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Abstract

IRMAseal is an identity-based encryption service that uses a Trusted Third
Party (TTP) to encrypt and decrypt messages, in which recipients can be
defined by any combination of IRMA attributes. It does not yet provide
authenticity, integrity, and non-repudiation. This thesis presents several ap-
proaches to provide these properties in IRMAseal. The security and privacy
guarantees, ease of implementation, and some usability features of these ap-
proaches are determined and compared. The schemes are based on IRMA’s
attribute-based signatures, identity-based signatures, or a third party that
creates standard signatures.

Our main findings are that (1) the schemes that are based on IRMA
signatures do not require additional trusted parties outside of the IRMA
ecosystem, whereas the others need third parties for signing or distributing
signing keys, with some mechanism to distribute trust, and (2) schemes that
give the IRMAseal client access to key material—allowing it to create multi-
ple signatures later, without a separate IRMA session—come with security
limitations (mainly for non-repudiation) directly because of the access to
key material.
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Chapter 1

Introduction

A fundamental problem of end-to-end encryption is that, while the technique
has been available for decades, it is in many cases not adopted by the general
public. Specifically, even though two well-known encryption standards—
OpenPGP and S/MIME—have been available since the 1990s [8, 28], end-
to-end encryption is rarely used for emails. For instance, a study on 81
million emails at a university [33] found that only 0.06% were encrypted.

While some modern messaging systems—such as WhatsApp and Signal—
do use end-to-end encryption by default, they often still rely on users to
verify the identity of their contacts, e.g. by comparing a security code in
real life. In practice, no user does this, severely limiting the security offered
by this end-to-end encryption.

The poor adoption of end-to-end encryption can be blamed on the lack
of usability of the existing solutions. Several studies have shown that PGP
is too hard to use for a majority of email users [33, 25], and even in the
case of Signal, the vast majority of users fail to verify security codes [30].
In both cases, the underlying problem is that manual key management1 is
cumbersome and difficult.

A project that aims to tackle the problem of manual key management is
IRMAseal2, a system for identity-based or attribute-based encryption that
eliminates the burden of manual key management for users. IRMAseal is
an encryption service that uses a Trusted Third Party (TTP) to distribute
keys for the decryption of messages. Instead of a public key of the recipient,
the sender only requires the (static) master public key of the TTP, and an
identity of the recipient. To decrypt, the recipient proves against a TTP
that he/she owns this identity. The TTP then generates a ‘user secret key’
that the recipient can use to decrypt the message.

IRMAseal uses the privacy-friendly identity platform IRMA3 to authen-
ticate the recipient. This is an attribute-based credential system, that allows
users to show that they have certain attributes: small pieces of information,
such as age > 18 or first name. IRMAseal uses a set of attributes as
an identity, allowing users to address messages to for example people with
age > 18: true AND first name: "John" or is doctor at: "Radboud

1Even in WhatsApp and Signal, which automatically handle keys, users still need to
intervene by verifying codes manually to prevent man-in-the-middle attacks.

2https://github.com/encryption4all/irmaseal
3https://irma.app/
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UMC", rather than just to a single person identified by email address.
IRMAseal can be used to encrypt emails, but also for any other kind

of message: it is used in PostGuard4, an email client add-on that encrypts
and decrypts emails, as well as in Cryptify5, a file-transfer service. However,
IRMAseal currently only offers confidentiality of the messages, not authen-
ticity or non-repudiation: IRMAseal does not offer signatures. Authenticity
is a feature that is offered by other cryptography for which IRMAseal seeks
to be an alternative (e.g. OpenPGP).

In this thesis, we aim to investigate how IRMAseal can be expanded
to provide authenticity without the burden of key management for users.
Offering authenticity is an important feature, which can for example be
seen from the relative prevalence of signed emails compared to encryption:
whereas Stransky et al. [33] found that 0.06% of emails were encrypted,
2.8% of them were signed. In the context of email, the importance of signa-
tures also follows from the fact that spoofing (sending an email on behalf of
someone else) is trivial, while eavesdropping is not [1].

In our investigation, we assume that there may be multiple TTPs: the
system needn’t be centralized (see subsection 2.3.5). We also do not assume
the context of email; different kinds of messages should also be supported,
as they currently are in IRMAseal.

Contribution

We explore how IRMAseal can be expanded with a signature scheme, by
considering three options proposed by the creators of IRMAseal [24]:

1. Using IRMA signatures6 directly. An IRMA signature is made directly
on the message.

2. Using IRMA signatures on a public key. An IRMA signature is made
on a public key, which is in turn used to sign messages.

3. Using identity-based signatures. Users make a signature on messages,
using a key they get from the TTP.

These options are formalized and analyzed in chapters 5, 6 and 7 respec-
tively. Additionally, we present a fourth solution (in chapter 8) in which
signatures themselves (not signing keys) can be requested from a TTP.

We first define the properties desired from the solutions in chapter 3.
Next, a common technique used in all four schemes is presented in chapter 4,
and each proposed solution is discussed in chapters 5 through 8. After
comparing the properties actually offered by each option in chapter 9, we
give an overview of the related work in chapter 10 and reflect on the findings
in chapter 11.

4https://postguard.eu/
5https://cryptify.nl/
6Apart from disclosing attributes, IRMA also offers attribute-based signatures. These

are discussed in section 5.1.
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Chapter 2

Preliminaries

In this chapter, we present the necessary background information on the
workings of IRMA, identity-based encryption in general, and how they are
used by IRMAseal. Finally, we discuss the limitations of the trust model
behind IRMAseal and introduce a planned improvement: federation.

2.1 IRMA

IRMA is a privacy-friendly identity-management platform that allows users
to prove certain properties—known as attributes—about themselves, with-
out disclosing any other information [6]. For instance, a user can prove that
they are over 18 years old, without revealing their name or date of birth.
Within IRMA, the following parties exist:

Users are natural persons who use the IRMA smartphone app to store and
reveal attributes to verifiers.

Issuers are parties that give out (issue) attributes to users. For instance, a
university can issue a student card, with attributes such as is student

and studentnumber. It is the responsibility of an issuer to only give
out attributes to users that are supposed to have them. The rigor
of the authentication done by issuers determines the reliability of the
attributes that the issuer provides.

Verifiers are parties that wish to know something about users. They ask a
user to disclose attributes. For instance, a bar can ask a user to prove
that they are over 18 years old.

IRMA uses zero-knowledge proofs (see section 5.1), which allows users
to prove that they have attributes, without revealing any other information,
and without making it possible for anyone else to reuse these proofs. The
process of showing and proving ownership of attributes is called disclosure.

One additional important party that exists in the IRMA ecosystem is
a scheme manager. This is an entity that distributes information about
which issuers exist, what kinds of attributes they issue, and their public
keys. Normally, all parties in IRMA trust and periodically contact a scheme
manager, but all of the information they provide can also be set manually.
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2.2 Identity-Based Encryption

Identity-Based Encryption (IBE) is a form of public key cryptography in
which any string is a valid public key [4]. That is, there is a trusted third
party, from now on known as a Private Key Generator (PKG), that can
generate a private key corresponding to any given public key. In IBE, a
string used as a public key is also referred to as an identity, hence the term
identity-based encryption.

The main advantage of IBE over traditional public key cryptography is
that only a single (master) public key needs to be distributed to allow for en-
cryption between any two parties. Additionally, messages can be addressed
to a user not only without first obtaining their public key, but even before
that user uses the system for the first time.

Formally, the following artifacts are defined in IBE:

Master Public Key (MPK): A key known to all parties, generated by
the PKG. This key is used together with an identity to encrypt mes-
sages.

Master Secret Key (MSK): A key known to the PKG only, that can be
used to generate user secret keys for any identity.

Identity: A string for which data can be encrypted. In general IBE, any
string is a valid identity, but it is common to use some structured
format. See subsection 2.3.1 for the identities used in IRMAseal.

User Secret Key (USK): A key extracted from the MSK, and an iden-
tity. The PKG transmits the USK to users once they have presented
proof of their identity. We write uskid for the USK corresponding to
identity id.

Once the PKG has generated its master keypair (mpk,msk), the follow-
ing operations can be performed:

Extractmsk(id) → uskid: Extract a user secret key uskid from the master
secret key msk and an identity id.

Encryptmpk,id(M) → C: Encrypt a message m with an identity id, for the
PKG with public key mpk.

Decryptuskid(C) → M : Decrypt a ciphertext C with a user secret key uskid
to obtain a message M .

Combined, the following holds:

DecryptExtractmsk(id)

(
Encryptmpk,id(M)

)
= M (2.1)
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2.3 IRMAseal

IRMAseal uses IBE with authentication through IRMA, to provide a pri-
vacy-friendly and simple way of encrypting messages. By using IRMA at-
tributes as an identity, many different kinds of information can be part of an
identity. For example, an IRMAseal identity could be is student: true

or email: "john.doe@example.org". An identity need not be uniquely
identifying, and can even consist of combinations of IRMA attributes. We
discuss IRMAseal identities in more detail in subsection 2.3.1.

Within IRMAseal, the involved parties are, broadly speaking:

Sender: The party that wishes to send an encrypted message.

Recipient(s): The party that wants to read the encrypted message. Each
recipient needs to have the IRMA app to prove that they are allowed
to read a message.

PKG: The trusted third party that has a master keypair, and can extract
USKs from the master secret key.

However, this is a simplified view. There is a distinction between the
recipients’ IRMA apps (that they use to prove their identity), and their
IRMAseal client: the software doing the actual decryption. Furthermore, the
IRMA infrastructure and issuers are ignored. The entire IRMA ecosystem
is involved in authenticating a user against the PKG.

The PKG is an IRMA Verifier. When a recipient requests a USK, the
PKG asks the recipient to disclose attributes to satisfy the identity. If the
recipient is indeed allowed to get the secret key for that identity, the PKG
proceeds to generate the key and sends it to the recipient.

Figure 2.1 shows how IRMAseal works.
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Alice  
 

Bob

Encrypt
M: "Hello"

id: "name: bob"

Decrypt

M: "Hello"

Extract

global public 
key (pk)

PKG

Proof of identity  
"name: bob" 
using IRMA 

user secret key  
(usk"name: bob")

C: "name;2c1aG"

global secret key (sk)

id: "name: bob"

Figure 2.1: A message from Alice to Bob in IRMAseal. id is simplified, see
subsection 2.3.1.

