
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

An investigation of the nested subset differential attack on the lifted
unbalanced oil and vinegar signature scheme

Author:
Felix Mölder
s1022118

First supervisor/assessor:
Ph.D. Simona Samardjiska

simonas@cs.ru.nl

Second assessor:
Prof. Peter Schwabe
p.schwabe@cs.ru.nl

January 6, 2023

Abstract

The nested subset differential attack reduced the complexity of solving a
large quadratic polynomial system in F2r to solving two smaller quadratic
polynomial systems in F2. To solve these systems, exhaustive search was
considered to be the best method. This thesis investigates the impact of
the crossbred algorithm of Joux and Vitse on these reduced systems. Since
multivariate cryptography plays a major role in the area of post-quantum
cryptography, the impact of the crossbred algorithm to nested subset differ-
ential attack can confirm a new method (next to exhaustive search) to solve
boolean polynomial systems and moreover, can show a new standard method
to attack multivariate cryptosystems in general by reducing the systems to
boolean systems and solve those systems with the crossbred algorithm. In
this thesis, we mathematically analyzed the complexity of the nested subset
differential attack that uses the crossbred algorithm to solve the reduced
systems. Best parameters for both, theoretical examination and practical
application were found and the complexity of the application of the cross-
bred algorithm to these reduced systems were calculated and compared. The
results show that the complexity was reduced for all three parameter sets of
LUOV compared to the classical attack. In the best case, a reduction of the
complexity by 214 was investigated.

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Modern cryptography . 4

2.1.1 Symmetric cryptography 4
2.1.2 Asymmetric cryptography 4
2.1.3 Digital Signature . 5

2.2 Post-quantum cryptography (PQC) 6
2.3 MQ Problem . 6
2.4 Multivariate public key cryptography (MPKC) 6
2.5 Finite fields . 7

2.5.1 Groups . 7
2.5.2 Rings . 7
2.5.3 Fields . 7

2.6 Extension of finite fields and lifting 8
2.7 Macaulay matrix and the monomial order 8
2.8 s-truncation . 9

3 The oil and vinegar signature scheme family 11
3.1 Unbalanced oil and vinegar scheme 11

3.1.1 Public and private key generation 11
3.1.2 Create the signature 12
3.1.3 Verify the signature 12

3.2 Lifted unbalanced oil and vinegar scheme 12
3.2.1 Create and verify a signature 13

4 The differential attack family 14
4.1 The subfield differential attack 14
4.2 The nested subset differential attack 16
4.3 Effects and security consequences 20

5 Solving polynomial systems in F2 22
5.1 Known attacks and previous methods 22

5.1.1 Exhaustive search . 22

1

5.1.2 Algebraic methods . 22
5.2 The crossbred algorithm of Joux/Vitse 23

6 Research 26
6.1 Comparison of different algorithms 26
6.2 Determine the parameters D, d and k 27
6.3 Compute complexity for NSDA systems 27
6.4 Comparison to exhaustive search used in NSDA 29
6.5 Impacts on UOV . 29
6.6 Scientific impacts and security consequences 29

7 Conclusions 30
7.1 Future work . 30

A Appendix 33
A.1 Code to decide the best parameters 33

2

Chapter 1

Introduction

Since Peter Shor published his paper [18] in 1994 that shows a quantum com-
puter algorithm which breaks modern cryptosystems in polynomial time,
the cryptographic world is in search for a new quantum safe standard. The
National Institute of Standards and Technology (NIST) has started a new
competition to find this new standard. One of these candidates is LUOV,
a multivariate signature scheme and its safety is based on the NP-hardness
of the MQ-problem. In round 2 of the NIST competition, an attack was
found that significantly reduced the size of the polynomial equation systems.
However, these systems are still quadratic and the best known method for
these specific systems is nevertheless exhaustive search. Joux and Vitse
described in 2018 an algorithm, the so-called crossbred algorithm, that out-
stands known techniques to solve boolean polynomial systems. In this thesis,
we describe an analysis of the complexity to examine the impact of this algo-
rithm and compare it to the complexity of the known attack. A fundamental
understanding of LUOV and the known attacks on it will be given in Chap-
ter 3 and Chapter 4. Several state-of-the-art methods for solving boolean
quadratic systems will be compared in Chapter 5 and the complexity of the
crossbred algorithm applied to the attack will be investigated in Chapter 6
to come to a final conclusion in Chapter 7.

3

Chapter 2

Preliminaries

2.1 Modern cryptography

There are two cryptographic methods used nowadays, namely symmetric
and asymmetric cryptography.

2.1.1 Symmetric cryptography

In this cryptographic method, both parties have the same key which should
stay secret. This means, that Party A can encrypt the message with the
secret key and send it over to Party B. Any party in between can not read
the encrypted message without this secret key. However, party B can easily
decrypt the message by applying the scheme together with this secret key.
Therefore, the key is the same and is used for both, encryption and decryp-
tion. The NIST declared AES as the standard for symmetric cryptography
in 2000.

2.1.2 Asymmetric cryptography

The security in symmetric cryptography is based on the secrecy of the key.
With the rise of computer networks, the necessity to establish trustful remote
connections between parties became crucial. This led to the question, how
to establish a key, such that the key stays secret. This problem can be
solved with asymmetric cryptography. In asymmetric cryptography, each
party has a key pair consisting of a private key (Prk), which should be kept
secret and a public key (Pk), which should be known to others. The public
key can only be derived by the private key, but not the other way around
(one-way-functions). To communicate, party A encrypt the message with
the public key of party B. Party A can then send the encrypted message
to party B and can be sure that only B can decrypt the message with his
private key. Because it is hard to derive the private key from the public key,
it is hard for someone to decrypt the message without the private key.

4

2.1.3 Digital Signature

With a digital signature, one can verify to others that a public key belongs
to you. Assume Alice and Bob are two entities. Then Alice can prove to Bob
that she has the private key belonging to the public key by signing a mes-
sage using her own private key and send it to Bob together with the original
message. Finally, Bob can use the public key to verify the signature and
check, whether signature equals the message. If so, Bob knows that Alice has
the private key related to the public key and is therefore authenticated. The

scheme work as follows:

Forging a signature

To forge a signature for a given public key P, we want to construct a message
y and signature x, such that P(x) = y without knowing the private key.
Therefore, we can create a signature/message pair that matches without
knowing the private key. Forging of signatures might be used to let the
other party think, that you are someone else. For example in the man-in-

5

the-middle attack.

2.2 Post-quantum cryptography (PQC)

In 1994, Peter Shor published an algorithm [18], that breaks modern cryp-
tosystems in polynomial time using quantum computer effects. Although
commercially usable quantum computers are still a long way off, intelligence
agencies as well as big tech companies such as IBM or Google are inter-
ested to create a working quantum computer. Under these circumstances,
the cryptographic community decided to be prepared and started to work
out modern and new cryptographic schemes that are resistent against both,
classical computer attacks as well as quantum computers. This new area of
research is called Post-quantum cryptography (PQC).

