
Bachelor’s Thesis Computing Science

Visual Programming with the TopHat
Builder

Dion Bremer
s1020299

August 22, 2023

First supervisor/assessor:
Dr. Peter Achten

Second supervisor:
Dr. Tim Steenvoorden

Second assessor:
Dr. Pieter Koopman

Abstract

The TopHat Builder is a program developed by Steenvoorden (2022), which
is used to build visual taskflows. These taskflows can be used to facilitate
communication between domain experts and software developers. However,
the TopHat Builder is still a prototype. This thesis proposes a design of an
expansion to the TopHat Builder, together with a partial implementation.

Contents

1 Introduction 3
1.1 Research questions . 4
1.2 Structure . 4

2 Task Oriented Programming 5
2.1 Visualisation . 6

3 TopHat 9
3.1 Editors . 9
3.2 Tasks . 9

4 TopHat Builder 11
4.1 Visual TopHat . 11

4.1.1 Restricted tasks . 11
4.1.2 Transformations . 13

4.2 PureScript with Concur . 15
4.3 Technical overview . 16
4.4 Overview of current features 17

5 New Features 20
5.1 Overview of new features . 20
5.2 Design principles . 21
5.3 Side-menu . 22
5.4 Hover menu . 23
5.5 Storyboards . 23

5.5.1 Switching taskflows . 24
5.5.2 Creating new taskflows 26
5.5.3 Making a selection . 28
5.5.4 Removing a task . 30
5.5.5 Swapping parallel branches 32
5.5.6 Abstracting tasks . 34

5.6 Exporting tasks . 37
5.7 Importing tasks . 38

1

6 Implementation 40
6.1 Task implementation . 40
6.2 Allowed selections . 41
6.3 Abstractor implementation 43

7 Related Work 45
7.1 Visualisation of functional languages 45
7.2 Programming with holes . 45

8 Conclusions 47
8.1 Future work . 47

2

Chapter 1

Introduction

Software has become a building block of modern society. Everyone uses
software in one way or another, but the creation of new software may lead
to problems: domain experts do not know how to program, and software
engineers know very little about the domain.

In agile software development, the domain expert often discusses their
requirements for the software, and the developer shows the progress made
on the software. Here is where miscommunications may occur: how can the
developer and domain expert understand each other, while they know very
little about each others area of expertise?

The workflow community attempts to solve this issue by formally defin-
ing graphical workflows, which are more intuitive to the layman. This ex-
perience with graphical workflows can now be applied to the Task Oriented
Programming (TOP) paradigm. TOP models workflows directly, by com-
bining tasks in different ways to create taskflows. What sets TOP apart
from other workflow languages is that its model and implementations are
embedded in functional languages. This combination has been visualised be-
fore (Henrix et al., 2012; Stutterheim, 2017; Mol, 2020), and more recently
by Steenvoorden (2022).

The latter of these visualisation tools is the TopHat Builder (Steenvo-
orden, 2022), which is an interactive visual tool which can be used to build
taskflows. The tool allows a user to build taskflows in the TopHat formal-
ism, which is a model for TOP. The TopHat Builder is very structured, and
has a clean interface. However, at it stands, it is more of a proof-of-concept
than a fully functional tool. How can the tool be of more use to an end
user?

3

1.1 Research questions

This leads us to the main research question of this thesis:

How can the TopHat Builder be expanded, in order to offer more
functionality to the user?

The result of the research is a design and partial implementation of
several new features. The research question can be split up into the following
sub-questions:

• Which design principles should be used in the expansion?

• How should the user access the new features?

The rest of this thesis will aim to answer these questions.

1.2 Structure

Firstly, the concepts of TOP (chapter 2) and TopHat (chapter 3) are ex-
plained more thoroughly. After this, the TopHat Builder is introduced in
chapter 4. The design for the new features is elaborated upon in chapter 5,
followed by the implementation of one of these features in chapter 6. After
this, related work is provided (chapter 7), followed by conclusion and future
work (chapter 8).

4

Chapter 2

Task Oriented Programming

Task Oriented Programming (TOP for short) is a programming paradigm
that focuses on tasks as its main unit of work. This means that tasks in
task-oriented programming are analogous to objects in object-oriented pro-
gramming, or functions in functional programming. TOP implementations
are embedded in functional languages.

Tasks model workflows that one would encounter in daily life, or in
business. These workflows are then called taskflows. Consider the following
scenario:

I would like to go grocery shopping, and then make dinner. First
I go to the supermarket and buy steak and pudding. Then I go
home to prepare the steak. After finishing the steak, I can either
have pudding or have coffee instead.

This scenario illustrates the so-called combinators of TOP: sequential
execution, parallel-and execution and parallel-or. In the example, the sen-
tence “first I go to the supermarket and then I prepare the steak” would
be modeled using a sequential combinator. The sentence “I buy steak and
pudding” is an example of a parallel-and combinator, and “I can have pud-
ding or coffee” would be a parallel-or. Note that there is a slight misuse of
the word parallel: parallel only signifies that the tasks can be executed in
any order, not necessarily in parallel. The difference between parallel-and
and parallel-or is intuitive: tasks in a parallel-and must both finish before
moving on, while only one of the tasks in a parallel-or has to finish.

