
Bachelor’s Thesis in Computing Science

Radboud University Nijmegen

Differential Cryptanalysis of the SIMON block cipher

Author:
Els de Haan
s1012212

First supervisor/assessor:
Prof. dr. ir. J.J.C. Daemen

Second assessor:
Dr. B.J.M. Mennink

Second supervisor:
MSc. J.J.P. Schoone

June 24, 2023

Abstract

In this thesis we apply differential cryptanalysis on one version of the SIMON
block cipher family, namely SIMON32/64. We found a distinguishing attack
that can distinguish a ten round version of SIMON32/64 from a random
oracle, and conclude that SIMON32/64 reduced to (up to) ten rounds is
cryptographically broken.

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Notational conventions and definitions 4

2.1.1 The finite field of two elements 4
2.1.2 The vector space Fn

2 5
2.1.3 Bit strings in hexadecimal representation 6
2.1.4 Concatenation of bit strings 6
2.1.5 Bitwise rotation . 6
2.1.6 Linear and affine maps 7
2.1.7 Hamming weight of bitstring 7

2.2 Block ciphers . 7
2.3 Feistel ciphers . 8
2.4 SIMON . 10

3 Security of a block cipher 13
3.1 Security claim . 13
3.2 Exhaustive key search . 13
3.3 Distinguishers . 14
3.4 Security strength . 15

4 Differential cryptanalysis 17
4.1 Linear functions . 17
4.2 The AND-function . 18
4.3 Constant addition functions 19
4.4 Differential trail . 20

5 Differential distinguisher on SIMON 21
5.1 Assuming independent ANDs 21
5.2 Taking dependency of ANDs into account 25

6 Related Work 29

1

7 Conclusions 30
7.1 Future work . 30

2

Chapter 1

Introduction

Cryptography is, among other things, about designing and using algorithms
that can be used to prevent information from being accessible without know-
ing a certain key. Encryption is the conversion of information (called plain-
text) to a, for third parties, inaccessible form (called ciphertext). Decryption
is the the process of converting the ciphertext back to the plaintext, with
the use of the key.

There are two ways of using using a key for a cipher, namely symmetric (key)
cryptography and public key cryptography. In this thesis we only focus on
the first category of ciphers and don’t pay attention to the second category.
One way of symmetric encryption is by using a block cipher (Paragraph 2.2).
Feistel ciphers (Paragraph 2.3) are a special kind of block ciphers. SIMON
is a Feistel cipher that was invented in 2013 by Ray Beaulieu et al. [4].

Cryptanalysis is the study of getting access to ciphertext without knowing
the cryptographic key. With the help of a distinguisher (Paragraph 3.3), the
security strength (Paragraph 3.4) of an cipher can be determined. Differ-
ential cryptanalysis and linear cryptanalysis are two types of cryptanalysis
that are both used on block ciphers.

The block cipher family SIMON is a lightweigth blockcipher, suitable for IoT
devices. It was released in 2013 ([4]) and the block cipher family consists
of ten variants. In this thesis we use differential cryptanalysis on one of the
variants of SIMON, namely SIMON32/64. We find a distinguisher on ten
rounds of SIMON32/64 (Paragraph 5.2).

3

Chapter 2

Preliminaries

In this chapter, we introduce several important concepts. Paragraph 2.1
contains an explanation of the used notations in this thesis. In Paragraph
2.2 we explain the concept of a block cipher. Subsequently, in Paragraph 2.3,
we address a special kind of block cipher, namely a Feistel cipher. Finally,
in Paragraph 2.4, we discuss one specific family of Feistel ciphers, namely
SIMON.

2.1 Notational conventions and definitions

This paragraph introduces the notational conventions and mathematical def-
initions that are used throughout this thesis.

2.1.1 The finite field of two elements

A field is defined as set F with an additive operation (⊕) and a multiplicative
operation (⊗) that satisfy the following properties:

1. For all a, b, c ∈ F, it holds that a⊕(b⊕c) = (a⊕b)⊕c and a⊗(b⊗c) =
(a⊗ b)⊗ c. (⊕ and ⊗ are associative.)

2. For all a, b ∈ F, it holds that a⊕ b = b⊕ a and a⊗ b = b⊗ a. (⊕ and
⊗ are commutative.)

3. For all a, b, c ∈ F, it holds that a ⊗ (b ⊕ c) = a ⊗ b ⊕ a ⊗ c . (Left-
distributivity of ⊗ over ⊕.)

4. There exists an element 0 ∈ F, such that for all a ∈ F, it holds that
a⊕ 0 = a. (There exists an additive identity.)

5. There exists an element 1 ∈ F, such that for all a ∈ F, it holds that
a⊗ 1 = a. (There exists a multiplicative identity.)

4

6. For each a ∈ F, there exists a b ∈ F such that a⊕ b = 0. (There exists
an additive inverse.)

7. For each a ∈ F, that is not 0, there exists a b ∈ F such that a⊗ b = 1.
(There exists a multiplicative inverse.)

This definition is equivalent to a set S, where S with the operation ⊕ is a
commutative group (properties 1, 2, 4, and 6 hold for ⊕) and S\{0} with
the operation ⊗ is a commutative group (properties 1, 2, 5, and 7 hold for
⊗) and where there is distributivity (property 3) of ⊗ over ⊕.

The finite field F2 is the field that contains the lowest possible number of
elements (two), represented as 0 and 1. These elements are known as “bits”.
In the field F2, all operations are modulo 2. The additive operation is the
logical operator XOR (exclusive OR) and it is represented by the symbol
⊕:

⊕ 0 1

0 0 1

1 1 0

The multiplicative operation, also called multiplication, is the logical oper-
ator AND and it is represented by the symbol ⊗:

⊗ 0 1

0 0 0

1 0 1

2.1.2 The vector space Fn
2

Given the field F2 and an integer n > 0, Fn
2 is a vector space under vector

addition (⊕) and scalar multiplication (·), where the scalars are elements
of F2. This means that for all u, v, w ∈ Fn

2 and for all a, b ∈ F2 it holds
that:

1. u⊕ (v ⊕ w) = (u⊕ v)⊕ w (associativity of vector addition)

2. u⊕ v = v ⊕ u (commutativity of vector addition)

3. There exists a 0 ∈ Fn
2 , such that v⊕ 0 = v (additive identity)

4. For every v ∈ Fn
2 there exists an −v such that v ⊕ (−v) = 0 (additive

inverse)

5. a · (b · v) = (a⊗ b) · v (compatibility of scalar multiplication and field
multiplication)