2.3 MQ Problem

The multivariate quadratic polynomial problem, or MQ problem for short,
is a mathematical problem that was proven to be NP-hard [12]. The MQ
problem resides on the difficulty to find a solution for a system of multivari-
ate quadratic equations in finite fields. This means, given a system of m
quadratic polynomials with n unknown variables

f1(x1, . . . , xn) =
∑

1≤i≤j≤n α
(1)
i,j xixj +

∑
1≤i≤n β

(1)
i xi + γ(1)

f2(x1, . . . , xn) =
∑

1≤i≤j≤n α
(2)
i,j xixj +

∑
1≤i≤n β

(2)
i xi + γ(2)

... =
...

fm(x1, . . . , xn) =
∑

1≤i≤j≤n α
(m)
i,j xixj +

∑
1≤i≤n β

(m)
i xi + γ(m)

(2.1)

and values for f1, . . . , fm, denoted y1, . . . , ym, where x1, . . . , xn are n un-

known variables and α
(k)
i,j , β

(k)
i and γ(k) are coefficients of some finite field

Fq, finding values for x1, . . . , xn such that fi(x1, . . . , xn) = yi holds for all
i ∈ [1,m] can not be done in polynomial time.

2.4 Multivariate public key cryptography (MPKC)

In post-quantum cryptography, several research areas exist. They are mainly
distinguished by the mathematical problem on which their security is based.
One of them is the so-called multivariate public key cryptography (MPKC),
where the security is based on the NP-hardness of solving directly or in-
directly the MQ problem. Therefore, MPKC schemes are asymmetric and
based on multivariate polynomials over a finite field F (see 2.5).

6

2.5 Finite fields

In abstract algebra, different algebraic structures were established.

2.5.1 Groups

A group (S , ∗) is a set S with a binary operation ∗ such that the following
properties hold [16]:

G1. ∀x, y ∈ S ⇒ x ∗ y ∈ S (Closure property)

G2. ∀x, y, z ∈ S : x ∗ (y ∗ z) = (x ∗ y) ∗ z (associativity)

G3. ∃ e ∈ S : ∀x ∈ S : e ∗ x = x ∗ e = x (Existence of a neutral element)

G4. ∀x ∈ S : ∃ x−1 ∈ S : x ∗ x−1 = x−1 ∗ x = e (Existence of an inverse
element)

If additionally ∀x, y ∈ S : x ∗ y = y ∗ x (commutativity) holds, (S , ∗) is
called an abelian group.
An example for an abelian group would be (Z,+), the set of integers together
with the addition operation.

2.5.2 Rings

A ring (S , ∗ , +) is a set S, together with two binary operations (∗ and
+) such that the following properties hold [16]:

R1. (S , +) forms an abelian group

R2. ∀x, y, z ∈ S : x ∗ (y ∗ z) = (x ∗ y) ∗ z (associativity of ∗)

R3. ∀x, y, z ∈ S : (x + y) ∗ z = xz + yz and z ∗ (x + y) = zx + zy
(distributivity)

If additionally ∀x, y ∈ S : x ∗ y = y ∗ x holds, (S , ∗ , +) is a commutative
ring.
An example of a commutative ring would be (Z , · , +), the set of integers
together with the multiplication and addition operation.

2.5.3 Fields

A field (S , ∗ , +) is a set S, together with two binary operations (∗ and
+) such that the following properties hold:

K1. (S , +) forms an abelian group

K2. S∗ := (S \ {e} , ∗) forms an abelian group, where e describes the
neutral element in (S , +)

7

K3. ∀x, y, z ∈ S : (x + y) ∗ z = xz + yz and z ∗ (x + y) = zx + zy
(distributivity)

Furthermore, if S has finite many elements and K1 - K3 holds, then F :=
(S , ∗ , +) is called a finite Field. The smallest finite field for example is
F2 := ({0, 1}, +, ·).

2.6 Extension of finite fields and lifting

Let Fp be a finite field as defined in 2.5.3 where p is a prime number. Then
due to isomorphism there is for every positive integer n and every prime
number p exactly one finite field of order pn and is called the extension field of
Fp or Galois field, denoted by Fpn . If Fp has p elements, then the finite degree
n extension Fpn has exactly pn elements [11]. In the case of LUOV, the finite
base field (field of the public key) is F2. Signatures and messages are created
and verified over the finite extension field of degree r, namely F2r . The
isomorphism between these two fields preserves the structure of the fields
(homomorphism) and this mapping is bijective (isomorphism). Mapping
one polynomial with coefficients in F2 to a polynomial with coefficients in
F2r in the extension field via this isomorphism is called the ’lifting’ of the
polynomial.

2.7 Macaulay matrix and the monomial order

Let F = (f1, . . . , fm) be a system of polynomials with n variables, denoted
x1, . . . , xn. The macaulay matrix of degree D of F is a matrix, that contains
all monomial multiples of the elements of F such that the degree of any
such product is smaller or equal to D. The columns are indexed by the
monomials and the rows are indexed by the multiples. The entry Maci,jD (F)
of this matrix is the coefficient of the term j in the product of i. As an
example in F2 we consider

F = {x1x3 + x2, x2 + x3 + 1, x1x2 + x22} (2.2)

Then for D = 2 all possible monomials in 3 variables of degree 2 or less are

m = (x21, x
2
2, x

2
3, x1x2, x1x3, x2x3, x1, x2, x3, 1) (2.3)

and m forms the columns in the macaulay matrix. The multiples of F and
monomials can have at most degree 2. Because f0 and f2 already have
degree 2, they can only be multiplied by 1. Since f1 has degree 1, we can
multiply f1 by 1, x1, x2 and x3 which gives

fR = (f0 f1, f2, x1f1, x2f1, x3f1) (2.4)

8

and fR forms the rows of the macaulay matrix. Thus, the degree 2 macaulay
matrix of F , namely Mac2(F), is given by

X2
1 X1X2 X2

2 X1X3 X2X3 X2
3 X1 X2 X3 1

f0 0 0 0 1 0 0 0 1 0 0
f1 0 0 0 0 0 0 0 1 1 1

X3f1 0 0 0 0 1 1 0 0 1 0
X2f1 0 0 1 0 1 0 0 1 0 0
X1f1 0 1 0 1 0 0 1 0 0 0
f2 0 1 1 0 0 0 0 0 0 0

(2.5)
The order in which the monomials are indexing the columns is called the
monomial order. Lazard has shown in [15], that for any monomial order �,
the rows of the reduced echelon form of the degreeD macaulay matrix, whose
columns are ordered by �, contains the coefficients of a Gröbner basis of the
ideal I generated by F . Although any monomial order will lead to a Gröbner
basis, the graded reverse lexicographical order (grevlex) seems to be the most
efficient for computations and is also used in the crossbred algorithm [?].
The total degree of a term in a polynomial is the sum of all degrees of the
unknowns. As an example, we consider t = x21x2x

3
3. Then the total degree

of t is |t| = 2 + 1 + 3 = 6. In the grevlex order, monomials with the highest
total degree are considered to be the largest. As the order is reversed, the
monomials are ordered from highest to smallest total degree, so for example
x21x2 � x1x2 � x1. If two monomials have the same total degree, they are
ordered by the lexicographical order. This means that two terms xα1