2.3.1 Identities

As described earlier, identities in IRMAseal and other IBE do not need
to be uniquely identifying. Attribute-Based Encryption (ABE), in which
messages can be addressed to parties who possess certain attributes, can
be achieved by using attributes as an identity. The simplest example of
ABE via IBE is using an email address as identity. Messages encrypted for
bob@example.org can be decrypted by anyone who can prove ownership of
the address. This corresponds to attribute-based encryption where an email
address attribute is used. In case multiple people own the address (e.g. a
mailing list), it is also not uniquely identifying. In IRMAseal, identities
consist of a conjunction of IRMA attributes and their values, and a times-
tamp. IRMA attributes are named as scheme.issuer.credentialtype-

.attribute, so an IRMAseal identity could be for example (formatting is
simplified):

{

"conjunction": [

{

"attribute": "pbdf.pbdf.email.email",

"value": "bob@example.org",

},

{
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"attribute": "pbdf.pbdf.mobilenumber.mobilenumber",

"value": "+31612345678",

},

],

"timestamp": "2022-09-01 13:37",

}

To get the corresponding user secret key, a user needs to prove to the
PKG that they possess the required email and mobilenumber attributes.

The timestamp indicates a moment after which a user must possess the
required attributes to get the USK from the PKG. This serves to limit the
validity of identities. Messages encrypted for the same attributes but with a
different timestamp cannot be decrypted with the same USK. In the same
way, it prevents someone from getting USKs with his attributes when he has
them (e.g. while he is a doctor), and using them later to decrypt messages
when he is no longer a doctor.

Hidden Policies

To protect the privacy of users, IRMAseal uses hidden policies. A hidden
policy is a version of an identity, from which all of the values have been left
out (within IRMAseal, the identity is sometimes referred to as “policy”, as it
is a policy to determine who can get a USK). While messages are encrypted
for an identity that includes the values of all attributes, we assume that
recipients can infer the values themselves, even if the values are not included
(unencrypted) in the ciphertext. This way, a message can be encrypted for
example to a social security number: any recipient can simply try filling
in their social security number in a hidden policy, so it’s not necessary to
expose the value in the ciphertext.

As an example, consider the following identity:

{

"conjunction": [{

"attribute": "pbdf.nijmegen.bsn.bsn",

"value": "123456789",

}],

"timestamp": "2022-09-01 13:37",

}

When encrypting a message for this identity, only the hidden policy

{

"conjunction": ["pbdf.nijmegen.bsn.bsn"],

"timestamp": "2022-09-01 13:37",

}
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needs to be included in the ciphertext. A recipient with BSN 123456789 can
simply try to decrypt with their BSN filled in, and it will succeed. Hence,
IRMAseal ciphertexts include hidden policies, and not the actual values.
We will refer to identities (which include the values) as ids, and to hidden
policies as pols

2.3.2 IBKEM

To achieve higher efficiency and better security guarantees than what is
offered by ‘classic’ IBE schemes, IRMAseal uses an Identity-Based Key En-
capsulation Mechanism (IBKEM). This is a modified IBE, which, instead
of Encrypt and Decrypt, offers algorithms Encaps(mpk, id) → CSS , SS which
generates and encapsulates a shared secret SS to a ciphertext CSS , and
Decapsuskid(CSS) → SS which decapsulates the shared secret from CSS .
This shared secret can then be used as a key in a more efficient symmetric
encryption scheme. IRMAseal uses AES-128-GCM [12] for this.

The IBKEM IRMAseal currently uses is CGWKV : an IBKEM based
on CGW (an IBE scheme by Chen, Gay, and Wee [10]) and a transforma-
tion approach from Kiltz and Vahlis [21]. Previously, IRMAseal has used
CGWFO (CGW with the Fujisaki-Okamoto transformation [18]) and Kiltz-
Vahlis IBE1 [21].

It is also possible to encrypt a message with one shared secret, that
can be derived by people with different identities. The process to do so is
called multi-recipient encapsulation, with algorithms MEncaps(mpk, ids) →
CSS , SS and MDecapsuskidx (CSS) → SS. Without digging into the details,
IRMAseal needs this to be able to encrypt a message for a disjunction of
identities in combination with the hidden policy approach. This is done by
including in the ciphertext CSS a separate IBE-encrypted number for each
identity. In chapter 4 we discuss the details of this technique, and propose
a small modification.

The ciphertext of an IRMAseal message consists of a set of hidden poli-
cies pols, some IBE encrypted numbers that contain the shared secret CSS ,
and the symmetrically encrypted message CM . With ∥ denoting some in-
jective way to concatenate strings, we have C = pols∥CSS∥CM .

2.3.3 Protocol

We can now present the IRMAseal protocol accurately. Diagrams 2.2 and 2.3
show how encryption and decryption work. MEncaps(mpk, ids) uses the
multi-recipient IBKEM to generate and encrypt a shared secret to all of
the identities in ids, MDecapsuskid(CSS) then returns the shared secret en-
crypted in CSS , using the USK for one of the identities for which the secret
was encapsulated. AESEncryptSS(M) uses a shared secret to encrypt M
with AES.

10



Figure 2.2: Encryption with IRMAseal.

Figure 2.3: Decryption with IRMAseal.
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2.3.4 Trust model

Since the PKG decides whether a user gets a USK, the security of IRMAseal
is heavily dependent on the PKG. The PKG must not be malicious, and the
IRMA authentication also needs to be secure. The security of IRMAseal is
based on the following assumptions:

1. The PKG’s master secret key is not leaked.

2. The PKG is honest: it does not generate USKs for users that do not
satisfy the identity.

3. IRMA authentication is secure: only users that have the required at-
tributes can convince the PKG of that.

4. The private keys of IRMA issuers are not leaked.

5. The issuers of the used IRMA attributes are honest: they don’t give
out attributes to people that shouldn’t have them.

If any of these assumptions do not hold, an attacker (possibly one of
the parties) can get the USK for an identity. Specifically, the PKG can
always decrypt any message, and IRMA issuers can decrypt messages en-
crypted for attributes that they can issue. For example, the municipality
of Nijmegen could falsely issue a social security number (BSN) attribute
pbdf.nijmegen.bsn.bsn: "123456789", and use it to get the USK for
identity:

{

"conjunction": [{

"attribute": "pbdf.nijmegen.bsn.bsn",

"value": "123456789",

}],

"timestamp": "2022-09-01 13:37",

}

Furthermore, the PKG is a single point of failure. If it is offline, or
its master secret key is lost, users cannot decrypt messages. Finally, the
PKG can also keep track of when messages are read, because it gets to
see the identities (i.e. including the values, which can even include special
categories of personal data such as social security numbers) for which it
generates USKs. This limits the privacy of users, even if the confidentiality
of the content of messages is not violated.
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2.3.5 Federation

The power that lies with the PKG and IRMA issuers is undeniably a concern
for the confidentiality and availability of messages encrypted with IRMAseal.
The creators of IRMAseal are aware of these concerns, and are working on
a federation model, in which multiple PKGs can exist.

In such a model, any organization can set up a PKG, and the consuming
software can choose a PKG when encrypting. The PKG that is used to
encrypt a message is also the one that can be used to decrypt it, since
each PKG has a separate master secret key. Technically, IRMAseal already
supports this: federated PKGs can be completely independent, so users can
already choose between them.

The way to discover PKGs and determine trust in them is up to con-
sumers of IRMAseal, such as PostGuard for email encryption. This distribu-
tion of trust is out-of-scope for this thesis. However, the concept that there
can be multiple independent PKGs fundamentally changes the trust model
of IRMAseal. Hence, it is important to consider its implications. Through-
out this thesis, we assume that there can be multiple PKGs when reasoning
about trust, without going into the details of how PKGs are chosen.

13



Chapter 3

Desired Properties

We start by defining the algorithms that a signature scheme for IRMAseal
should provide.

• SignAndEncryptattrs,ids(M) → C adds an attribute-based signature us-
ing attributes attrs to message M , and encrypts it for recipients with
identities ids. attrs should at least be allowed to be any conjunction
of attributes.

A more flexible signing identity can be nice to have. For instance, it
may be more privacy-friendly if attrs supports hiding attribute values
from the recipients.

• DecryptAndVerify(C) → M,attrs decrypts ciphertext C and verifies
the signature on it, returning the message and the attributes used to
sign it, if the signature is valid.

To compare different signature schemes for IRMAseal, we determine the
security, privacy, and technical properties that are required or desired.

3.1 Security

Any signature scheme should offer some basic security guarantees. We ex-
pect them to give at least the same level of confidence as the encryption done
by IRMAseal, both in terms of their trust model and in their cryptographic
security strength. These basic security properties are:

Authenticity A signature should provide a high level of confidence in the
identity of the signer. To achieve this confidence, it should be hard to
forge a signature, and the number of parties that need to be trusted
in order to trust a signature should be as small as possible. By defini-
tion of an identity, the trusted parties will need to include the IRMA
issuers that can issue the attributes used in the identity of the signer.
However, it is a significant advantage if there is no need to trust for
example an IRMAseal PKG for the authenticity of messages.

Integrity A signature should provide a high level of confidence that the
message has not been tampered with. This also means that a valid
signature on one message should not be valid on any different message.

14



A related requirement is that a signature provides confidence that the signer
intended to sign the message. This property—sometimes referred to as
“What You See Is What You Sign” or WYSIWYS, described by Landrock
and Pedersen in [22]—should prevent an attacker from tricking users into
unknowingly signing something they don’t intend to sign.

Finally, signature schemes are often expected to provide non-repudiation.
This means that the signer cannot afterwards deny having signed a message.
Although Adida et al. and Specter et al. note in [1, 31] that non-repudiation
is not always required or privacy-friendly, many applications do require or
assume it, so we focus on schemes that provide non-repudiation. A repu-
diable solution, that still provides authenticity, but only to the intended
recipients, is an interesting topic, but out of scope for this thesis.

3.2 Privacy

Aside from security, privacy is a major concern for IRMA and IRMAseal.
We expect the signature scheme to offer as much privacy as possible. Of
course, the meaning of ‘privacy’ is subjective and can depend on the context
of a message that is being sent. Within this thesis, we understand ‘privacy’
to encompass the following properties:

Unlinkability If a user signs multiple messages with (different or identical)
non-identifying IRMA attributes, it should be impossible to link the
signatures to the same user.

Confidentiality of sender identity Only authorized recipients of a mes-
sage can determine the attributes of the sender used in the signature.
Parties who cannot decrypt the message cannot extract the attributes
of the signer. Furthermore, nothing other than the used attributes
should be revealed, even to authorized recipients.

Confidentiality of message content In order to sign and verify, only the
signer and recipient should need to know the message content. The
plaintext should not be revealed to any other party, including for ex-
ample a PKG.

3.3 Technical

Finally, there are some relevant technical properties.

Minimize dependencies Any dependencies that need to be added to IR-
MAseal are detrimental to both the security and maintainability of
IRMAseal. Therefore, for instance, it is preferable to use the same
cryptography that is used in IRMAseal, instead of adding other cryp-
tographic primitives.
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Keep PKG stateless Except for a master keypair, the PKG does not need
to store any state, which makes it potentially scalable. Hence, we
prefer a signature scheme that does not require the PKG to store
any additional state, and specifically, a PKG should not need to keep
records of all produced signatures (both for simplicity and scalability,
and for privacy).