6. There exists a 1 ∈ F2 such that 1 · v = v (multiplicative identity)

5

7. a · (u ⊕ v) = a · u ⊕ a · v (distributivity of scalar multiplication over
vector addition)

8. (a⊕ b) ·v = a ·v⊕ b ·v (distributivity of scalar multiplication over field
addition)

A vector of three elements is denoted as (x, y, z). Take for example the
vectors v = (0, 0, 1, 1) and w = (0, 1, 0, 1), that are both elements of F4

2, the
vector addition

v ⊕ w = (0, 0, 1, 1)⊕ (0, 1, 0, 1) = (0, 1, 1, 0)

is also an element of F4
2. Given a vector u = (0, 1) ∈ F2

2 and a scalar
s = 1 ∈ F2, the scalar multiplication s · u = 1 · (0, 1) = (0, 1) also is an
element of F2

2. A vector (x1, x2, x3, . . . , xn) in Fn
2 can also be represented as

a string x1x2x3 . . . xn. We use both notations. We may call vector addition
XOR’ing. We use the AND operation (⊗) on bit vectors, for example:

(0, 0, 1, 1)⊗ (0, 1, 0, 1) = (0, 0, 0, 1).

2.1.3 Bit strings in hexadecimal representation

A group of four consecutive bits (16 possibilities) can be represented with
one hexadecimal digit: 0-F. 0000, 0001, 0010, . . . , 1111 are represented
respectively by 0, 1, 2, . . . , F. In this thesis, if a string of digits has ‘0x’ in
front of it, it means that it is in hexadecimal representation. For example,
the bit string 00101100 is 0x2C in the hexadecimal represtation.

2.1.4 Concatenation of bit strings

We use the notation ∥ for the concatenation of bit strings, for example:

0011∥0101 = 00110101.

2.1.5 Bitwise rotation

The notation Sk, where k ∈ Z (the set of integers), represents the bitwise
rotation operation, in which the bits of a vector in Fn

2 are rotated k bits to
the left. The total number of bits remains the same. The bits that overflow
on the left side, are added on the right side. The operation Sk : Fn

2 → Fn
2

is defined as Sk(x1, x2, . . . , xn) = (xk+1, xk+2, . . . , xn, x1, x2, . . . , xk). For
example S2(11101100) = 10110011. If k is negative, the bits are −k bits
rotated to the right. For example, S−2(11101100) = 00111011.

6

2.1.6 Linear and affine maps

A map f : Fn
2 → Fn

2 is linear if for all vectors v, w ∈ Fn
2 and for any scalar

c ∈ F2 holds:

• f(v ⊕ w) = f(v)⊕ f(w) (additivity)

• f(c · u) = c · f(u) (homogeneity of degree 1)

An example of a linear map is Sk (Paragraph 2.1.5).

A map f : Fn
2 → Fn

2 is affine if f(v) = L(v)⊕w, where L is a linear map and
w ∈ Fn

2 .

2.1.7 Hamming weight of bitstring

The Hamming weight of a string of bits is defined as the number of 1’s that
it contains.

2.2 Block ciphers

A cipher is a pair of an encryption and a decryption algorithm, where de-
cryption is the inverse of encryption. A block cipher is a symmetric-key
cipher, which means that the same key is used for encryption and decryp-
tion. A block cipher takes as input a block of data of fixed length, called
the block size, and a secret key k. The output is a block of data of the same
length as the input data block.

To encrypt a plaintext that is longer than the block size, we need an algo-
rithm that specifies how to repeatedly apply the block cipher. This is known
as the mode of operation.

In case of encryption in ECB (Electronic Code Book) mode (see Figure 2.1),
the plaintext is divided in blocks of fixed size and the block cipher is applied
on those blocks of plaintext in parallel, always with the same secret key,
resulting in blocks of ciphertext of the same lengths as the plaintext blocks.
Of course, this requires the length of the plaintext to be an exact multiple of
the block size. If this is not the case, bits are padded to the plaintext.

7

Figure 2.1: ECB mode. Figure taken from [13].

To decrypt a block of ciphertext, the block cipher gets as input the block of
ciphertext and the same secret key that was used for its encryption, and the
output is a block of the plaintext. In ECB mode two blocks of plaintext that
are the same, will always result in the same block of ciphertext. To prevent
this direct relationship, to increase the security, other modes of operation
are much more commonly used nowadays.

In most block cipher algorithms, a certain invertible transformation is re-
peatedly applied to a state. The initial state is the input of the block cipher,
the final state is the ciphertext. Each iteration is called a round and con-
tains the same transformation. In each round, this transformation gets as
input a data block and a (sub)key. These subkeys are generated using a
key schedule and the given secret key. The output of the transformation is
the data block that is the input in the next round. These block ciphers are
called ‘iterated block ciphers’. Some notable examples of block ciphers are
RC5 [16], AES [15] and Blowfish [17]. Both RC5 and Blowfish are Feistel
ciphers, which are a specific kind of block ciphers.

2.3 Feistel ciphers

A Feistel cipher [12] is an iterated block cipher where in each round, a certain
fixed function (displayed as the F blocks in Figure 2.2) takes a subkey and
half of the block of data (R0 in the first round), and then the outcome is
XORed with the other half of the data block (L0 in the first round). In the
first round, the block of data is (a part of) the plaintext. In all next rounds,
the block of data consists of the output of the function F of the previous

8

round and half of the data that did not go through the F-function in the
previous round (which is L0 in the second round). In those rounds, F takes
the half of the data that did not go through it previously, and a subkey. The
outcome is XORed with the outcome of the round function of the previous
round. After a certain amount of rounds (depending on the algorithm), it
results in the ciphertext. An advantage of a Feistel cipher is that decryption
is as easy as encryption. It works the same, only the order in which the
subkeys are used is reversed.

Figure 2.2: Structure of a Feistel cipher. Figure taken from [3].

9

2.4 SIMON

Figure 2.3: The round function of SIMON. Figure taken from [4].

One example of Feistel ciphers is the family SIMON. It was designed by
Ray Beaulieu et al. [4] and has been released in 2013. It is a lightweight
block cipher, designed for devices with relatively little computational power
(IoT devices [5]). There are ten variants of SIMON, each with a different
combination of block size/key size, namely: 32/64, 48/72, 48/96, 64/96,
64/128, 96/96, 96/144, 128/128, 128/192, 128/256. A secret key consists of
multiple “key words”. The ten variants differ in the number of rounds and
in the number of key words, as shown in Table 2.1. These key words are the
subkeys for the first rounds and are used to produce subkeys for the next
rounds.