1 · · ·xαn
n

and xβ11 · · ·x
βn
n with the same total degree, so α1 + · · ·+αn = β1 + · · ·+ βn,

are ordered such that xα1
1 · · ·xαn

n � x
β1
1 · · ·x

βn
n if αn < βn. If αn = βn, αn−1

and βn−1 are compared and so on. Therefore, the grevlex order of m in 2.3
is

x21 � x1x2 � x22 � x1x3 � x2x3 � x23 � x1 � x2 � x3 � 1. (2.6)

2.8 s-truncation

For 1 ≤ s ≤ r − 1, the s-truncation (see [8]) of an element

a =

r−1∑
i=0

ait
i (2.7)

is defined as

as =

s∑
i=0

ait
i. (2.8)

9

The s-truncation of a polynomial

f(X) =
n∑
i=1

n∑
j=i

ai,jxixj +
n∑
i=1

bixi + c (2.9)

is defined term by term (see (2.8)) and yields to

f
s
(X) =

n∑
i=1

n∑
j=i

ai,j
sxixj +

n∑
i=1

bi
s
xi + cs. (2.10)

Finally, the s-truncation of a system of polynomials

G (X) = (g1(X), g2(X), . . . , gm(X)) (2.11)

is defined such that each polynomial is s-truncated (see (2.10)) and yields
to

G
s
(X) = (g1

s(X), g2
s(X), . . . , gm

s(X)). (2.12)

10

Chapter 3

The oil and vinegar signature
scheme family

3.1 Unbalanced oil and vinegar scheme

The unbalanced oil and vinegar scheme (UOV) was developed in 1999 by
Kipnis and Patarin [13] as an adjusted version of the broken original oil and
vinegar scheme (OV). In contrast to OV, the number of oil variables is not
equal to the number of vinegar variables to avoid known attacks using the
method of invariant subspaces [2]. In the following the signature scheme is
explained.

3.1.1 Public and private key generation

The unknown variables x1, . . . , xn are separated in two sets, the oil variables
O and the vinegar variables V such that |O| + |V | = n. In the unbalanced
version the number of vinegar variables v := |V | is a multiple of the number
of oil variables o := |O|, usally around v = 2o to v = 3o. Furthermore, it
holds that o = m, so the number of oil variables is equal to the number
of equations of the system. Throughout this thesis, we will stick with the
notation m to denote the number of equations. Now let Fq be a small
finite field with q elements. Then the central map F : Fnq → Fmq with the
equations f1, . . . , fm of the form:

fk(x) =

v∑
i=1

n∑
j=i

αi,j,kxixj +

n∑
i=1

βi,kxi + γk (3.1)

describes the multivariate quadratic system of m equations and n variables
whose coefficients αi,j,k, βi,k and γk are elements of the finite field Fq. Here
x1, . . . , xv are the vinegar variables and xv+1, . . . , xn are the oil variables.
Because the oil variables are never multiplied to one another, the system,
if all vinegar variables are given, becomes linear and therefore solvable in

11

feasible time. To hide the structure of oil and vinegar variables in the system,
F is composed with an invertible affine map T : Fnq → Fnq to form the public
key P = F ◦T . Then the private key is a pair consisting of F and T [14].
We define the following elements for UOV:

y ∈ Fmq := message that will be signed

x ∈ Fnq := signature that will be verified

F : Fnq → Fmq := central map that forms the polynomial system

T : Fnq → Fnq := invertible map to hide the structure of the variables

P = F ◦T := public key to verify the signature

(F ,T) := private key to sign the message

3.1.2 Create the signature

First, a preimage, say z ∈ Fnq , for the message y under the central map
F must be found. To find such a preimage, the Vinegar variables of z :=
(z1, . . . , zv) are chosen randomly from Fq. Because there are no quadratic oil
values in F , the substitution of vinegar values into this central map results
into a linear system which can be solved to obtain the solution z for the
message y under F . To hide the structure of the variables in F , the actual
signature x will be obtained by computing the preimage of z ∈ Fnq under
the invertible linear map T , such that

x = T −1(z) = T −1(F−1(y)) = P−1(y) (3.2)

which gives the signature x for message y and both will be, together with
the public key P send to the opposite.

3.1.3 Verify the signature

To verify a signature, the opposite receives the public key P, the signature
x and the message that was signed y and takes P which describes a system
of m polynomial equations with n unknowns and assign the signature x to it,
such that P(x). The result of this computation, say y′ ∈ Fmq , is compared
to y. If and only if yi = y′i for all i ∈ [0,m], the signature is verified.

3.2 Lifted unbalanced oil and vinegar scheme

The biggest disadvantage of UOV is the size of the public key. While the size
of the public key for 128 bit security in UOV in F16 is around 585.0 kB [17],
the size of the public key of a lattice-based signature scheme, called Falcon-
512 needs only 897 bytes [10]. This makes UOV less preferable compared

12

to other signature schemes. Therefore, many variants of UOV focus mainly
on the reduction of the key and signature sizes. One of these variants is the
lifted unbalanced oil and vinegar signature scheme (LUOV) and was first
proposed by Beullens 2017 in [21]. While the public key system in UOV
has coefficients from a small finite field like F16, the key pair in LUOV is
generated over the binary field F2, which is then lifted to a field extension
of the form F2r , where r represents the degree of the extension of F2. These
lifted keys are used to sign and verify messages. The central map is thus
defined as F : Fn2r → Fm2r and the variables are hided by composing F with
T : Fn2r → Fn2r to generate the public key P = F ◦ T . The components
of the central map are defined similar to the ones in UOV (see 3.1) with
the difference that the coefficients αi,j,k, βi,k and γk are no longer chosen
from a small finite field, but from F2, which means each coefficient can only
be 0 or 1. Therefore, the size of the public key decreases significantly, even
when it remains larger than the public keys of other post-quantum signature
schemes [21]. In the following, creating and verifying signatures in LUOV is
explained. We define the elements for LUOV as follows:

y ∈ Fm2r := message that will be signed

x ∈ Fn2r := signature that will be verified

F : Fn2r → Fm2r := central map that forms the polynomial system

T : Fn2r → Fn2r := invertible map to hide the structure of the variables

P = F ◦T := public key to verify the signature

(F ,T) := private key to sign the message

3.2.1 Create and verify a signature

Similar to UOV, the message y is signed by finding a preimage z ∈ Fn2r
under the central map F . Again the vinegar variables are chosen randomly
from F2r and can be solved to receive z. Finally, the structure will be hidden
by using the invertible linear map T , such that

x = T −1(z) = T −1(F−1(y)) = P−1(y) (3.3)

where x ∈ Fn2r is the searched signature for the massage y. Likewise, the
signature x is verified similar to UOV by evaluate P(x) = y′. If y′ is equal
to y, then the signature is accepted. If not, then the signature should be
rejected [21].