Minimize signature size Signatures should be as small as possible to
limit communication overhead.

Minimize signing communication Signing a message should require as
little communication as possible. Ideally, it could be done offline.

Minimize verification communication Verifying a signature should re-
quire as little communication as possible. Ideally, it could be done
offline.
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Chapter 4

Naive sign-and-encrypt

There is one challenge in the design of a signature scheme that needs to be
faced in all four proposed approaches. Before presenting and analyzing our
schemes in the next chapters, we first discuss this challenge and a solution
to it.

A simple, generic approach to creating a signature scheme for encrypted
messages is as follows, where Sign produces some kind of signature on a
message:

SignAndEncryptattrs,ids(M) = Encryptids

(
M∥Signattrs(M)

)
Davis noted in [13] that there is a flaw in this naive sign-and-encrypt

approach, known as the naive sign-and-encrypt problem, or surreptitious
forwarding. This flaw appears in numerous protocols, including OpenPGP
and S/MIME.

The signature in this scheme is on the plaintext only, without including
the intended recipients. At first glance, that doesn’t appear problematic.
After all, the recipients know for certain who wrote the message. However,
in this approach, a recipient does not know whether the signer meant to
send the message to them. Consider the following scenario:

1. Alice writes to Bob:

Encrypt{Bob}

(
“I love you”∥SignAlice(“I love you”)

)
2. Bob decrypts this, giving him the plaintext “I love you”, and the valid

signature from Alice SignAlice(“I love you”).

3. Bob can then send a message to Charlie, posing as Alice:

Encrypt{Charlie}

(
“I love you”∥SignAlice(“I love you”)

)
4. When Charlie decrypts this, he gets the plaintext “I love you”, and

the valid signature from Alice, falsely convincing him that Alice loves
him.

To solve the problem, we just need to include the identities of the in-
tended recipients in the signature, such that the signature is only valid for

17



messages encrypted for the original recipients. This way, a signed message
cannot be secretly replayed to different recipients.

Unfortunately, including the identities in a hash is not an option in IR-
MAseal, because ciphertexts contain only hidden policies, not full identities1

(see section 2.3.1). This means that it would not always be feasible for re-
cipients to recreate the identities, and thus the hash needed to verify the
signature. We need an alternative.

The first alternative to consider is to include the hidden policies, instead
of identities. However, this approach fails to prevent the replaying example
we discussed: the hidden policy for a message to Bob is the same as that to
Charlie, specifying only that a name attribute is required.

Next, we could include the hash of each separate identity in the ci-
phertext. Then, a signature can be made over the hashes of all identities.
Anyone can verify that the signature corresponds to the hashes of identities
appended to the ciphertext. A specific recipient can verify that the signer
intended to send the message to at least their identity (and possibly others),
by checking that the identity that the specific recipient used for decryption,
matches one of the hashes added to the ciphertext, on which the signature
was made.

Mathematically, we would get:

SignAndEncryptattrs,ids = pols∥CSS∥h(id1)∥...∥h(idn)∥

AESEncryptSS

(
M∥IRMASigattrs

(
M∥h(id1)∥...∥h(idn)

))
(4.1)

To verify, a recipient who decrypts the message using uskidx computes
h(idx), and checks that it is one of the hashes in the ciphertext, and that
the signature is indeed IRMASigattrs

(
M∥h(id1)∥...∥h(idn)

)
.

One downside to this solution is that it makes it easier to derive values of
attributes from the hidden policies: given a hash of an identity, say h(idx), it
becomes possible to try out all possible values of that identity. For example,
if from the hidden policy it is clear that idx contains a phone number, it is
easy to try filling in every possible phone number until the resulting identity
hashes to h(idx). Without such a hash being given, an attacker would need
to request USKs for (and hence prove that they own) any possible phone
number to find one that decrypts successfully.

Even this issue can be avoided, however. The final solution is to not use
a hash directly on an identity, but on an identity together with a random
number that is only known to people who own the identity. In fact, with a
small change to the way multi-recipient key encapsulation (subsection 2.3.2)
is done in IRMAseal encryption, we can get such a number by reusing some
numbers included in IRMAseal ciphertexts. We propose a small modification
to the MKEM implementation in IRMAseal.

1Including the full identities in the encrypted part of a message would also not be
privacy-friendly, as all recipients would see each other’s attributes
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Modifying multi-recipient key encapsulation

The existing multi-recipient key encapsulation mechanism used in IRMAseal
works as follows: first, one shared secret SS is generated. Then, for each
recipient identity idi, a separate shared secret and corresponding IBE cipher-
text is created: CSSi , SSi = Encaps(mpk, idi). Finally, SSSi = SS ⊕ SSi is
added to ciphertext per recipient, such that a recipient with idx can get the
single shared secret using SS = SSSi ⊕ Decapsuskidx (CSSi).

Intuitively, we would like to reuse SSi as the random value to hash idi
with. However, in the current construction, any recipient x can compute SSi

for any other recipient i: SSi = SSSi ⊕ SS = SSSi ⊕ Decapsuskidx (CSSx).
Then, recipient x can use the hashed identities to derive the attributes that
we were trying to keep hidden.

By modifying the multi-recipient key encapsulation mechanism, we can
keep SSi hidden from any other recipient x. We do this by hashing (with
a preimage-resistant h) SSi before XORing it with SS: SSSi = h(SSi) ⊕
SS. Decapsulation is then done with SS = SSSi ⊕ h

(
Decapsuskidx (CSSi)

)
.

Different recipients can derive h(SSi), but not SSi. As such, SSi is now a
suitable value to reuse for hashing identities. We refer to this modified multi-
recipient key encapsulation mechanism later on with MEncaps′(mpk, ids),
which returns CSS , SS, SS1, ..., SSn, and MDecaps′uskidx (CSS) returning SS
and SSx.

We claim without proof that this construction does not influence the
security strength of encryption if a collision-resistant hash is used. The
security of encryption when h is a random oracle is clear: h(SSi) is then
just as ‘random’ as SSi, so the change does not lead to an advantage that
can be used to guess SS from SSSi without knowing SSi.

Using this modified multi-recipient key encapsulation mechanism, we can
reuse each SSi, putting a signature on hs = h(id1∥SS1)∥...∥h(idn∥SSn), and
include hs in the ciphertext. It does not matter whether these hashes are in
the encrypted part or not.

Now, only someone with uskidx can get SSx, so no others can use
h(idx∥SSx) to derive an attribute value in idx. The recipient can verify
that the message was intended for idx by computing h(idx∥SSx), checking
that it matches one of the hashes included in the ciphertext, and checking
that the signature is indeed on all of these hashes.

4.1 Alternatives

While we believe this modification of IRMAseal to be secure and helpful to
ensure a binding of signatures to the intended recipients, it is not always
required to have such a binding, for example if it is already clear from the
plaintext who the intended recipients are. We also have not given a formal
proof for the security of this modification. There are several alternatives to
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implementing this proposed change:

• Instead, adding separate secret numbers generated specifically to di-
versify the hashes of identities, that are encrypted with IBE separately.
This would work just as well, without changing the existing encryp-
tion, but would increase the message size with hundreds of bytes per
identity, instead of only a few bytes per identity.

• Not binding signatures to the recipients. Each proposed scheme can
simply be used without the proposed modification, at the cost of not
preventing the naive sign-and-encrypt problem described above. While
this seems like a bad idea, we have also seen that this is a common
choice in practice (including in OpenPGP and S/MIME). If plaintexts
include an indication of the intended recipients, it doesn’t matter if
the signature doesn’t specify that itself.

• Implementing another solution. Although we have not worked out
other solutions in detail, a simpler solution may exist. Specifically,
Davis (in section 5.2 of [13]) presents a general solution called sign-
encrypt-sign in which not only the plaintext but also the ciphertext
(the encryption of the signed plaintext) is signed. Perhaps this can
be used directly in our IRMA signature on public key and IBS ap-
proaches, and by including an additional public key (for a single use
on the encrypted message) in the message for our IRMA signature on
message and Signature form TTP approaches. Because this solution
cannot be used in the same way for each scheme, we have not worked
it out in detail.
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Chapter 5

IRMA signature on message

One way to add attribute-based signatures to IRMAseal is by using IRMA’s
signatures directly on a message. Let us first dive into the details of IRMA’s
signature scheme. Then, we work towards a functional and secure scheme,
and analyze its properties.

5.1 IRMA signatures

When an IRMA user discloses attributes, they do a zero-knowledge proof
based on the Schnorr identification protocol and the Fiat-Shamir transfor-
mation [14, 9]. Broadly speaking, the following happens [7]:

1. The verifier sends a random number—the nonce—to the user.

2. The user does a computation on the nonce that only owners of the
required attributes can do, and sends the result back to the verifier.

3. The verifier verifies that the computation was correct.

The use of a nonce gives the verifier certainty that the user is actually
present, and not an attacker replaying an old disclosure session they recorded
somewhere.

IRMA signatures [6, 17] are very similar to regular disclosure sessions.
The difference is that rather than the verifier sending a nonce, a hash of
the signed message is used as the nonce. Additionally, the nonce includes
another random number, and a timestamp signature1 which allows the ver-
ifier to verify that the attributes had not expired at the time the signature
was created. The user then does a computation on the nonce that only
owners of the required attributes can do, and the result is the signature. A
verifier can then verify that the computation is correct, assuming the hash
of the presented message is the used nonce. Figure 5.1 shows how IRMA
signatures are created.

Hampiholi et al. [17] show that IRMA signatures are secure. That is,
it is not possible to create a forged signature, even given a large number
of other messages and signatures by the attacker’s choice. Hence, a valid

1A signature by a trusted Timestamp Authority, that cannot be requested before the
actual time. This provides certainty that the message existed at the specified time, and
was not created later.
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Figure 5.1: Creation of an IRMA signature.

signature on a message convinces a verifier that the message was signed by
someone who possesses the attributes used in the signature and that those
attributes had not expired at the time of signing.

5.1.1 Creation and verification

Since IRMA signatures are basically disclosure proofs, they are made by
the IRMA app of a user. Like disclosures, signatures are currently made by
the app only after the app gets a request from an IRMA server (either by
opening a URL or by scanning a QR code). That means that in order to
create an IRMA signature, we need to first contact an IRMA server, present
a QR code to the user, wait for the user to allow creating the signature, and
finally get the signature back via the IRMA server.