Like in other Feistel ciphers, in each round, the round function of SIMON
takes half of a data block and a subkey and the outcome of the round function
is XORed with the other half of the data block. As can be seen in Figure
2.3, the round function of SIMON contains a bitwise AND function that
combines this data rotated one bit to the left, and the same data rotated
eight bits to the left. The result is subsequently XORed with the data
rotated two bits to the left and with the subkey. Just as in other Feistel

10

ciphers, the result of the round function is XORed with the other half of
the data block, and the result of this is the data input for the next round
function.

Table 2.1: Parameters of SIMON.
block size key size word size number of number of sequence

key words rounds

2n mn n m

32 64 16 4 32 z0

48 72 24 3 36 z0

96 4 36 z1

64 96 32 3 42 z2

128 4 44 z3

96 96 48 2 52 z2

144 3 54 z3

128 128 64 2 68 z2

192 3 69 z3

256 4 72 z4

Next, we give an example of one round SIMON32/64 with the subkey=0x0100
and the data block=0x65656877. The round function takes the subkey and
the first (left) half of the data block:

0110 0101 0110 0101 (0x6565 in binary)

S1(a10) : 1100 1010 1100 1010 (0x6565 rotated)

⊗ S8(a10) : 0110 0101 0110 0101 (0x6565 rotated)

0100 0000 0100 0000 (result of AND)

⊕ S2(a10) : 1001 0101 1001 0101 (0x6565 rotated)

⊕ key : 0000 0001 0000 0000 (first subkey 0x0100)

1101 0100 1101 0101 (result of XOR: 0xD4D5)

The output of this round is the second half of the plaintext, 0x6877, con-
catenated with the result of the round function, 0xD4D5, which results in
0x6877D4D5.

Each round takes a different subkey. As can be seen in Table 2.1, the secret
key consists of 2, 3 or 4 key words. These key words are the subkeys for the
first 2, 3 or 4 rounds respectively. For the other rounds the subkeys are gen-
erated by using the subkeys of earlier rounds. For SIMON with word size n
and m key words, the key schedule for producing those subkeys is as follows:

11

ki+m =

c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)(S−3(ki+1)) if m = 2;

c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)(S−3(ki+2)) if m = 3;

c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)(S−3(ki+3)⊕ ki+1) if m = 4.

Here c stands for a constant 2n − 4 = 0xFF...FC and (zj)i is the i-th bit
of zj , a certain sequence that is predetermined by the authors of SIMON
(see Table 2.1). The I(= S0) stands for the identity function I(x) = x. As
example, let 0x1918 1110 0908 0100 be a secret key for SIMON32/64. The
first subkeys are then k0 = 0x0100, k1 = 0x0908, k2=0x1110 and k3=0x1918.
The next subkey k4 is then calculated like this:

k3: 0001 1001 0001 1000

S−3 0000 0011 0010 0011

⊕ k1: 0000 1001 0000 1000

I : 0000 1010 0010 1011

⊕ S−1I : 1000 0101 0001 0101

1000 1111 0011 1110

⊕ k0: 0000 0001 0000 0000

⊕ (z0)0: 1

⊕ c: 1111 1111 1111 1100

0111 0001 1100 0011

Thus, subkey k4 is 0x71C3 here. Note that this key schedule only contains
the linear operations XOR, bitwise rotation and constant addition, which
means that the key schedule is affine.

12

Chapter 3

Security of a block cipher

Cryptanalysis is, among other things, studying the security of ciphers by
looking for ways to find some connection between a ciphertext and its plain-
text when the key is unknown. An important concept in cryptanalysis is a
distinguisher. This chapter explains what a distinguisher is and how it can
be used. Furthermore, this chapter shows how, with the help of a distin-
guisher, the security strength of a block cipher can be determined.

3.1 Security claim

The adversary can send a certain amount of queries to the cipher under
attack, which is called the “online complexity” denoted with M , and he can
do a certain amount of calculations, which is called the “offline complexity”
denoted with N [9]. A security claim for a cryptographic cipher claims that
there does not exist an attack with a higher success probability for a certain
M and N than a certain predetermined probability. If an attack is found
that has an higher succes probability than the probability in the security
claim for the cipher, the cipher is considered “broken”. To “repair” the
cipher, either the security claim has to be weakened or the cipher has to be
strengthened.

3.2 Exhaustive key search

The most basic attack against an encryption algorithm with a secret key
is exhaustive key search. The attacker has access to a ciphertext and the
corresponding plaintext and tries to find the right key by systematically
trying to decrypt the ciphertext with every possible key until it results in the
right plaintext. For a key of n bits, there are 2n possible keys. On average
the amount of attempts that it takes to find the right key, is half of the

13

amount of all possible keys, so 2n

2 = 2n−1 attempts. In case of SIMON32/64,
the key size is 64 bits. So, exhaustive key search on SIMON32/64 will cost
264

2 = 263 attempts on average. The online complexity M = 1 and the offline
complexity N = 263 in this case.

The default security claim for a cipher is that there is no attack more efficient
than exhaustive key search to find the cryptographic key or to distinguish
the cipher from a random permutation. So, if a block cipher is published
without a specified security claim, it is considered broken if an attack is
found that is significantly better than exhaustive key search.

3.3 Distinguishers

For a block cipher to be good, it should be indistinguishable from a random
permutation if the key is unknown but fixed. Such a block cipher is called
a pseudorandom permutation (PRP). A distinguishing attack is an attempt
to distinguish a block cipher from a random permutation. A distinguisher
tests on the basis of one or multiple queries which of the possibilities (a
certain block cipher vs. a random permutation) is the most likely.

Figure 3.1: One round of a Feistel cipher.

To see that one round of Feistel (see Figure 3.1) with secret key k is easily
distinguishable from a random permutation (RP), and thus insecure, take a
distinguisher A, consisting of the following algorithm:

14

1. Send a query P = PL∥PR (plaintext), which gives the result C =
CL∥CR (ciphertext).

2. Check whether PL = CR.

3. Output A = 1 if PL = CR;

or A = 0 if PL ̸= CR.

For a random permutation on strings of n
2 bits, there are 2

n
2 possibilies, and

each possibility occurs with the same probability. Given that the plaintext
(PL||PR) and the ciphertext (CL||CR) are both n bits long, the probabilities
that PL = CR for a one round Feistel and a random permutation respectively
are:

• Pr(PL = CR | Feistel) = 1, because for one round of a Feistel cipher,
the ‘left’ half of the input is always the same as the ‘right’ half of the
output.