An important feature of tasks is that tasks can be interactive: a (human
or machine) user can influence the value of a task. This value can be ob-
served, and can be changed in the future. Editing these values can influence
all future tasks that need to be performed.

5

2.1 Visualisation

An important aspect of taskflows is that they can be visualised. Since images
are generally easier to interpret than code, these visualisations can be used
for communication between software engineers and stakeholders. The first
attempt at visualising taskflows was the GiN system (Henrix et al., 2012).
GiN was built-in to the Clean compiler, in the preprocessing stage, and it
visualised the iTask implementation of TOP. Using GiN resulted in a GiN
diagram, as can be seen in figure 2.1. The GiN system also contained a tool
to visually edit workflows. This tool, as shown in figure 2.2, was most useful
to edit existing diagrams on the spot. It required an existing taskflow as
input, which could then be opened in the editor.

Figure 2.1: An example of a GiN diagram. (Henrix et al., 2012)

Figure 2.2: The visual GiN tool. (Henrix et al., 2012)

Another attempt was the Tonic system (Stutterheim, 2017). Tonic was
used to generate blueprints from an iTask program. Like GiN, it was also

6

built into the Clean compiler, as both the compiler and Tonic partly used
the same functionality. The Tonic stage was optional, and when activated,
generated a blueprint as in figure 2.3. Interestingly, the blueprints can be
set to be visible during execution of the taskflow, highlighting which stage
the execution is at.

The issue with these blueprints is that they cannot be edited once gen-
erated. A more general issue with both GiN and Tonic is that these systems
are built into the Clean compiler. This is a problem since the compiler keeps
getting updated, while little work is done to keep the visualisations up-to-
date. Because of this, a stand-alone program may be more useful in making
visualisations.

Figure 2.3: A blueprint generated by Tonic. (Stutterheim, 2017)

The Mojito system (Mol, 2020) is a stand-alone visualisation tool for
iTask. Mojito’s strength lies in the fact that it allows a user to build task-
flows from scratch, as opposed to the GiN and Tonic systems. The program
consists of a grid where the user can place tasks. These tasks can then be
connected by arrows, which represent steps. When the user is done with the
current taskflow, they can abstract the current taskflow in order to use it as
a task in a future taskflow. The program even has a type editor, where the
user can create new types.

In my opinion, the main issue with Mojito is the freedom that it offers.
It allows the user to place tasks randomly on the grid and connect them
all together, creating a cluttered taskflow. Since visualisations of taskflows
should be intuitively clear to anyone, it should not be possible for the user
to clutter the taskflow.

7

Figure 2.4: The interface of the Mojito system. On the left there are the
taskflows and the types, on the right there are the available editors and
combinators. (Mol, 2020)

Ideally, one would like to have a program that can build taskflows, but
in a structured manner. To this end, Steenvoorden (2022) developed the
TopHat Builder, which is discussed in chapter 4.

8

Chapter 3

TopHat

As mentioned before, Steenvoorden (2022) developed a TopHat Builder in
order to visualise taskflows. But what is TopHat? In short, TopHat is a
formalism to describe TOP formally. It formalises notions such as tasks,
combinators and values of a task. Note that TopHat also relies on a func-
tional host language.

3.1 Editors

As mentioned before, tasks can be interactive. In TopHat, this interaction
is modeled by so-called editors. TopHat defines 5 types of editors (Steen-
voorden, 2022): unvalued (notation: □), valued (⊟), shared (⊞), valued
read-only (□◦) and shared read-only (⊞◦). The editors have an intuitive mean-
ing: in an unvalued editor, a user can enter a new value. In a valued editor,
the user can update an existing value, or transition to an unvalued editor. A
shared editor is similar to the valued editor, but the value may be shared by
several of these editors and other task functions. Lastly, there are read-only
variants of the valued and shared editors.

3.2 Tasks

These editors are only one type of task. TopHat also defines the tasks
transform (notation: •), pair (▶◀), lift (■), choice (◀▶), fail (�), step (▶),
share (share) and assign (:=). Table 3.1 presents the meanings of these
tasks. These tasks, together with the editors, are all the possible tasks in
TopHat.

Using the symbols from table 3.1, we can re-write the dinner example in
a more formal way:

9

Task Notation Meaning

Transform f • t apply function f to the value of task t

Pair t1 ▶◀ t2 execute task t1 and task t2 in parallel

Lift ■e lift expression e into the task type

Choice t1 ◀▶ t2 execute t1 or t2

Fail � � is a task that never receives input and never
holds a value

Step t ▶ e execute task t and return its value to expression
e, which computes the next task to perform

Share share b create a new shared reference to value b

Assign h :=e assign expression e to heap location h

Table 3.1: The meanings of the different tasks. Note the implementation of
the aforementioned sequential, parallel-and and parallel-or combinators as
step, pair and choice. The functions and expressions used in the table come
from a host language.

let haveDinner = goToSupermarket ▶ λ . (buySteak ▶◀ buyPudding) ▶

λ (steak, pudding). prepare steak ▶ λpreparedSteak. eat preparedSteak

▶ λ . (eat pudding ◀▶ drinkCoffee) (3.1)

As a final remark, note that the tasks in table 3.1 rely a lot on the host
language. This gives the language a lot of expressive power. For example, a
task such as

□Int ▶ λn. if n ′mod′ 2 == 0 then□◦“input is even” else□◦“input is odd”
(3.2)

is entirely valid. This task asks the user to input an integer, and shows
whether it is even or odd. It relies on the host language to evaluate the
lambda expression on the right-hand side, as well as handling the Int and
String types used.

