
Bachelor’s Thesis Computing Science

Leakage Resilience of the Suffix Keyed Sponge

Henk Berendsen
s1054308

January 7, 2023

First supervisor/assessor:
Dr. Ir. Bart Mennink

Second assessor:
Prof. Dr. Joan Daemen

Abstract

In this thesis, we analyse the tightness of the non-adaptive leakage resilient
pseudorandom function (NALR-PRF) security bound on the Suffix Keyed
Sponge formalised by Dobraunig and Mennink (ToSC 2019/4). We show
that this bound is not tight due to an unnoticed effect of the leakage function
on the size of the largest multicollision an attacker can use to attack the
Suffix Keyed Sponge. Furthermore, we show how the bound can be tightened
when assuming that the leakage function is defined such that it leaks a secret
part of the Suffix Keyed Sponge’s state, or the Hamming weight of this secret
part.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Notation . 5
2.2 Mathematical Bounds . 5
2.3 Suffix Keyed Sponge . 9

2.3.1 Explanation of the sponge construction 9
2.3.2 Explanation of the Suffix Keyed Sponge 9

2.4 PRF security and NALR-PRF security 10
2.4.1 PRF security . 10
2.4.2 NALR-PRF security 11

2.5 Uniform and Universal Functions 12
2.6 Multicollision limit function 13
2.7 Security Bounds on the Suffix Keyed Sponge 14

3 Tightness of Suffix Keyed Sponge NALR-PRF security bound 16
3.1 Matching attacks on term 3 of the NALR-PRF bound 17

3.1.1 First attack . 17
3.1.2 Second attack . 18
3.1.3 Deriving the bound . 18
3.1.4 Attack in the NALR-PRF security model 18

3.2 Matching attack on term 2 of the NALR-PRF bound 19
3.3 Matching attack on term 4 of the NALR-PRF bound 20

3.3.1 Attack in the NALR-PRF security model 21
3.4 Conclusions of the tightness analysis 22

4 Multicollision limit function with Hamming weight leakage 24
4.1 Balls-and-bins problem . 25
4.2 Bounding the multicollision limit function 26
4.3 Proof of Theorem 4.1 . 26

4.3.1 Probability in Experiment 1 28
4.3.2 Probability in Experiment 2 28
4.3.3 Proving the inequality between the probabilities . . . 29

1

4.4 Applying Theorem 4.1 to the SuKS bound 33
4.4.1 Limitation of the tightened NALR-PRF security bound 34

5 Conclusions 35

A Appendix 38

2

Chapter 1

Introduction

Background. The National Institute of Standards and Technology (NIST)
has initiated the Lightweight Cryptography Standardization Process [2],
often abbreviated as NIST LWC. The goal of this process is to standardise
lightweight cryptographic algorithms which can run on devices with low
computational power. During NIST LWC, many algorithms were submitted
as candidates to be standardised.

One of the criteria NIST uses to evaluate the candidates is resistance
against side channel attacks [3]: attacks on a cryptographic scheme which
exploit physical attributes of the machine the algorithm is running on, such
as power consumption or execution time, to learn sensitive information
used in the algorithm, like the secret key. Side channel attacks cannot be
considered in the classical security model, called black-box security, in which
it is assumed that the attacker can only observe the input and output of a
cryptographic algorithm. To account for side channel attacks, the leakage
resilience security model can be used. In this model, it is assumed that
apart from the input and output of the algorithm, the attacker also learns
information leaked during execution of the algorithm.

NIST has selected 10 of the candidates of NIST LWC as finalists. One
of these finalists is ISAP, a family of authenticated encryption algorithms
which is designed to be robust against side channel attacks [1]. The building
block in ISAP used for authentication is called the Suffix Keyed Sponge, and
it is the focus of this thesis.

The Suffix Keyed Sponge, abbreviated as SuKS, is a MAC function
formalised by Dobraunig and Mennink. They have given a bound on the
security of the SuKS in both the black-box and leakage resilience security
model [7]. Furthermore, Dobraunig and Mennink have shown that the bound
they gave on the black-box security of the SuKS is tight [8]. This means
that, in the black-box security model, the complexity of the best possible
attacks on the SuKS match the bound. However, it has yet to be shown
whether the bound on the leakage resilience security of the SuKS is tight.

3

Contribution of this thesis. In this thesis, the tightness of the Suffix
Keyed Sponge in the leakage resilience security model is analysed from the
perspective of an attacker. The most important result of this analysis is that
the leakage resilience security bound on the SuKS is not tight. Specifically,
one of the terms in this bound is supposed to match the complexity of a key
recovery attack, but the complexity of this attack is actually greater than
the aforementioned term. This discrepancy between the complexity of the
term and the attack is caused by an effect of the leakage on the size of the
largest multicollision for the SuKS (the largest set of distinct inputs to the
SuKS which result in the same output) found by the attacker.

In the bound, the size of the largest multicollision is estimated by the
multicollision limit function, defined by Daemen et al. [6]. In an effort
towards tightening the bound, we analyse how the effect of leakage on the
size of the largest multicollision can be incorporated into the multicollision
limit function for a specific type of leakage. The type of leakage we consider
is the leakage of the Hamming weight of a value, which for binary values is
equivalent to the amount of 1’s in the value.

Related Work. To the best of our knowledge, there exists no tightness
analysis of the leakage resilience security bound on the SuKS. Our analysis
is based on the bound given by Dobraunig and Mennink, and the attacks
used in our analysis are derived from the attacks used in their tightness
analysis of the black-box security bound.

We estimate the size of the largest multicollision when considering leakage
by using a modified version of the multicollision limit function, defined in
the aforementioned article by Daemen et al. In this article, an upper bound
on the multicollision limit function which can be computed more efficiently
is also given. In order to be able to use this upper bound, we give an upper
bound on the modified multicollision limit function in terms of the original
multicollision limit function, in which the attacker can use more distinct
inputs to the SuKS to find collisions. The method we use to get this upper
bound is derived from a method used in the same article by Daemen et al.

This modified version of the multicollision limit function considers leakage
of the Hamming weight of a value. We have chosen this type of leakage
because it has been shown that leaking the Hamming weight of a value is a
realistic modelling of leakage [9, 12, 13].

Overview. First, the notation and concepts necessary to understand the
thesis are explained in Chapter 2. Then, the tightness analysis of the leakage
resilience security bound on the SuKS is described in Chapter 3. Afterwards,
the analysis of the multicollision limit function considering Hamming weight
leakage is given in Chapter 4. Finally, the results of these two analyses are
discussed in Chapter 5.

4

Chapter 2

Preliminaries

2.1 Notation

In this section, notation used in the rest of the thesis is defined.

Definition 2.1 (Left-most and right-most bits of a bit string). leftk(S) and
rightk(S) denote respectively the k left-most and k right-most bits of the
bit string S.

Definition 2.2 (Bit string concatenation). Let S1 and S2 be two bit strings.
S1||S2 is the bit string formed by concatenating S1 and S2.

Definition 2.3 (Sets of bit strings). Let {0, 1}k denote the set of bit strings
of length k for any k ∈ N and {0, 1}∗ the set of bit strings of any length.

Definition 2.4 (Probability). Let Pr(E) denote the probability that event
E occurs, given as a number in the interval [0, 1].

Definition 2.5 (Hamming weight). Let HW(S) denote the Hamming weight
of bit string S, i.e. the amount of bits in S equal to 1.

Definition 2.6 (Falling factorial). The nth falling factorial of x, denoted
by (x)n, is defined as x!

(x−n)! .

2.2 Mathematical Bounds

Mathematical bounds can be used to simplify inequalities. In this section,
we list the mathematical bounds used in this thesis, along with a correctness
proof for each bound,

Lemma 2.1. Let A,B, n ∈ N. If A ≥ B, then
(A)n
(B)n

≥
(
A
B

)n
holds for any

n such that n ≤ B.

Proof. We prove by induction on n that Lemma 2.1 holds for all n ∈ N with
n ≤ B:

5

Base case.

(A)0
(B)0

≥
(
A
B

)0
because

(A)0
(B)0

=
A!

(A−0)!
B!

(B−0)!

= 1
1 = 1 =

(
A
B

)0
.

Inductive case.

For all k ∈ N such that k + 1 ≤ B, we have to prove that:

(A)k+1

(B)k+1

≥
(
A

B

)k+1

if A ≥ B.

We take as Induction Hypothesis (IH):

(A)k
(B)k

≥
(
A

B

)k

if A ≥ B.

Proof:

(A)k+1

(B)k+1

=

A!
(A−(k+1))!

B!
(B−(k+1))!

=

A!
(A−k−1)! ·

A−k
A−k

B!
(B−k−1)! ·

B−k
B−k

=

A!(A−k)
(A−k)!

B!(B−k)
(B−k)!

=
(A)k (A− k)

(B)k (B − k)

=
(A)k
(B)k

· A− k

B − k

IH
≥
(
A

B

)k

· A− k

B − k

∗
≥
(
A

B

)k

· A
B

=

(
A

B

)k+1

.

In the step labelled with the * symbol, we use that A−k
B−k ≥ A

B . This
holds if A ≥ B, because the inequality can be simplified as follows:

A− k

B − k
≥ A

B
,

AB − kB ≥ AB − kA,

−kB ≥ −kA,

B ≤ A.

6

Therefore, we have proven by mathematical induction that Lemma 2.1 holds
for all n ∈ N with n ≤ B.

Lemma 2.2. 1 + x ≤ ex for all x ∈ R.

Proof. Let f(x) = ex − (1 + x). If f(x) ≥ 0 for all x ∈ R, then Lemma 2.2
holds. First, we find the first and second derivative of f(x):

f ′(x) =
d

dx
[ex − (1 + x)] =

d

dx
[ex]− d

dx
[1 + x] = ex − 1.

f ′′(x) =
d

dx
[ex − 1] =

d

dx
[ex]− d

dx
[1] = ex.