13

Chapter 4

The differential attack family

4.1 The subfield differential attack

The subfield differential attack (SDA) uses the structure of finite field exten-
sions. Finite field theory shows that F2 is not the only subfield embedded in
the field extension F2r . Hence, if d is any positive divisor of r with d · s = r,
we can construct an isomorphism

F2d/(f(t)) ∼= F2r (4.1)

where f(t) is an irreducible polynomial of degree s = r
d and F2d is a smaller

subfield embedded in the field extension F2r [16].
To use this isomorphism we consider a differential. Consider P : Fn2r → Fm2r
as a quadratic multivariate polynomial system with coefficients from F2 and
y a message arbitrary chosen from Fm2r . We define
P : Fn

2d
→ Fm2r by P(x) = P(x′ + x) where x′ ∈ Fn2r is a randomly chosen

point and x ∈ Fn
2d

an indeterminate point. If we randomly chose x′, the kth

component of P is of the form:

f̃k(x
′ + x) =

n∑
i=1

n∑
j=i

αi,j,k(x
′
i + xi)(x

′
j + xj) +

n∑
i=1

βi,k(x
′
i + xi) + γk (4.2)

and expanding the brackets and separate the quadratic term yields to

f̃k(x
′ + x) =

n∑
i=1

n∑
j=i

αi,j,k(x
′
ix
′
j + x′ixi + x′jxj) +

n∑
i=1

βi,k(x
′
i + xi)

+ γk +

n∑
i=1

n∑
j=i

αi,j,kxixj .

(4.3)
Because αi,j,k ∈ F2, the coefficients of the quadratic terms (xixj) will be all
in F2. On the other side, all x′i are in F2r and therefore the coefficients of

14

the linear xi terms will have all powers of t up until s − 1. Based on this
fact, we can group the terms by their powers of t such that the kth equation
can be written as:

f̃k(x
′ + x) = Qk(x1, . . . , xn) +

s−1∑
i=1

Li,k(x1, . . . , xn)ti (4.4)

where Qk(x) ∈ F2d [x1, . . . , xn] are the quadratic polynomials and Li,k(x) ∈
F2d [x1, . . . , xn] are linear polynomials grouped by the power of t. To forge a
signature x ∈ Fn2r , we decompose an arbitrary message y ∈ Fm2r into a sum
of vectors such that:

y = Y0 + Y1t+ · · ·+ Ys−1t
s−1 (4.5)

where for each i, Yi = (yi,1, . . . , yi,m) ∈ Fm
2d

, i.e.:

y =

y0,1

...

y0,m

+

y1,1

...

y1,m

 · t+ · · ·+

ys−1,1

...

ys−1,m

 · ts−1 (4.6)

Combining the equations 4.4 and 4.6, we first need to find the solution space
S of the system of (s− 1) ·m linear equations

A = {Li,j(x) = yi,j : 1 ≤ i ≤ s− 1, 1 ≤ j ≤ m} (4.7)

We see that A describes a linear map with A : Fn
2d
→ F((s−1)·m)

2d
. A solution

of this linear equation system is any x that satisfies

A · x = 0 (4.8)

Therefore, the solution space S is the nullspace (or kernel) of A. Therefore,
the dimension of the solution space S is the dimension of the kernel of A,
hence dim(S) = dim(ker(A)). Furthermore, the dimension of the domain
of A is dim(Fn

2d
) = n and since A is actually a random system of linear

equations, there is a high probability [7] to be of full rank: min{(s−1)m, n}.
Now by the rank-nullity theorem [3], which states that for any m×n matrix
M , it holds that rank(M) + nullspace(M) = dim(domain(M), we know that:

dim(domain(A)) = rank(A) + dim(ker(A))

n = min{(s− 1) ·m, n}+ dim(S)

dim(S) = n−min{(s− 1) ·m, n}
= max{n− (s− 1) ·m, 0}

Now, since we know the dimension of S and finding a solution to a linear
system is easy, we see that our problem reduces to solving the set of m
quadratic equations

B = {Qi(x) = y0,i : 1 ≤ i ≤ m, x ∈ S} (4.9)

15

over S. If S is now of large enough dimension (depending on the choice of
d, n and m), the solution x for B shows that the signature we searched is
x′ + x as

P(x′ + x) = P(x) = y (4.10)

and thus, the signature-message-pair (x′ + x, y) will be a forged pair that
will be verified without knowing the private key. Since the complexity is
reduced from m equations in n variables over the field F2r to m equations
in n− (s− 1) ·m variables over the subfield F2d , SDA broke LUOV [14].

4.2 The nested subset differential attack

In response to the subfield differential attack, the developers of LUOV ad-
justed the parameters, such that the degree of the extension (r) is a prime
number. This ensures that the only subfield existing, will be the prime field
F21 = F2 due to the fact that 1 and the prime number itself are the only
divisors of r. This led to the following new parameters [20]:

Name Security level (r,m, v, n)

LUOV-7-57-197 I (7, 57, 197, 254)

LUOV-7-83-283 III (7, 83, 283, 366)

LUOV-7-110-374 V (7, 110, 374, 484)

LUOV-47-42-182 I (47, 42, 182, 224)

LUOV-61-60-261 III (61, 60, 261, 321)

LUOV-79-76-341 V (79, 76, 341, 417)

In fact, the probability that for a signature in the domain exists is e
− |A||B| =

1−e−((dn)−(rm)), with A the domain and B the range of the polynomial sys-
tem P [14]. Thus, applying SDA to the new parameters gives the following
probabilities:

Name (r,m, v, n) Probability

LUOV-7-57-197 (7, 57, 197, 254) 1− e(−2−145)

LUOV-7-83-283 (7, 83, 283, 366) 1− e(−2−215)

LUOV-7-110-374 (7, 110, 374, 484) 1− e(−2−286)

LUOV-47-42-182 (47, 42, 182, 224) 1− e(−2−1750)

LUOV-61-60-261 (61, 60, 261, 321) 1− e(−2−3339)

LUOV-79-76-341 (79, 76, 341, 417) 1− e(−2−5587)

Since all probabilities are close to 0, there is no signature for a particular
message and SDA cannot be applied to these new parameters. In [8], Ding et
al. showed a modification of the SDA, called the nested subset differential

16

attack (NSDA) that makes the forge of a signature possible for the first
three new parameter sets, where r = 7. Let P : Fn2r → Fm2r be the public key
with r = 7 and assume we want to forge a signature x ∈ Fn2r for a message
y ∈ Fm2r . We will denote by x = (x1, . . . , xn) ∈ Fn2 an indeterminate point.
We decompose y = Y0+Y1t+ · · ·+Yr−1tr−1 where Yi = (yi,1, . . . , yi,m) ∈ Fm2
for all i, thus

y =

y0,1

...

y0,m

+

y1,1

...

y1,m

 · t+ · · ·+

yr−1,1

...

yr−1,m

 · tr−1 (4.11)

Finally, we denote the set of all polynomials in F2[t]/(g(t)) which are trun-
cated to the third power by

E := {a3 : a ∈ F2r} (4.12)

The probabilities that there will be a signature for Y if we consider En with a
size of 24n possible elements, as the domain and recalculate the probabilities.
This probabilities can be found in [8] and are all close to 1, so it is very likely
that we only need to consider signatures from En in this attack. We can
construct a signature step by step using differentials instead of looking over
all elements of En at once. For each step, we add an additional power of

t in our signature P
h
(A0 + A1t + · · · + xth) with 0 ≤ h ≤ 3, consider the

solution spaces and use the result in the next step. This is possible due to
the special construction of lifted polynomials given by the following lemma

Lemma 2. Let

f̃(X) =
n∑
i=1

n∑
j=i

αi,jxixj +
n∑
i=1

βixi + γ (4.13)

be a lifted polynomial and A0, A1, . . . , Al−1 ∈ Fn2 with

Ai = (ai,1, . . . , ai,n). (4.14)

Set A = A0 +A1t+A2t
2 + · · ·+Al−1t

l−1. We have that for f̃(A+Xtl) all
the quadratic terms are coefficients of t2l, the linear terms are coefficients of
tl, tl+1, . . . , t2l−1, and the coefficients of th depends only on αi,j , βi, and Ak
for k ≤ h and X for h ≥ l.