Like iTask, taskflows in TopHat can be visualised. The tool to visualise
these taskflows is discussed in the next chapter.

10

Chapter 4

TopHat Builder

4.1 Visual TopHat

Where the GiN, Tonic and Mojito systems were used to visualise (and build,
in the case of GiN and Mojito) iTask taskflows, the TopHat Builder1 is used
to build TopHat taskflows. Figure 4.1 shows the interface of the Builder.
Contrary to Mojito, the Builder always places parallel tasks horizontally,
and sequential tasks vertically. Where GiN and Tonic were built-in to the
Clean compiler, TopHat is a standalone web program. Another advantage
compared to GiN and Tonic is that the TopHat Builder can be used to
build taskflows from the ground up, instead of visualising or editing existing
taskflows.

4.1.1 Restricted tasks

Since it is notoriously difficult to visualise functional languages, the TopHat
Builder uses a special set of tasks called restricted tasks (Steenvoorden,
2022). These restricted tasks are a subset of the previously defined tasks,
and have some of the functionality of the host language built-in. This re-
moves the need to visualise the entire host language. The restricted tasks
consist of the editors, pair, lift, choice, share and assign tasks as described
previously, as well as the tasks in table 4.1. It is noteworthy that there are
four kinds of steps in the restricted tasks: guarded/unguarded steps, and
guarded/unguarded selects. These steps do not rely on evaluating expres-
sions on the right-hand side of the step, so that there is no more need for a
host language to evaluate these.

Note that there are several concepts that are usually performed by the
host language: pattern matching, lambda expressions and records.

The restricted tasks also make use of records in its definition. These

1For a demo of the TopHat Builder by Steenvoorden (2022), see https://timjs.

github.io/tophat/builder.html

11

Figure 4.1: The interface of the TopHat Builder, which shows the taskflow
that is being worked on.

12

records are similar to those found in functional programming languages:
they are sets of labeled expressions. In the case of restricted tasks, records
are used as arguments for an execute task. These execute tasks can be seen
as predefined tasks: they can take in arguments, and produce a result.

Lastly, the restricted tasks contain a “special” execute task: a hole. Holes
are tasks that do not yet have a meaning. They are used in the Builder in
places where a task is not yet known, for example when a new task is placed
in the taskflow. Holes always give the user an error. Holes can be turned
into specific execute tasks, see section 4.1.2.

Task Notation Meaning

Unguarded step r1 ▶ λm.r2 Execute r1 and then exe-
cute r2

Guarded step r1 ▶ λm. < gi 7→ ri; > Execute r1, and then exe-
cute ri only if guard gi is
true

Unguarded select r1 � λm.r2 Execute r1, and after user
input, execute r2

Guarded select r1 � λm. < l | gl 7→ rl; > Execute r1, and after user
input, execute rl if guard
gl is true

Execute χ {l = el} Execute task χ with argu-
ments {l = el}

Table 4.1: An overview of the additional restricted tasks. The symbol m
refers to a match, g to a guard, l to a label, e to an expression and r to a
restricted task.

4.1.2 Transformations

To build a taskflow from scratch, the user should start with a minimal task-
flow and apply certain transformations to this taskflow. These transforma-
tions are (small) actions that alter the taskflow, so that the user can build
a taskflow step-by-step. Steenvoorden (2022) describes several transforma-
tions that should be possible in order to build a complete taskflow. Figure
4.2 lists these transformations. Note that the tasks in these transformations
are restricted tasks (with symbol r), as described in section 4.1.1. Some of
these transformations have already been implemented: selecting/unselect-
ing steps, inserting holes, filling holes/clearing executes, choosing/combining
parallel branches, and forking parallel branches (but only whenever a par-
allel branch already exists).

13

Figure 4.2: The transformations that the user should be able to perform in
the Builder. Figure from (Steenvoorden, 2022).

14

4.2 PureScript with Concur

The TopHat Builder is implemented in the PureScript language2, using the
Concur3 library. Purescript is a strongly typed functional programming lan-
guage that compiles to JavaScript. It can be used to build web applications,
such as the TopHat Builder. In syntax, it is very similar to the Haskell lan-
guage, but there are a few notable differences4. Under the hood, PureScript
uses eager evaluation whereas Haskell (famously) uses lazy evaluation. A
PureScript program consists of modules, that each contain different func-
tionality.

In order to build a user interface, the Builder relies on the Concur library.
Concur introduces Widgets to the Purescript environment. Widgets are
elements that are rendered to the screen, such as pieces of text, images,
icons, buttons, and everything else that is necessary to build graphical user
interfaces.