Then, we find the critical points of f(x), which are the values x where
f ′(x) = 0. Since f ′(x) = ex − 1, we know that f ′(x) = 0 if and only if
x = 0. Using the second derivative test, we find that f has a local minimum
at x = 0, because f ′′(0) = e0 = 1 > 0. Because x = 0 is the only critical
point of f , it follows that x = 0 is the global minimum of f .

f(0) = e0 − (1 + 0) = 1− 1 = 0, therefore f(0) ≥ 0. Since f(x) ≥ 0 for
the value x where f(x) is minimal, it certainly holds that f(x) ≥ 0 for all
x ∈ R. Therefore, we have proven that Lemma 2.2 holds.

Lemma 2.3.
(
1− 1

x

)x ≥ e−
x

x−1 for all x ∈ R \ {0, 1}.

Proof. We first prove that 1− 1
x ≥ e−

1
x−1 for all x ∈ R \ {0, 1}. Let y = 1

x .
We have for all y ∈ R \ {1} that:

1− y =
1
1

1−y

=
1

1−y+y
1−y

=
1

1−y
1−y + y

1−y

=
1

1 + y
1−y

. (1)

Let z = y
1−y . Using that 1 + z ≤ ez for all z ∈ R (see Lemma 2.2), we get:

1

1 + y
1−y

=
1

1 + z
≥ 1

ez
= e−z = e

− y
1−y . (2)

It follows from (1) and (2) that:

1− y ≥ e
− y

1−y . (3)

Substituting 1
x for y in (3) gives:

1− 1

x
≥ e

−
1
x

1− 1
x = e

− 1

x(1− 1
x) = e−

1
x−1 . (4)

With (4), we have proven that 1 − 1
x ≥ e−

1
x−1 holds for all x ∈ R \ {0, 1}.

Now, raising both sides to the power of x gives:(
1− 1

x

)x

≥
(
e−

1
x−1

)x
= e−

x
x−1 . (5)

It follows from (5) that Lemma 2.3 is proven.

7

Lemma 2.4. e
2x

2x−1 ≤ e2 on the interval [1,∞).

Proof. Let h(x) = e
2x

2x−1 . To prove the Lemma, we first show that h(x) is
decreasing for all x ∈ [1,∞), which is the case if the derivative of h(x) is
less than 0 for all x ∈ [1,∞).

We start by finding the derivative of h(x). Let f(x) = ex and g(x) =
2x

2x−1 . Then h(x) = f(g(x)). Using the chain rule, we get:

h′(x) = f ′(g(x)) · g′(x)

=
d

dx

[
eg(x)

]
· g′(x)

= eg(x) · g′(x)

= e
2x

2x−1 · d

dx

[
2x

2x − 1

]
.

Using the quotient rule and that d
dx [2

x] = 2x ln(2), we get:

h′(x) = e
2x

2x−1 ·
(2x − 1) d

dx [2
x]− 2x d

dx [2
x − 1]

(2x − 1)2

= e
2x

2x−1 ·
(2x − 1) d

dx [2
x]− 2x

(
d
dx [2

x]− d
dx [1]

)
(2x − 1)2

= e
2x

2x−1 · (2
x − 1)(2x ln(2))− 2x(2x ln(2))

(2x − 1)2

= e
2x

2x−1 · (2
x − 1− 2x)(2x ln(2))

(2x − 1)2

= e
2x

2x−1 · − 2x ln(2)

(2x − 1)2
.

Next, we show that h′(x) < 0:

e
2x

2x−1 · − 2x ln(2)

(2x − 1)2
?
< 0.

We know that 2x ln(2)
(2x−1)2

is positive for all x ∈ [1,∞). Hence, if we divide by

− 2x ln(2)
(2x−1)2

we are dividing by a negative number and the inequality sign flips:

e
2x

2x−1
?
> 0.

Because e raised to the power of any real number is positive, the above
inequality holds for any real number x on the interval [1,∞), and we find
that h(x) is decreasing on the interval [1,∞).

Because h(x) is decreasing on this interval, it follows that h(x) is maximal
for x = 1 on this interval. Therefore, if h(1) ≤ e2, then certainly h(x) ≤ e2

on the interval [1,∞).

8

It holds that h(1) ≤ e2 because:

h(1) = e
21

21−1 = e
2
1 = e2.

Therefore, h(x) ≤ e2 on the interval [1,∞) and we have proven that Lemma 2.4
holds.

2.3 Suffix Keyed Sponge

The Suffix Keyed Sponge is a MAC function formalised by Dobraunig and
Mennink [7]. Before going into detail about the SuKS, we first explain the
sponge construction defined by Bertoni et al. [5], which the SuKS is partially
based on.

2.3.1 Explanation of the sponge construction

The sponge construction (see Figure 1) has a b-bit state consisting of a rate
of size r (the outer part of the state) and a capacity of size c (the inner
part of the state), with b = r + c. The initial value of the state is 0b. The
input to the sponge function P is ‘absorbed’ by splitting it into r-bit blocks
P1, P2, . . . , Pℓ and adding these blocks bitwise to the outer part of the state.
The output Z is then ‘squeezed’ by concatenating the r-bit blocks Z1, Z2, . . .
until the desired output length has been reached. Each time after a block
has been absorbed or squeezed, a random permutation p is evaluated on the
state.

0

0

absorbing squeezing

Figure 1: Sponge Construction

2.3.2 Explanation of the Suffix Keyed Sponge

The Suffix Keyed Sponge is depicted in Figure 2. The first part of the SuKS
(the part until the state U) is identical to the absorbing phase of the sponge

9

construction. After this, the state is changed by evaluating a function G
with as input the secret key K on the outer s bits of the state. The random
permutation p is evaluated one final time on the state, and the outer t bits
of the resulting output form the tag T .

2 Security of the Suffix Keyed Sponge

p

P2

r

c

r

P1

c
0

p

P`

r

c

. . .

. . .

p

K

s

b−s

G
s

k

p

T

t

U V W

Figure 1: The suffix keyed sponge. The plaintext P is first injectively padded into r-bit
blocks P1 . . . P`.

This approach comes to life in the hash-then-MAC construction, used in [7,9, 10,33],
among others. In the hash-then-MAC construction, one first hashes the plaintext P using
a hash function H, and subsequently authenticates the outcome using a MAC function F
with key K to obtain a tag T :

T = F (K,H(P)) .

The advantage of hash-then-MAC over traditional MAC functions like PMAC [15] and
CMAC [28] in the context of side-channel protection is evident: as such constructions
apply a cryptographic primitive with secret key at least once per plaintext block, each
of these invocations must have countermeasures against side-channel attacks in place. In
contrast, for hash-then-MAC, the amount of exposure of the secret key is independent of
the number of processed input blocks.

However, in order for the hash-then-MAC construction to be k-bit secure, where k is
the security level, one must necessarily take a hash function with digest size 2k [7,9,10,33].
This also means that the function F (K, ·), which is the critical part in the construction
from a side-channel perspective, must be able to process 2k-bit inputs. This negatively
impacts the resources needs to implement countermeasures; in general, it is cheaper to
protect a smaller primitive against side-channel attacks.

An alternative to the hash-then-MAC approach is the suffix keyed sponge approach
used in ISAP [22]. A generalized depiction of the suffix keyed sponge is given in Figure 1,
and it is described in detail in Section 3. The function operates as a sponge on top of a
permutation p with a state of b = c+ r bits, split into an outer part of size r (the rate)
and an inner part of size c (the capacity). The k-bit key K is absorbed using an s-bit to
s-bit keyed function G and one output block T of size t is squeezed. For a specific case
where the state size s and the tag size t are at most the rate r and in addition the key is
absorbed by a simple XOR, the construction matches the original description of Bertoni et
al. [12, Section 5.11.2]. However, the suffix keyed sponge construction that we consider is
more general.

For the suffix keyed sponge, there is no reason to believe that the function G needs to
be 2k bits large, like it is required for F in hash-then-MAC. In the case of G, it seems to
suffice to use a k-bit keyed function only. Indeed, in the suffix keyed sponge we can resort
to the secrecy of the state, and collisions in the input to G are not necessarily harmful.
Because for the suffix keyed sponge the function G is the focal point of protection against
side-channel attacks, the construction compares favorably over the hash-then-MAC mode.

Unfortunately, no analysis of the suffix keyed sponge has appeared so far, neither in
the black-box setting nor in the leakage resilient setting. The best we can do is to fall back
to the indifferentiability of the keyless sponge [11]. This reduction is valid as long as we
consider security in a black-box setting, where the key is absorbed using an XOR, key and
tag are of size at most the rate, and the capacity is at least twice the security level. In
other words, this is how security of the original and more restrictive version of the suffix
keyed sponge of Bertoni et al. [12, Section 5.11.2] was argued.

Figure 2: Suffix Keyed Sponge

The intuition behind the SuKS is that by only using K at the end of the
scheme, just a small part of the scheme is vulnerable to leakage: only the
evaluation of G and the last evaluation of p can leak secret information. All
other evaluations of p are not vulnerable to leakage because their input and
output are not secret.

2.4 PRF security and NALR-PRF security

2.4.1 PRF security

Let b, k, t ∈ N and m ∈ N∪{∗}. PRF (pseudorandom function) security is a
well-established method to measure the security of a function F : {0, 1}k ×
{0, 1}m → {0, 1}t, which takes as input a k-bit key K and m-bit message
M , produces a t-bit tag T , and uses a b-bit permutation p : {0, 1}b → {0, 1}b
as a primitive.

The PRF security of F against an adversaryA, denoted byAdvprf
F (A), is

defined as the distinguishing advantage of the adversary when distinguishing
the function F instantiated with some key K and permutation p, denoted by
F p
K , from the random oracle RO. This distinguishing advantage describes

how difficult it is for the adversary to distinguish F p
K from RO: the lower

this advantage, the harder the two are to distinguish.
To distinguish F p

K from RO, the adversary can query both F p
K and

RO with m-bit messages M to receive t-bit tags T , but does not know
which of the two functions it is querying. The adversary can also query
the permutation p. Advprf

F (A) is often expressed in terms of construction
queries q and primitive queries N : construction queries are made to F p

K or
RO, while primitive queries are made to p. Construction queries are also
called online queries, because the attacker cannot compute the result of the

10

query on their own machine (due to secret information in the construction
such as K in F p

K , or due to the construction being an ideal counterpart such
as RO); primitive queries are also called offline queries, since the attacker
can compute the result of the query on their own machine because p is
public.