Verification is normally also done by an IRMA server. However, al-
though this is not supported by the creators of IRMA, Leon Botros, one of
the creators of IRMAseal, has implemented a proof-of-concept WebAssem-
bly module2 that can perform verification locally. We assume IRMA signa-
ture verification to be available locally to an IRMAseal client, but this may
require more maintenance effort than using an IRMA server.

5.2 Scheme

Based on IRMA signatures, we can easily create a signature scheme for
IRMAseal. It seems logical to just create a signature on the message content,
append that to the plaintext, and then encrypt it. That is, with attrs
representing the attributes that the signer uses to sign the message:

SignAndEncryptattrs,ids(M) = Encryptids

(
M∥IRMASigattrs(M)

)
2https://gitlab.science.ru.nl/ilab/irma-signature-verify/
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This suffers from two flaws. One of them is precisely the problem dis-
cussed in chapter 4.

5.2.1 Plaintext confidentiality

The second issue is that—during the creation of the IRMA signature—the
plaintext is exposed to a third party. That is, in order to create an IRMA
signature, currently, a request containing the plaintext needs to be sent to
an IRMA server, which in turn communicates it with an IRMA app that
creates the signature.3

This means that the plaintext is exposed to two parties. First, the
IRMA app gets to see the plaintext, so it can make sure that the user really
intends to sign that specific message. Second, there is the IRMA server (run
for example by a PKG) that communicates between the IRMAseal client
and the IRMA app.

The latter only needs to get the plaintext so that it can forward it to
the IRMA app, but as a consequence, the IRMA server needs to be trusted
completely. That is, the trust in this IRMA server needs to be even greater
than that in a PKG. A PKG can decrypt any message, but only when it has
access to a ciphertext, which it typically should not have. The IRMA server,
on the other hand, gets access directly to any plaintext that is signed!

While this approach of signing a hash of the plaintext does not expose
the plaintext directly, it would still make it possible for the IRMA server
to verify that a signature was made, given the plaintext. For example, the
IRMA server could find out whenever the specific message “I love you” is
signed, by looking for requests to sign h(“I love you”). This is less of a
problem, but still not ideal, and can be avoided: the final solution here is to
include a random number (nonce) generated by the signer in the hash that
we sign, and in the encrypted part of the message we send. This way, even
an IRMA server that is looking out for specific hashes cannot predict what
hash would correspond to the message “I love you”, but a recipient who can
decrypt the message can use the included nonce to perform verification.

Combining solutions to the two flaws, we get a scheme in which we sign
not the message, but a hash that includes the hashes of identities, the mes-
sage, and a nonce. Figure 5.2 shows encryption and signing with this scheme.
As you can see, three additional parts are included in the ciphertext when
compared to the encryption-only currently offered by IRMAseal: a nonce,
the hashes of each identity (and corresponding secret), and the signature
itself. Decryption, shown in Figure 5.3, is mostly the same but followed
with steps to verify the signature.

3In section 11.4 we suggest exploring changes to IRMA that allow signature creation
without an IRMA server being able to read and modify traffic.
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Figure 5.2: Signing and encrypting a message with an IRMA signature on
the message.
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Figure 5.3: Decrypting and verifying a message signed with an IRMA sig-
nature on the message.

Signature creation

While the above scheme solves the naive sign-and-encrypt problem, and
preserves plaintext confidentiality, the solutions did introduce a new prob-
lem. Before signing, the IRMA app displays the message that it will sign,
so that users can confirm that they want to do so. This is done to pre-
vent attackers from tricking users into signing something they don’t want
to. However, by not signing the plaintext but a hash, the “message” shown
to the user for confirmation becomes illegible to the user. The best we can
do is to make the message slightly more readable and make hashes used for
IRMAseal signatures distinguishable from any other hash. For example, we
can sign IRMAseal-signature-hash:9be31c8150ac(...) and inform the
user of what “message” they should expect to sign.
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5.3 Analysis

5.3.1 Security

Since IRMA signatures have been shown to be secure, our scheme triv-
ially offers authenticity and integrity. The cryptographic security strength
behind this is equal to that behind IRMA disclosures, and hence that of
authentication against an IRMAseal PKG.

Next, let us examine the trust model behind the provided authenticity
and integrity. Assuming the security of IRMA signatures, attack scenarios
are:

1. A malicious or compromised issuer, wrongfully giving out attributes
that can be used to create a signature.

2. A malicious or compromised Timestamp Authority (chosen by the
IRMA developers) could be used to create an IRMA signature with
attributes that had expired before the time of signing.

3. Tricking a user into signing an attacker’s message.

Of these scenarios, the first is inherent in the IRMA system as a whole.
When an issuer wrongly gives out valid attributes, there is no way to dis-
tinguish between valid and invalid attributes, regardless of whether IRMA
signatures or disclosures are used. Hence, no signature scheme based on
IRMA attributes is possible that does not have this vulnerability.

The second scenario—a malicious or compromised Timestamp Authority
(or TA)—is intrinsic to IRMA signatures specifically: IRMA disclosures do
not involve a timestamp as they are done in real-time with the verifying
party. Within IRMA, the TA that is used is determined by each issuer
(signatures using attributes from different issuers with different a TA are
not supported), so just as the trustworthiness of IRMA attributes depends
on how careful the issuer is, it also depends on the issuer’s choice of TA. In
any case, the risk posed by this attack scenario is not very high: it can only
be used to forge signatures using expired attributes, not by attackers who
never had the required attributes in the first place.

The final scenario—tricking a user into signing an attacker’s message—
is the most serious. It can be mitigated only by the IRMA app showing
the exact message that is about to be signed. However, since our scheme
requires signing a hash instead of the plaintext of the message, it is hard
for users to prevent signing something they don’t want to. Note that IRMA
users can be tricked into signing in a context totally unrelated to IRMAseal.
At the very least, clearly distinguishing hashes used in IRMAseal—such
as by adding a IRMAseal-signature-hash prefix—should help to prevent
attackers from tricking users into signing just any hash (possibly in a context
that has nothing to do with IRMAseal) without realizing it will be abused
as a signature in IRMAseal.
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Still, the IRMA server used to create a signature for IRMAseal (which
communicates with the IRMA app during SignAndEncrypt) could secretly
pass a different hash through to the app, making the user sign the wrong
message. Hence, this IRMA server either needs to be trusted completely (for
example if it is under the control of the signing user) or the IRMAseal client
should instruct users to verify that the hash shown by the IRMA app is equal
to the hash shown by the IRMAseal client. In the latter case, the IRMA
server is still in a powerful position it could try to abuse. In section 11.4
we propose modifying IRMA to remove the intermediary IRMA server for
signature creation.

In conclusion, the parties trusted with authenticity and integrity are
the IRMA scheme as a whole (including the issuers of the used attributes,
and the Timestamp Authority), and of course the IRMAseal client itself.
However, while not directly involved in verification, the IRMA server used
to create signatures seems to be the greatest risk, as it could trick users into
unintentionally signing wrong messages. The only mitigations for this risk
are to rely on the user to check that the IRMA app displays the right message
(hash), and to use trustworthy IRMA servers, perhaps in a federated fashion.

Non-repudiation Within IRMA, it is usually assumed that credentials
do not get leaked: there is usually no revocation possible. Thus, a user
cannot convincingly repudiate a signature by stating that their credentials
have been stolen. Even if a user leaks their credentials intentionally in an
attempt to repudiate a signature, the timestamp included in it proves that
the signature was made before the credentials were leaked.

Some IRMA attributes do support revocation4. In that case, an IRMA
signature proves that the attributes had not been revoked before the time
of signing. Hence, in the case of revokable attributes, a signer who wants to
repudiate a signature would need to make it plausible that their credentials
had been stolen but not yet revoked at the time of signing.

We can conclude that IRMA signatures do provide non-repudiation in
this scheme, at least to the extent that non-repudiation is possible in the
IRMA ecosystem.

5.3.2 Privacy

Unlinkability is inherently offered by IRMA signatures if non-identifying
attributes are used. By signing a specific hash instead of the plaintext, we
managed to fully protect the confidentiality of the message content, even if
the IRMA server used for signature creation is compromised. The identity
of the sender is of course revealed to the IRMA server used for signing, and

4Issuers of revokable attributes maintain a kind of list of revoked credentials, called
an accumulator, such that a user can prove that their credentials are not included in this
accumulator [5].
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to all authorized recipients, but not to anyone else. Again, the IRMA server
used for signing is a weak point.

5.3.3 Technical

The proposed scheme is technically simple. No new cryptographic primitives
need to be implemented in Rust to be used by the IRMAseal client, because
only the existing IRMA signatures are used. A challenging aspect is that
local verification of IRMA signatures, while already implemented as a proof-
of-concept, would need to be maintained. This is a large dependency and
takes significant effort to maintain. Perhaps one day, the functionality may
be offered by IRMA or the IRMA team directly. Without local verification—
using an IRMA server (perhaps in a federated fashion) for verification—
the trust model behind the authenticity offered by the scheme is much less
favorable.

This scheme does not require any changes to the encryption PKGs.
The overhead in message size of the proposed scheme is more or less the

size of an IRMA signature, which is around 3000 bytes, depending on the
used attributes. On top of that, we need to include one hash (presumably 32
bytes, using SHA256) for each identity of a recipient. This is likely negligible
compared to the size of the IRMA signature unless very many identities are
used.

The communication required for signing is one IRMA signature session,
involving an IRMA server (such as the one used by the PKG) and the
IRMA app. This is very similar to a disclosure session, except that the
user can pick an IRMA server different from that used by the PKG. The
use of a signature session does add the risk of the user getting tricked into
signing a wrong hash, which would not be possible in an approach that uses
disclosure sessions. Since the IRMA server for signing can be chosen by the
signer, a federated approach is possible. For example, students and staff of
a university can sign through the university’s IRMA server. This limits the
risks associated with using an IRMA server that is not directly controlled
by the users (they can pick a somewhat trustworthy server, i.e. hosted by
a party they trust), as well as possible availability issues resulting from a
single point of failure.

Verification can theoretically be done offline, given that the IRMA scheme
information (that is normally retrieved from a scheme manager, but can be
specified manually) is available.
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Chapter 6

IRMA Signature on public
key

A second approach based on IRMA signatures is using an IRMA signature
on a public key, and in turn, using the corresponding private key to sign
a message. This solution makes it possible to sign multiple messages, us-
ing only a single IRMA signature, so with a single use of the IRMA app.
This may make this method usable in more scenarios, but also has some
drawbacks in security, privacy, and simplicity.

