ˆ @ (add1ˆ @ add1) = add1ˆ

⇒ ⟨rewrite concat_Vp⟩
add1ˆ @ 1 = add1ˆ

⇒ ⟨rewrite concat_p1⟩
add1ˆ = add1ˆ

where the last term holds by reflexivity.

In the second branch, we have the following derivation:

((looppow_pos p @ add1) @ add1)ˆ @ add1 = (looppow_pos p @ add1)ˆ

⇒ ⟨rewrite looppow_comm_add1)

((add1 @ looppow_pos p) @ add1)ˆ @ add1 = (looppow_pos p @ add1)ˆ

⇒ ⟨rewrite !inv_pp)

(add1ˆ @ ((looppow_pos p)ˆ @ add1ˆ)) @ add1 = add1ˆ @ (looppow_pos p)ˆ

⇒ ⟨rewrite concat_pp_p)

add1ˆ @ (((looppow_pos p)ˆ @ add1ˆ) @ add1) = add1ˆ @ (looppow_pos p)ˆ

⇒ ⟨refine (ap (fun z ⇒ add1ˆ @ z) _))

((looppow_pos p)ˆ @ add1ˆ) @ add1 = (looppow_pos p)ˆ

⇒ ⟨rewrite concat_pp_p)

(looppow_pos p)ˆ @ (add1ˆ @ add1) = (looppow_pos p)ˆ

⇒ ⟨rewrite concat_Vp)

(looppow_pos p)ˆ @ 1 = (looppow_pos p)ˆ
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where the last term holds through the tactic apply concat_p1. With this, we have fully defined
decode.

6.2 Proofs of Equivalence

Our type decode_encode has the following signature:

Type 6.2.1

Proposition decode_encode (x : PT1) (p : num = x) : decode (encode p) = p.

Once again, the reason we are not specifying one of the ends of the path is so that we can
apply path induction using induction p and process an arbitrary patch history as argument.
After induction p, the proof fortunately immediately holds through reflexivity.

The type encode_decode has the following signature:

Type 6.2.2

Proposition encode_decode : forall (x : PT1) (c : I x), encode (decode c) = c.

As we have an arbitrary element of the patch theory x and another element I x, we start the
proof with the induction principle of the patch theory. This is done using the tactic simple

refine (PT1_ind (fun x ⇒ forall c : I x, encode (decode c) = c) _ _) and gives the following
two branches:

______________________________________(1/2)
(fun x : PT1 ⇒ forall c : I x, encode (decode c) = c) num
______________________________________(2/2)
transport (fun x : PT1 ⇒ forall c : I x, encode (decode c) = c) add1 ?b = ?b

Here, the second branch immediately holds through the tactic apply path_ishprop. For the
first branch, bringing c into the assumptions using intro c (transforming it into an element
of type I num) and applying induction gives us the following branches:

______________________________________(1/3)
encode (decode zero) = zero

______________________________________(2/3)
encode (decode (pos p)) = pos p

______________________________________(3/3)
encode (decode (neg p)) = neg p
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The first branch holds through reflexivity. Applying induction on the positive number p in
the other two branches gives us the following four new branches:

______________________________________(1/4)
encode (decode (pos one)) = pos one

______________________________________(2/4)
encode (decode (pos (succ p))) = pos (succ p)
______________________________________(3/4)
encode (decode (neg one)) = neg one

______________________________________(4/4)
encode (decode (neg (succ p))) = neg (succ p)

For the first branch we have the following derivation:

encode (decode (pos one))

= ⟨unfold encode)

transport I (decode (pos one)) zero

= ⟨rewrite transport_idmap_ap)

transport idmap (ap I (decode (pos one))) zero

= ⟨rewrite PT1_rec_add1)

transport idmap (path_universe_uncurried equiv_int_succ) zero

= ⟨apply transport_path_universe_uncurried)

pos one

For the second branch we have an inductive hypothesis IHp : encode (decode (pos p)) = pos p

and the following derivation:

encode (decode (pos (succ p)))

= ⟨cbn)
encode (looppow_pos p @ add1)