A function F is considered to be a PRF if Advprf
F (A) is very low,

meaning it is very difficult for an adversary A to distinguish F p
K from RO.

Furthermore, a PRF is a secure MAC function in the black-box security
model [4, 10, 11], which makes the notion of PRF security very useful in
this model.

2.4.2 NALR-PRF security

Although the PRF security of a function F against an adversary A is a
useful notion in the black-box security model, it does not take into account
that the adversary could exploit leakage in F , and can therefore not be
used in the leakage resilience security model. To describe the security of the
SuKS in this model, Dobraunig and Mennink transformed the definition of
PRF security to NALR-PRF (non-adaptive leakage resilient pseudorandom
function) security [7].

In NALR-PRF security, denoted by Advnalr-prf
F (A), the adversary again

has to distinguish F p
k andRO, with access to both functions and p. Additionally,

the attacker has access to a leaky version of F p
k which leaks, for every

evaluation of every primitive used in F , at most λ bits of information
about the input or output to that primitive, for some λ ∈ N. This leakage
is represented by mathematical functions, and there is a separate leakage
function for each type of primitive. The leakage function for a primitive
takes as input both the input and output of that primitive; the output of the
leakage function is the leaked information of at most λ bits. Advnalr-prf

F (A)
is defined as the maximum distinguishing advantage of an adversary A
distinguishing between F p

k andRO, over all possible combinations of leakage
functions for the primitives in F .

To illustrate how these leakage functions work, we give an example of
leakage functions for the SuKS. The SuKS contains two primitives: the b-bit
permutation p and function G : {0, 1}k × {0, 1}s → {0, 1}s. Let Lp and LG

be the leakage functions for the primitives p and G respectively. The input
and output of p are both b bits long; for G, the inputs are a k-bit key and
s-bit value, and the output is also an s-bit value. Some example definitions
for Lp and LG are:

Lp : {0, 1}b × {0, 1}b → {0, 1}λ

Lp(V,W) = rightλ(W),

LG : {0, 1}k × {0, 1}s × {0, 1}s → {0, 1}λ

11

LG(K,U, V) = leftλ(K).

In the case of the SuKS, we do not have to consider the leakage of each
evaluation of this primitive, but only of the single evaluation of G and the
last evaluation of p. This is because those evaluations are the only ones
where secret information can be leaked, as explained in Section 2.3, and the
attacker does not learn anything from the leakage of public information.

2.5 Uniform and Universal Functions

The notion of uniformity of a function describes how likely it is that a certain
input maps to a certain output; the notion of universality of a function
describes how likely it is that this function gives the same output for distinct
inputs. Dobraunig and Mennink have given definitions to quantify how
uniform and universal a function is [7]:

Definition 2.7 (2−δ-uniformity). A function G : {0, 1}k×{0, 1}s → {0, 1}s
is 2−δ-uniform if, for any K ∈ {0, 1}k and X,Y ∈ {0, 1}s, δ is the largest
real number such that

Pr(G(K,X) = Y) ≤ 2−δ.

Definition 2.8 (2−ε-universality). A function G : {0, 1}k×{0, 1}s → {0, 1}s
is 2−ε-universal if, for any K ∈ {0, 1}k and X,X ′ ∈ {0, 1}s, ε is the largest
real number such that

Pr(G(K,X) = G(K,X ′)) ≤ 2−ε.

With these definitions, we can prove the following theorem:

Theorem 2.1. For any function G : {0, 1}k × {0, 1}s → {0, 1}s which is
2−δ-uniform and 2−ε-universal, it holds that ε ≥ δ.

Proof. BecauseG is 2−ε-universal, we know thatPr(G(K,X) = G(K,X ′)) ≤
2−ε. We show that it also holds that Pr(G(K,X) = G(K,X ′)) ≤ 2−δ:

Pr(G(K,X) = G(K,X ′))

=
∑
Y

[
Pr(G(K,X) = G(K,X ′) | G(K,X ′) = Y) ·Pr(G(K,X ′) = Y)

]
=
∑
Y

[
Pr(G(K,X) = Y) ·Pr(G(K,X ′) = Y)

]
≤
∑
Y

[
2−δ ·Pr(G(K,X ′) = Y)

]
= 2−δ ·

∑
Y

[
Pr(G(K,X ′) = Y)

]
12

= 2−δ · 1
= 2−δ.

Now, we know that:

Pr(G(K,X) = G(K,X ′)) ≤ 2−ε, (6)

Pr(G(K,X) = G(K,X ′)) ≤ 2−δ. (7)

Furthermore, we know that ε is the largest real number such that (6) holds,
and hence 2−ε is the smallest real number such that (6) holds. Therefore,
it must be the case that 2−ε ≤ 2−δ, which can only be the case if ε ≥ δ.
Hence, we have proven Theorem 2.1.

2.6 Multicollision limit function

A multicollision for a function F is a set of one or more distinct inputs which
are mapped to the same output in F . To estimate the maximum size of a
multicollision, the multicollision limit function defined by Daemen et al. [6]
can be used. The multicollision limit function uses the problem of throwing
balls into bins to model the collisions. The function has also been used by
Dobraunig and Mennink [7] to give bounds on the security of the SuKS.
Their definition of the multicollision limit function is repeated here:

Definition 2.9 (Multicollision limit function). Let q, b, s ∈ N such that
s ≤ b. Consider the experiment of throwing q balls uniformly at random in
2b−s bins, and denote by µ the maximum number of balls in any single bin.
The multicollision limit function µq

b−s,s is defined as the smallest natural
number x that satisfies

Pr(µ > x) ≤ x

2s
.

The experiment described in this definition is illustrated in Figure 3 with
a toy example where q = 4 and b−s = 2. In other words, 4 balls are thrown
in 4 bins. In this example, two balls are thrown in the first bin, one ball
is thrown in the second and fourth bin and none are thrown in the third
bin. In this toy example, µ = 2 because the single bin with the maximum
number of balls is bin 1 with two balls.

13

Figure 3: Toy example of a balls-and-bins experiment

The intuition behind the multicollision limit function is that multicollisions
can be compared to a balls-and-bins experiment: the q balls represent q
distinct input values to some function F ; throwing a ball into the bins is an
analogy to evaluating the function F on an input value; the bin in which
the ball is thrown represents the output of F for the given input value.

In this analogy, having multiple balls in one bin means that the input
values which these balls represent form a multicollision for the function F .
Furthermore, the value µ represents the size of the largest multicollision.

In the definition of the multicollision limit function, it is assumed that
the balls are thrown with replacement, which in the analogy means it is
possible the same input value is evaluated multiple times. From an attacker’s
perspective, it is not useful to evaluate the same input value multiple times;
an attacker with full control over the input to F would try different inputs
each time, which is analogous to the balls being thrown without replacement.
Daemen et al. have shown in their article that for a balls-and-bins problem
with q balls and b − s bins where the balls are thrown uniformly without
replacement, the maximum amount of balls in any single bin can be estimated
by µ2q

b−s,s.
The multicollision limit function allows us to ensure that when considering

an attacker with a bounded amount of resources, the probability of this
attacker achieving a multicollision larger than a certain value is very unlikely.
This notion is useful for finding the security bound on a cryptographic
scheme.

2.7 Security Bounds on the Suffix Keyed Sponge

Dobraunig and Mennink have given a PRF security and NALR-PRF security
bound on the SuKS in Section 5 and 6 of their article formalising the SuKS

14

[7], respectively. These security bounds are given in (8) and (9):

Advprf
F (A) ≤ 2N2

2c
+

µ
2(N−q)
b−s,s ·N
2min{δ,ε} +

µq
t,b−t ·N
2b−t

, (8)

Advnalr-prf
F (A) ≤ 2N2

2c
+

µ
2(N−q)
s,b−s

2b−s
+

µ
2(N−q)
b−s,s ·N

2min{δ,ε}−µ
2(N−q)
s,b−s λ

+
µ2q
t,b−t ·N
2b−t−λ

. (9)

15

Chapter 3

Tightness of Suffix Keyed
Sponge NALR-PRF security
bound

In this chapter, we analyse the tightness of the NALR-PRF security bound
on the SuKS given in (9) on page 15. We will frequently refer to primitives
and states in the SuKS which are depicted in Figure 2 on page 10.

To analyse the tightness of the NALR-PRF security bound, the tightness
of each term in the bound must be analysed separately, since each term serves
to describe the success probability of a different attack. Because the first
term in the NALR-PRF security bound equals the first term in the PRF
security bound, and Dobraunig and Mennink have already proven that the
PRF security bound is tight [8], we will leave this term out of our analysis.

In the following three sections, we will analyse the tightness of the
latter three terms in the NALR-PRF security bound given in (9). The
tightness of the second term will be analysed using probability theory. The
tightness of the last two terms will be analysed by attempting to construct
a matching attack: an attack on the SuKS which matches the success
probability given in the term. In each attack, we assume that the attacker
can make N primitive queries and q construction queries. As mentioned in
the introduction of the thesis, the matching attacks used in this analysis are
based on the matching attacks given in the PRF security tightness analysis
by Dobraunig and Mennink.

Because the second term of the leakage bound originates from the matching
attack for the third term, as will be explained in the section about the second
term, we discuss the third term before the second.

16

3.1 Matching attacks on term 3 of the NALR-PRF
bound

Term 3 of the NALR-PRF security bound is similar to term 2 of the PRF
security bound. There are 2 matching attacks on this latter term, which
will be discussed in the next two sections, before we attempt to construct
matching attacks on the former term.

3.1.1 First attack

In the first attack, it is assumed that G is the XOR function, and therefore
s = k. The main idea of the attack is to recover the state V for a given
construction query, so that the key K can be retrieved by computing K =
lefts(U) ⊕ lefts(V). U can be computed offline because K only comes into
play after the SuKS has reached the state U .