These widgets are implemented as monads. The idea behind monads is
that they can be composed, but what does the composition of widgets mean?
In Concur, widgets are composed in time. Take for example widget A, a
button, and widget B, a piece of text. Composing these widgets will result
in a new widget AB. At first glance, widget AB looks exactly like widget
A, but when clicked, transforms into widget B. Handling events in Concur
is therefore easily implemented by composing several widgets together, as
demonstrated below. As a side note, the implementation5 uses a special
set of imports and definitions, dubbed the Preload. This Preload can
also be found in the implementation, together with several useful predefined
widgets.

2https://www.purescript.org/
3https://github.com/purescript-concur/purescript-concur-core
4https://github.com/purescript/documentation/blob/master/language/

Differences-from-Haskell.md
5The implementation can be found on https://gitlab.science.ru.nl/dbremer/

tophat-visual.

15

import Preload

import Concur .Dom (Widget)
import Concur .Dom. Input as Input
import Concur .Dom. Sty l e as S ty l e
import Concur .Dom. Text as Text

he l l oText : : f o r a l l a . Widget a
he l l oText = Text . t ex t ”He l lo World”

he l loButton : : Widget Unit
he l loButton = Input . button Sty l e . Defau l t S ty l e . Secondary

Sty l e . Large ”Press me”

hel loWorld : : f o r a l l a . Widget a
hel loWorld = do

he l loButton
he l l oText

(a) Before pressing the button,
the button says “Press me”.

(b) After pressing the button, the
button disappears and turns into
the text “Hello World”.

Figure 4.3: The result of composing widgets in Concur.

4.3 Technical overview

The TopHat Builder consists of several modules, which I shall briefly dis-
cuss. It follows the model-view paradigm, where the logic of the program is
separate from how the program is rendered to the user.

Firstly, there is the Syntax module, which contains a model for TopHat:
this includes tasks, matches, expressions and all that is necessary to build
TopHat programs. Similarly, there is a Types module which contains all of
the necessary types. All of the tasks and types that the program uses are
stored in a World record. The World consists of three hashmaps: a Typtext
which maps type names to basic types, a Context which maps term names
to (not so basic) types and a Tasktext which maps names to tasks, with
associated parameters.

Secondly, there is a type checker. Every task has a type: they take in
some (or no) arguments, and may produce a value. The type checker turns
unchecked tasks into checked tasks. An unchecked task is the most basic
task(flow) in the program: it has no additional information, besides the

16

task information. In contrast, checked tasks are annotated with a status: a
checked task can have status Success, Failure and Unknown. These statuses
indicate whether a task has the correct type or not (or in the worst case, it
indicates that it is unknown whether the type is correct). If a task receives
the Success status, it also receives the Context of the program, to let it
know which other tasks are available. In case of a Failure status, the task
receives an error message that it can display to the user. In case of Unknown,
the task receives no further information.

Lastly, the Renderer module takes care of the main program loop, and
makes sure that checked tasks are rendered to the screen. The loop begins
with a given name and world. It looks up the name in the world, which
returns a checked task to render. Since the user may have edited this checked
task, it runs the task through the checker again. Now that the renderer has
an up-to-date checked task, it can render the task to the screen. It does so
in two ways: the actual builder, and a pretty print of the task. The former
is interactive, and the user can use this to update the current task. The
renderer responds by updating the world so that the next iteration shows
the newest taskflow. This automatically saves the task, so that the task is
always up-to-date. Note that the renderer could render unchecked tasks as
well, but this would not be very helpful to the user: unchecked tasks do not
contain the annotation, and so the user would not be able to fill holes.

4.4 Overview of current features

The TopHat Builder is used to build taskflows visually. The interface of the
builder contains an interactive representation of a taskflow, then a pretty-
print of the taskflow, followed by several notes on how to use the program.

In contrast to Mojito, the TopHat Builder does not allow the user to
place tasks anywhere on a grid. Instead, new tasks are added by double-
clicking the triangles in-between existing tasks. These triangles are the
visualisation of steps. Double-clicking adds a new task under this triangle, so
that steps are always rendered top-to-bottom. In contrast, parallel branches
are rendered left-to-right, so that it is immediately clear whether tasks are in
series or in parallel. Removing a task from the taskflow is not yet supported.

17

Figure 4.4: The visualisation of a step in the TopHat Builder. This step
steps from “select contractor” to “provide declaration”.

So far, parallel branches support two operations: single-clicking changes
the branch from pair to choice (see figure 4.5) and vice-versa, and double-
clicking adds another parallel branch. These parallel branches can then
again be extended by double-clicking the triangles that are created when
adding another branch.

(a) The visualisation of pair-
branches.

(b) The visualisation of choice-
branches.

Figure 4.5: The difference in visualisation of pair and choice.

When adding another task to the taskflow, the task appears as a hole:
it simply says “??” instead of the name of a task. In order to change the
task to its proper name, the user can click the task, and a list of all possible
tasks in the program appears. The user can select the task that it needs
from here. There is no way to add a completely new task to the program as
of yet.

Figure 4.6: The visualisation of a hole. The orange line around the hole
indicates that the typing is wrong.

18

In the builder, each task has a type. These types are checked by a type
checker. If the user adds a task whose type does not fit in the location that
it is in, the outline of the task turns orange (see figure 4.6). Hovering over
this wrongly placed task provides an error message. The user can determine
which type a task has by looking at the rounded boxes. The boxes under
a task show the result of a task, whereas boxes above a task show the
arguments of that task.