= ⟨unfold encode)

transport I (looppow_pos p @ add1) zero

= ⟨rewrite transport_idmap_ap)

transport idmap (ap I (looppow_pos p @ add1)) zero

= ⟨rewrite ap_pp)

transport idmap (ap I (looppow_pos p) @ ap I add1) zero

= ⟨rewrite transport_pp)

transport idmap (ap I add1) (transport idmap (ap I (looppow_pos p)) zero)

= ⟨rewrite PT1_rec_add1)

transport idmap (path_universe_uncurried equiv_int_succ)

(transport idmap (ap I (looppow_pos p)) zero)

= ⟨rewrite (transport_path_universe_uncurried equiv_int_succ _))
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equiv_int_succ (transport idmap (ap I (looppow_pos p)) zero)

= ⟨rewrite ← transport_idmap_ap)

equiv_int_succ (transport I (looppow_pos p) zero)

= ⟨unfold encode in IHp; rewrite IHp)

equiv_int_succ (pos p)

= ⟨cbn)
pos (succ p)

For the third branch we have the following derivation:

encode (decode (neg one))

= ⟨unfold encode)

transport I (decode (neg one)) zero

= ⟨rewrite transport_idmap_ap)

transport idmap (ap I (decode (neg one))) zero

= ⟨rewrite ap_V)

transport idmap (ap I (looppow_pos one))ˆ zero

= ⟨rewrite PT1_rec_add1)

transport idmap (path_universe_uncurried equiv_int_succ)ˆ zero

= ⟨rewrite transport_path_universe_V_uncurried)

neg one

For the fourth branch we again have an inductive hypothesis IHp, to which this time we apply
cbn and unfold encode in order to obtain the assumption IHp : transport I (looppow_pos p)ˆ

zero = neg p. We then have the following derivation:

encode (decode (neg (succ p)))

= ⟨cbn)
encode (looppow_pos p @ add1)ˆ

= ⟨rewrite ← looppow_comm_add1)

encode (add1 @ looppow (pos p))ˆ

= ⟨rewrite inv_pp)

encode ((looppow (pos p))ˆ @ add1ˆ)

= ⟨unfold encode)

transport I ((looppow (pos p))ˆ @ add1ˆ) zero

= ⟨rewrite transport_idmap_ap)

transport idmap (ap I ((looppow (pos p))ˆ @ add1ˆ)) zero

= ⟨rewrite !ap_pp)
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transport idmap (ap I (looppow (pos p))ˆ @ ap I add1ˆ) zero

= ⟨rewrite !transport_pp)

transport idmap (ap I add1ˆ) (transport idmap (ap I (looppow (pos p))ˆ) zero)

= ⟨rewrite !ap_V)

transport idmap (ap I add1)ˆ (transport idmap (ap I (looppow (pos p)))ˆ zero)

= ⟨rewrite PT1_rec_add1)

transport idmap (path_universe_uncurried equiv_int_succ)ˆ

(transport idmap (ap I (looppow (pos p)))ˆ zero)

= ⟨rewrite (transport_path_universe_V_uncurried equiv_int_succ _))

equiv_int_succˆ=1 (transport idmap (ap I (looppow (pos p)))ˆ zero)

= ⟨rewrite ← ap_V)

equiv_int_succˆ=1 (transport idmap (ap I (looppow (pos p))ˆ) zero)

= ⟨rewrite ← transport_idmap_ap)

equiv_int_succˆ=1 (transport I (looppow (pos p))ˆ zero)

= ⟨rewrite IHp)

equiv_int_succˆ=1 (neg p)

= ⟨cbn)
neg (succ p)

With this, we have defined encode_decode.

Now all that remains are the proofs that encode and decode form equivalences, or in Coq-
HoTT syntax that it holds that IsEquiv encode and IsEquiv decode. Similar to the proofs
of equivalence for the integers, we apply the lemma isequiv_adjointify for this. In order to
prove the lemmas encode o decode == idmap and decode o encode == idmap that are thusly
created, we successively apply the tactics cbn, intro x0 and either apply encode_decode or
apply decode_encode depending on the lemma. This gives us the following constructions,
where we specify the implicit arguments in order to allow the equivalences to be applied for
arbitrary patch histories:

Type 6.2.3

Global Instance equiv_encode (x : PT1) : @IsEquiv (num = x) (I x) encode.
Proof.
simple refine (isequiv_adjointify _ _ _ _).
= exact decode.
= cbn.
intro x0.
apply encode_decode.
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= cbn.
intro x0.
apply decode_encode.