6.1 Scheme

This scheme can be instantiated with any choice of public key signature
scheme, such as RSA or EdDSA [26, 19]. Using some public key signature
scheme defined by algorithms PKSignsk(M) → S and PKVerifypk(S,M),
where (pk, sk) is a keypair generated by PKKeyGen() → sk, pk, we can
define the proposed scheme in Figure 6.1 and Figure 6.2. Simply put, we
create a keypair, sign it with IRMA, and then use the signed keypair to sign
a message. Consequently, multiple messages can be signed with the same
public key if the same attributes are needed to sign all of them.
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Figure 6.1: Signing and encrypting a message with an IRMA signature on
a public key. Multiple messages can be signed with the same public key by
repeating the “Encryption” part, as long as all messages are to be signed
with the same IRMA attributes.
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Figure 6.2: Decrypting and verifying a message with an IRMA signature on
a public key.

A result of not using IRMA signatures on the message itself is that the
trusted timestamp included in IRMA signatures applies only to the public
key: the keypair was generated before the moment indicated by the times-
tamp, when the used IRMA attributes had not yet expired. The timestamp
in the IRMA signature says nothing about the moment the actual message
was signed, which could be much later than the moment the keypair was
generated and signed. To provide certainty that the message was created
before the expiration of IRMA attributes, even for messages received after
the expiry of the used attributes, the proposed scheme can be extended with
a separate trusted timestamp on (a hash of) the message.

6.2 Analysis

The main advantage that the current approach can offer over the previous
one is that it allows signing multiple messages with the same public key,
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i.e. without the sender having to use the IRMA app multiple times for
signatures with the same attributes. This advantage directly leads to some
limitations in security and privacy.

6.2.1 Security

While the IRMA signature on the public key provides the very same security
guarantees as before, the intermediate private key opens up a new attack
scenario. The ability to reuse this key makes it possible to sign multiple
messages, but it also introduces the risk of leaking the private key. As long
as private keys are destroyed immediately after use, there is no added risk
(assuming the public key signature scheme is secure). However, to benefit
from the reuse of a keypair, the keypair would need to be kept for some
time after its creation. Doing this securely is difficult, and having a private
key exist within the IRMAseal client at all (this is not the case when using
IRMA signatures on the message itself, as those signatures are created in
the IRMA app instead) is a risk, for example by exposing the private key to
side-channel attacks.

Consequently, even if a signer keeps the private key secure (e.g. by
destroying it immediately), recipients can never know with certainty that
a sender really did keep the key secret, which not only undermines the
recipient’s trust in the sender’s authenticity, but also means that this scheme
does not provide non-repudiation. A signer can always claim that their
private key was stolen, or even intentionally leak it to repudiate a message.

Although adding a trusted timestamp to each message, and perhaps
adding a revocation mechanism (although the latter would probably require
users to keep revocation certificates for all private keys they used, which
is impractical), could help mitigate some of the security issues mentioned
above, it remains clear that the security of this scheme is far from ideal.

6.2.2 Privacy

A limitation of privacy that directly follows from reusing a private key is
the loss of unlinkability. Each message signed with the same private key is
clearly linked by the corresponding public keys being equal, regardless of
whether the attributes used to sign the public key are identifying. While
this is an obvious limitation, that can easily be avoided by not reusing the
private key whenever unlinkability is desired, it might be hard for users to
understand this.

The confidentiality of the message content is not affected by this scheme,
as the public key signature is created and verified locally. The sender identity
is again only revealed to the IRMA server used to create the signature on
the public key, as well as the authorized recipients, which is not a problem.
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6.2.3 Technical

As well as creating and verifying IRMA signatures, an implementation of
this scheme needs to be able to generate keypairs, create and verify public
key signatures, and optionally (to benefit from sending multiple messages
with a single IRMA signature session) store a keypair securely. This intro-
duces a number of new dependencies not needed in the previous approach,
increasing the surface area for potential security issues to some degree. Im-
plementations of many public key cryptographic schemes are often carefully
audited, mitigating the security implications of this, but the additional de-
pendencies do increase the complexity and size of the implementation.

Similar to when using an IRMA signature on a message directly, the
PKG does not need to be changed, but we do need to maintain local IRMA
signature verification.

The message size is increased by one IRMA signature, a hash per recip-
ient identity, as well as a public key signature, and the public key that was
used. The total overhead for signatures thus depends on the public key sig-
nature scheme. For example, using EdDSA instantiated with the Ed25519
curve, the public key takes 32 bytes, and the signature takes 64 bytes. On
the other hand, using RSA with 2048-bit keys, both signature and public
key take up 256 bytes each [19].

Signing a public key with IRMA requires communication through an
IRMA server with the IRMA app. After that, multiple messages can be
signed with public key signatures without any more communication. Ver-
ification of the public key signatures can also be done offline. The IRMA
signature can be verified offline if the IRMA scheme information is available.
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Chapter 7

Identity-Based Signatures

Instead of relying on IRMA signatures, it may be more flexible to use an
Identity-Based Signature (IBS) scheme instead. An IBS is a signature cre-
ated with a USK that can be generated by a PKG, on behalf of any string
as identity.

Whereas IRMA signatures contain the disclosed attribute values, an IBS
can be on behalf of any string as identity, giving us full control of the in-
formation included in an identity. It is possible to use a conjunction of
attributes with values, but also to use an IRMA ConDisCon (a Conjunc-
tion of Disjunctions of Conjunctions), enabling signatures on behalf of for
example name: "Alice" OR name: "Bob" without disclosing which name
was actually shown to the PKG, or even to specify that a certain attribute
is not null, without putting any requirement on the value itself. This makes
an IBS approach more flexible privacy-wise. As a downside, a PKG needs
to be trusted for authenticity, as it can generate forgeries at will.

Various IBS schemes have been proposed in the literature (many of which
are mentioned by [20]), some using a transformation on existing primitives,
and others introducing entirely new primitives. One straightforward con-
struction of IBS schemes is using certification. This technique is mentioned
in a multitude of papers [3, 15, 20]. In this approach, a PKG creates a
signature on a user’s public key and identity (a certificate), and the user
uses the corresponding secret key to create signatures. Like our approach
in chapter 6, any standard signature scheme can be used for this. Essen-
tially, in this certification-based approach, the USK consists of the user’s
private key from a standard signature scheme and the PKG’s signature on
the corresponding public key and the user’s identity. A signature consists
of a standard signature on the message, the corresponding public key, and
the certificate.

The simplicity of this construction shows that a secure IBS is trivial to
construct. [3] and [20] indicate that, since such a simple secure construction
exists, all other constructions are not aimed at higher security, but efficiency
in terms of signature and key size, and signing and verification performance.
Since the certification approach is already quite efficient in terms of signature
size and signing/verifying cost1, efficiency is likely not an issue.

1For example, using Ed25519 (which targets a 128-bit security level, just like the IBE
used by IRMAseal), a certification-based IBS would take only 160 bytes (64 for a signature
on a message, 32 for the public key, and 64 for the certificate signature) and some encoding

34



There is, however, a property that is not offered by all IBS schemes:
unlinkability. When multiple signatures are made with the same signing
key, they can be linked together, and distinguished from signatures from a
different singing key with the same identity. Hence, a certification-based
IBS is typically linkable2.

7.1 Scheme

Without fixating on a specific IBS scheme, we propose a scheme using the
algorithms Signusskid(M) → S, Verifympsk,id(S,M) and SExtractmssk(id) →
usskid, where SExtract, ussk, mpsk and mssk have an added s compared
to their IBE counterparts for Signing-Extract, User Secret Signing Key,
Master Public Signing Key, and Master Secret Signing Key, to avoid naming
conflicts with the corresponding IBE algorithms and artifacts. Contrary to
the previous schemes, this one takes an id as input, rather than attrs. This
is because in this scheme the signing identity is not constrained to being a
conjunction of attributes. Still, id can be replaced with just attrs without
any problems. The signing and verification procedures of this scheme are
shown in Figure 7.1 and 7.2.

of the identity. The verification consists of just two Ed25519 verifications. This is much
smaller than both an IRMA signature, and a USK for the IBE used in IRMAseal.

2Certification-based IBSs are linkable unless the PKG always generates the same public
key for a given identity, for example by storing it after generating it for the first time.
Such storage for unlinkability is not practical for IRMAseal because it requires the PKG
to store a large and continuously increasing number of keypairs.
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Figure 7.1: Signing and encrypting a message with an identity-based signa-
ture. Multiple messages can be signed with the signing key by repeating the
“Encryption” part, as long as all messages are to be signed with the same
IRMA attributes.
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Figure 7.2: Decrypting and verifying a message with an identity-based sig-
nature.

For verification, one important step is that of getting mpsk. What this
means exactly depends on the context. If only a single central signing PKG
should exist, this mpsk could be known in advance or requested from that
PKG. In a federated system, some mechanism needs to be in place to get
mpsk and determine whether the corresponding PKG is trustworthy.

7.2 Analysis

In this scheme, there can be two distinct PKGs: one used for encryption,
and one used for signing. These can be the very same entity (although the
cryptographic functionality that needs to be offered for signing differs from
the existing functionality for encryption), two different servers hosted by the
same party, or entirely distinct. How the choice for both of these servers is
made is out-of-scope for us, and can be left to other software that consumes
IRMAseal. However, these choices are crucial for the trust a recipient can
have in a signature, leading to some interesting security properties:

7.2.1 Security

Recipients need to be careful in which signing PKGs they trust: an adversary
can create their own signing PKG, and sign for any identity they want, so

37



trusting every PKG is fatal. Instead, it could be useful to trust specific PKGs
in a federated fashion, as is possible when selecting a PKG for encryption.

As an example, a university could host a signing PKG. It then makes
sense for its employees to trust this PKG. A signer who wants to create a
trustworthy signature for employees could use the university’s PKG to make
signatures that are likely to be trusted by university staff.

Apart from the complicated trust model, a scheme using IBS inherently
suffers from some of the same problems as the approach using IRMA signa-
tures on a public key, or in fact as any public key signature scheme: secret
keys (in this case usskid) might leak, and users can intentionally leak them
in an attempt to repudiate signatures they made earlier.

One more detail needs to be addressed: the signature as described above
only guarantees that someone with a certain identity signed a message. It
does not guarantee that the required attributes were valid (not expired) at
the time of signing. The scheme can be easily extended to make guarantees
about timing by (1) adding a timestamp into the identities indicating the
time at which the disclosed attributes expire, and (2) adding a timestamp
from a trusted timestamping authority on the message or signature. Such
timestamps may however introduce additional linkability.

7.2.2 Privacy

By entrusting a third party with authentication, this scheme makes it pos-
sible to use any kind of identity. Hence, an IRMA ConDisCon can be used,
hiding the actual attributes used to satisfy the identity, or even requiring
only that an attribute is not null, without putting any requirement on the
value itself. This makes the IBS approach more flexible privacy-wise.

The IBS-based approach does not expose any information about the
message content but does require disclosing the sender’s attributes to a
PKG.

Important to note is that it depends on the IBS that is used whether the
resulting signatures are linkable or not. Certification-based IBSs from the
same signing key are linkable in the same way that signatures from public
keys signed with an IRMA signature are.