The attacker makes one construction query for some message M to get
the corresponding tag T . Then, the attacker guesses the value of leftk(V)
belonging to this query. Because rightb−k(V) is equal to rightb−k(U), and
U can be computed offline, the attacker knows rightb−k(V).

Let the attacker’s guess of leftk(V) be called Z. To verify if Z is a correct
guess, the attacker can check whether leftt(p(Z||rightb−k(V))) = T . Because
the attacker can make N primitive queries, and must verify each guess with
one evaluation of p, the attacker can make at most N guesses. This way,
the attack has a success probability of N

2s , because N different guesses are
made and the probability that any guess is correct is 2−s because G being
the XOR is 2−s-uniform.

The attack can be sped up by finding a multicollision of µ plaintexts
which result in the same value for rightb−k(U) = rightb−k(V), and computing
the tag of each plaintext. This way, the guess for leftk(V) could be a match
for any of the µ plaintexts.

The amount of plaintexts µ can be estimated using the multicollision
limit function (see Section 2.6). Because the attacker tries to find collisions
for rightb−k(U), a value of size b − k = b − s, the amount of bins is 2b−s.
The attacker can find collisions by making offline queries to p. The attacker
can make a total of N queries to p, but the attacker also uses queries to p in
the construction queries to the SuKS. The amount of queries the attacker
can use to find collisions is approximately N − q. Finally, because the
attacker can try a different input for p in every primitive query, we consider
a balls-and-bins problem where the balls are thrown without replacement.

Therefore, the multicollision limit function which estimates µ is µ
2(N−q)
b−s,s .

Taking the multicollision into account, the success probability of the attack

becomes
µ
2(N−q)
b−s,s ·N

2s .

17

3.1.2 Second attack

In the second attack, it is assumed that G is a PRF which is hard to invert,
making it not as easy to recover the key as with an XOR. Instead, this attack
mounts a forgery, meaning that the attacker finds the tag corresponding to
a message without making a construction query for the message.

The main idea of the attack is to find 2 plaintexts P1 and P2 with a
collision for lefts(U). For the plaintexts, the respective states U1 and U2 are
computed offline, and a construction query is made to get the tag T1 for P1.
The forgery can be made by finding lefts(V), which has the same value for
both plaintexts, since the input to G is the same for both due to the collision
in lefts(U). lefts(V) is found by making N guesses and verifying for each
guess Z whether leftt(p(Z||rightb−s(U1))) = T1. If the guess Z is correct, the
attacker has a forgery for P2 because they can compute the corresponding
tag T2 = leftt(p(Z||leftb−s(U2)). This attack has success probability N

2δ
,

because G is 2−δ-uniform.
The attack can be sped up by finding a multicollision of µ plaintexts

P 1
1 , P

2
1 , . . . , P

µ
1 with the same value for rightb−s(U). The attacker can then

find for each plaintext P i
1 another plaintext P i

2 with the same value for
lefts(U). The attacker also computes the corresponding states U and tags
as described above, and can then make guesses Z to find the state V of one
of the plaintext pairs (P i

1, P
i
2). If the guess for Z is correct for any of these

pairs, the attacker can create a forgery. Because µ is estimated by µ
2(N−q)
b−s,s ,

just like in the first attack, this results in the success probability
µ
2(N−q)
b−s,s ·N

2δ
.

3.1.3 Deriving the bound

The only difference between the success probabilities of the attacks is the
denominator: in the first attack, the denominator is 2s, while in the second
attack, the denominator is 2δ. The difference between the denominators
originated from the fact that in the first attack, G was the 2−s-uniform
XOR, whereas in the second attack, G was a 2−s-uniform PRF. Because
G has an output of s bits, it can be at best 2−s-uniform, so we know that
2−δ ≥ 2−s. Therefore, the first attack has at least the complexity of the
second attack. The complexity of the second attack still differs from term
2 of the PRF security bound in the denominator, because the denominator
of this term is 2min{δ,ε}. However, since we have shown in Theorem 2.1 on
page 12 that ε ≥ δ, 2min{δ,ε} can be simplified to δ and therefore the term
does exactly match the second attack.

3.1.4 Attack in the NALR-PRF security model

For both attacks on term 2 of the black-box bound, a similar attack can be
performed in the leaky setting by using a leakage function for the permutation

18

p : {0, 1}b → {0, 1}b such that p(V) = W .
For both attacks, the main challenge was guessing lefts(V). This part

of the attacks is what causes the denominator of the term to be 2min{δ,ε}.
However, the denominator can become less strong due to leakage.

Suppose we define the leakage function for p such that it is always the
same λ bits of V which leak, for example the left-most λ bits:

Lp : {0, 1}b × {0, 1}b → {0, 1}λ

Lp(V,W) = leftλ(V)

This way, the amount of bits of V which need to be guessed is reduced by

λ, which would result in a security bound of
µ
2(N−q)
b−s,s ·N

2min{δ,ε}−λ .
However, the security bound can be reduced even more by taking into

account that there could also be plaintexts forming a multicollision for
lefts(U). These plaintexts would then also form a multicollision for lefts(V),
which is the value that needs to be guessed. The amount of plaintexts

forming a multicollision for lefts(V) is estimated by µ
2(N−q)
s,b−s ; this multicollision

limit function can be explained similarly to the multicollision limit function

µ
2(N−q)
b−s,s described in Section 3.1.1. We assume that all µ

2(N−q)
s,b−s plaintexts

have a distinct value for rightb−s(V). We can then define Lp such that a
different combination of λ bits leaks for each different value of rightb−s(V)

in the µ
2(N−q)
s,b−s plaintexts forming the multicollision. Therefore, µ

2(N−q)
s,b−s λ

bits of lefts(V) leak, and the attack results in the bound
µ
2(N−q)
b−s,s ·N

2
min{δ,ε}−µ

2(N−q)
s,b−s

λ
.

3.2 Matching attack on term 2 of the NALR-PRF
bound

In the third term of the NALR-PRF security bound analysed in Section 3.1,
it was assumed that the size of the multicollision for lefts(U) is less than or

equal to µ
2(N−q)
s,b−s . However, the NALR-PRF security bound must also take

the possibility into account that the size of the multicollision is larger than

µ
2(N−q)
s,b−s , because then the amount of leakage, and consequently the success

probability of the attacker, would increase as well.
Let success describe the event that the attacker successfully breaks the

scheme, i.e. mounts a forgery or retrieves the key. Let good describe the

event that the size of the multicollision is less than or equal to µ
2(N−q)
s,b−s .

Let bad describe the event that the size of the multicollision is larger than

µ
2(N−q)
s,b−s .
Now, using probability theory, we can derive:

Pr(success) = Pr(success ∪ good) +Pr(success ∪ ¬good)

19

= Pr(success ∪ good) +Pr(success ∪ bad)

= Pr(success | good) ·Pr(good) +Pr(success | bad) ·Pr(bad)

≤ Pr(success | good) +Pr(bad).

Here Pr(good) and Pr(success | bad) are less than or equal to 1, because
they are probabilities. Because they are multiplied with another term,
leaving them out of the equation results in an equation which is at least
as large. Also, note that both these probabilities are usually very close
to 1: Pr(good) is very close to the value 1 because the probability of a
large multicollision is small, and Pr(success | bad) is close to 1 because
the attacker’s success probability is very high for a large multicollision.
Therefore, ignoring these two terms does not change the estimated value
of Pr(success) significantly.

Pr(success | good) is described by term 3 of the NALR-PRF security
bound. Pr(bad) is described by term 2. This is because, according to

the definition of the multicollision limit function, µ
2(N−q)
s,b−s is defined to be

the smallest natural number x such that the probability that there is a

multicollision with a size larger than x is less than or equal to x
2b−s =

µ
2(N−q)
s,b−s

2b−s ,
which equals term 2 of the bound. Note that for typical parameters of the
SuKS, e.g. s = t = k, this term is negligible.

3.3 Matching attack on term 4 of the NALR-PRF
bound

This term is very similar to term 3 of the PRF security bound, which we will
discuss first. In the matching attack for term 3 of the PRF security bound,
it is assumed that the function G is again an XOR, and the main idea of
the attack is the same as the first matching attack on term 3: recovering
the state V in order to find the key. However, the way V is recovered is
different.

V is recovered by calling the inverse primitive p−1 on a tag T which
was computed with a construction query beforehand, and a guess for the
remaining b − t bits. For a random permutation, the probability of this
guess being correct is N

2b−t , with N being the amount of times p−1 was
called (with different guesses for the rightmost b− t bits).

However, the probability can be improved if there would be multiple
plaintexts, and consequently multiple states V which are correct for the
given tag, which is the case if these plaintexts form a multicollision for T .

The amount of plaintexts forming a multicollision equals µ2q
t,b−t, because

the attacker tries to find collisions for the t-bit tag T , which they can
only compute using the q construction queries. The superscript of the
multicollision limit function is 2q because we consider a balls-and-bins problem

20

where the balls are sampled without replacement. Since T is a part of the
state W , and W is the output of the last evaluation of p, the balls are
analogous to the inputs to this last evaluation of p. Since we assumed G is
an XOR, both primitives used in the SuKS are bijective. Hence, the attacker
can make sure that the input to the last evaluation of p is different in each
construction query, and therefore the balls are sampled without replacement.
When taking the multicollision into account, the success probability of the

attack becomes
µ2q
t,b−t·N
2b−t .

This success probability is greater than term 3 of the PRF security

bound,
µq
t,b−t·N
2b−t , due to the superscript of the multicollision limit function

being 2q instead of q. It appears this is due to a mistake in the proof of
the PRF security bound, but this mistake is not present in the NALR-PRF
security bound.

3.3.1 Attack in the NALR-PRF security model

A similar attack can be performed in the leaky setting, where we use a
leakage function for the primitive p : {0, 1}b → {0, 1}b, with p(V) = W . Let
this leakage function be defined as:

Lp : {0, 1}b × {0, 1}b → {0, 1}λ

Lp(V,W) = rightλ(W).

This way, the attacker learns an additional λ bits of W apart from the t-bit
tag, and therefore only needs to guess b− t− λ bits.