Defined.

Type 6.2.4

Global Instance equiv_decode (x : PT1) : @IsEquiv (I x) (num = x) decode.
Proof.
simple refine (isequiv_adjointify _ _ _ _).
= exact encode.
= cbn.
intro x0.
apply decode_encode.

= cbn.
intro x0.
apply encode_decode.

Defined.

These two types are Global Instances, meaning they are typically not directly applied but
instead used as typeclasses. See also Section 2.2.1. In this case, this allows for the tactics
equiv_inj encode and equiv_inj decode to be applied without any hassle.

6.3 The Type concat to add

We now need to prove that decode translates function composition to integer addition. As
usual, we start off by creating a lemma, which we call concat_to_add.

Type 6.3.1

Lemma concat_to_add (n m : I num) : (decode n) @ (decode m) = decode (int_add n m : I num).

The first thing to notice here is that every instance of decode reduces to looppow. As such
we create an analogous lemma concat_to_add_looppow and close off concat_to_add using the
tactic exact concat_to_add_looppow. The type concat_to_add_looppow then has the following
signature:
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Type 6.3.2

Lemma concat_to_add_looppow (n m : I num) : looppow n @ looppow m = looppow (int_add n m).

We start off with case distinction using the tactic induction n as [ | p1|p1], m as [ | p2|p2]; cbn

=[looppow]. This results in the following nine branches:

______________________________________(1/9)
looppow zero @ looppow zero = looppow (int_add zero zero)
______________________________________(2/9)
looppow zero @ looppow (pos p2) = looppow (int_add zero (pos p2))
______________________________________(3/9)
looppow zero @ looppow (neg p2) = looppow (int_add zero (neg p2))
______________________________________(4/9)
looppow (pos p1) @ looppow zero = looppow (int_add (pos p1) zero)
______________________________________(5/9)
looppow (pos p1) @ looppow (pos p2) = looppow (int_add (pos p1) (pos p2))
______________________________________(6/9)
looppow (pos p1) @ looppow (neg p2) = looppow (int_add (pos p1) (neg p2))
______________________________________(7/9)
looppow (neg p1) @ looppow zero = looppow (int_add (neg p1) zero)
______________________________________(8/9)
looppow (neg p1) @ looppow (pos p2) = looppow (int_add (neg p1) (pos p2))
______________________________________(9/9)
looppow (neg p1) @ looppow (neg p2) = looppow (int_add (neg p1) (neg p2))

Of these branches, only the first holds immediately through reflexivity. Additionally, the
second and third hold through the tactic apply concat_1p and the fourth and seventh hold
through the tactic apply concat_p1. For the remaining branches 5, 6, 8 and 9, we have to
create new lemma’s which we will call respectively ctpa_pos_pos, ctpa_pos_neg, ctpa_neg_pos
and ctpa_neg_neg.

One thing that branches 5 and 9 have in common is that both of them on some level require
that looppow_pos translates composition to positive number addition. We create a proof for
this using a new lemma concat_to_pos_add with the following signature:

Type 6.3.3

Lemma concat_to_pos_add : forall (p1 p2 : Pos), looppow_pos p1 @ looppow_pos p2

= looppow_pos (pos_add p1 p2).
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Once again, we start by induction on the arguments and simplify the branches. This gives us
the following:

______________________________________(1/4)
add1 @ add1 = add1 @ add1

______________________________________(2/4)
add1 @ (looppow_pos p2 @ add1) = (looppow_pos p2 @ add1) @ add1

______________________________________(3/4)
(looppow_pos p1 @ add1) @ add1 = (looppow_pos p1 @ add1) @ add1

______________________________________(4/4)
(looppow_pos p1 @ add1) @ (looppow_pos p2 @ add1) =
(looppow_pos (pos_add p1 p2) @ add1) @ add1

Of these, the first and the third branches hold immediately through application of reflexivity.
For the second branch, we have the following derivation:

add1 @ (looppow_pos p2 @ add1)