The proof of this lemma is given in [8]. To keep this attack efficient, we
ensure to always solve no more than m quadratic equations over F2 with at
least as many variables as equations and we achieve this in four steps using
Lemma 2.

17

Step 1:

If we define P
s
(x) to be the s-truncation of P(x) then we see that

P
0
(x) =

Q0,1(x)

Q0,2(x)

...

Q0,m(x)

(4.15)

Here, each Q0,i(x) is a quadratic polynomial over F2 (boolean). We solve

P
0
(x) = Y0, a system of m equations in n variables, using a direct attack

method like exhaustive search and call the found solution A0.

Step 2:

We can use our solution of Step 1 to construct

P
1
(A0 + xt) =

y0,1 + L1,1(x)t

y0,2 + L1,2(x)t

...

y0,m + L1,m(x)t

(4.16)

where each L1,i(x) is, due to Lemma 2, a boolean linear polynomial. We
can solve this system by finding a solution, say A1, for the system of linear
equations

{L1,i(x) = y1,i : 1 ≤ i ≤ m} (4.17)

and then have P
1
(A0 +A1t) = Y0 + Y1t.

Step 3:

We use A0 and A1 to examine P
2
(A0 +A1t+xt2). The s-truncation makes

this a system of polynomials of degree 2 in t and Lemma 2 of [8] states that
the coefficients of the t2 terms will be linear, the coefficients of the constant
terms will only depend on A0 and the coefficients of the t will depend only
on A0 and A1, so we get

P
2
(A0 +A1t+ xt2) =

y0,1 + y1,1t+ L2,1(x)t2

y0,2 + y1,2t+ L2,2(x)t2

...

y0,m + y1,mt+ L2,m(x)t2

(4.18)

18

with each L2,i(x) a linear boolean polynomial. Therefore if we find a solu-
tion, say A2, to the system of linear equations

{L2,i(x) = y2,i : 1 ≤ i ≤ m} (4.19)

then we have P
2
(A0 +A1t+A2t

2) = Y0 + Y1t+ Y2t
2.

Step 4:

In the final step we drop the need for s-truncation and examine P3(A0 +
A1t+A2t

2+xt3). Since there is no truncation, the system of polynomials will
have degree r−1 in t. Thus, the first 3 new parameter sets of LUOV (r = 7)
will have degree 6 in t, the highest degree for polynomials in F2[t]/(g(t)).
Due to Lemma 2, we know that only the coefficients of the t6 terms are
quadratic and the coefficients of the t3, t4 and t5 terms are linear in x.
Furthermore, the coefficients of the constant terms only depend on A0, the
coefficients of t only on A0 and A1 and the coefficients of t2 on A0, A1 and
A2. By construction of A0, A1 and A2 we have

P
3
(A0+A1t+A2t

2+xt3) =

y0,1 + y1,1t+ y2,1t
2 + L3,1(x)t3 + L4,1(x)t4

+L5,1(x)t5 +Q6,1(x)t6

y0,2 + y1,2t+ y2,2t
2 + L3,2(x)t3 + L4,2(x)t4

+L5,2(x)t5 +Q6,2(x)t6

...

y0,m + y1,mt+ y2,mt
2 + L3,m(x)t3 + L4,m(x)t4

+L5,m(x)t5 +Q6,m(x)t6

We can now proceed similar to the last step in SDA. We first find the solution
space S for the system of linear equations

A = {Li,j(x) = yi,j : 3 ≤ i ≤ 5, 1 ≤ j ≤ m} (4.20)

and because A has a high probability to be full rank 3m, the dimension of
S will be n− 3m. Thus, the system of quadratic equations

B = {Q6,j(x) = y6,j : 1 ≤ j ≤ m,x ∈ S} (4.21)

has a high probability to have a solution and therefore finding a solution to
B, say A3 we have

P(A0 +A1t+A2t
2 +A3t

3) = y. (4.22)

Hence, x = A0 +A1t+A2t
2 +A3t

3 is a forged signature for the message y.
This attack is only possible for small values of r, otherwise the number of

19

linear equations to be solved besides the final quadratic system also increases
so much, that it is highly unlikely that a final solution exist.
The complexity of NSDA is largely reduced to solve the two quadratic sys-
tems of m equations over F2, because the overhead from solving the linear
systems can be ignored as the size is never much larger than the quadratic
systems and are much more efficient to solve. Due to the small field size
and the limited number of variables, Ding et al. used exhaustive search to
solve these two quadratic systems. For determined systems (n = m), [6] es-
timates that the number of bit operations for finding all the solutions would
be log2(n)2n+2. Since only one solution is necessary, values can be randomly
assigned until the system is either determined or lightly underdetermined
(n > m). Ding et al. decided to guess all but m + 2 of the variables to
assure a solution on the first try. Thus, the complexity is reduces to solve
a system of m equations with m + 2 variables in F2 and yields to 2 times
log2(m+ 2)2m+4 [8].

4.3 Effects and security consequences

The NIST presumed 6 different security level. Three levels (I,III and V)
are equivalent to the symmetric standard AES and three levels (II, IV and
VI) are equivalent to the latest hash standard SHA3. For each of them, the
NIST gave the number of classical gate counts for the optimal key recoveries
(collision attacks) on AES (SHA3). The security of these levels are:

Security level Equivalence security in log2

I AES-128 143

III AES-192 207

V AES-256 272

II SHA3-256 146

IV SHA3-384 210

VI SHA3-512 274

Applying SDA on the old parameters of LUOV leads to the following com-
plexities given in log2:

Parameter set NIST security level security (SDA)

LUOV-8-58-237 II 107

LUOV-8-82-323 IV 146

LUOV-8-107-371 VI 184

LUOV-48-43-222 II 135

LUOV-64-61-302 IV 202

LUOV-80-76-363 VI 244

20

Applying NSDA on the new parameters of LUOV lead to the following
complexities given in log2:

Parameter set NIST security level security (NSDA)

LUOV-7-57-197 I 61

LUOV-7-83-283 III 89

LUOV-7-110-374 V 116

It can be seen that due to the SDA none of the security levels required for
the NIST competition can be hold. Furthermore, due to the new parame-
ters and the NSDA, not one of the first three parameter sets satisfies the
lowest NIST security level I. This makes LUOV no longer acceptable for the
NIST standard competition and both attacks are the main reason for the
elimination of LUOV after round 2.

21

Chapter 5

Solving polynomial systems
in F2

The efficiency of solving quadratic polynomial systems with coefficients in F2

highly depends on the number of equations m and the number of unknowns
n. For extremely overdetermined (m > n(n + 1)/2) and extremely under-
determined (n > m(m+ 1)) random polynomial equation systems, methods
are known to find a solution in polynomial time [13]. Between these two
extremes, the determined case (n = m) is the hardest, since for m > n the
additional information of the extra equations will simplify the problem and
for m < n we can always assign random values to n−m unknowns and make
the system determined.