All throughout the program, the Builder lets the user know when some-
thing can be interacted with by highlighting certain parts or showing text
when hovering over something. This is an important design principle that
should be kept in mind when extending the program.

19

Chapter 5

New Features

5.1 Overview of new features

The TopHat Builder already has useful features to work on an existing task-
flow. The next step to turn the Builder into a proper tool is to add several
features that one would expect from such a tool. The selection of features
that I will design are the following:

• A tool for extracting parts of a task into a new task

• A button to export the project

• A button that imports the project

• A way to swap parallel branches

Here, the term project means the entire World object as discussed in
section 4.3.

These desired new features can be divided into several sub-features. Es-
pecially the extracting tool (which I shall call the abstractor from now on)
relies on many sub-features. For starters, it needs to be possible to create
new taskflows, so that the abstractor has a place to put the abstracted task-
flow. The user must be able to create these taskflows themselves, and must
be able to switch between taskflows. Next, to abstract part of a taskflow,
the user must be able to select several tasks in a taskflow. The user needs
some way of telling which tasks have been selected, and which have not. Fi-
nally, it must be possible to remove tasks from a taskflow. When tasks can
be removed, the abstractor can insert a new task in place of the selection.

The other new features are a lot smaller in scope. These new features
and their dependencies are shown below.

20

1. A tool for extracting parts of a task into a new task

1.1 A way to create new tasks

1.1.1 A button that creates a new task

1.1.2 A way to switch between tasks

1.1.2.1 A menu to select a task to work on

1.2 A tool to select several tasks in the taskflow

1.2.1 A visual way of showing selected items

1.3 A way to remove several sub-tasks from a larger task

1.3.1 A way to remove a single sub-task from a larger task

1.3.1.1 A delete button for each item that can be deleted

2. A button that exports project to a file

2.1 A way to store a project in a file

2.1.1 A way to serialize a taskflow

3. A button that loads a project from a file

3.1 A way to load a project in a file

3.1.1 A way to deserialize a taskflow

4. A way to swap parallel branches

Before designing these features, it is wise to consider some design prin-
ciples to adhere to, as discussed in the next section.

5.2 Design principles

The design for these new features is guarded by a few general design prin-
ciples. Since the visual taskflow should be easily understandable by both
programmers and domain experts, the interface of the Builder must remain
clean: the taskflow should be clearly visible, without any buttons, options,
or other non-relevant items obstructing its view. Any buttons that are added
should be placed to the side of the taskflow, where they do not clutter the
interface.

Another important factor to keep the interface clean are the colours used.
These colours should be easy on the eyes, and have a specific purpose: a
blue element indicates that an action can be performed, orange indicates
an error, and grey is the default colour. It is important that grey is the
default, as it contrasts nicely with the blue and orange colours. This way,
it is immediately clear to the user when something requires their attention.

The final key principle used in the design is hovering. Steenvoorden
(2022) already used this in the original implementation: hovering over a

21

task turns it blue, hovering over a pair or choice turns its bars blue, hovering
over an orange (erroneous) task shows the error message and hovering over
a variable allows the user to change it. This is in line with the first principle
of keeping the interface clean: options or operations only appear when the
user hovers over them, so that they do not clutter the interface.

5.3 Side-menu

The menu needs to consist of two parts: one part where the (newly) created
taskflows are presented, and another part that contains four buttons. These
buttons are the “New”-button, the “Import”-button, the “Export”-button
and the “Abstract”-button. Three of these buttons have in common that
they create a new taskflow. It is therefore best to place these three but-
tons together. The “Export” button does not create a new taskflow, but is
inseparable from the “Import” button, hence it also belongs in this list.

In my design, I decided to place both parts of the menu on the left-hand
side. Placing the menu to the right of the Builder felt unnatural to me. A
design where the buttons of the menu were above the current taskflow and
the stored taskflows were on the side, would have also been possible. I have
chosen, however, to place the two parts on the same side. I figured that
it would be intuitive to have the user select taskflows in the same place as
where the user creates taskflows. Therefore, the buttons are located on the
left.

One may argue that a menu above the taskflow would also be possible:
the Builder is laid out from top to bottom, after all. I decided against
this, as the list of stored taskflows expands whenever the user creates a new
taskflow. If this list is stored above the taskflow, it would have to expand
left-to-right, in order to not obstruct the interface. This expansion, however,
feels strange. This may be due to the fact that many other programs have
a fixed menu on the top, not an expanding one. An expanding menu on the
side does not feel alien, as other programs tend to do the same.

A final question must be answered about the menu: what happens when
the user creates many taskflows, and the menu overflows? If this were the
case, the user would not be able to use the menu effectively, since there
may be buttons that are off-screen. To prevent this, the menu should stop
expanding after five or more taskflows. When a project contains more than
five taskflows, the menu no longer expands, but a scroll bar is added to the
side of the taskflows. The user can now scroll through their taskflows in
order to find the one that they would like to work on. Another advantage
of this approach is that the “create” buttons are always in the same place,
so that they can be easily accessed.