= ⟨rewrite concat_p_pp⟩
(add1 @ looppow_pos p2) @ add1

= ⟨rewrite looppow_pos_comm_add1⟩
(looppow_pos p2 @ add1) @ add1

Meanwhile for the fourth branch, we have the following derivation:

(looppow_pos p1 @ add1) @ (looppow_pos p2 @ add1 = )

(looppow_pos (pos_add p1 p2) @ add1) @ add1

⇒ ⟨rewrite concat_p_pp⟩
((looppow_pos p1 @ add1) @ looppow_pos p2) @ add1 =

(looppow_pos (pos_add p1 p2) @ add1) @ add1

⇒ ⟨refine (ap (fun z ⇒ z @ add1) _)⟩
(looppow_pos p1 @ add1) @ looppow_pos p2 = looppow_pos (pos_add p1 p2) @ add1

⇒ ⟨rewrite concat_pp_p⟩
looppow_pos p1 @ (add1 @ looppow_pos p2) = looppow_pos (pos_add p1 p2) @ add1

⇒ ⟨rewrite looppow_pos_comm_add1⟩
looppow_pos p1 @ (looppow_pos p2 @ add1) = looppow_pos (pos_add p1 p2) @ add1

⇒ ⟨rewrite concat_p_pp⟩
(looppow_pos p1 @ looppow_pos p2) @ add1 = looppow_pos (pos_add p1 p2) @ add1

Where the last the last term holds through the tactic exact (ap (fun z ⇒ z @ add1) (IHp1 p2)).

Similar to the commonality between branches 5 and 9, branches 6 and 8 have in common that
they on some level require a proof that the composition of looppow_pos with looppow_posˆ

translates to the function int_pos_sub. We phrase this property as the following lemma:
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Type 6.3.4

Lemma concat_to_pos_sub : forall p1 p2 : Pos, looppow_pos p1 @ (looppow_pos p2)ˆ
= looppow (int_pos_sub p1 p2).

Again, we start by induction on the arguments and simplify the resulting branches. This
gives us the following four branches:

______________________________________(1/4)
add1 @ add1ˆ = 1
______________________________________(2/4)
add1 @ (looppow_pos p2 @ add1)ˆ = (looppow_pos p2)ˆ
______________________________________(3/4)
(looppow_pos p1 @ add1) @ add1ˆ = looppow_pos p1

______________________________________(4/4)
(looppow_pos p1 @ add1) @ (looppow_pos p2 @ add1)ˆ = looppow (int_pos_sub p1 p2)

The first branch holds immediately through the lemma apply concat_pV. The third branch
holds immediately through the lemma apply concat_pp_V. For the second branch, we have
the following derivation:

add1 @ (looppow_pos p2 @ add1)ˆ

= ⟨rewrite inv_pp)

add1 @ (add1ˆ @ (looppow_pos p2)ˆ)

= ⟨rewrite concat_p_pp)

(add1 @ add1ˆ) @ (looppow_pos p2)ˆ

= ⟨rewrite concat_pV)

1 @ (looppow_pos p2)ˆ

= ⟨rewrite concat_1p)

(looppow_pos p2)ˆ

For the fourth branch, we have the following derivation for the left hand side:

(looppow_pos p1 @ add1) @ (looppow_pos p2 @ add1)ˆ

= ⟨rewrite inv_pp)

(looppow_pos p1 @ add1) @ (add1ˆ @ (looppow_pos p2)ˆ)

= ⟨rewrite concat_p_pp)

((looppow_pos p1 @ add1) @ add1ˆ) @ (looppow_pos p2)ˆ

= ⟨rewrite concat_pp_V)

looppow_pos p1 @ (looppow_pos p2)ˆ
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At this point we have the goal looppow_pos p1 @ (looppow_pos p2)ˆ = looppow (int_pos_sub p1

p2), which holds through the inductive hypothesis.

Before being able to prove the four remaining branches, we need one more thing. This is to
prove that the composition of a looppow term with its inverse is commutative. We call this
lemma looppow_pos_pV_comm and define it with the following signature:

Type 6.3.5

Lemma looppow_pos_pV_comm : forall p1 p2 : Pos, (looppow_pos p2)ˆ @ (looppow_pos p1)
= (looppow_pos p1) @ (looppow_pos p2)ˆ.