• Pr(PL = CR | RP) = 1

2
n
2
, because PL and CR both consist of n

2 bits.

From these probabilities it is clear that if PL = CR is true, then, with a very
high probability, the examined function is a Feistel cipher and not a random
permutation.

We can calculate the advantage ([9]) of this distinguisher. The advantage of
a certain pseudorandom permutation X is calculated as follows:

AdvA =
∣∣∣Pr[A = 1 | X]− Pr[A = 1 | RP]

∣∣∣.
In this case, the advantage is thus:

AdvA =
∣∣∣Pr[A = 1 | Feistel]− Pr[A = 1 | RP]

∣∣∣ = ∣∣∣1− 1

2
n
2

∣∣∣.
So for a large n, the advantage that the function is a one round Feistel
in case of PL = CR is indeed very high. For SIMON32/64, n = 32, so
AdvA =

∣∣1 − 1
216

∣∣ ≈ 1. So, a one round Feistel cipher is broken, because
there is a distinguishing attack that is significantly better than exhaustive
key search. The advantage is used to calculate the security strength.

3.4 Security strength

Given the online complexity M , the offline complexity N and the success
rate p, in case of a key-recovery-attack or the advantage AdvA in case of a
distinguisher A, an encryption algorithm has a security strength [10] of s, if
there are no attacks for which holds that

s ≤ min
(
log2

(N +M

p

)
, log2

(N +M

AdvA

))
.

15

An attack gives thus an upper bound for the security strength of a cipher.
To consider the security strength in case of a key-recovery-attack, take for
example exhaustive key search on SIMON32/64, which has a key size of 64
bits. Given the online complexity N and the offline complexity M = 1, the
success rate p is N

264
. This gives us

log2

(N +M

p

)
= log2

(N + 1
N
264

)
= log2

(
264 ·

(
1+

1

N

))
= 64+log2

(
1+

1

N

)
.

For a large N , 1
N is negligible, so we get 64. This means that the security

strength of SIMON32/64 is at most 64 bits.

To determine the security strength in case of a distinguishing attack, let us
consider the distinguisher A in the previous paragraph (3.3). Using that the
advantage of the distinguisher A is 1, and given that M = 1 and N = 1, we
find

log2

(N +M

AdvA

)
= log2

(1 + 1

1

)
= 1.

The security strength of a one round Feistel cipher is thus at most 1 bit.

16

Chapter 4

Differential cryptanalysis

Cryptanalysis is the study of the relationship between a message in plain-
text and its corresponding ciphertext, in order to deduce information about
the encrypted messages without knowing the cryptographic key. Differential
cryptanalysis ([11]) is one of the forms of cryptanalysis that is most com-
monly applied to block ciphers. It studies how the differences between plain-
texts influence the differences between the corresponding ciphertexts.

A combination (a′, b′) of a′ ∈ Fn
2 , a difference between two inputs, and

b′ ∈ Fn
2 , a difference between two outputs, is called a differential. Given a

certain input difference a′ and a certain output difference b′, the probabil-
ity that for a random input a the encryption of the input a added to the
encryption of the result of the input a added to the input difference a′, re-
sults in the output difference b′ is called the “differential probability”. The
mathematical definition is:

DPf (a
′, b′) = #{a ∈ Fn

2 | f(a)⊕ f(a⊕ a′) = b′}/2n.

The differential probabilities of a linear (XOR) function, an AND function,
and a constant addition function are discussed below. In the end, it is
explained how to calculate the differential probability of a differential trail.
Given a DP of 2−w, w is called the weight of the differential.

4.1 Linear functions

A function is linear if f(a⊕ a′) = f(a)⊕ f(a′), for all a and a′, so the differ-
ence in the input will directly determine the difference in the output. The
differential probability of a linear function is then either 1 or 0, as shown
below.

17

DPf (a
′, b′) = #{a ∈ Fn

2 | f(a)⊕ f(a⊕ a′) = b′}/2n

= #{a ∈ Fn
2 | f(a)⊕ f(a)⊕ f(a′) = b′}/2n

= #{a ∈ Fn
2 | f(a′) = b′}/2n

=

1 if f(a′) = b′;

0 otherwise.

So, when a function f is linear and f(a′) = b′, then the differential proba-
bility of (a′, b′) is 1.

4.2 The AND-function

If a function contains a multiplication, also referred to as AND, it is more
complex to calculate the differential probability. That is because of the fact
that the input difference does not predict with certainty what the output
difference will be. Take for example the function f : F2×F2 7→ F2, f(a, c) =
a ⊗ c (multiplication over F2). Lets us consider the bits a, a∗, c and c∗,
and the input differences a′ = a ⊕ a∗ and c′ = c ⊕ c∗. Given the outputs
b = f(a, c) = a ⊗ c and b∗ = f(a∗, c∗) = a∗ ⊗ c∗, the difference of these
outputs is

b′ = b⊕ b∗ = a⊗ c⊕ a∗ ⊗ c∗.

If a′ and c′ are both 0, then b′ will always be 0, as can be seen below. Note
that a′ = 0 implies a = a∗, and c′ implies c = c∗. This gives two possibilities
for a and a∗, namely a = a∗ = 0 or a = a∗ = 1 and two possibilities for c
and c∗, namely c = c∗ = 0 or c = c∗ = 1, so four possibilities in total.

a ⊗ c ⊕ a∗ ⊗ c∗ = b′

0 ⊗ 0 ⊕ 0 ⊗ 0 = 0

0 ⊗ 1 ⊕ 0 ⊗ 1 = 0

1 ⊗ 0 ⊕ 1 ⊗ 0 = 0

1 ⊗ 1 ⊕ 1 ⊗ 1 = 0

So, DPf ((0, 0), 0) = 1 and DPf ((0, 0), 1) = 0.

However, when a′ or c′ is 1, then b′ could be 0 or 1. All possibilities are
shown below.

If a′ = 0 and c′ = 1 (results are similar if a′ = 1 and c′ = 0), we get:

a ⊗ c ⊕ a∗ ⊗ c∗ = b′

0 ⊗ 0 ⊕ 0 ⊗ 1 = 0

0 ⊗ 1 ⊕ 0 ⊗ 0 = 0

1 ⊗ 0 ⊕ 1 ⊗ 1 = 1

1 ⊗ 1 ⊕ 1 ⊗ 0 = 1

18

So, DPf ((0, 1), 0) =
1
2 and DPf ((0, 1), 1) =

1
2 .