5.1 Known attacks and previous methods

5.1.1 Exhaustive search

This attack can be applied to any cryptosystem and in general its complexity
forms the upper bound of the complexity, because the attacker tries any
possible key until the correct one is found. The length of the key and the size
of the set of possible keys are crucial parameters to determine its complexity.
For the public key P describing a random boolean quadratic polynomial
system with n unknown variables and m equations takes therefore m · 2n
evaluations. Thus, m · 2n forms the upper bound of the complexity of the
system. Using Gray codes and other techniques, this complexity can be
reduced to O(log2(n)2n) operations [6].

5.1.2 Algebraic methods

The idea of algebraic methods is to consider the polynomial equation systems
by looking at the ideals they generate and solve them by finding a good
representation of the corresponding ideal. Assume F = {f1, . . . , fm} is a

22

family of elements in a multivariate polynomial ring K[X1, . . . , Xn], then F
generates the ideal I which contains the following set of polynomials [1]:

I =

{
m∑
i=1

pifi

∣∣∣ (p1, . . . , pm) ∈ K[X1, . . . , Xn]m

}
(5.1)

With the Gröbner basis of this ideal, solutions can be easily computed by
successively eliminating the variables, which means computing solutions of
univariate polynomials and use the results to reduce the number of unknowns
in other polynomials [5]. Lazard has shown in [15] that we can compute the
Gröbner basis of I, by constructing the Macaulay matrix, whose columns are
sorted according to any monomial order �. Then, the rows the reduced row
echelon form of this matrix contains the coefficients of a Gröbner basis of I.
Various algorithms such as F4, F5 or XL use this algebraic method to solve
systems of polynomial equations and in general, solving an overdetermined
system of quadratic polynomials in F2 has the following complexity:

O
((

n

Dreg

)ω)
(5.2)

where Dreg is the degree of regularity [4] and ω is the exponent of matrix
multiplication. The smallest value known is ω = 2.373 but in practice
ω = 2.807 by using the Strassen algorithm.

FXL/BooleanSolve

The FXL/BooleanSolve algorithms combine exhaustive search with alge-
braic methods on Macaulay matrices. In the first step, the algorithm uses
exhaustive search by picking randomly an a = (ak+1, . . . , an) ∈ Fn−k2 and
specializes partly the polynomials f1,a, . . . , fm,a of the boolean system such
that the resulting boolean system has k unknown variables and m equations.
In the second step, the Macaulay matrix of this system in degree Dreg is
used to check if this system admits a solution. If it does, the algorithm uses
exhaustive search on x1, . . . , xk to find the solution. If not, the first step is
repeated with another a.

5.2 The crossbred algorithm of Joux/Vitse

The new crossbred algorithm is based on this principle, but unlike the FXL/-
BooleanSolve algorithms, it performs the specialization step on n − k vari-
ables after using the macaulay matrix and the Gröbner basis to decide if a
system admits a solution. Hence, we construct a degree D macaulay matrix,
sort the monomials (columns) in grevlex order and compute the row echelon
form. Therefore, we can generate degree D equations with k variables elim-
inated. Finally, we try to solve the resulting system with exhaustive search
on n− k variables. We define the necessary parameters as follows [9]:

23

F := a system of m equations over n variables in F2

D := the degree of the macaulay matrix of F

d := the degree of the equations we want our specialized system to
have, after the last n− k variables are specialized.

k := the number of variables we want our specialized system to have

M
(k)
D,d(F) := the submatrix of Mac

(k)
D,d(F) whose columns correspond

The are two phases, the preparation phase and the algorithm phase. The
preparation phase goes as following:

1. Construct the macaulay matrix of degree D of the polynomial system
F , where the columns are sorted in grevlex order, denoted MacD(F).

2. Let MackD,d(F) be the submatrix of MacD(F), where each row ui,jfi
represents a polynomial with degk(ui,j) ≥ d− 1.

3. Let Mk
D,d(F) be a submatrix of MackD,d, where each column i repre-

sents the monomial Mi with degk(Mi) > d.

After all necessary matrices have been constructed, the algorithm phase goes
as following:

1. Construct the kernel of Mk
D,d and multiply it by MackD,d(F). The

result forms a system of polynomial equations, P , where each has a
total degree ≤ D and at most d in x1, . . . , xk.

2. ∀a = {ak+1, . . . , an} ∈ Fn−k2 :

a) Partially evaluate the last n− k variables of F in a, so ∀i:
fi(X1, . . . , Xk, ak+1, . . . , an) and denote the resulting system F ∗.

b) Construct the macaulay matrix of degree d of F , denotedMacd(F
∗).

c) Similar to a), evaluate the last n − k variables of P in a and let
P ∗ represent this new system as a coefficient matrix.

d) Append Macd(F
∗) to P ∗ and let PM∗ represent the resulting

system.

e) Check if PM∗ is solvable in x1, . . . , xk and if so, extract the vari-
ables x1, . . . , xk and test the solution.

The complexity of this algorithm is determined step 1 and step 2 of the
algorithm phase. In step 1 the main computation is necessary to compute
the kernel vectors of Mk

D,d, a sparse matrix. This complexity is [9]

CKer = O(ncols) +O(n2cols log ncols log log ncols) ≈ O(n2cols) (5.3)

24

where ncol := the number of columns of the matrix. This number of columns
of Mk

D,d(F), say Nk
D,d, corresponds to the number of monomials labeling its

columns in F2 is given by [1]:

Nk
D,d =

D∑
dk=d+1

D−dk∑
d′=0

(
k

dk

)(
n− k
d′

)
(5.4)

In the second step, we guess for n−k variables (O(2n−k)). For each of these
guesses, we use linearization to find a solution of PM∗ with the complex-
ity [9]

O

((d∑
i=0

(
k

i

))ω)
(5.5)

Therefore, the overall complexity of the crossbred algorithm in F2 is given
by [9]:

Ccross = O

((D∑
dk=d+1

D−dk∑
d′=0

(
k

dk

)(
n− k
d′

))2
)

+ 2n−k · O

((d∑
i=0

(
k

i

))ω)
(5.6)

25

Chapter 6

Research

6.1 Comparison of different algorithms

As we have seen in Chapter 4, the NSDA ensures that we only need to solve
two systems of quadratic equations of smaller size in F2. As these systems
are underdetermined and the method of Thomae and Wolf [19] can not be
applied here, we guess all but m+ 2 variables to ensure that a solution can
be found in the first try and lead to the following system sizes:

Parameter set (m,n) before NSDA (m,n) after NSDA

LUOV-7-57-197 (57, 254) (57, 59)

LUOV-7-83-283 (83, 366) (83, 85)

LUOV-7-110-374 (110, 484) (110, 112)

Therefore, we need to solve nearly determined systems in F2. To solve these
systems several algorithmic methods have been shown in Chapter 5. Ding
et al. decided in [8] to use exhaustive search, because of the small field
size. This is the case because [6] expected that for determined systems, pre-
existing algebraic methods can not beat fast exhaustive search for n lower
than 200. However, Joux & Vitse demonstrated in [1] that the crossover
point between fast exhaustive search and the crossbred algorithm is n = 37
even for small fields like F2. Moreover, the FXL/BooleanSolve algorithm
first guesses n−k variables (O(2n−k)) and for every guess, linear algebra on
the macaulay matrix is performed, which makes this repeating step costly.
The crossbred algorithm circumvents this problem by first constructing the
macaulay matrix of degree D in grevlex order and then generate new equa-
tions that are linear in X1, . . . , Xk such that if then Xk+1, . . . , Xn are spec-
ified (as in FXL), the leftover system is linear and therefore easier solvable.
Also in [1] it was shown that for determined systems, the crossbred algorithm
outstands the FXL/BooleanSolve algorithm for any number of variables al-
though the complexity exponents move closer together as n becomes larger.