7.2.3 Technical

The IBS-based approach requires implementing both an IBS scheme, as well
as PKG functionality for that IBS, either as a separate server or an addition
to the existing PKGs for encryption. A mechanism for the distribution
of trust (to determine which signing PKGs are trusted) also needs to be
implemented.

The overhead of the IBS-based approach in the message size depends
entirely on the IBS scheme that is used. Using a simple certification-based
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IBS, the signature could take 160 bytes, and like in the other approaches,
another 32 bytes per recipient for the hashed identities (chapter 4).

Signing communication consists of a disclosure session with a signing
PKG and its IRMA server. The resulting ussk can be reused afterward,
although that does raise some concerns related to the validity of the dis-
closed attributes, and non-repudiation. If those concerns are mitigated with
timestamps, perhaps additional communication with a TA is needed.

Verification only requires getting mpsk from the PKG used for signing.
This public key can also potentially be kept offline.
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Chapter 8

Signature from TTP

Any scheme for IRMAseal using Identity-Based Signatures requires getting a
secret from a PKG in order to sign, which also implies that a PKG can forge
signatures. Furthermore, the possibility of keeping and reusing this key for
some time leads to some security issues, weakening the non-repudiation that
is offered.

In this chapter, we present an alternative, in which signatures cannot be
created by users themselves, but are instead requested from a TTP. This
has the advantage that users can never claim to have lost their signing keys,
providing good guarantees of non-repudiation.

Simply put, the scheme works as follows: the user requests a signature
from the TTP on some message (hash), discloses some attributes to the TTP,
and gets a signature. The TTP can use any underlying public key signature
scheme for this. Verification is simply verification of the underlying signature
using a public key of the TTP.

While this scheme can be instantiated with any public key signature
scheme, we also show in Appendix A that it can use a signature scheme
based on the IBKEM already used by IRMAseal’s encryption PKGs. This
means that a PKG could use the same master keypair for both encryption
and to serve as a TTP for signatures.

8.1 Scheme

Using some public key signature scheme, again defined by the algorithms
PKSignsk(M) and PKVerifypk(S,M), where (pk, sk) is a keypair generated
by PKKeyGen(), we define a scheme with signatures from a TTP as follows:

A user can request a signature on a hash h(M∥hs∥r) (with hs and r
as in chapter 4 and subsection 5.2.1) of a message M on behalf of an iden-
tity id (which can be, but needn’t be limited to, a conjunction of IRMA
attributes).1 The TTP then asks the user to disclose attributes satisfy-
ing id and generates the signature S = PKSignsk

(
h(M∥hs∥r)∥id

)
. Here

sk is a secret key of the TTP, which could be equal to the MSK of a
PKG used for encryption if the signature scheme from Appendix A is used,

1hs could also be sent to the TTP separately instead of hashed again in h(M∥hs∥r)
but there is no advantage in doing so, so we opt for giving a TTP as little information as
possible.
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or a separate secret key for signatures. The TTP then sends the signa-
ture S to the user. Verification consists of retrieving pk (the MPK or a
separate public key for signatures) from the TTP, and verifying S using
PKVerifypk

(
S, h(M∥hs∥r)∥id

)
.

Figures 8.1 and 8.2 show the signing and verification procedures respec-
tively. This scheme can easily be extended to include a timestamp of the
time of signing: such a timestamp can be included in id, with the signing
TTP acting as a witness. Again, the step for getting the signing TTP’s
pk uses some mechanism to get a public key and determine whether the
corresponding TTP is trustworthy.

Figure 8.1: Signing and encrypting a message with a signature from a TTP.
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Figure 8.2: Decrypting and verifying a message signed with a signature from
a TTP.

8.2 Analysis

As in the previous chapter, by entrusting a third party with authentication,
this scheme makes it possible to use any kind of identity, at the cost of
having to trust an additional party. The difficulty of determining which
TTPs to trust remains unchanged. However, by not letting signing keys
end up in the hands of users—at the cost of always requiring contacting a
singing TTP in order to sign, rather than optionally reusing a ussk—this
scheme directly provides non-repudiation2. Additionally, as a user needs to
authenticate at the time of signing any message, a signature clearly indicates
that the signer’s attributes had neither expired nor been revoked at the time
of signing. This is not straightforward in the IBS variant, where adding
timestamps can only provide guarantees about the expiry of attributes, not
about revocation.

From a technical perspective, the current approach also has some ad-
vantages. The scheme can be implemented with just a single and common
public key signature scheme. There is no need to maintain local IRMA sig-
nature verification or an IBS. Signing TTPs will need to be developed, but

2given IRMA’s assumption that users do not leak their own IRMA credentials
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those can be quite simple, and it should be easy to make them stateless,
except for having a keypair.

There are some concerns about the scalability of this solution, because
every signature needs to be made by a TTP, whereas using an IBS, theo-
retically, many signatures can be made after a single session with a PKG.
However, IRMAseal’s scalability should not rely on the long-term reuse of
signing keys for a number of reasons:

• Attributes can expire, so the potential lifetime of a signing key is
limited anyway. Additionally, the ‘older’ a signing key is, the longer
the timespan during which an attribute used to obtain it could have
been revoked.

• Users may wish to sign different messages with many different combi-
nations of attributes. Each signing identity requires a separate disclo-
sure.

• Reused signing keys (for the IBS approach, this depends on the IBS
that is used) can be linkable. This can be a privacy risk when keys
are reused, which does not occur when keys are only used once or no
signing keys are given to the user.

Furthermore, the scalability of signature creation will be less of a prob-
lem than that of the PKGs needed for decryption. For each IRMAseal
decryption, a user needs to authenticate with a PKG already3. Under nor-
mal circumstances, the number of signatures created will always be lower
than the number of decryptions, because each signed message is intended to
be decrypted by at least one recipient.

Finally, the signing TTPs in this approach can be scaled quite well. The
computational cost of creating a standard signature is negligible compared
to the extraction of a USK for IBE, and a large number of separate master
keypairs can be used for signing, and hence to scale signing TTPs over
many separate machines without them having to share keys. This can be
accomplished for example by setting up the trust in signing TTPs with
certificate chains4: a user can trust a few root certificates, and a message
can include a chain of certificates from a signing TTP to a root certificate.
As a practical example, let’s assume that the Dutch government wishes to
provide signing TTPs to all dutch people. The Dutch government can then
create a root keypair and publish its public key. Then, any number of TTPs
can be hosted by the government by signing the separate public keys of each
TTP, using the root keypair, and adding this signature to all of the signed
messages. A verifying user then just needs to follow the chain of certificates
and check if they trust the root.

3Technically, a USK may be valid for multiple messages, but in the current implemen-
tation of IRMAseal, a timestamp included in the identities for decryption limits this

4The same is possible for a certification-based IBS.
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Chapter 9

Comparison

So far, four signature schemes have been proposed and analyzed in terms of
security, privacy, and technical properties. We now proceed to compare the
properties of these schemes, first considering security and privacy aspects,
and then technical properties.

9.1 Security and Privacy

The four schemes all differ in the trust model behind the authenticity and
integrity they offer, and in the parties that get to see the IRMA attributes
of the signer. All four schemes succeed in fully protecting the confidentiality
of the plaintext. Table 9.1 summarizes the parties that need to be trusted,
as well as some other relevant notes, for each variant. IRMA is inherently
a trusted party for authenticity and integrity in each scheme. Here, IRMA
refers to a number of parts of the IRMA ecosystem: the issuers of the
relevant attributes, the scheme manager (unless a fixed version of the scheme
information is provided manually), and, in the case of IRMA signatures, the
timestamp authority used for the signatures. Additionally, the IRMAseal
client itself is assumed to be trusted. In section 11.3 we further discuss this
assumption.

Likewise, the schemes differ in the degree to which they offer non-repu-
diation. In this regard, two categories can be distinguished:

• IRMA signatures on a public key and IBS, where it’s plausible that key
material can be leaked and used to create forgeries, and hence where
a signer can claim they did not create a signature. In these cases,
users create or get a signing key, that they can store to create multiple
signatures for a longer period of time. Hence, it’s possible to use such
keys to create forgeries if they are leaked, and repudiation is possible
by leaking a key on purpose.1 Additionally, these options result in
linkability of messages signed with the same signing keys unless an
unlinkable IBS scheme is used in the IBS approach.

1While some techniques may help for non-repudiation, the common technique of
trusted-timestamping and revocation is not practical for IRMAseal: revocation requires
IRMAseal clients to keep track of the used signing keys, and that verifiers check some-
where whether a signature used a key that has been revoked, eliminating possibilities for
offline verification.
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Table 9.1: Parties that need to be trusted for authenticity (and integrity).

Scheme Property Trusted
parties

Notes

IRMA ABS
on message

Authenticity
& Integrity

IRMA1,
IRMA servers

The IRMA servers used to create signatures can try
tricking users into signing the wrong messages.

Sender
identity conf.

IRMA servers

IRMA ABS
on public key

Authenticity
& Integrity

IRMA1,
IRMA servers

The IRMA servers used to create signatures can try
tricking users into signing the wrong public key.
Private keys can leak. If a signing key is used after
the creation of an IRMA signature on it, the validity
of the attributes is not certain.

Sender
identity conf.

IRMA servers Signatures from the same private key are linkable.

Identity-
Based

Signature

Authenticity
& Integrity

IRMA1,
signing PKG,
signing PKG’s
IRMA server

Private keys can leak. If a signing key is used after
the creation of an IRMA signature on it, the validity
of the attributes is not certain. Recipients must be
careful which signing PKGs they trust.

Sender
identity conf.

signing PKG,
signing PKG’s
IRMA server

Attributes must be disclosed to a signing PKG that is
trusted by the recipients.

Signature
from TTP

Authenticity
& Integrity

IRMA1,
signing TTP,
signing TTP’s
IRMA server

Recipients must be careful which signing TTPs they
trust.

Sender
identity conf.

signing TTP,
signing TTP’s
IRMA server

Attributes must be disclosed to a signing TTP that is
trusted by the recipients.

1The IRMA infrastructure (the relevant issuers and scheme manager) inherently needs to be trusted for all options.

• IRMA signatures on a message and signatures from a TTP, where users
do not get key material that can be reused to create more signatures.2

Since it is not plausible that keys are leaked in these approaches, they
provide non-repudiation in a much stronger sense than the other two
approaches.