The fourth term,
µ2q
t,b−t·N
2b−t−λ , originates from the idea that the matching

attack and leakage function described above could be combined in order to
guess b − t − λ bits with N trials, with the goal of finding a match with
one of µ2q

t,b−t different values of V . However, with this bound it is wrongly

assumed that each of the µ2q
t,b−t plaintexts in the multicollision will have the

same value of rightλ(W): these plaintexts form a multicollision for T , but
the rest of the state W may be different.

Because the state W may be different, the guess of b − t − λ bits of W
made by the attacker can only match the plaintexts in the collision, for which
these λ bits in their corresponding state W are equal. We can estimate the
amount of such plaintexts with the multicollision limit function µ2q

t+λ,b−t−λ,
because this multicollision limit function estimates the size of the largest
multicollision for the t-bit tag T , as well as the λ leaked bits.

Therefore, when assuming a leakage function which leaks λ unknown
bits of W , in this case the right-most bits, the fourth term in the SuKS

NALR-PRF security bound becomes
µ2q
t+λ,b−t−λ·N
2b−t−λ .

With this assumed leakage function, the amount of multicollisions the
attacker can use, estimated by µ2q

t,b−t, is independent of the leakage value

21

the attacker learns. This can be seen from the fact that only the amount
of bits of leakage plays a role in this expression, and not the actual value.
The reason for this independency is that each leakage value is equally likely
to occur. Furthermore, each leakage value also gives the same amount of
information about the state W , namely λ bits.

However, when assuming a different leakage function, it is possible that
the amount of multicollisions available to the attacker does depend on the
leakage value the attacker learns. Take for example a leakage function which
leaks the Hamming weight of rightb−t(W), defined as follows:

Lp : {0, 1}b × {0, 1}b → {0, 1}λ

Lp(V,W) = HW(rightb−t(W)).

With this leakage function, leakage values have different probabilities of
occurring: for example, the leakage value 0 only occurs when rightb−t(W) =
0b−t, while the leakage value 1 occurs for each value of rightb−t(W) which
contains exactly one bit equal to 1 (there are b− t such values, since the bit
equal to 1 can be placed in b− t different positions). Hence, it is more likely
to find collisions if the leaked value is 1, than if the leaked value is 0.

Furthermore, with this leakage function, the amount of information
learned about rightb−t(W) depends on the leakage value: for example, the
leakage value 0 reveals that rightb−t(W) = 0b−t, whereas the leakage value
1 reveals that rightb−t(W) can be one of b− t different values.

3.4 Conclusions of the tightness analysis

From the tightness analysis, we can conclude that the fourth term in the
NALR-PRF security bound on the SuKS is not tight, because in the matching
attack for this term it was not taken into account that the size of the largest
multicollision may change if the attacker also uses leakage. Because this
single term in the bound is not tight, it follows that the whole bound is also
not tight.

In Section 3.3.1, we have shown that we can obtain a tight bound on
the NALR-PRF security of the SuKS, if we only consider leakage functions
which simply leak λ bits of rightb−t(W) in the matching attack on the fourth
term. This bound is given in (10):

Advnalr-prf
F (A) ≤ 2N2

2c
+
µ
2(N−q)
s,b−s

2b−s
+

µ
2(N−q)
b−s,s ·N

2min{δ,ε}−µ
2(N−q)
s,b−s λ

+
µ2q
t+λ,b−t−λ ·N

2b−t−λ
. (10)

It is more difficult to give a tight bound on the NALR-PRF security of the
SuKS when considering a leakage function where the size of the multicollision
the attacker can use depends on the leaked value, such as a leakage function
which leaks the Hamming weight of a value.

22

In Chapter 4, we will study how the size of the largest multicollision
available to the attacker can be estimated when considering leakage functions
which leak the Hamming weight of a value. We do so by incorporating the
Hamming weight leakage into the multicollision limit function.

23

Chapter 4

Multicollision limit function
with Hamming weight
leakage

As mentioned at the end of Section 3.4, the goal of this chapter is to estimate
the size of the largest multicollision available to an attacker performing the
matching attack on term 4 of the SuKS NALR-PRF security bound, when
considering leakage functions which leak the Hamming weight of a value.
There are two reasons why we choose this specific type of leakage functions.
Firstly, the Hamming weight leakage functions are interesting because the
amount of information the attacker learns from the leakage, and the amount
of multicollisions the attacker can use, depends on its output, as shown in
Section 3.3.1. Secondly, leaking the Hamming Weight of a value is a realistic
modelling of leakage [9, 12, 13].

In an intermediary step of this matching attack, the attacker tries to
find the b-bit state W of the SuKS. The attacker knows T = leftt(W), hence
they only need to find rightb−t(W). In this chapter, we will generalize this to
an attacker who knows leftr(W) and thus only needs to find rightb−r(W) =
rightc(W), since t and b−t are just two possible values r, c such that b = r+c.

Besides knowing leftr(W), the attacker also learns leaked information
from a leakage function LHW

p . This leakage function leaks for the last
permutation p used in the SuKS the Hamming weight of the w right-most
bits of the output of p, with 1 ≤ w ≤ c. It is formally defined as follows,
with λ = ⌈log (w + 1)⌉:

LHW
p : {0, 1}b × {0, 1}b → {0, 1}λ

LHW
p (V,W) = HW(rightw(W)).

(11)

We define λ = ⌈log (w + 1)⌉, because the Hamming weight of a w-bit value
can attain w + 1 possible values (namely 0 up until and including w), and
can hence be encoded in ⌈log (w + 1)⌉ bits.

24

The distribution of outputs of LHW
p is non-uniform, unlike a leakage

function which simply leaks a certain amount of bits of the input. This
non-uniformity exists because there are different amounts of bit strings of a
fixed length for different values of the Hamming weight. For example, for
w-bit strings such as rightw(W), there is one bit string with a Hamming
weight of 0 (0w), and there are w bit strings with a Hamming weight of 1
(all w-bit strings with a single 1, since this single 1 can be in w different
positions).

The amount of bit strings of length w with Hamming weight n is
(
w
n

)
.

This is because the amount of w-bit strings s with HW(s) = n equals the
amount of bit strings with n bits equal to 1. In turn, this amount is equal
to the number of ways to choose n out of w bits which are equal to 1, while
the other bits are equal to 0, which is described by the binomial coefficient(
w
n

)
.
To analyse how the leakage function LHW

p influences the amount of
multicollisions, we will incorporate this leakage function into the multicollision
limit function. In order to do this, we first define a balls-and-bins problem
which takes the non-uniform distribution of the Hamming weight into account.

4.1 Balls-and-bins problem

To model the Hamming weight leakage in a balls-and-bins problem, the balls
and bins have to be redefined:

• We consider the balls to be b-bit values, because the attacker is trying
to find collisions for a part of the W , which is the output of an
evaluation of the b-bit permutation p.

• The attacker now learns the value of leftr(W) as well as HW(rightw(W)).
Hence, we consider a bin for each possible combination of these values.
Because the Hamming weight leakage function’s codomain contains
w + 1 different values, there are 2r · (w + 1) bins.

In the original balls-and-bins problem of the multicollision limit function,
the balls are thrown with replacement according to a uniform distribution.
In our redefined balls-and bins problem, the balls are thrown according to a
non-uniform distribution denoted byDHW-nr. The distribution is non-uniform
due to the balls being thrown without replacement (since this was the case
in the matching attack on term 4 of the SuKS NALR-PRF security bound,
as described in Section 3.3), and due to the non-uniform distribution of the
Hamming weight itself, which was explained at the start of this section.

25

4.2 Bounding the multicollision limit function

The maximum amount of balls in a single bin µ for the balls-and-bins
problem defined in the previous section can be described by

µq,DHW-nr
r′,c′

with r′ = r + log(w + 1) and c′ = c− log(w + 1).
The superscript in this multicollision limit function denotes that q balls

are thrown in the bins according to the distribution DHW-nr.
According to the definition of the multicollision limit function in Section 2.6,

we get from the subscript parameter r′ that there are 2r
′
= 2r+log(w+1) =

2r · 2log(w+1) = 2r · (w + 1) bins, and from the subscript parameter c′ that
we define this multicollision limit function as the smallest x satisfying:

Pr(µ > x) ≤ x

2c′
=

x

2c−log(w+1)
=

x
2c

2log(w+1)

=
x
2c

w+1

= (w + 1) · x

2c
.

with µ the maximum amount of balls in any single bin.
Because this multicollision limit function is hard to compute due to the

non-uniformity of the Hamming weight leakage function, we will prove that
it is upper bounded by another multicollision limit function which uniformly
distributes the balls over the bins:

Theorem 4.1. Let r, c, q, w ∈ N such that 1 ≤ w ≤ c and r ≥ 1. Let
r′ = r + log (w + 1) and c′ = c − log (w + 1). Then µq,DHW-nr

r′,c′ ≤ µαq
r′,c′ for

α =
(

w
⌊w

2 ⌋
)

e2(w+1)
2w .

4.3 Proof of Theorem 4.1

Consider two ball-and-bins experiments:

1. We throw αq balls into 2r
′
bins according to a uniform distribution

with replacement.

2. We throw q balls into 2r
′
bins according to the distribution DHW-nr

without replacement.

Note that the maximum number of balls in any single bin in Experiment 1
and Experiment 2 are bounded by µαq

r′,c′ , and µq,DHW-nr
r′,c′ respectively. LetXexp1

i

and Xexp2
i denote the number of balls in bin i in the respective experiments,

for 1 ≤ i ≤ 2r
′
. Let µexp1 and µexp2 denote the highest number of balls in

any single bin in the respective experiments.
To prove the Lemma, we will apply the same strategy as used by Daemen

et al. in Section 6.6 of their article [6]. First, we prove that µαq
r′,c′ has some

threshold t as lower bound. By the pigeonhole principle, there must be a

26

bin in Experiment 1 containing at least
⌈
αq

2r′

⌉
balls. Hence, for t =

⌈
αq

2r′

⌉
,

µαq
r′,c′ ≥ t holds.
Then, we prove that, for all y ≥ t,

Pr(µexp1 > y) ≥ Pr(µexp2 > y). (12)

This is a useful result because of the following Lemma:

Lemma 4.1. If Pr(µexp1 > y) ≥ Pr(µexp2 > y) for all y ≥ t, then
µq,DHW-nr
r′,c′ ≤ µαq

r′,c′.