If a′ = 1 and c′ = 1, we get:

a ⊗ c ⊕ a∗ ⊗ c∗ = b′

0 ⊗ 0 ⊕ 1 ⊗ 1 = 1

0 ⊗ 1 ⊕ 1 ⊗ 0 = 0

1 ⊗ 0 ⊕ 0 ⊗ 1 = 0

1 ⊗ 1 ⊕ 0 ⊗ 0 = 1

So, DPf ((1, 1), 0) =
1
2 and DPf ((1, 1), 1) =

1
2 .

A difference distribution table is a table which contains the differential
probabilities of the combination of all possible input differences and out-
put differences. From these results, the difference distribution table for this
function can be obtained:

(a′, c′)

b′
0 1

(0, 0) 1 0

(0, 1) 1
2

1
2

(1, 0) 1
2

1
2

(1, 1) 1
2

1
2

So, if at least one of the input bit differences is one, the differential proba-
bility is always 1

2 . In these cases, the AND is called an ‘active AND’.

4.3 Constant addition functions

For a constant addition function, such as the addition of a key, f(x) = x⊕k,
the constant is not relevant for a differential probability. That is because a
constant addition function is applied to both of the plaintexts. By XORing
those results, the constant falls away, because it occurs twice, as shown be-
low:
From f(a) = a⊕ k and f(a⊕ a′) = a⊕ a′ ⊕ k it follows that
f(a)⊕ f(a⊕ a′) = (a⊕ k)⊕ (a⊕ a′ ⊕ k) = a′.

So DPf (a
′, b′) = #{a ∈ Fn

2 | f(a)⊕ f(a⊕ a′) = b′}/2n

= #{a ∈ Fn
2 | a′ = b′}/2n

=

1 if a′ = b′;

0 otherwise.

19

4.4 Differential trail

A differential (δ0, δ1) over one round is called a round differential. A sequence
of round differentials (δ0, δ1), (δ1, δ2), . . . (δn−1, δn) over consecutive rounds
is a differential trail. The differential probability of the differential trail
(δ0, δ1, δ2, . . . , δn−1, δn) is the probability that starting with δ0 as input in
round 1, the output of round 1 is δ1, the output of round 2 is δ2, and so
on. It can be estimated by the product of the differential probability of each
round differential:

DP(δ0, δ1, δ2, . . . , δn−1, δn) ≈
n−1∏
i=0

DP(δi, δi+1). [11]

For a differential (δ0, δn) over n rounds there often exist multiple differential
trails. See for example Figure 4.1 were there are six different trails for the
differential (δ0, δ3) over three rounds, marked by R1, R2 and R3.

Figure 4.1: Multiple differential trails for a differential over three rounds.

If we define Q as the set of all trails for a differential (δ0, δn), the differential
probability of (δ0, δn) is the sum of the DPs of all trails in the set Q:

DP(δ0, δn) =
∑
q∈Q

DP(q). [11]

If we want to calculate the DP of a differential over many rounds, there are
often too many trails to calculate the DP for them all individually. However,
given a trail with relatively high DP, the DP of the surrounding differential
is often not significantly higher. The DP of a certain trail is thus a lower
bound for the DP of the surrounding differential.

20

Chapter 5

Differential distinguisher on
SIMON

In this chapter we show a differential trail on ten rounds of SIMON. In
Paragraph 5.1 we assume that there is no dependency between the bits of
a resulting bit string after multiplication. In reality however, there is a
dependency between them, as we show in Paragraph 5.2.

5.1 Assuming independent ANDs

In this paragraph we will show a differential trail on ten rounds of SIMON32.
We assume that in case of bitwise multiplication, the bits in the result are
determined independently of each other.

For brevity, when we have input differences u′ and v′, in this chapter we
write u′ ⊗ v′ for u ⊗ v ⊕ u∗ ⊗ v∗, where u∗ = u ⊕ u′ and v∗ = v ⊕ v′. u
and v can take any possible value in Fn

2 , so the expression can have multiple
outputs. We choose one of the outputs and give the probability of this
output. When we have input differences u′ and v′, in this chapter we write
u′ ⊕ v′ for u ⊕ v ⊕ u∗ ⊕ v∗, where u∗ = u ⊕ u′ and v∗ = v ⊕ v′. u and v
can take any possible value in Fn

2 . Because this is a linear operation (see
Paragraph 4.1), it does not have multiple outputs.

Let a0||b0 be the input difference. If a0 = 0000 0000 0000 0001 and b0 =
0000 0000 0000 0100, then the difference after the first round will be a1||b1,
where b1 = a0. We determined a1 as follows:

21

S1(a0) : 0000 0000 0000 0010

⊗ S8(a0) : 0000 0001 0000 0000

0000 0000 0000 0000 (p0 =
1
4)

S2(a0) : 0000 0000 0000 0100

⊕ b0 : 0000 0000 0000 0100

a1 : 0000 0000 0000 0000

The operation S1(a0)⊗ S8(a0) gives four possible outcomes, namely:

0000 0000 0000 0000;
0000 0000 0000 0010;
0000 0001 0000 0000;
0000 0001 0000 0010.

For the differential trail, we may focus on one of these outcomes. For each
bit that is 1, two ANDs could be made active (less if they depend on each
other), whereas 0 bits do not make ANDs active, so they do not increase
the number of possible outcome differences. For the whole trail, it is not
garanteed that this is always the best choice, because in some cases more
ANDs are dependent on each other than in other cases, which could give less
possibilities in the end. In order to keep the number of possibilities in each
round as small as possible, we take the outcome with the least number of
bits that are 1, which is 0000 0000 0000 0000 in this case. The probability
that it will give this outcome is 1

4 . This is because there are two active
ANDs, and for each of these ANDs, the probability that the resulting bit
will be 0, is 1

2 . Here we assume that these probabilities are independent of
each other. This is explained in Paragraph 4.2 about the AND-function. For
two ANDs, the probability that both will result in 0 is thus (12)

2 = 1
4 .

For the next rounds, it works in a similar way. For each round, the option
with the smallest number of 1-bits is chosen and the probability for this
option is given. In general, bi = ai−1, except for i = 0.