22

5.4 Hover menu

Since the side menu only supports “large” operations, another menu is
needed for operations on individual tasks. Keeping clarity in mind, I de-
signed a the hover menu. This menu pops up whenever the user hovers
over a task, and reveals several operations that the user can apply to that
specific task. For now, this menu supports deleting a task and selecting a
task. The menu is designed in a way that is flexible, so that in the future
other operations may be added to the list. It can also behave differently for
different tasks. For example, hovering over a pair task will reveal arrows
that the user can use to swap parallel branches.

The hover menu is an important addition, as it is the most logical place
to implement the transformations described in section 4.1.2. These transfor-
mations apply to only one task, so it is only logical that they are somehow
tied to individual tasks.

5.5 Storyboards

The design as discussed in the previous sections is visualised in so-called
storyboards. These storyboards present several user stories, which show how
a user might use the new features of the Builder.

23

5.5.1 Switching taskflows

(a) The user is working on task “request subsidy”, but would like to work
on task “request subsidy partial” instead.

(b) The user locates the task in the menu on the side, and clicks this. Any
changes that the user made to “request subsidy” are automatically saved.

24

(c) After clicking the task in the menu, the user is presented the “request
subsidy partial” taskflow, which they can now continue working on.

25

5.5.2 Creating new taskflows

(a) The user is working on task “request subsidy”, and would like to intro-
duce a new taskflow. The user clicks on the “New” button on the left-hand
side. Any changes made to “request subsidy” are automatically saved.

(b) After clicking the “New” button, the user is provided a new task flow,
“unnamed task 2”, which consists of a hole and an empty lift. This new
task is added to the menu on the side. The user edits its name by clicking
the name above the taskflow.

26

(c) The user changes the name to “check documents”. This also updates
the name in the menu. The user can now begin working on this taskflow.
If the user happens to enter a name that already exists in the program, an
error message pops up.

27

5.5.3 Making a selection

(a) The user would like to select multiple tasks in the flow, in order to
perform an operation that involves multiple tasks. The user hovers over the
“select contractor” task, which they would like to select, and is presented
with several options on its right-hand side.

(b) The user clicks the checkbox next to the task, which is now checked.

28

(c) When the user moves their mouse away from the task, the check mark
remains visible.

(d) In the same fashion, the user also selects the “provide declaration” task,
in order to perform an operation on both tasks at once.

29

5.5.4 Removing a task

(a) The user notices a mistake in their taskflow, as indicated by the type
checker. The user would like to remove the task “eat pastry” from the flow.

(b) The user hovers over the task, revealing the available options.

30

(c) The user clicks the cross icon.

(d) Upon clicking the cross, the task “eat pastry” is removed from the
taskflow.

31

5.5.5 Swapping parallel branches

(a) The user is working on a taskflow, and would like to swap the two
parallel branches. Upon hovering over the parallel section, the horizontal
bars light up, indication that an action is possible. Two arrows appear over
each branch.

(b) The user hovers over an arrow, which lights up. The user then clicks
on it.

32

(c) After clicking the arrow, the branch moves in the direction of the arrow,
swapping with the branch in that direction.

33

5.5.6 Abstracting tasks

(a) The user is working on a taskflow, and would like to abstract the veri-
fication tasks into a new taskflow.

(b) To this end, the user selects both the “verify e-mail” as well as “verify
phone” tasks. The “Abstract” button on the left lights up, to indicate that
the selection can be abstracted.

34

(c) After clicking the button, the user is shown a new taskflow, which
contains the selection. The required variables “telephone” and “e-mail”
have also been added to this taskflow.

(d) The user renames the taskflow to a more descriptive name.

35

(e) Upon returning to the “personal information” taskflow, the user sees
that the previously-made selection has been replaced by the new “verify
information” task, and it receives the arguments “telephone” and “e-mail”.

36

5.6 Exporting tasks

(a) The user has been working on a project, but would like to continue
working some other time. They would like to export the project, and store
it on their machine. To this end, they click the “Export” button.

(b) A pop-up appears that notifies the user that the project is being down-
loaded. The result of the download is a text file containing all of the project
data.

37

5.7 Importing tasks

(a) The user would like to continue working on a previously made project.
The project has been stored locally in a text file. The user now clicks the
“Import” button.

(b) A layover screen with a box appears. The user drags the project file
into the box. The project is now opened by the program.

38

(c) The layover screen disappears, and the user is presented with the project
that they stored previously. The user can now continue to work on this
project.

39

Chapter 6

Implementation

Some of the features of chapter 5 have been (partially) implemented1. As
an example, I would like to discuss the implementation of the abstraction
mechanism (storyboard 5.5.6), which I call the abstractor for brevity. This
abstractor is the most advanced out of all the new features, as it depends
on a lot of smaller features (see chapter 5).

6.1 Task implementation

Before discussing the implementation of the abstraction mechanism, a brief
overview of the existing implementation is necessary. The main data type
that the Builder revolves around is the Task datatype, implemented by
Steenvoorden (2022).

data Task t
= Step Match t t
| Branch (Branches t)
| Se l e c t (LabeledBranches t)
| Enter Name −−Unvalued
| Update Express ion −−Valued
| Change Express ion −−Shared
| View Express ion −−Valued read−only
| Watch Express ion −−Shared read−only
| L i f t Express ion
| Pair (Array t)
| Choose (Array t)
| Execute Name Arguments
| Hole Arguments
| Share Express ion
| Assign Express ion Express ion

In this definition, Branches t is an Array (Tuple Expression t), and
LabeledBranches t is a labeled variant on this: Array (Tuple Label (Tuple

1Only a small part of the code is discussed here. For the full code, see https://gitlab.
science.ru.nl/dbremer/tophat-visual.