Proof.

(1) Assume that Pr(µexp1 > y) ≥ Pr(µexp2 > y) for all y ≥ t.

(2) From (1) it follows that Pr(µexp1 > y) ≥ Pr(µexp2 > y) holds for
y = µαq

r′,c′ .

(3) By definition (see Section 2.6), µαq
r′,c′ is the smallest number x such

that Pr(µexp1 > x) < x
2c′

.

(4) From (2) and (3) it follows that Pr(µexp1 > x) ≥ Pr(µexp2 > x).

(5) From (3) and (4) it follows that Pr(µexp2 > x) < x
2c′

.

(6) By definition, µq,DHW-nr
r′,c′ is the smallest number x′ such that Pr(µexp2 >

x′) < x′

2c′
.

(7) From (5) and (6) it follows that x′ ≤ x.

(8) From (3), (6) and (7) we can conclude that µq,DHW-nr
r′,c′ ≤ µαq

r′,c′ .

By Lemma 4.1, Theorem 4.1 holds under the condition that Pr(µexp1 >
y) ≥ Pr(µexp2 > y) for all y ≥ t. This condition is satisfied if Pr(Xexp1

i >

y) ≥ Pr(Xexp2
i > y) for all y ≥ t and for all bins i; if each bin i in Experiment

1 is at least as likely to contain more than y balls as each bin i in Experiment
2, then certainly the single bin with the most balls in Experiment 1 is at
least as likely to contain more than y balls as the single bin with the most
balls in Experiment 2.

In turn, this new condition is satisfied ifPr(Xexp1
i = y) ≥ Pr(Xexp2

i = y)
for all y ≥ t and for all bins i; if each bin i in Experiment 1 is at least as
likely to contain y balls as each bin i in Experiment 2, for all y ∈ t, then
each bin i in Experiment 2 is also at least as likely to contain more than y
balls as each bin in Experiment 2.

Therefore, to show that the theorem holds, it remains to be proven
that, for all y ≥ t and for all bins i, Pr(Xexp1

i = y) ≥ Pr(Xexp2
i = y).

27

To show that this holds, we first give definitions for Pr(Xexp1
i = y) and

Pr(Xexp2
i = y).

Let j = i mod (w + 1). Then Pr(Xexp1
i = y) and Pr(Xexp2

i = y) are
defined as follows:

Pr(Xexp1
i = y) =

(
αq

y

)
(2−r′)y(1− 2−r′)αq−y,

Pr(Xexp2
i = y) =


0 if y >

(
w
j

)
2c−w(

q
y

)((wj)2c−w
)
y

(
2b−(wj)2

c−w
)
q−y

(2b)
q

if y ≤
(
w
j

)
2c−w

.

Now, we explain the reason why these probabilities correctly model the
experiments, before showing that the inequality given in (12) holds.

4.3.1 Probability in Experiment 1

For Experiment 1, the probability of a single ball falling in bin i is 2−r′ , and
y balls need to fall in this bin. The probability of a single ball ending up in
any bin except bin i is 1 − 2−r′ , and this needs to occur for the remaining
αq − y balls. Finally, there are

(
αq
y

)
ways to choose the y balls which fall in

bin i.

4.3.2 Probability in Experiment 2

For Experiment 2, since there are (w+1) · 2r bins in total, there are 2r bins
per Hamming weight value 0, . . . , w. To model this, we let the Hamming
weight value of bin i be j = i mod (w + 1). Note that each b-bit value only
belongs in one of the bins, and each of these values represents a ball. For
each bin i, there are

(
w
j

)
w-bit values with the correct Hamming weight,

the r left-most bits are fixed to one value and there are 2b−r−w possible
values for the remaining b − r − w bits. Therefore, there are a total of(
w
j

)
2b−r−w =

(
w
j

)
2c−w balls which belong to bin i and 2b −

(
w
j

)
2c−w balls

which do not belong to bin i.
Firstly, we consider the case that y is greater than

(
w
j

)
2c−w, the amount

of balls that fit in bin i. In this case, the probability of bin i containing y
balls is zero.

Secondly, we consider the case that y is less than or equal to the amount
of balls that fit in bin i. In this case, y balls need to fall in bin i and q − y
in the other bins, and there are

(
q
y

)
ways to choose the y balls which fall in

bin i.
Because the balls are sampled without replacement, the probabilities

change with each ball thrown, since the total amount of balls to sample
from and the amount of space left in one of the bins decrease with each ball
thrown. To account for this, we can use the falling factorial.

28

The term
((

w
j

)
2c−w

)
y
models the fact that before any balls are thrown

in i, there are
(
w
j

)
2c−w balls which can still fall in it; each time a ball is

thrown in this bin, the amount of balls which can still fall in it decreases by
1, until all y balls which are supposed to fall in it are thrown.

Similarly, the term
(
2b −

(
w
j

)
2c−w

)
q−y

models the fact that before any

balls are thrown in bins other than bin i, there are 2b−
(
w
j

)
2c−w balls which

can still fall in them; each time a ball is thrown in one of these bins, the
amount of balls which can still fall in them is decreased by 1, until all q− y
which are supposed to fall in bins other than bin i are thrown.

Finally, the term
(
2b
)
q
models the fact that before any balls are thrown

in the bins, there are 2b balls to choose from, and each time a ball is thrown
the amount of balls to choose from decreases by 1, until all q balls are thrown.

4.3.3 Proving the inequality between the probabilities

Now, we will show that (12) holds, i.e. that Pr(Xexp1
i = y) ≥ Pr(Xexp2

i = y)
for all bins i. Note that this inequality would trivially hold in the case that
y is greater than the capacity of the bin in Experiment 2. In this case
Pr(Xexp2

i = y) is equal to 0, while Pr(Xexp1
i = y) is always at least 0.

Therefore, it only remains to prove the inequality in the case that y is at
most the capacity of the bin. By substituting the definitions given above in
(12), we get the following inequality:

(
αq

y

)
(2−r′)y(1− 2−r′)αq−y

?
≥
(
q

y

)((w
j

)
2c−w

)
y

(
2b −

(
w
j

)
2c−w

)
q−y

(2b)q
. (13)

Now, we will prove that (13) holds, using the assumptions in Theorem 4.1
(1 ≤ w ≤ c and r ≥ 1).

Proof. Using that
(
n
r

)
= n!

r!(n−r)! =
(n)r
r! , we get:

(αq)y
y!

(2−r′)y(1− 2−r′)αq−y
?
≥

(q)y
y!

((
w
j

)
2c−w

)
y

(
2b −

(
w
j

)
2c−w

)
q−y

(2b)q
,

(αq)y
(q)y

(2−r′)y(1− 2−r′)αq−y
?
≥

((
w
j

)
2c−w

)
y

(
2b −

(
w
j

)
2c−w

)
q−y

(2b)q
.

Using that b = r′ + c′ =⇒ −r′ = c′ − b, we get:

(αq)y
(q)y

(2c
′−b)y(1− 2c

′−b)αq−y
?
≥

((
w
j

)
2c−w

)
y

(
2b −

(
w
j

)
2c−w

)
q−y

(2b)q
,

29

(αq)y
(q)y

(
2c

′

2b

)y (
1− 2c

′

2b

)αq−y
?
≥

((
w
j

)
2c−w

)
y

(
2b −

(
w
j

)
2c−w

)
q−y

(2b)y (2
b − y)q−y

,

(αq)y
(q)y

(
2c

′

2b

)y (
2b

2b
− 2c

′

2b

)αq−y
?
≥

((
w
j

)
2c−w

)
y

(2b)y

(
2b −

(
w
j

)
2c−w

)
q−y

(2b − y)q−y

,

(αq)y
(q)y

(
2c

′

2b

)y (
2b − 2c

′

2b

)αq−y
?
≥

((
w
j

)
2c−w

)
y

(2b)y

(
2b −

(
w
j

)
2c−w

)
q−y

(2b − y)q−y

,

(αq)y
(q)y

(
2c

′

2b

)y (
2b − 2c

′

2b

)αq (
2b

2b − 2c′

)y
?
≥

((
w
j

)
2c−w

)
y

(2b)y

(
2b −

(
w
j

)
2c−w

)
q−y

(2b − y)q−y

,

(αq)y
(q)y

(
2c

′

2b − 2c′

)y (
2b
)
y((

w
j

)
2c−w

)
y

(
2b − y

)
q−y(

2b −
(
w
j

)
2c−w

)
q−y

?
≥
(

2b

2b − 2c′

)αq

.

It holds that:

1. 2b ≥
(
w
j

)
2c−w since 2b > 2c = 2w ·2c−w =

(∑w
k=0

(
w
k

))
·2c−w >

(
w
j

)
2c−w,

2. 2b − y ≥ 2b −
(
w
j

)
2c−w because y ≤

(
w
j

)
2c−w

Hence, we can use that
(A)x
(B)x

≥
(
A
B

)x
if A ≥ B (see Lemma 2.1) to get:(

αq

q

)y
(

2c
′

2b − 2c′

)y (
2b(

w
j

)
2c−w

)y (
2b − y

2b −
(
w
j

)
2c−w

)q−y
?
≥
(

2b

2b − 2c′

)αq

,

αy

(
2c

′

2b − 2c′

)y (
2b(

w
j

)
2c−w

)y (
2b −

(
w
j

)
2c−w

2b − y

)y
?
≥
(

2b

2b − 2c′

)αq
(
2b −

(
w
j

)
2c−w

2b − y

)q

,(
α

2c
′

2b − 2c′
2b(

w
j

)
2c−w

2b −
(
w
j

)
2c−w

2b − y

)y
?
≥
(

2b

2b − 2c′

)αq
(
2b −

(
w
j

)
2c−w

2b − y

)q

.