26

This is why it is worthwhile to examine the crossbred algorithm as a new
approach to solve the reduced systems of NSDA.

6.2 Determine the parameters D, d and k

As described in Chapter 5, the performance of the crossbred algorithm highly
depends on the choice of the three parameters D, d and k. Finding the best
or even admissible values for D, d and k is far from trivial. To determine
the admissibility of these three parameters, Joux and Vitse derived a bi-
variate generating function. They first defined

SkD,d =
(1 +X)n−k

(1−X)(1− Y)

(
(1 +XY)k

(1 +X2Y 2)m
− (1 +X)k

(1 +X2)m

)
(6.1)

where the coefficient of XDY d of SKD,d represents the number of new inde-

pendent polynomials after the reduction of MackD,d, which is equivalent to

the left kernel of Mk
D,d (see Step 1 of the algorithm phase). However, some of

these new independent polynomials reduce to 0 after evaluation and there-
fore do not yield any new information. The number of those polynomials is
generated by [9]

(1 + Y)k

(1−X)(1− Y)(1 + Y 2)m
(6.2)

This means, if we compute

SkD,d −
(1 + Y)k

(1−X)(1− Y)(1 + Y 2)m
(6.3)

then the coefficient of XDY d describes the amount of new independent poly-
nomials that do not reduce to 0 and thus, if the coefficient is non-negative
the values for D, d and k are admissible. To determine the parameters for
the reduced NSDA systems, we wrote a script A.1 that iterates through all
possible values for these three parameters and and checks wether the combi-
nation is admissible. If this is the case, the complexity for these parameters
is computed using the formula given in [9]. The best complexity in log2 is
printed together with the best parameters for D, d and k.

6.3 Compute complexity for NSDA systems

In [8], the first three new parameter sets of LUOV were reduced:

Parameter set Original system over F27 New system over F2

LUOV-7-57-197 m = 57, n = 254 m = 57, n = 59

LUOV-7-83-283 m = 83, n = 366 m = 83, n = 85

LUOV-7-110-374 m = 110, n = 484 m = 110, n = 112

27

By using the script in A.1, we obtain the following parameters for the re-
duced systems and the complexity:

Parameter set (m,n) D d k log2 complexity

LUOV-7-57-197 (57, 59) 5 1 14 55

LUOV-7-83-283 (83, 85) 8 1 20 77

LUOV-7-110-374 (110, 112) 9 1 22 102

These complexities are theoretically computed and the complexity is the
best possible based on the best values for 2 ≤ D ≤

√
n, 1 ≤ d < D and

1 ≤ k ≤ n. However, since D describes the degree of the macaulay matrix,
D ≥ 5 makes the saving of the macaulay matrix not feasible anymore on
normal computer. To see this, we consider the first parameter set of the
table above. This gives m = 57, n = 59, D = 5, d = 1 and k = 14.
Now we can use the formula 5.4 to compute the number of columns of
the macaulay matrix. This yields N14

5,1 = 1810718 and looking at Table 1
in [1] shows that the number of rows will be around the same. Therefore,
the macaulay matrix will have 18107182 = 3.278699675524 × 1012 entries.
Assuming that each entry needs to be represented by one bit, the matrix
will take around 410 GB. The same computation for the last row of table 1
in [1] (N23

4,1 = 277288, R4,1 = 278166), will take around 10 GB. As 10 GB
in memory is already heavy to work with, 410 GB are not possible except
for a small group of specified computers that cost a lot. Thus, we decided
to provide the theoretical values above and furthermore rerun the script
with D = {3, 4} and provide values for parameters and an estimation of the
complexity that might be used in a practical environment. This rerun yields

Parameter set (m,n) D d k log2 complexity

LUOV-7-57-197 (57, 59) 4 1 13 56

LUOV-7-83-283 (83, 85) 3 1 14 81

LUOV-7-110-374 (110, 112) 4 1 17 106

To summarize, the following table shows the required complexity of the
NIST Post-quantum cryptography competition, the claimed complexity of
the LUOV developers for direct attacks [20], the complexity of the NSDA
[8], the complexity of our hybrid attack (NSDA+C for NSDA + crossbred
algorithm) and the complexity of NSDA+C with D = {3, 4} all given in
log2:

Parameter set NIST LUOV NSDA NSDA+C D = {3, 4}

LUOV-7-57-197 I (143) 143 61 55 56

LUOV-7-83-283 III (207) 208 89 77 81

LUOV-7-110-374 V (272) 274 116 102 106

28

6.4 Comparison to exhaustive search used in NSDA

Comparing the complexity of the regular NSDA with the complexity of the
NSDA+C algorithm, we found that the theoretical application of the cross-
bred algorithm in the NSDA lowers the complexity for all three parameter
sets of LUOV. However, we see that even for feasible values of D (3, 4),
the complexity of all three parameters is lower than for the regular NSDA.
Furthermore, we see that the more variables and equations a parameter set
has, the higher is the efficiency benefit compared to exhaustive search. For
the first parameter set we see a benefit of 26 in theory (practically 25) while
for the third parameter set the benefit is 214 (210).

6.5 Impacts on UOV

As stated in [8], NSDA can not be applied to non-lifted schemes. Therefore,
the quadratic system will have coefficients in a finite field, which is to small to
find pre-images in. Hence, the system cannot be transformed in a boolean
system (coefficients in F2) and thus, the crossbred algorithm can not be
applied. This indicates that the crossbred algorithm has no impact on the
security of UOV.

6.6 Scientific impacts and security consequences

The usage of LUOV is, due to the impact of NSDA, already known to be
insecure and was eliminated after the second round of the Post-quantum
cryptography standardization process. However, the consequences of this
research go beyond the LUOV cryptosystem. Given the small field of the
coefficients (F2), it was thought that exhaustive search is the only feasible
option to solve a system of quadratic equations. This research shows that
the crossbred algorithm by Joux and Vitse is similar efficient and with the
right parameters can outstand exhaustive search. In addition to that, the
crossbred algorithm shows an algebraic approach to solve boolean systems of
quadratic equations in general. Therefore, the attack can be used to reduce
a system of quadratic equations to a boolean system and apply the cross-
bred algorithm to create signature frauds and break cryptosystems in the
multivariate quadratic cryptography section. Thus, the crossbred algorithm
can be used as an intermediate step of an attack and this research shown
that the efficiency of such hybrid attacks can exceed known ones.