40

Expression t)). All but two of these tasks can be directly linked to the
restricted tasks discussed in section 4.1.1. The Branch and Select data
types are used to distinguish between implicit and explicit steps: Branch

is used for implicit steps, and Select for explicit steps. These implicit
and explicit steps correspond to the “step” and “select” tasks in table 4.1.
Here, “step” is implicit and “select” is explicit. Since there is only one Step
constructor in the definition of Task, the Builder must distinguish between
implicit and explicit steps another way. To make this distinction, an invari-
ant is introduced: a Step must always step to a Branch or a Select (it
also holds that Branch and Select can never be outside of a Step). This
means that the renderer only accepts steps of the form Step m t1 (Branch

[...]) or Step m t1 (Select [...]). If the stepped-to task only consists
of a single branch, the forms Step m t1 (Branch [Constant (B true)

t2]) or Step m t1 (Select ["Continue" Constant (B true) t2])

must be used.
The definition of Task incorporates a type t. This t is used to Annotate

tasks with additional information. The Annotation type, also implemented
by Steenvoorden (2022), is defined as follows:

data Annotated a f =
Annotated a (f (Annotated a f))

type Checked = Annotated Status −−Note the p a r t i a l a p p l i c a t i o n
o f Annotated

data Status
= Success Context FullType
| Fa i l u r e Context Error
| Unknown

Now, a Checked Task is a taskflow where each task in the tree holds ad-
ditional information: Success (including Context and a FullType), Failure
(including Context and Error) or Unknown. The type checker is the unit
that annotates the tasks in this way.

The selection mechanism uses one additional piece of information: is
the current task selected or not? To implement this, I added another, very
similar, definition:

type CheckedSelected = Annotated (Bool∗ Status)

In this definition, * is defined as an infix for Tuple. The Bool is true
when the task is selected, and false if not. In the rest of the program, I
work with the CheckedSelected Task data type.

6.2 Allowed selections

Before considering how to implement the abstractor, it is necessary to deter-
mine which selections can be abstracted. The expectation of the user should

41

be immediately clear to the abstractor. For this reason, the abstractor only
accepts sequential selections (see figures 6.1 and 6.2). Abstracting these se-
lection is a well-defined procedure, as the location of the resulting Execute

is certain. Also, the abstraction is a well-defined taskflow without gaps.

(a) An example of selection of tasks
in a sequence of steps. This selection
can be abstracted.

(b) An example of parallel selection
that can be abstracted, since all tasks
in the “pair” have been selected.

Figure 6.1: Several selections that can be abstracted.

42

(a) An example of selection of tasks
in a sequence of steps. This selection
cannot be abstracted, since there is a
gap in the selection.

(b) An example of selection in a
“pair”. This selection cannot be ab-
stracted, since not all tasks in the
“pair” have been selected.

Figure 6.2: Several selections that cannot be abstracted.

In order to test whether a selection is viable, the program counts the
entry points of the selection. Here, an entry point is defined as a Step from
a task that has not been selected to a task that has been selected.

Importantly, this test requires a subroutine to be performed before ex-
ecution. This subroutine, which I called fixSelection, makes sure that
Step m t1 t2 tasks are marked as selected if and only if t1 is selected, and
tasks of the form Pair branches and Choice branches are selected if and
only if every task in the array branches is selected (however, this feature
has not been entirely implemented yet).

With these selections in mind, a selection can only be abstracted if it
has exactly one entry point: zero entry points would mean that the user
selected no tasks, and more than one would mean that the selection is not
sequential. See the Selection module for the code on finding entry points.

6.3 Abstractor implementation

The abstractor essentially does two things: isolate the selection from the
taskflow, and replace the selection with an Execute task. The former relies
on the entry points that were discussed earlier. The abstractor first looks
through the taskflow to determine the entry point, and returns this entry
point, including the “tail” of steps that lie past it. It then “cuts off” this
tail, by finding an exit point : a Step m t1 t2 where t1 is selected, but t2

43

is not. The selection rules of Pair and Choice ensure that there can only
ever be one exit point. When it finds this exit point, it returns Step m t1

(Lift Wildcard) instead of t2. This way, the selection is isolated from the
taskflow. The code for this can be found in the Selection module.

The previously described procedure makes a copy of the selected part
of the taskflow. This means that the selection is still part of the taskflow,
which the user would like to have replaced. The replaceSelectionWith

function does exactly this: it replaces the selected part of a taskflow with
another task. In the case of the abstractor, this other task is always an
Execute task. replaceSelectionWith first finds the entry point of the
selection, and then replaces this with the replacement. Entry points are of
the form Step m t1 t2, and turn into Step m replacement t2 by applying
replaceSelectionWith. Now, t2 may still be selected. It should therefore
be replaced by the aforementioned “tail” of the selection. The result of the
entire operation is Step m replacement tail. The code for this operation
can be found in the Abstractor module.