Using that b = r′ + c′ and b = r + c, we get:(
α

1

2r′ − 1

1(
w
j

)
2−r−w

1−
(
w
j

)
2−r−w

1− y
2b

)y
?
≥
(

1

1− 2−r′

)αq
(
1−

(
w
j

)
2−r−w

1− y
2b

)q

,(
α

2r′ − 1

1(
w
j

)
2−(r+w)

1−
(
w
j

)
2−r−w

1− y
2b

)y
?
≥
(

1α

(1− 2−r′)α

)q
(
1−

(
w
j

)
2−r−w

1− y
2b

)q

,(
α

2r′ − 1

2r+w(
w
j

) 1−
(
w
j

)
2−r−w

1− y
2b

)y
?
≥

(
1−

(
w
j

)
2−r−w

(1− 2−r′)α
(
1− y

2b

))q

. (14)

To further simplify the above inequality (14), we first need to show that the
base of the left-hand side is at least 1:

α

2r′ − 1

2r+w(
w
j

) 1−
(
w
j

)
2−r−w

1− y
2b

?
≥ 1. (15)

30

Recall that y is the amount of bins in bin i, so y ≥ 0. We know that the
left-hand side of (15) is minimal when y = 0. Therefore, if we can prove
that (15) holds for y = 0, we know that it must hold for every possible value
of y. We substitute y = 0 in (15):

α

2r′ − 1

2r+w(
w
j

) 1−
(
w
j

)
2−r−w

1− 0
2b

?
≥ 1,

α

2r′ − 1

2r+w(
w
j

) (1− (w
j

)
2−r−w

)
?
≥ 1,

α

2r′ − 1

(
2r+w(

w
j

) −
(
w
j

)(
w
j

)) ?
≥ 1,

α

2r′ − 1

2r+w −
(
w
j

)(
w
j

) ?
≥ 1,

α

2r′ − 1

?
≥

(
w
j

)
2r+w −

(
w
j

) ,
α

?
≥

2r
′(w

j

)
−
(
w
j

)
2r+w −

(
w
j

) ,

α
?
≥

2r+log(w+1)
(
w
j

)
−
(
w
j

)
2r+w −

(
w
j

) ,

α
?
≥

2r(w + 1)
(
w
j

)
−
(
w
j

)
2r+w −

(
w
j

) .

Therefore, the base of the left-hand side of (14) is at least 1 under the
condition that:

α ≥
2r(w + 1)

(
w
j

)
−
(
w
j

)
2r+w −

(
w
j

) . (16)

We show that this condition holds later in the proof.

Now, it suffices to show that (14) holds for y = t =
⌈
αq

2r′

⌉
as left-hand

side exponent instead of for all y ≥ t. This is because the left-hand side of
(14) is minimal for y = t if the base of the left-hand side is at least 1, and

we have just shown that this is the case if α ≥
2r(w+1)(wj)−(

w
j)

2r2w−(wj)
.

The demonstration of (14) is quite elaborate, and has been placed in
Appendix A to improve the readability of the thesis. The result of this
demonstration is that the following condition on α must be satisfied for (14)
to hold:

α ≥
(
w

j

)
e2(w + 1)

2w
. (17)

31

Now, to show that (13) holds, it remains to be proven that α satisfies the
two conditions given in (16) and (17). We do this by first showing that
the first condition is satisfied if the second condition is satisfied, and then
showing that the second condition is satisfied.

If the second condition is satisfied, the first condition must also be
satisfied because the lower bound on α in the first condition is smaller than
or equal to the lower bound on α in the second condition:

2r(w + 1)
(
w
j

)
−
(
w
j

)
2r+w −

(
w
j

) ?
≤
(
w

j

)
e2(w + 1)

2w
,

2r(w + 1)− 1

2r+w −
(
w
j

) ?
≤ e2(w + 1)

2w
,

2r+w(w + 1)− 2w
?
≤ 2r+we2(w + 1)−

(
w

j

)
e2(w + 1),

−2w
?
≤ 2r+we2(w + 1)−

(
w

j

)
e2(w + 1)− 2r+w(w + 1),

2w
?
≥
(
w

j

)
e2(w + 1) + 2r+w(w + 1)− 2r+we2(w + 1),

2w
?
≥ (w + 1)

((
w

j

)
e2 + 2r+w − 2r+we2

)
,

2w

w + 1

?
≥
(
w

j

)
e2 + 2r+w(1− e2). (18)

Because we assumed that r ≥ 1 and w ≥ 1, we know that the term 2r+w(1−
e2) is negative since 2r+w is positive and 1 − e2 is negative. Therefore, the
right-hand side of the above inequality (18) is largest when r = 1. It follows
that we can substitute r = 1 in (18), because if it holds for r = 1, then it
must certainly hold for all r ≥ 1:

2w

w + 1

?
≥
(
w

j

)
e2 + 21+w(1− e2),

2w

w + 1

?
≥
(
w

j

)
e2 + 2w(2(1− e2)),

2w

w + 1

?
≥
(
w

j

)
e2 + 2w(2− 2e2).

We use that
(
w
j

)
<
∑w

k=0

(
w
k

)
= 2w to replace

(
w
j

)
with 2w:

2w

w + 1

?
≥ 2we2 + 2w(2− 2e2),

2w

w + 1

?
≥ 2w(2− e2).

32

Because w ≥ 1, the left-hand side of this inequality is positive. Since 2 ≤ e2,
the right-hand side of this inequality is negative. Therefore, the inequality
holds, and we have shown that, if the second condition on α given in (17) is
satisfied, then the first condition on α given in (16) must also be satisfied.

Now, it only remains to be shown that the second condition on α is

satisfied. Hence, we must show that α is greater than or equal to
(
w
j

) e2(w+1)
2w .

Because
(
w
j

)
is maximal for j =

⌊
w
2

⌋
, it suffices to show that α is greater than

or equal to
(

w
⌊w

2 ⌋
)

e2(w+1)
2w , which is the case because α =

(
w

⌊w
2 ⌋
)

e2(w+1)
2w .

We have now shown that the second condition on α is satisfied. It follows
that the first condition on α is also satisfied. Because both conditions on
α are satisfied, we have proven that (13) holds under the assumptions that
1 ≤ w ≤ c and r ≥ 1.

Because we have now proven that (13) holds, assuming that 1 ≤ w ≤ c
and r ≥ 1, it follows from Lemma 4.1 that Theorem 4.1 is proven.

4.4 Applying Theorem 4.1 to the SuKS bound

We can use Theorem 4.1 to tighten the NALR-PRF security bound on the
SuKS (see (9) on page 15) when only considering Hamming weight leakage:

Corollary 4.1. The tight NALR-PRF security bound on the SuKS when
only considering the leakage function LHW

p defined in (11) on page 24 is

Advnalr-prfF (A) ≤ 2N2

2c
+

µ
2(N−q)
s,b−s

2b−s
+

µ
2(N−q)
b−s,s ·N

2min{δ,ε}−µ
2(N−q)
s,b−s λ

+
µαq
t+λ,b−t−λ ·N(
w
ℓ

)
2b−t−w

(19)

with λ = ⌈log (w + 1)⌉, α =
(

w
⌊w

2 ⌋
)

e2(w+1)
2w and ℓ the leakage value from

LHW
p which results in the largest multicollision estimated by µαq

t+λ,b−t−λ.

Proof. The only term in this bound which has changed with respect to the
NALR-PRF security bound in (9) is the last term, since this the only term in
the NALR-PRF security bound which is not tight. To prove the last term in
(19) is tight, we give a matching attack for this term. This matching attack
is similar to the attack given in Section 3.3. We assume that the function
G in the SuKS is an XOR and the attacker tries to recover the state V in
order to find the secret key K:

1. The attacker tries q distinct plaintexts to find multicollisions for T
and HW(rightw(W)). It follows from Theorem 4.1 that the size of
the largest multicollision found by the attacker is upper bounded by
µαq
t+λ,b−t−λ. Let the leakage value HW(rightw(W)) of this multicollision

be called ℓ.

33

2. In order to recover the state V , the attacker must first find the stateW .
The attacker knows leftt(W) = T and has to guess rightb−t(W). Due
to the leakage, the attacker also learns HW(rightw(W)) = ℓ, which
means rightb−t(W) can be any of

(
w
ℓ

)
values. The attacker has no

information about the remaining b − t − w bits, so these bits can be
any of 2b−t−w values. It follows that the attacker has to guess between(
w
ℓ

)
2b−t−w values.

The probability that the attacker guesses correctly with one guess is
µαq
t+λ,b−t−λ

(wℓ)2b−t−w
, because each element in the multicollision has a different

value for rightb−t(W), and the attacker only needs to find one of these
values. The probability that the attacker guesses correctly with N

guesses is
µαq
t+λ,b−t−λ·N
(wℓ)2b−t−w

.

3. If the attacker guesses rightb−t(W) correctly, they can call the inverse
primitive p−1 on W to find V , and compute K = leftk(U) ⊕ leftk(V)
(U is known to the attacker because no secret information is involved
in computing it). Therefore, the success probability of this attack is
µαq
t+λ,b−t−λ·N
(wℓ)2b−t−w

.

In conclusion, we have proven that the last term in (19) is tight by giving
a matching attack. Because the other terms were already proven to be tight,
Corollary 4.1 is proven.

4.4.1 Limitation of the tightened NALR-PRF security bound

One limitation of the bound given in (19) is that it uses ℓ, the leakage value
which results in the largest multicollision, in the fourth term of the bound.
The value of ℓ depends on what plaintexts the attacker queries to find the
multicollisions, and the success probability of the attacker is dependent on
the value of ℓ; the attacker’s success probability is highest when ℓ =

⌊
w
2

⌋
or

ℓ =
⌈
w
2

⌉
, and it is lowest when ℓ = 0 or ℓ = w, because these values for ℓ

result respectively in the maximal and minimal value for
(
w
ℓ

)
.

To improve the bound, the fourth term could be split into two terms. In
the first term, it would be assumed that ℓ can only attain values which are
inconvenient for the attacker, meaning they result in a relatively low success
probability, and then ℓ could be removed from the term by substituting the
inconvenient value which results in the highest success probability. In the
second term, it would be assumed that, if the value of ℓ is convenient for the
attacker, the attacker’s success probability is 1. Therefore, in this second
term, the attacker’s success probability can be described by the probability
that ℓ has a convenient value for the attacker.