A similar division can be made based on the parties that need to be

2Leaking the credentials in the IRMA app itself is possible, but this is inherent to
IRMA. Furthermore, leaking IRMA credentials gives others full access to authenticate
and sign with all attributes of the leaked credential, so it’s unattractive to leak them just
to repudiate a signature. Hence, in IRMA it’s usually assumed that users do not do this.
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trusted for authenticity and integrity. There are the IRMA signature-based
approaches that only require trusting IRMA itself (the relevant issuers,
scheme manager and TA, and to some degree an IRMA server used while
signing), and the two schemes that use additional trusted parties. The lat-
ter requires a recipient to trust a signing TTP or PKG on top of the IRMA
ecosystem. In a federated setting, this means that some mechanism for
distributing trust in the signing TTPs or PKGs needs to be in place.

This split coincides with the possibility to use something else than a
conjunction of IRMA attributes as signing identity, because the additional
trusted party can translate disclosed attributes into any kind of identity.
Likewise, the approaches with additional TTPs can also be applied to IBE
systems that do not use IRMA to authenticate identities; they can actually
be instantiated with any other authentication system.

In summary, the IRMA signature-based approaches require fewer trusted
parties3, and hence don’t need a mechanism for distributing trust in signing
TTPs or PKGs. However, they are tightly coupled to IRMA and less flexible
in terms of the signing identity. The approaches that offer to sign multiple
messages after using IRMA only once, do so at the cost of non-repudiation,
and possibly at the cost of unlinkability.

9.2 Technical

Other differences exist in technical aspects. The solutions require different
software to be implemented, which matters for the ease of implementation
and maintainability, as well as the security risks associated with complexity
and dependencies. The things that need to be implemented and maintained
for each solution are indicated in Table 9.2. This table also shows an es-
timation of the signature size that needs to be sent along with a message
(assuming a simple signing identity and a single recipient). Finally, the table
also indicates whether a way to distribute trust in third parties is required
in a federated setting. Such a mechanism might depend on the software
consuming IRMAseal, but is still a significant aspect that would need to be
implemented securely, and could be quite complex.

From the implementation requirements, we can see that the first and the
last approach are simpler than the other two, because they use either IRMA
signatures or standard signatures directly, and no other cryptography. This
is directly related to the inability to sign multiple messages at once, and the
offered non-repudiation: not giving the IRMAseal client secret key material
makes the client simple, prevents leaking the key material, but also makes
signing multiple messages impossible.

It is hard to compare the IRMA signature-based variants with the oth-
ers because they require totally different components to be developed and

3However, the IRMA server used to create signatures is in a position that might be
abused if it can trick users into signing a wrong hash.
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Table 9.2: Implementation requirements

Implementation requirements Properties
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IRMA ABS on message × × × Yes 3 KB

IRMA ABS on public key × × × × Yes Yes 3 KB

Identity-Based Signature × ?1 ?1 × Yes Yes ?1

Signature from TTP × × × Yes < 1 KB

1 Depends on the IBS scheme.
2 In a federated setting.

available. The IRMA signature-based versions can let the cryptography be
handled by existing software but do require an IRMA server to be running,
as well as maintaining software for local IRMA signature verification. On
the other hand, the other two approaches require implementing a TTP or
PKG for signing, and hence, if used in a federated fashion, they require a
mechanism for determining trust in signing TTPs or PKGs. This mechanism
for trust is a challenge in itself.

Some other properties of the solutions are also worth mentioning. First,
the IRMA signature-based solutions are of course tightly coupled to IRMA.
Apart from limiting the flexibility of signing identities (i.e. only a conjunc-
tion of IRMA attributes is supported), this also means that they are not
applicable to systems similar to IRMAseal that use some other identifica-
tion scheme.

Second, the IRMA signatures appear to be quite large. It is interesting
to see that using Signature from TTP much smaller signatures can be made
than with IRMA signatures. Verification of a signature from a TTP is also
much simpler (so probably faster) than that of IRMA signatures.

Finally, the schemes differ in the information and parties that need to
be available for signing and verification. For signing, the difference is simple
and not very important: each version needs the IRMA scheme information
(that is normally distributed by a scheme manager, but can be provided
offline) to be available, the IRMA signature versions also need an IRMA
server and a specific timestamp authority to be online, and the other two
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versions need a signing PKG/TTP to be online. On a side note, using
IRMA signature on public key or IBS, signatures can still be made despite
the IRMA infrastructure and/or signing PKG being unavailable if the user
already has a signing key for the right identity.

For verification, all 4 proposed schemes support verification as long as
some information is available: for the IRMA signature-based schemes, ver-
ification can be done as long as the IRMA scheme information is available.
This is a collection of files that can be stored offline. Similarly, IBS and Sig-
nature from TTP only require the public keys of the trusted PKGs or TTPs
to be available. These, too, can in principle be stored offline, depending on
the mechanism for the distribution of trust4.

4For example, a certificate chain can be used by including a chain of certificates on
the public keys of a signing PKG or TTP in each signed message. The clients then only
need to know a single root public key to verify signatures from a great number of different
PKGs or TTPs
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Chapter 10

Related Work

In 1984, Shamir presented the concept of identity-based cryptography. He
both presented a functional IBS scheme and proposed the idea of IBE, posing
an open question for IBE implementations. While several IBE schemes have
been proposed in the following years, the first practical scheme was presented
in 2001 by Boneh and Franklin [4]. Since then, many improved schemes have
been proposed, with increasing security and performance.

Originally, the use of IBE was to take a single identifying string as
identity, such as an email address. Nonetheless, it wasn’t long before it
became clear that additional information can be embedded within an iden-
tity. For instance, an email address could be combined with a date (e.g.
"bob@example.com|2030-01-01") to send messages ‘into the future’, with a
PKG only supplying the decryption keys when the included date has passed.
Sahai andWaters [27] first generalized this idea, coining the term “Attribute-
Based Encryption” (ABE), explicitly using a set of attributes with some
access policy as identity. Along with the term ABE, they proposed an in-
stance of ABE, called “Fuzzy Identity-Based Encryption”, where recipients
need to have approximately the right attributes. That is, recipients need to
have most of the specified attributes, but needn’t have all. This approach
is aimed mainly at biometric identities, where each measurement is likely to
differ somewhat.

IBE has been used in practice for email encryption, for instance in
FortiMail IBE 1 and Voltage SecureMail2. Other proposed applications of
identity-based cryptography include a repudiable alternative to DKIM (Do-
mainKeys Identified Mail) [31] and a network layer security protocol [29].

PostGuard, which was originally also called IRMAseal (the email-specific
application using IRMAseal has been renamed) combines email encryption
based on IBE, with the attribute-based credential system IRMA. While
IRMAseal and PostGuard have not been proposed in a published work at
the time of writing, several Bachelor’s theses [16, 32] at Radboud University
investigated usability aspects of PostGuard. A usability study is currently
being performed into signatures in PostGuard, but at the time of writing,
no technical research has been done into signatures in IRMAseal.

Another relevant work proposing an encryption system for email using

1https://www.fortinet.com/products/email-security
2https://www.microfocus.com/en-us/cyberres/data-privacy-protection/

secure-mail
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IBE is [2] by Adida et al. This work is based on an earlier publication [1]
from mostly the same authors, which proposes a signature scheme for email,
using identity-based signatures with DNS as a means to distribute the mas-
ter public keys per domain. Such a technique can also be considered to
distribute master public keys for IRMAseal encryption, as well as public
keys of trusted signing TTPs or PKGs for IRMAseal signatures in the IBS
and Signature from TTP approaches we investigate in this thesis.

The literature around identity-based signatures is summarized in [20],
describing categories of IBS schemes. Since IBS can be achieved with a
simple certification approach, most literature about it aims at improved
performance, not better security properties.

The two most known protocols used for signing messages, similar to what
we try to achieve in this paper, are S/MIME and OpenPGP [28, 8]. Like
IRMAseal, OpenPGP can be used apart from email. These end-to-end en-
cryption and signature standards have in common that they need some way
to store private keys, and distribute public keys. For OpenPGP, distribution
of keys is usually done through a web of trust with some support from public
key servers. S/MIME takes a more transparant approach, using certificate
authorities. Related is DKIM (DomainKeys Identified Mail) [11], a signature
scheme for signing of emails (usually) by the outgoing email server (typically
not by the end user), which—like [1]—uses DNS to distribute public keys
per server.

In our study, we find that unless an approach using IRMA signatures
(with IRMA’s own public key infrastructure used to distribute trust) is
implemented, IRMAseal will also require some mechanism to distribute trust
(and public keys of signing PKGs or TTPs).

[23] describes the problem of needing trust in some third party for
signatures. The view that it’s imperfect to trust any single third party
(such as a certificate authority but also a PKG) is taken a bit further by
Landrock and Pedersen in [22]. They point out the channel between a user
and the ‘signature processor’ as a vulnerable area, introducing the What
You See Is What You Sign (WYSIWYS) property. This property requires
certainty that the user (not just a piece of software running on the user’s
device) is aware of what exactly is being signed. From this point of view,
it becomes explicit that the software implementing S/MIME and OpenPGP
needs to be trusted.

Taking the same perspective on DKIM, where typically the outgoing
mail server is the signature processor, we can see that the channel between
a user and the signature processor is significantly longer. Likewise, this
perspective offers some useful insights for our work on IRMAseal, which we
discuss further in section 11.3.
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Chapter 11

Discussion

In this chapter, we first present our main findings in section 11.1 and 11.2.
We then continue discussing related topics, limitations, and suggestions in
section 11.3 through 11.8. Finally, we conclude in section 11.9.

11.1 IRMA signatures or TTPs

In this thesis, we have investigated 4 different approaches to provide authen-
ticity, integrity and non-repudiation in IRMAseal.

Comparing the solutions, we have seen that two categories can be dis-
tinguished:

• The options based on IRMA signatures, that are strictly bound to
using IRMA (and conjunctions of IRMA attributes) for authentication,
but do not require trust in an additional third party1.

• The options that rely on additional third parties (signing PKGs or
signing TTPs). These variants are not inherently limited to IRMA,
and hence support a wider range of (potentially more privacy-friendly)
identities, and can be seen as more general approaches, applicable
outside of IRMAseal. However, for these solutions, it is crucial that a
good mechanism for the distribution of trust is implemented.

We have not found a decisive argument to prefer one of these categories
over the other. A choice between the two will mainly require weighing the
importance of using a generic, flexible solution (i.e. not strictly bound to
IRMA) against the difficulties of finding a good way to distribute trust.

At first glance, requiring trust in another third party seems problematic.
Nevertheless, [23] note that this problem is actually present in nearly all
signature and authentication protocols. Many protocols are based on trust in
one or more Certificate Authorities (CAs), which are essentially the same as
signing PKGs. Even the schemes based on IRMA signatures similarly require
trust in a number of third parties (most notably the IRMA issuers). Even
though trusting third parties for confidentiality is often seen as a problem
(it is one of the most important downsides of IRMAseal as a whole), it is
often accepted for authenticity.