S1(a1) : 0000 0000 0000 0000

⊗ S8(a1) : 0000 0000 0000 0000

0000 0000 0000 0000 (p1 = 1)

S2(a1) : 0000 0000 0000 0000

⊕ b1 : 0000 0000 0000 0001

a2 : 0000 0000 0000 0001

22

S1(a2) : 0000 0000 0000 0010

⊗ S8(a2) : 0000 0001 0000 0000

0000 0000 0000 0000 (p2 =
1
4)

S2(a2) : 0000 0000 0000 0100

⊕ b2 : 0000 0000 0000 0000

a3 : 0000 0000 0000 0100

S1(a3) : 0000 0000 0000 1000

⊗ S8(a3) : 0000 0100 0000 0000

0000 0000 0000 0000 (p3 =
1
4)

S2(a3) : 0000 0000 0001 0000

⊕ b3 : 0000 0000 0000 0001

a4 : 0000 0000 0001 0001

S1(a4) : 0000 0000 0010 0010

⊗ S8(a4) : 0001 0001 0000 0000

0000 0000 0000 0000 (p4 =
1
16)

S2(a4) : 0000 0000 0100 0100

⊕ b4 : 0000 0000 0000 0100

a5 : 0000 0000 0100 0000

S1(a5) : 0000 0000 1000 0000

⊗ S8(a5) : 0100 0000 0000 0000

0000 0000 0000 0000 (p5 =
1
4)

S2(a5) : 0000 0001 0000 0100

⊕ b5 : 0000 0000 0001 0001

a6 : 0000 0001 0001 0001

S1(a6) : 0000 0010 0010 0010

⊗ S8(a6) : 0001 0001 0000 0001

0000 0000 0000 0000 (p6 =
1
64)

S2(a6) : 0000 0100 0100 0100

⊕ b6 : 0000 0000 0100 0000

a7 : 0000 0100 0000 0100

23

S1(a7) : 0000 1000 0000 1000

⊗ S8(a7) : 0000 0100 0000 0100

0000 0000 0000 0000 (p7 =
1
16)

S2(a7) : 0001 0000 0001 0000

⊕ b7 : 0000 0001 0001 0001

a8 : 0001 0001 0000 0001

S1(a8) : 0010 0010 0000 0010

⊗ S8(a8) : 0000 0001 0001 0001

0000 0000 0000 0000 (p8 =
1
64)

S2(a8) : 0100 0100 0000 0100

⊕ b8 : 0000 0100 0000 0100

a9 : 0100 0000 0000 0000

S1(a9) : 1000 0000 0000 0000

⊗ S8(a9) : 0000 0000 0100 0000

0000 0000 0000 0000 (p9 =
1
4)

S2(a9) : 0000 0000 0000 0001

⊕ b9 : 0001 0001 0000 0001

a10 : 0001 0001 0000 0000

S1(a10) : 0010 0010 0000 0000

⊗ S8(a10) : 0000 0000 0001 0001

0000 0000 0000 0000 (p10 =
1
16)

S2(a10) : 0100 0100 0000 0000

⊕ b10 : 0100 0000 0000 0000

a11 : 0000 0100 0000 0000

We thus have the differential trail

T = (a0∥b0, a1∥b1, a2∥b2, a3∥b3, a4∥b4, a5∥b5, a6∥b6, a7∥b7, a8∥b8, a9∥b9, , a10∥b10).

The differential probability of this trail is

DP(T) ≈ Π9
i=0 pi =

1

4
· 1 · 1

4
· 1
4
· 1

16
· 1
4
· 1

64
· 1

16
· 1

64
· 1
4
=

1

230
.

Given A = 1 in case that SIMON32/64(a0∥b0) over 10 rounds results in

24

a10∥b10, and A = 0, if that is not the case, the advantage of A is:

AdvA =
∣∣∣Pr[A = 1 | SIMON32/6410 rounds]−Pr[A = 1 | RP]

∣∣∣ = 1

230
− 1

232
.

In case of the differential distinguisher above, the online complexity M is
2, the offline complexity N is 0. To determine the security strength of this
distinguisher A, we use:

log2

(
N +M

AdvA

)
= log2

(
0 + 2

2−30 − 2−32

)
≈ 31.415.

This gives an upper bound of 31.415 bits for the security strength of ten
rounds of SIMON32/64. The security strength of exhaustive key search
on SIMON32/64 is 64 bits (see Paragraph 3.4). The distuishing attack
on ten rounds of SIMON32/64 in this paragraph is better than exhaustive
key search on it, so SIMON32/64 reduced to ten rounds is considered bro-
ken.

5.2 Taking dependency of ANDs into account

In the previous paragraph, we assumed that in case of a bitwise multiplica-
tion, there is no dependency between the bits in the result. In reality, this
usually is not true.

Figure 5.1:

Take for example an input difference x′ = ...x′1x
′
2x

′
3... = ...101... and the

operation x⊗S1(x). If the active ANDs (see Paragraph 4.2) given in Figure

25

5.1 are independent from each other, the probability that both result in 0,
is (12)

2 = 1
4 , as explained in Paragraph 4.2. However, we can see that x′2

influences both ANDs. Since x′2 = 0, the possibilities for the actual inputs
are x2 = x∗2 = 0 and x2 = x∗2 = 1, where x2 ⊕ x∗2 = x′2. When x2 = x∗2 = 0,
both ANDs will result in 0, as can be seen in Figure 5.1. When x2 = x∗2 = 1,
both ANDs will result in 1. It is thus not possible that one of these ANDs
will give the result 0 and the other the result 1. Both always will give the
same result, which means they are dependent. Because of this, the proba-
bility that both ANDs will result in 0, is 1

2 , and not (12)
2 in case of assumed

independence.
As both of the 1-bits also each make another AND active, the total proba-
bility of having the result consist of only 0’s is (12)

3, and not (12)
4 in case of

assumed independence. In general it holds that DP((x101, 101y), 0000) =
1
8 , where it is irrelevant what x and y are.

This cannot only be applied to 101-bit strings were the bits are directly next
to each other, but also in the general case in which the bits each are k bits
away from each other, and the operation Si(x′)⊗ Si+k(x′) is applied. Take
for example k = 7 and the multiplication S1(x′)⊗S8(x′) in the SIMON32/64
algorithm, where the size of x′ is 16 bits, as depicted in Figure 5.2.

Figure 5.2:

If bit x1 = x15 = 1 and bit x8 = 0. The probability that both ANDs in
Figure 5.2 will result in 0, is 1

2 , just as explained earlier for Figure 5.1.