Applying induction on the arguments and simplifying the branches gives us the following four
branches:

______________________________________(1/4)
add1ˆ @ add1 = add1 @ add1ˆ
______________________________________(2/4)
(looppow_pos p2 @ add1)ˆ @ add1 = add1 @ (looppow_pos p2 @ add1)ˆ
______________________________________(3/4)
add1ˆ @ (looppow_pos p1 @ add1) = (looppow_pos p1 @ add1) @ add1ˆ
______________________________________(4/4)
(looppow_pos p2 @ add1)ˆ @ (looppow_pos p1 @ add1)
= (looppow_pos p1 @ add1) @ (looppow_pos p2 @ add1)ˆ

For the first branch we have the following derivation:

add1ˆ @ add1 = add1 @ add1ˆ

⇒ ⟨rewrite concat_pV)

add1ˆ @ add1 = 1

Where the last term holds through concat_Vp. For the second branch we have the following
derivation:

(looppow_pos p2 @ add1)ˆ @ add1 = add1 @ (looppow_pos p2 @ add1)ˆ

⇒ ⟨rewrite looppow_pos_comm_add1)

(add1 @ looppow_pos p2)ˆ @ add1 = add1 @ (looppow_pos p2 @ add1)ˆ

⇒ ⟨rewrite !inv_pp)

((looppow_pos p2)ˆ @ add1ˆ) @ add1 = add1 @ (add1ˆ @ (looppow_pos p2)ˆ)

⇒ ⟨rewrite concat_p_Vp)

((looppow_pos p2)ˆ @ add1ˆ) @ add1 = (looppow_pos p2)ˆ
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Where the last term holds through concat_pV_p. For the third branch we have the following
derivation:

add1ˆ @ (looppow_pos p1 @ add1) = (looppow_pos p1 @ add1) @ add1ˆ

= ⟨rewrite looppow_pos_comm_add1)

add1ˆ @ (add1 @ looppow_pos p1) = (looppow_pos p1 @ add1) @ add1ˆ

= ⟨rewrite concat_pp_V)

add1ˆ @ (add1 @ looppow_pos p1) = looppow_pos p1

Where the last term holds through concat_V_pp. For the fourth branch we have the following
derivation:

(looppow_pos p2 @ add1)ˆ @ (looppow_pos p1 @ add1) =

(looppow_pos p1 @ add1) @ (looppow_pos p2 @ add1)ˆ

⇒ ⟨rewrite looppow_pos_comm_add1)

(add1 @ looppow_pos p2)ˆ @ (looppow_pos p1 @ add1) =

(looppow_pos p1 @ add1) @ (looppow_pos p2 @ add1)ˆ

⇒ ⟨rewrite !inv_pp)

((looppow_pos p2)ˆ @ add1ˆ) @ (looppow_pos p1 @ add1) =

(looppow_pos p1 @ add1) @ (add1ˆ @ (looppow_pos p2)ˆ)

⇒ ⟨rewrite ← looppow_pos_comm_add1)

((looppow_pos p2)ˆ @ add1ˆ) @ (add1 @ looppow_pos p1) =

(add1 @ looppow_pos p1) @ (add1ˆ @ (looppow_pos p2)ˆ)

⇒ ⟨rewrite concat_p_pp)

((( looppow_pos p2)ˆ @ add1ˆ) @ add1) @ looppow_pos p1 =

(add1 @ looppow_pos p1) @ (add1ˆ @ (looppow_pos p2)ˆ)

⇒ ⟨rewrite concat_pV_p)

(looppow_pos p2)ˆ @ looppow_pos p1 =

(add1 @ looppow_pos p1) @ (add1ˆ @ (looppow_pos p2)ˆ)

⇒ ⟨rewrite looppow_pos_comm_add1)

(looppow_pos p2)ˆ @ looppow_pos p1 =

(looppow_pos p1 @ add1) @ (add1ˆ @ (looppow_pos p2)ˆ)

⇒ ⟨rewrite concat_pp_p)

(looppow_pos p2)ˆ @ looppow_pos p1 =

looppow_pos p1 @ (add1 @ (add1ˆ @ (looppow_pos p2)ˆ))

⇒ ⟨rewrite concat_p_Vp)

(looppow_pos p2)ˆ @ looppow_pos p1 = looppow_pos p1 @ (looppow_pos p2)ˆ
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Where the last term holds through the inductive hypothesis.