Now that the abstractor has performed the abstraction and replaced the
selection, it should update the World, so that the changes that have been
made are stored properly. Therefore, it adds the abstraction to the Tasktext
under the name “unnamed task”, followed by a number, and replaces the
current taskflow by the taskflow where the selection has been replaced. The
program now continues execution with this new World.

44

Chapter 7

Related Work

Related to this thesis are the topics of visualising functional languages and
programming with holes. Both of these areas have been studied before. The
GiN (Henrix et al., 2012), Tonic (Stutterheim, 2017) and Mojito (Mol, 2020)
systems are closely related to the TopHat Builder, and have already been
discussed. For an overview of these systems, see section 2.1.

7.1 Visualisation of functional languages

The TopHat Builder is used to build taskflows visually. Since TopHat is em-
bedded in a functional language, the visualisation of functional languages is
closely related to this topic. Hanna (2006) uses a document-centered envi-
ronment for the functional language Haskell, which allows a user to visually
edit Haskell programs. It allows the user to define instances of the Display
class, which contains functions for displaying data visually, as well as editing
and adjusting that data.

Clerici et al. (2011) proposes another visualisation tool for functional
languages: the NiMo system. The NiMo language is equivalent to Haskell,
but uses visual graphs to represent programs. NiMo performs type inference
on these programs, and shows the user visually where type conflicts occur.
The user can then interact with the visual representation to solve these
conflicts, and debug the program in this way.

7.2 Programming with holes

The TopHat Builder uses the concept of holes to represent unfinished tasks.
The user can then change these holes to the correct task. The Hazel pro-
gramming language (Omar et al., 2017) is a functional programming lan-
guage that also uses holes. A hole in Hazel is a part of the program that is
missing, or a part of the program that contains errors. By formally defining

45

these holes, Hazel is able to execute incomplete programs, and deliver par-
tial results.

To a lesser extent, the Haskell GHC compiler1 supports the use of holes
in programs. These holes are again blank parts of the program, indicated by
the wildcard symbol . It is not possible to execute programs with holes, but
the compiler will provide suggestions of bindings that fit the holes typing.
This may help the user decide on how to fill the hole.

1https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/typed_holes.html

46

Chapter 8

Conclusions

In this thesis, a design for an extension to the TopHat Builder has been
drawn up, as well as partially implemented. Notable new features include
the creation of new taskflows, deleting tasks from a taskflow, making a
selection in a taskflow, abstracting a selection into a new taskflow, and
importing and exporting projects. These features have been designed with
cleanliness of the interface and logical placement of elements in mind.

8.1 Future work

There are a lot of possible extensions to the TopHat Builder. In fact, it could
be described as “a project that is never truly done”, as there are always new
additions to be made. The list of extensions that I show here is far from
exhaustive.

Firstly, completing the list of transformations from section 4.1.2 would
be a large step forward. This would allow a user to build a single, complete
taskflow.

Secondly, the Builder lacks any form of type inference. There needs to be
a type inference algorithm to calculate the types of taskflows, so that they
can be used as Execute tasks in other taskflows. As it stands, the Builder
assigns every task the same, trivial type.

Furthermore on the topic of types, the Builders needs a tool with which
the user can create their own types. The Builder now only uses built-in
types. It is essential that the user can create their own types, as every
software project uses custom types. The Mojito system (Mol, 2020) does
have such a system, which may fit the Builder as well.

Lastly, as an interesting extension to the abstractor, a “search and re-
place” functionality would be interesting. This would take two taskflows as
input, one “base” and one “pattern”, and would replace every occurrence of
the pattern in “base” with an Execute with the correct name. This way, the
user could quickly replace multiple occurrences of an abstracted taskflow.

47

Besides extensions, usability studies should be conducted on the Builder.
It is still unknown whether a user with no programming experience can find
their way around the Builder. As a prerequisite to this study, the users’
interpretation of these visualisations should be studied to test if user can
intuitively understand these.

48

Bibliography

S. Clerici, C. Zoltan, and G. Prestigiacomo. Graphical and Incremental Type
Inference: A Graph Transformation Approach. In R. Page, Z. Horváth,
and V. Zsók, editors, Trends in Functional Programming, pages 66–83,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-
22941-1.

K. Hanna. A Document-Centered Environment for Haskell. In A. Butter-
field, C. Grelck, and F. Huch, editors, Implementation and Application of
Functional Languages, pages 196–211, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg. ISBN 978-3-540-69175-4.

J. Henrix, R. Plasmeijer, and P. Achten. GiN: A Graphical Language and
Tool for Defining iTask Workflows. In R. Peña and R. Page, editors,
Trends in Functional Programming, pages 163–178, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg. ISBN 978-3-642-32037-8.

J. Mol. iTask Mojito. Master’s thesis, Radboud University Nijmegen, 2020.

C. Omar, I. Voysey, M. Hilton, J. Aldrich, and M. A. Hammer. Hazelnut: A
Bidirectionally Typed Structure Editor Calculus. In 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL 2017), 2017.

T. Steenvoorden. TopHat. PhD thesis, Radboud University Nijmegen, 2022.

J. Stutterheim. A Cocktail of Tools. PhD thesis, Radboud University Ni-
jmegen, 2017.

49