Considering the dependency between the ANDs, we can calculate the DP
for (ten rounds of) SIMON32/64 in a similar way as for the transformation
χ [14]. Given b = χ(a), χ is defined by bi = ai ⊕ (ai+1 ⊕ 1)ai+2, where
0 ≤ i < l, l is the block size of χ, and all indices all modulo l. For an input
difference a′ the bits of b′ = χ(a)⊕ χ(a⊕ a′) are given by

b′i = χ(a′)i ⊕ a′i+1ai+2 ⊕ a′i+2ai+1.

For this transformation, the weight w of the differential probability DPχ(a
′, b′)

is calculated by adding the Hamming weight h of a′ and the number n of
001-patterns in a′ [8]. So we have DPχ(a

′, b′) = 2−(h+n).

26

The differential probability of SIMON can be calculated in a similar way,
which can be shown using the following lemmas: The proofs are based on
the proofs in [14] which used [7].

Lemma 1 Given f : Fn
2 → Fn

2 and L : Fn
2 → Fn

2 , where L is linear, it holds
that for all a′, b′ ∈ Fn

2 , DPf (a
′, b′) = DPf◦L(L

−1(a′), b′) = DPL◦f (a
′, L(b′)).

Proof. FDPf◦L(L
−1(a′), b′) = DPL(L

−1(a′), a′) ·DPf (a
′, b′)

= DPf (a
′, b′)

= DPf (a
′, b′) ·DPL(b

′, L(b′))

= DPf◦L(a
′, L(b′)) ■

Lemma 2 Given f : Fn
2 → Fn

2 and L : Fn
2 → Fn

2 , L(x) 7→ Mx⊕m, where M
is a n× n matrix and m is a n-bit vector, and f ⊕L : Fn

2 → Fn
2 , x 7→ f(x)⊕

L(x), it holds that for all a′, b′ ∈ Fn
2 , DPf (a

′, b′) = DPf⊕L(a
′, b′ ⊕Ma′).

Proof. Let f ′(x) = f(x)⊕ L(x)

DPf (a
′, b′) = #{x ∈ Fn

2 | f(x)⊕ f(x⊕ a′) = b′}/2n

= #{x ∈ Fn
2 | f ′(x)⊕ L(x)⊕ f ′(x⊕ a′)⊕ L(x⊕ a′) = b′}/2n

= #{x ∈ Fn
2 | f ′(x)⊕Mx⊕m⊕ f ′(x⊕ a′)⊕Mx⊕Ma′ ⊕m = b′}/2n

= #{x ∈ Fn
2 | f ′(x)⊕ f ′(x⊕ a′)⊕Ma′ = b′}/2n

= #{x ∈ Fn
2 | f ′(x)⊕ f ′(x⊕ a′) = b′ ⊕Ma′}/2n

= DPf ′(a′, b′ ⊕Ma′)

= DPf⊕L(a
′, b′ ⊕Ma′) ■

Given χ(x) = S1(x)⊗S2(x)⊕ x⊕S2(x) and C(x) = x⊕S2(x) and χ′(x) =
χ(x) ⊕ C(x) = S1(x) ⊗ S2(x) and using Lemma 2 (where m = 0), we find
that

DPχ(a
′, b′) = DPχ′(a′, b′ ⊕ Ca′).

Given χ′(x) = S1(x)⊗ S2(x) and given M where

27

M =

1 − − − − − − − − − − − − − − −
− − − − − − − 1 − − − − − − − −
− − − − − − − − − − − − − − 1 −
− − − − − 1 − − − − − − − − − −
− − − − − − − − − − − − 1 − − −
− − − 1 − − − − − − − − − − − −
− − − − − − − − − − 1 − − − − −
− 1 − − − − − − − − − − − − − −
− − − − − − − − 1 − − − − − − −
− − − − − − − − − − − − − − − 1

− − − − − − 1 − − − − − − − − −
− − − − − − − − − − − − − 1 − −
− − − − 1 − − − − − − − − − − −
− − − − − − − − − − − 1 − − − −
− − 1 − − − − − − − − − − − − −
− − − − − − − − − 1 − − − − − −

such that

M(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15)
⊺

=(x0, x7, x14, x5, x12, x3, x10, x1, x8, x15, x6, x13, x4, x11, x2, x9)
⊺

and SIMON32/64′(x) = (S7 ◦χ′ ◦M)(x) = S1(x)S8(x) and using Lemma 1,
we find that

DPχ′(a′, b′) = DPSIMON32/64′(M(a′), S−7(b′)).

Given SIMON32/64′(x) = S1(x)⊗S8(x) and L(x) = S2(x) and SIMON32/64(x) =
S1(x)⊗ S8(x)⊕ S2(x) and using Lemma 2 (with m=0), we find that

DPSIMON32/64′(a
′, b′) = DPSIMON32/64(a

′, b′ + La′).

So we get DPχ(a
′, b′) = DPχ′(a′, b′ ⊕ Ca′)

= DPSIMON32/64′(M(a′), S−7(b′ ⊕ Ca′))

= DPSIMON32/64(M(a′), S−7(b′ ⊕ Ca′)⊕ L(M(a′))).

This means that we can calculate the DP of SIMON32/64 in a similar way
as the DP of χ. Because there is no 101-pattern in the differential distin-
guisher in Paragraph 5.1, the result remains the same if we take dependent
ANDs into account.

28

Chapter 6

Related Work

When Ray Beaulieu et. al. in 2013 published the specifications of the
blockcipher SIMON [4], they initially did not give any security assessment.
Hoda A. Alkhzaimi et al. [2] were the first to publish some cryptanalysis
on SIMON using differential and impossible differential attacks for round
reduced versions of the SIMON variants. An impossible differential attack
uses differences that are impossible to obtain at a certain intermediate round.
They showed a strong differential effect for the version 32/64 of the SIMON
family and attacked 16 of the 32 rounds for this version.

Shortly afterwards, also in 2013, Farzaneh Abed et al [1] published some
results of differential attacks on round reduced versions of SIMON. They
attacked 18 rounds of SIMON32/64.

In 2015, Alex Biryukov et. al. [6] used a technique for automatic search for
differential trails to improve previously reported trails and differentials for
several versions of SIMON.

Tarun Yadav and Manoj Kumar [18] used a machine learning (ML) based
differential distinguisher to apply differential cryptanalysis on SIMON in
2020.