We can now at last prove ctpa_pos_pos, ctpa_pos_neg, ctpa_neg_pos and ctpa_neg_neg (see
earlier in Section 6.3). Unfolding ctpa_pos_pos using cbn gives us the following:

forall p1 p2 : Pos, looppow_pos p1 @ looppow_pos p2 = looppow_pos (pos_add p1 p2)

Which immediately holds through concat_to_pos_add. The same holds for ctpa_pos_neg and
concat_to_pos_sub

Unfolding ctpa_neg_neg gives us the following:

forall p1 p2 : Pos, (looppow_pos p1)ˆ @ (looppow_pos p2)ˆ = (looppow_pos (pos_add p1 p2))ˆ

After bringing p1 and p2 into the assumptions using intros p1 p2, we have the following
derivation:

(looppow_pos p1)ˆ @ (looppow_pos p2)ˆ = (looppow_pos (pos_add p1 p2))ˆ

⇒ ⟨rewrite ← inv_pp)

(looppow_pos p2 @ looppow_pos p1)ˆ = (looppow_pos (pos_add p1 p2))ˆ

⇒ ⟨rewrite pos_add_comm)

(looppow_pos p2 @ looppow_pos p1)ˆ = (looppow_pos (pos_add p2 p1))ˆ

Where the last term holds through the tactic exact (ap inverse (concat_to_pos_add p2 p1)).

Unfolding ctpa_neg_pos gives us the following:

forall p1 p2 : Pos, (looppow_pos p1)ˆ @ looppow_pos p2 = looppow (int_pos_sub p2 p1)

After we once again bring the arguments into the assumptions the proof holds through the tac-
tics rewrite looppow_pos_pV_comm and apply concat_to_pos_sub. With this, we have proven
all branches of concat_to_add_looppow and by extension concat_to_add.

6.4 The Merge Principle

Now that we have made certain that the type PT1 can indeed be used in in the way described in
the paper and defined the necessary scaffolding, it becomes time to define the merge principle
for patches. We can define the principle itself as follows:
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Type 6.4.1

Definition merge :
(num = num) * (num = num) → (num = num) * (num = num) :=

fun start ⇒ (snd start, fst start).

Here, the arguments of the function are two patch histories f1 and f2 which are assumed to
start from the same node n. The function returns two different patch theories g1 and g2 which
come to the same node n’ when applied to f1 respectively f2. In the function definition, g1
is set to f2 and g2 to f1. Indeed, it holds that applying the actions in f1 followed by those in
f2 is for the purposes of our patch theory equivalent to applying the actions in f2 followed by
those in f1. To prove this, we construct a new assertion reconcile with the following signature:

Type 6.4.2

Definition reconcile (f1 f2 g1 g2 : num = num) (merger : (merge (f1, f2)) = (g1, g2)) :
(g1 @ f1) = (g2 @ f2).

We start by unfolding the merge principle using the tactics unfold merge in merger; cbn in

merger to obtain the following proof state:

f1, f2, g1, g2 : num = num

merger : (f2, f1) = (g1, g2)
______________________________________(1/1)
g1 @ f1 = g2 @ f2

Next, we need to construct a lemma which to destructs an element of the form (_, _) → (_,

_) when it is an assumption. We define the lemma pairs_equal as follows:

Type 6.4.3

Lemma pairs_equal {A B : Type} (x y : A * B) (pxy : x = y) : (fst x = fst y) * (snd x = snd y).

Splitting the goal using the tactic split gives us the following two branches:

A : Type

B : Type

x, y : A * B

pxy : x = y

______________________________________(1/2)
fst x = fst y

______________________________________(2/2)
snd x = snd y
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The goals in the branches only differ from the assumption pxy by the application of fst re-
spectively snd. Therefore we can close them off using the tactics exact (ap fst pxy) and exact

(ap snd pxy) respectively. This completes the proof of pairs_equal.