29

Chapter 7

Conclusions

This research investigated the potential of the crossbred algorithm applied
to the systems obtained in the nested subset differential attack. To show
this, we examined the old and new parameters of LUOV together with the
SDA and NSDA. We considered the reduced systems in NSDA and compared
several methods to solve boolean quadratic polynomial systems. We decided
to examine the crossbred algorithm of Joux/Vitse and used the bivariate
generating series [1] and the complexity estimation [9] to create a script
(A.1) that leads to the best parameters used in the crossbred algorithm and
the complexity. This work has shown that for both, theoretical and practical
parameters, our hybrid attack NSDA+C is effective enough to outstand the
complexity of the general NSDA. However, the attack is limited to lifted
multivariate cryptosystems and non-lifted schemes such as UOV are not
affected.

7.1 Future work

This work has done complexity analysis. Therefore, it is worthwhile to
change the experimental setup in [8] by implementing the crossbred algo-
rithm and examine wether and if so, how far the 210 minute record can
be reduced. Additionally, Joux & Vitse addressed a hybrid version of the
crossbred algorithm. Future work should examine this hybrid approach and
extend this complexity analysis.

30

Bibliography

[1] Vanessa Joux Antoine and Vitse. A crossbred algorithm for solving
boolean polynomial systems. pages 3–21. Springer International Pub-
lishing, 2018.

[2] Adi Kipnis Aviad and Shamir. Cryptanalysis of the oil and vinegar
signature scheme. pages 257–266. Springer Berlin Heidelberg, 1998.

[3] Sheldon Jay Axler. Linear Algebra Done Right. Undergraduate Texts
in Mathematics. Springer, New York, 1997.

[4] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and B-Y. Yang.
Asymptotic behaviour of the index of regularity of quadratic semi-
regular polynomial systems.

[5] Luk Bettale and Ludovic Perret. Hybrid approach for solving multi-
variate systems over finite fields. J. Math. Crypt, 2:1–22, 12 2008.

[6] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung
Chou, Ruben Niederhagen, Adi Shamir, and Bo-Yin Yang. Fast ex-
haustive search for polynomial systems in F2. In Stefan Mangard and
François-Xavier Standaert, editors, Cryptographic Hardware and Em-
bedded Systems, CHES 2010, pages 203–218, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[7] C. Cooper. On the distribution of rank of a random matrix over a
finite field. In Proceedings of the Ninth International Conference on on
Random Structures and Algorithms, page 197–212, USA, 2000. John
Wiley & Sons, Inc.

[8] Jintai Ding, Joshua Deaton, Vishakha, and Bo-Yin Yang. The nested
subset differential attack: A practical direct attack against luov which
forges a signature within 210 minutes. Springer-Verlag, 2021.

[9] João Duarte. On the complexity of the crossbred algorithm, 7 2020.

[10] Pierre-Alain Fouque, J. Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
T. Pornin, T. Prest, Thomas Ricosset, Gregor Seiler, William Whyte,

31

and Z. Zhang. Falcon: Fast-fourier lattice-based compact signatures
over ntru. 2019.

[11] John B. Fraleigh. A first course in abstract algebra. 1967.

[12] Juris Hartmanis. Computers and intractability: A guide to the theory
of np-completeness (michael r. garey and david s. johnson). SIAM
Review, 24(1):90–91, 1982.

[13] Jacques, Goubin Louis Kipnis Aviad, and Patarin. Unbalanced oil and
vinegar signature schemes. pages 206–222. Springer Berlin Heidelberg,
1999.

[14] Joshua, Schmidt Kurt, Vishakha, Zhang Zheng Ding Jintai, and
Deaton. Cryptanalysis of the lifted unbalanced oil vinegar signature
scheme. pages 279–298. Springer International Publishing, 2020.

[15] D. Lazard. Gröbner bases, gaussian elimination and resolution of sys-
tems of algebraic equations. In J. A. van Hulzen, editor, Computer
Algebra, pages 146–156, Berlin, Heidelberg, 1983. Springer Berlin Hei-
delberg.

[16] Rudolf Lidl and Harald Niederreiter. Finite fields., volume 20. Cam-
bridge: Cambridge Univ. Press, 2nd ed. edition, 1996. Chapter 2.

[17] Albrecht Petzoldt. Selecting and Reducing Key Sizes for Multivariate
Cryptography. PhD thesis, Technische Universität, Darmstadt, Juli
2013.

[18] Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Journal on
Computing, 26(5):1484–1509, 1997.

[19] Enrico Thomae and Christopher Wolf. Solving underdetermined sys-
tems of multivariate quadratic equations revisited. In Marc Fischlin,
Johannes Buchmann, and Mark Manulis, editors, Public Key Cryptog-
raphy – PKC 2012, pages 156–171, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[20] Beullens W., Preneel B., Szepieniec A., and Vercauteren F.:. Luov
signature scheme proposal for nist pqc project (round 2 version). 2019.

[21] Bart Beullens Ward and Preneel. Field lifting for smaller uov public
keys. pages 227–246. Springer International Publishing, 2017.

32

Appendix A

Appendix

A.1 Code to decide the best parameters

1 import sys
2
3 def adCheck (n , m, D, d , k) :
4 R.<X,Y> = PowerSeriesRing (ZZ) ; R
5 I = (((1+X) ˆ(n−k)) /((1−X)∗(1−Y))) ∗((((1+X∗Y)ˆk) /((1+Xˆ2∗Yˆ2)

ˆ(m)))−(((1+X) ˆk) /((1+Xˆ2) ˆ(m))))−(((1+Y) ˆk) /((1−X)
∗(1−Y) ∗(1 + Yˆ2) ˆ(m))) ;

6 d i c = I . c o e f f i c i e n t s () ;
7 i f d i c . get (XˆD∗Yˆd) < 0 :
8 return f a l s e
9 return t rue

10
11
12 def compComplexity (n ,D, d , k) :
13 #Compute the Complexity
14 qnk = 2ˆ(n−k)
15 #Compute the comp lex i t y o f s o l v i n g P U Mac
16 omega = 2.807
17 var (’ i ’)
18 solPMac = (sum(b inomial (k , i) , i , 0 ,d)) ˆomega
19 #Compute the comp lex i t y o f the k e rne l
20 var (’ dk ’)
21 var (’ dp ’)
22 s = sum(sum((b inomial (k , dk) ∗ binomial (n−k , dp)) , dp , 0 , D−dk

) , dk , d+1, D)
23 #Add the c omp l e x i t i e s t o g e t h e r
24 f i n = s ˆ2 + qnk ∗ solPMac
25 #And compute the l og2 and f l o o r the r e s u l t
26 return f l o o r (RDF(log (f in , 2)))
27
28 def main (n ,m) :
29 bestD = 20
30 bestd = 20
31 bestk = 20
32 bestComp = 200

33

33 for k in range (1 , n+1) :
34 for D in range (1 , f l o o r (s q r t (n))) :
35 for d in range (1 , D) :
36 i f adCheck (n , m, D, d , k) :
37 i f bestComp > compComplexity (n ,D, d , k) :
38 bestComp = compComplexity (n ,D, d , k)
39 bestD = D
40 bestd = d
41 bestk = k
42 print (” Fin i shed ! : ” , bestD , bestd , bestk , bestComp)
43
44 i f name ==” main ” :
45 i f len (sys . argv) != 3 :
46 print (”To l e s s arguments ! Use ’ sage parameters . sage <n>

<m>’”)
47 else :
48 main (int (sys . argv [1]) , int (sys . argv [2]))

34