1Trust is still needed in the IRMA ecosystem and to some degree in an IRMA server
by the signer’s choice used when creating signatures.
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11.2 Signing keys

Perpendicular to the categorization above, an argument can be made against
the two solutions (IRMA signature on public key and Identity-Based Signa-
tures) that allow signing multiple messages after a single IRMA session.
Giving the IRMAseal client access to key material that can be used to cre-
ate signatures opens up a possibility for that key material to leak, both
intentionally by the user (thus non-repudiation is inevitably lost, at least
to some degree) and unintentionally, e.g. through side-channels or compro-
mised machines (which affects the trust that recipients can have in a signed
message). These are issues that are conveniently avoided by the other two
variants. The possibility that key material can leak also occurs in alter-
natives to IRMAseal signatures such as OpenPGP or S/MIME. However,
OpenPGP at least offers an effective system for revocation. This is not prac-
tical in IRMAseal (because revocation is only possible as long as private keys
are available to the user), which makes leaking keys a more serious problem
for IRMAseal than it is for OpenPGP.

11.3 WYSIWYS

In all four discussed schemes, the IRMAseal client must be trusted, because
the client can make signatures on behalf of the user, without their per-
mission. This violates the WYSIWYS (What You See Is What You Sign)
principle [22] if we don’t consider the IRMAseal client fully trusted.

This is inherently the case if the IRMAseal client gets access to signing
keys: it can then reuse the keys at will, without any user interaction. How-
ever, in the two schemes that do not expose keys to the IRMAseal client,
the client can still trick users into signing a wrong message:

• In IRMA signature on message, the user creates a signature on a hash,
which is necessary in order to not expose the plaintext to the IRMA
server that is used to create the signature through. While the user
can compare the hash displayed by the IRMA app with that shown by
the IRMAseal client to prevent the intermediary IRMA server from
modifying it, the user cannot be sure that the IRMAseal client is
actually presenting the hash that the user intends to sign.

• In Signature from TTP, the user does not communicate directly with
the TTP: the IRMAseal client asks the TTP to sign a message, and
then presents the user with a QR code or URL for an IRMA disclosure
session. The user then performs this disclosure, but cannot verify what
message (hash) the IRMAseal client presented to the TTP. Even if the
TTP can show the hash that is to be signed directly to the user, this
is not legible by the user, because it is a hash and not the plaintext.
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Having to trust the client—while not surprising, and also required in
alternatives to IRMAseal signatures such as OpenPGP or S/MIME—is a
security disadvantage that would be nice to avoid. This security issue is a
limitation of all 4 proposed schemes.

11.4 IRMA signature creation without a trusted
intermediary

One of the main challenges and security risks in the IRMA signature-based
schemes—and the reason why in IRMA signature on message the IRMAseal
client could trick users into signing wrong messages—is that for IRMA sig-
nature creation an IRMA server is needed to communicate between the
IRMAseal client and the IRMA app. This IRMA server can read and mod-
ify all of the traffic between the parties, even though it essentially has no
function other than to relay messages. If no fully trusted IRMA server exists
(it’s not always feasible to run one yourself, especially from within a browser
environment), it hence becomes necessary to hide the plaintext to be signed
from this IRMA server, as done in subsection 5.2.1. Even so, the IRMA
server gets to observe the used attributes and can modify traffic, potentially
tricking the user into signing a different message than the one they intended
to sign.

If a secure channel could be established between the IRMAseal client and
IRMA app, the measures to hide the plaintext from the IRMA server would
not be necessary, which in turn allows us to let the IRMA app present a
legible message to the user that is signing. This benefits the user experience
and better ensures that users are aware of what they are signing (even if a
malicious IRMAseal client tries to trick them into signing something else).

The possibility for IRMA to support creating signatures without inter-
acting with an IRMA server, or by establishing a secure channel through (not
legible/modifiable by) an IRMA server, would significantly improve the se-
curity and privacy offered by the IRMA signature-based schemes. Apart
from signature schemes for IRMAseal, this possibility seems equally vital
for many other applications of IRMA signatures in general. Hence, further
research into this possibility seems valuable to us.

11.5 IRMA signature creation on illegible data

An issue related to what is described above is the user experience of cre-
ating IRMA signatures on a hash. The steps to safeguard the plaintext
confidentiality in subsection 5.2.1 require that we sign a hash instead of a
human-readable string. Because the IRMA app can currently only sign and
display strings, the same problem of having to display a hash also occurs in
many other applications of IRMA signatures, such as signing images, PDFs,
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or other binary files.
While signing (and showing to the user) a hash technically works, it is

not ideal for the user experience, nor for security: looking at a hash, the
user cannot be sure what they are signing. While users can be instructed
to compare a hash in the IRMA app with one shown by e.g. the IRMAseal
client, this is not user-friendly, and only works to prevent an IRMA server
from modifying the message that is signed. They cannot know with certainty
that whatever software is presenting a hash to compare is not itself tricking
the users.

Hence, signing a hash (in the IRMA signature-based schemes for IR-
MAseal but also in other applications of IRMA signatures) actually violates
the WYSIWYS principle: the requesting software (e.g. IRMAseal client)
is in a position to change the message that is signed without the user’s
knowledge.

Even though we don’t see a straightforward solution to avoid this issue
for all kinds of illegible data, the IRMA app can probably be modified to
allow displaying at least some common types of documents, such as images
and PDFs.

11.6 Signing multiple existing messages at once

In section 11.2 we have seen that there are some good arguments against the
possibility of signing multiple messages after a single IRMA session: giving
the IRMAseal client keys that can be used later comes with security issues
related to both intentional and unintentional leaking of keys. However, there
is a use case in which these arguments do not apply: when all messages to
be signed exist before the IRMA session takes place. That is, a single IRMA
session could be used to sign multiple existing messages, without enabling
the later creation of signatures on messages that did not exist at the time
of the IRMA session. In this case, because there is no key material that can
be reused later, the problems with the leaking of keys do not occur.

While we have not investigated an option that allows signing multiple
existing messages only in this thesis, we expect that rather simple extensions
are possible to both the IRMA signature on message2 and Signature from
TTP3 approaches, to support signing multiple messages at once without the
possibility to use the same key material later.

We also imagine modifications of IRMA signature on public key and
Identity-Based Signatures to be possible, using a timestamp at the time of

2For instance, a single IRMA signature could be made on multiple hashes of messages
at once, and used as a signature on each of those messages (although this would leak
information about the number of messages signed at once to the recipients).

3A TTP can simply return multiple signatures at once after a single disclosure satisfying
the identities used for all of the messages. Here, it is not even required that all of the
messages use the same attributes because a TTP can include only a subset of the disclosed
attributes in the signature for each message.
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creation in the IRMA signature or identity, and requiring trusted timestamps
from before that time of creation to exist on every message to be signed.
Such a timestamp would then ensure that the key material is only usable
on messages that existed before the IRMA session.

Exploring these extensions in detail is left for future work.

11.7 Repudiability

Considering only schemes aiming to offer non-repudiation, we have not in-
vestigated options that provide repudiability4, which, as discussed by [1],
can be more privacy-friendly. This may be an interesting area for further
research.

11.8 Alternative solutions to the naive sign-and-
encrypt problem

In chapter 4 we have presented a technique to solve the naive sign-and-
encrypt problem, by binding a signature to the identities of recipients. How-
ever, as pointed out in section 4.1, this technique may not be the only or
best way to solve the problem. A promising alternative is the sign-encrypt-
sign technique proposed in section 5.2 of [13]. Working this out in detail is
left for future work.

11.9 Conclusions

In this thesis we have defined and analyzed four signature schemes for IR-
MAseal, aiming to provide attribute-based signatures for authenticity, in-
tegrity, and non-repudiation of messages encrypted with IRMAseal. Fur-
thermore, we have proposed a technique to prevent the naive sign-and-
encrypt problem from [13] in all of these schemes. Our main findings are:

1. that the schemes that are based on IRMA signatures do not require
additional trusted parties, whereas the others need PKGs or other
TTPs with some mechanism to distribute trust (11.1)

2. that schemes that give the IRMAseal client access to key material—
allowing it to create multiple signatures later, without a separate
IRMA session—come with security limitations (mainly for non-repu-
diation), directly because of the access to key material (11.2).

We have found no decisive argument between the IRMA signature on mes-
sage and Signature from TTP schemes.

4The ability to deny having signed a message. This can co-exist with authenticity if
recipients are convinced of, but cannot publicly prove, who created a signature.
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Moreover, we identified some limitations with the creation of IRMA’s
attribute-based signatures, and more options that could be explored for
IRMAseal signatures which we have not yet investigated in detail. These
limitations and aspects for future work are:

1. All of our four options require trust in the IRMAseal client (11.3). A
scheme that does not assume this is left for future work.

2. IRMA signatures need to be created via an IRMA server, which can
read the message that is signed (11.4). A modification to IRMA to
eliminate this intermediary is an interesting avenue for future work.

3. IRMA signatures can only be made on strings, leading to a poor user
experience and reduced security when signing data that is not human-
readable (11.5).

4. We expect that it is possible to extend the IRMA signature on mes-
sage and Signature from TTP schemes to allow signing multiple ex-
isting messages at once, without downsides we found for our schemes
that allow signing multiple messages later (11.6). Investigating this
possibility in detail is left for future work.

5. The four proposed schemes are aimed at providing non-repudiation.
We have not investigated options that provide repudiability, which
may be an interesting area for further research (11.7).

6. The sign-encrypt-sign technique from [13] to solve the naive sign-and-
encrypt problem may be a better alternative to the technique we have
proposed (11.8). Working this out in detail is left for future work.
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Appendix A

Signatures from IBKEM

An observation attributed to Moni Naor by Boneh and Franklin (Section
6 in [4]) is that any IBE scheme can be transformed into a public-key
signature scheme, where a signature on a message M is the user secret
key for identity M (uskM or Extractmsk(M)). Verification of a signature
S on M is done by generating a random challenge c, and verifying that
DecryptS

(
Encryptmpk,M (c)

)
= c. This is effectively a public key signature

scheme where the public key is the master public key mpk and the private
key is the master secret key msk.

We expect without a formal proof that the transformation from an IBE
to a signature scheme can also be applied to an IBKEM as follows:

Just as in the original transformation, we sign using an IBKEM with
S = Extractmsk(M). Instead of verifying by encrypting and decrypting a
challenge, we can encapsulate a shared secret, yielding as challenge c a ci-
phertext that can be decrypted with the signature, and as expected response
r the shared secret that has been encapsulated: c, r = Encapsmpk(M). We
then decapsulate the challenge with the signature and verify that the result
is correct: DecapsS(c) = r.

Intuitively, it follows from the idea that decapsulation can only be done
using the correct secret key that the above verification succeeds if and only
if the signature is indeed the user secret key for the identity M .
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