Applying our newly constructed lemma and simplifying the assumption using cbn in merger

gives us the following proof state:

f1, f2, g1, g2 : num = num

merger : (f2 = g1) * (f1 = g2)
______________________________________(1/1)
g1 @ f1 = g2 @ f2

At this point we can split up the assumption using destruct merger as (eq1 & eq2) to obtain
the following:

f1, f2, g1, g2 : num = num

eq1 : f2 = g1

eq2 : f1 = g2

______________________________________(1/1)
g1 @ f1 = g2 @ f2

We prove this goal by translating the terms in the goal to their integer equivalents using
encode, and then applying that integer addition is commutative. For this we create a new
lemma encode_concat and give it the following signature:

Type 6.4.4

Lemma encode_concat (f g : num = num) : encode (f @ g) = int_add (encode f) (encode g).

We now have the following derivation:

encode (f @ g) = int_add (encode f) (encode g)

⇒ ⟨apply (equiv_inj decode)⟩
decode (encode (f @ g)) = decode (int_add (encode f) (encode g))

⇒ ⟨rewrite decode_encode⟩
f @ g = decode (int_add (encode f) (encode g))

⇒ ⟨rewrite ← concat_to_add⟩
f @ g = decode (encode f) @ decode (encode g)

⇒ ⟨rewrite !decode_encode⟩
f @ g = f @ g
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Where the last term holds by reflexivity. We can now prove the reconcile principle as follows:

g1 @ f1 = g2 @ f2

⇒ ⟨rewrite eq1⟩
g1 @ f1 = g2 @ g1

⇒ ⟨rewrite eq2⟩
g1 @ g2 = g2 @ g1

⇒ ⟨apply (equiv_inj encode)⟩
encode (g1 @ g2) = encode (g2 @ g1)

⇒ ⟨rewrite !encode_concat)

int_add (encode g1) (encode g2) = int_add (encode g2) (encode g1)

Where the last term holds through the lemma int_add_comm.

6.5 The Symmetry Principle

Now we can move on to the symmetry principle, which asserts that the merge operation does
not care about the order of its arguments. In order for our patch theory to be consistent with
darcs patch theory, this is a property that must hold. We define the symmetry principle as
follows:

Definition symmetric (f1 f2 g1 g2 : num = num) :
(merge (f1, f2) = (g1, g2)) → (merge (f2, f1) = (g2, g1)).

Same as with reconcile, we start by splitting the assumption merger using the tactics unfold
merge in merger, cbn in merger, apply pairs_equal in merger, cbn in merger, and destruct

merger as (eq1 & eq2). This leads to the following state:

f1 : num = num

f2, g1 : num = num

g2 : num = num

eq1 : f2 = g1

eq2 : f1 = g2

______________________________________(1/1)
merge (f2, f1) = (g2, g1)

After applying the assumptions eq1 and eq2 using the tactics rewrite eq1 and rewrite eq2,
we are then left with a goal which is exactly the definition of merge. As such, we can close
the proof off using reflexivity. Now that the symmetry property has been proven, we have
fully defined the merge principle as described in the paper Homotopical patch theory. This
also completes our formalization of the first patch theory.
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Chapter 7

Conclusion

In this paper we provided a full implementation of the first patch theory outlined in the paper
Homotopical Patch Theory. In order to accomplish this we re-implemented the integers and
used the encode-decode principle to obtain the property that they form a set. We also pro-
vided implementations of two proposed interpreters and proved several properties regarding
them in order to ensure the model of the patch theory behaves as expected.

For our implementation, we deemed it necessary to deviate from the proofs laid out in the
paper in order to improve readability. However, given that the types fundamentally did not
change we feel confident that our version control system operates in every regard in the same
way as the system put forth in the guiding paper. This is further reinforced by the fact that
the interpreters also behaved as expected.

As for future potential, our implementation serves to demonstrate that it is indeed possible
to implement a version control system in homotopy type theory. This opens up new avenues
for implementing and analyzing programs more broadly using the theory, paving the road to
potentially further improvements. For instance, researchers capturing some program in the
form of a higher inductive type [23], [24] could use all the existing tools discovered for such
objects to find deep insights by looking at their fundamental groups [25], [26], or by seeing
what tools from isomorphic groups could be carried over [9].
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