29

Chapter 7

Conclusions

We applied a distinguishing attack on ten rounds of SIMON32/64 (Para-
graph 5.1). The upper bound of the security strength of the used distin-
guisher is 31.415 bits. We found that this attack is better than exhaustive
key search, which gives and upper bound of 64 bits for the security strength.
For convenience, we first assumed that the ANDs are independent of each
other. When we took into account that in fact these ANDs are dependent
on each other, we did not find another result. Therefore, we conclude that
SIMON32/64 reduced to ten rounds is broken.

7.1 Future work

Future work could be done on checking whether dependencies exist between
round differentials. We could try to find multiple trails for the same differ-
ential. See for example Figure 7.1, where there are multiple possible routes
between δ0 and δ3. If we only consider (δ0, δ1, δ2, δ3), we find that DP(δ0, δ3)
is at least 1

4 . If we also consider (δ0, δ
′
1, δ2, δ3), we find a higher DP for

(δ0.δ3), and could find a better attack. Another option would be to look
for a better distinguisher by choosing a higher online complexity, so an M

Figure 7.1: Example of multiple trails for a differential.

30

bigger than 2, by sending more queries. One could also seek for other distin-
guishers on more than ten rounds of SIMON32/64 or focus on other variants
of SIMON.

31

Bibliography

[1] Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. Differential
and Linear Cryptanalysis of Reduced-Round SIMON. 2013. https:

//eprint.iacr.org/2013/526.

[2] Hoda A. Alkhzaimi and Martin M. Lauridsen. Cryptanalysis of the
SIMON Family of Block Ciphers. 2013. https://eprint.iacr.org/

2013/543.

[3] Amirki. Feistel cipher diagram. https://commons.wikimedia.org/

wiki/File:Feistel_cipher_diagram_en.svg.

[4] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. The SIMON and SPECK Families
of Lightweight Block Ciphers. 2013. https://eprint.iacr.org/2013/
404.

[5] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. SIMON and SPECK: Block Ciphers
for the Internet of Things. 2015. https://eprint.iacr.org/2015/

585.

[6] Alex Biryukov, Arnab Roy, and Vesselin Velichkov. Differential Anal-
ysis of Block Ciphers SIMON and SPECK. 2015. https://link.

springer.com/10.1007/978-3-662-46706-0_28.

[7] Anne Canteaut and Léo Perrin. On CCZ-equivalence, extended-affine
equivalence, and function twisting. 2019. https://eprint.iacr.org/
2018/713.

[8] Joan Daemen. Cipher and Hash Function Design Strategies based on
linear and differential cryptanalysis. 1995. https://cs.ru.nl/~joan/
papers/JDA_Thesis_1995.pdf.

[9] Joan Daemen, Bart Mennink, and Jan Schoone. Lecture Notes Intro-
duction to Cryptography. 2021.

[10] L. Batina J. Daemen. Slides of the course Cryptography. 2021.

32

https://eprint.iacr.org/2013/526
https://eprint.iacr.org/2013/526
https://eprint.iacr.org/2013/543
https://eprint.iacr.org/2013/543
https://commons.wikimedia.org/wiki/File:Feistel_cipher_diagram_en.svg
https://commons.wikimedia.org/wiki/File:Feistel_cipher_diagram_en.svg
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2015/585
https://eprint.iacr.org/2015/585
https://link.springer.com/10.1007/978-3-662-46706-0_28
https://link.springer.com/10.1007/978-3-662-46706-0_28
https://eprint.iacr.org/2018/713
https://eprint.iacr.org/2018/713
https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf
https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf

[11] Biham E. and Shamir A. Differential cryptanalysis of the data encryp-
tion standard. 1993. New York: Springer Verlag. ISBN 978-0-387-
97930-4.

[12] Michael Luby and Charles Rackoff. How to construct pseudorandom
permutations from pseudorandom functions. 1988. https://epubs.

siam.org/doi/10.1137/0217022.

[13] Kattamuri Meghna. Block cipher modes of operation. https://www.

geeksforgeeks.org/block-cipher-modes-of-operation/.

[14] Silvia Mella, Alireza Mehrdad, and Joan Daemen. Differential
and Linear properties of vectorial boolean functions based on chi.
2023. https://www.researchgate.net/publication/370292931_

Differential_and_Linear_properties_of_vectorial_boolean_

functions_based_on_chi.

[15] NIST. FIPS 197, Advanced Encryption Standard (AES). 2001. https:
//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.

[16] Ronald L. Rivest. The RC5 Encryption Algorithm. 1997. https:

//people.csail.mit.edu/rivest/Rivest-rc5rev.pdf.

[17] Bruce Schneier. Description of a New Variable-Length Key, 64-bit
Block Cipher (Blowfish). 1993. https://dl-acm-org.ru.idm.oclc.

org/doi/10.5555/647930.740558.

[18] Tarun Yadav and Manoj Kumar. Differential-ML Distinguisher: Ma-
chine Learning based Generic Extension for Differential Cryptanalysis.
2020. https://eprint.iacr.org/2020/913.

33

https://epubs.siam.org/doi/10.1137/0217022
https://epubs.siam.org/doi/10.1137/0217022
https://www.geeksforgeeks.org/block-cipher-modes-of-operation/
https://www.geeksforgeeks.org/block-cipher-modes-of-operation/
https://www.researchgate.net/publication/370292931_Differential_and_Linear_properties_of_vectorial_boolean_functions_based_on_chi
https://www.researchgate.net/publication/370292931_Differential_and_Linear_properties_of_vectorial_boolean_functions_based_on_chi
https://www.researchgate.net/publication/370292931_Differential_and_Linear_properties_of_vectorial_boolean_functions_based_on_chi
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://people.csail.mit.edu/rivest/Rivest-rc5rev.pdf
https://people.csail.mit.edu/rivest/Rivest-rc5rev.pdf
https://dl-acm-org.ru.idm.oclc.org/doi/10.5555/647930.740558
https://dl-acm-org.ru.idm.oclc.org/doi/10.5555/647930.740558
https://eprint.iacr.org/2020/913

	Introduction
	Preliminaries
	Notational conventions and definitions
	The finite field of two elements
	The vector space F2n
	Bit strings in hexadecimal representation
	Concatenation of bit strings
	Bitwise rotation
	Linear and affine maps
	Hamming weight of bitstring

	Block ciphers
	Feistel ciphers
	SIMON

	Security of a block cipher
	Security claim
	Exhaustive key search
	Distinguishers
	Security strength

	Differential cryptanalysis
	Linear functions
	The AND-function
	Constant addition functions
	Differential trail

	Differential distinguisher on SIMON
	Assuming independent ANDs
	Taking dependency of ANDs into account

	Related Work
	Conclusions
	Future work