34

Chapter 5

Conclusions

In conclusion, we have shown that the NALR-PRF security bound on the
Suffix Keyed Sponge is not tight. In Chapter 3, we have analysed the
tightness of the bound and come to the conclusion that the bound can
be tightened by taking into account that the leakage influences the size
of the largest multicollision in one of the matching attacks for the SuKS.
Furthermore, in this chapter we have tightened the bound on the NALR-PRF
security when only considering leakage functions which leak λ bits of the
SuKS state. In Chapter 4, we have given a tightened bound when only
considering leakage functions which leak the Hamming weight of w bits of
the SuKS state by incorporating this leakage into the multicollision limit
function used to estimate the size of the largest multicollision.

There are still numerous opportunities for doing research on the tightness
of the NALR-PRF security bound on the SuKS. For example, the tightened
bound on the NALR-PRF security of the SuKS when considering Hamming
weight leakage could be improved by removing the leakage value from the
bound, as described in Section 4.4.1. Furthermore, tight bounds could
be given when considering other types of leakage functions. Finally, the
NALR-PRF security bound on the SuKS could be tightened such that the
bound holds for all possible leakage functions.

35

Bibliography

[1] ISAP - Specification. https://isap.iaik.tugraz.at/

specification.html. Accessed: 4-12-2022.

[2] Lightweight Cryptography - CSRC. https://csrc.nist.gov/

projects/lightweight-cryptography. Accessed: 4-12-2022.

[3] Submission Requirements and Evaluation Criteria for the Lightweight
Cryptography Standardization Process. https://csrc.nist.gov/

CSRC/media/Projects/Lightweight-Cryptography/documents/

final-lwc-submission-requirements-august2018.pdf. Accessed:
4-12-2022.

[4] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The Power
of Verification Queries in Message Authentication and Authenticated
Encryption. Cryptology ePrint Archive, Paper 2004/309, 2004. https:
//eprint.iacr.org/2004/309.

[5] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Sponge functions. ECRYPT Hash Workshop 2007, May 2007.

[6] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-State Keyed
Duplex With Built-In Multi-User Support. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017,
pages 606–637. Springer International Publishing, 2017.

[7] Christoph Dobraunig and Bart Mennink. Security of the Suffix
Keyed Sponge. IACR Transactions on Symmetric Cryptology,
2019(4):223–248, January 2020.

[8] Christoph Dobraunig and Bart Mennink. Tightness of the Suffix
Keyed Sponge. IACR Transactions on Symmetric Cryptology,
2020(4):195–212, December 2020.

[9] Sébastien Duval, Pierrick Méaux, Charles Momin, and François-Xavier
Standaert. Exploring Crypto-Physical Dark Matter and Learning with
Physical Rounding Towards Secure and Efficient Fresh Re-Keying.

36

https://isap.iaik.tugraz.at/specification.html
https://isap.iaik.tugraz.at/specification.html
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://eprint.iacr.org/2004/309
https://eprint.iacr.org/2004/309

IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(1):373–401, December 2020.

[10] Peter Gaži, Krzysztof Pietrzak, and Stefano Tessaro. The Exact
PRF Security of Truncation: Tight Bounds for Keyed Sponges and
Truncated CBC. In Advances in Cryptology – CRYPTO 2015, pages
368–387, August 2015.

[11] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the
Cryptographic Applications of Random Functions. In Advances in
Cryptology – CRYPTO 1984, pages 276–288, 08 1984.

[12] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. 2007.

[13] Rita Mayer-Sommer. Smartly Analyzing the Simplicity and the Power
of Simple Power Analysis on Smartcards. In Çetin K. Koç and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems – CHES
2000, pages 78–92. Springer Berlin Heidelberg, 2000.

37

Appendix A

Appendix

In this appendix, we show in detail that (14) given on page 30 holds for

y =
⌈
αq

2r′

⌉
as left-hand side exponent. Therefore, we show that

(
α

2r′ − 1

2r+w(
w
j

) 1−
(
w
j

)
2−r−w

1− y
2b

)⌈
αq

2r
′

⌉
≥

(
1−

(
w
j

)
2−r−w

(1− 2−r′)α
(
1− y

2b

))q

.

Showing that this inequality holds is a step in the proof of (13) on page
29, which in turn is a step in the proof of Theorem 4.1 on page 26.

38

(
α

2
r
′
−
1

2
r
+
w (w j

)1−
(w j

) 2−r
−
w

1
−

y 2
b

)⌈ α
q

2
r
′

⌉ ? ≥

(
1
−
(w j

) 2−r
−
w

(1
−
2
−
r
′)
α
(1−

y 2
b

)) q ,

(
α

2r
′
−
1

2
r
+
w (w j

)1−
(w j

) 2−r
−
w

1
−

y 2
b

)αq 2
r
′

? ≥

(
1
−
(w j

) 2−r
−
w

(1
−
2
−
r
′)
α
(1−

y 2
b

)) q ,

 (
α

2r
′
−
1

2
r
+
w (w j

)1−
(w j

) 2−r
−
w

1
−

y 2
b

)αq 2
r
′
 2

r
′

α
q

? ≥

((
1
−
(w j

) 2−r
−
w

(1
−
2
−
r
′)
α
(1−

y 2
b

)) q)
2
r
′

α
q

,

α

2r
′
−

1

2
r
+
w (w j

)1−
(w j

) 2−r
−
w

1
−

y 2
b

? ≥

(
1
−
(w j

) 2−r
−
w

(1
−
2
−
r
′)
α
(1−

y 2
b

))2r′ α

,

lo
g

(
α

2
r
′
−
1

2r
+
w (w j

)1−
(w j

) 2−r
−
w

1
−

y 2
b

) ? ≥
lo
g

  (
1
−
(w j

) 2−r
−
w

(1
−

2−
r
′)
α
(1−

y 2
b

))2r′ α

  ,
lo
g

(
α

2
r
′
−
1

) +
lo
g

(2r
+
w (w j

)) +
lo
g

(1
−
(w j

) 2−r
−
w

1
−

y 2
b

) ? ≥
2
r
′

α
lo
g

(
1
−
(w j

) 2−r
−
w

(1
−
2
−
r
′)
α
(1−

y 2
b

)) ,

lo
g

(
α

2
r
′
−
1

) +
lo
g

(2r
+
w (w j

)) +
lo
g

(1
−
(w j

) 2−r
−
w

1
−

y 2
b

) ? ≥
2
r
′

α
lo
g

(1
−
(w j

) 2
−
r
−
w

) −
2r

′

α
lo
g
((1

−
2−

r
′)
α
(1

−
y 2
b

)) ,

lo
g

(
α

2
r
′
−
1

) +
lo
g

(2r
+
w (w j

)) +
lo
g

(1
−
(w j

) 2−r
−
w

1
−

y 2
b

) ? ≥
2
r
′

α
lo
g

(1
−
(w j

) 2
−
r
−
w

) −
2
r
′
lo
g
(1

−
2
−
r
′) −

2
r
′

α
lo
g
(1

−
y 2
b

) ,

39

lo
g

(
α

2r
′
−
1

) +
lo
g

(2
r
+
w (w j

)) +
2
r
′
lo
g
(1

−
2
−
r
′) ? ≥

(2r
′

α
−
1

) lo
g

(1
−
(w j

) 2−
r
−
w

) −

(2r
′

α
−
1

) lo
g
(1

−
y 2b

)
lo
g

(
α

2r
′
−
1

) +
lo
g

(2
r
+
w (w j

)) +
2
r
′
lo
g
(1

−
2
−
r
′) ? ≥

(2r
′

α
−
1

) (lo
g

(1
−
(w j

) 2
−
r
−
w

) −
lo
g
(1

−
y 2b

))

lo
g

(
α

2r
′
−
1

) +
lo
g

(2
r
+
w (w j

)) +
2
r
′
lo
g
(1

−
2
−
r
′) ? ≥

(2r
′

α
−
1

)(lo
g

(1
−
(w j

) 2−r
−
w

1
−

y 2
b

)) .

W
e
k
n
ow

th
at

y
≤
(w j

) 2c−
w
,
fr
o
m

w
h
ic
h
it
fo
ll
ow

s
th
at

1
−

y 2
b
≥

1
−
(w j

) 2−r
−
w
.
T
h
er
ef
o
re
,
th
e
se
co
n
d
te
rm

on
th
e
ri
g
h
t-
h
a
n
d

si
d
e
is

a
t
m
o
st

lo
g
(1
):

lo
g

(
α

2
r
′
−
1

) +
lo
g

(2r
+
w (w j

)) +
2
r
′
lo
g
(1

−
2−

r
′) ? ≥

(2
r
′

α
−
1) lo

g
(1
)
,

lo
g

(
α

2
r
′
−
1

) +
lo
g

(2r
+
w (w j

)) +
2
r
′
lo
g
(1

−
2−

r
′) ? ≥

0,

lo
g

(
α

2
r
′
−
1

) +
r
+
w
−
lo
g

((w j

)) +
2
r
′
lo
g
(1

−
2−

r
′) ? ≥

0,

lo
g
(α

)
? ≥
lo
g
(2r

′
−
1) +

lo
g

((w j

)) −
2
r
′
lo
g
(1

−
2−

r
′) −

r
−

w
,

2l
o
g
(α

)
? ≥
2lo

g
(2

r
′ −

1
) +

lo
g
((w j

)) −
2
r
′
lo
g
(1

−
2
−
r
′) −

r
−
w
,

α
? ≥

(2
r
′
−
1)
(w j

)
(1

−
2
−
r
′)
2
r
′ 2

r
+
w
.

40

U
si
n
g
th
at

2r
′
−
1
<

2
r
′ ,
w
e
ca
n
re
p
la
ce

2r
′
−
1
b
y
2r

′
on

th
e
ri
gh

t-
h
an

d
si
d
e
of

th
e
in
eq
u
a
li
ty
:

α
? ≥

2r
′(w j

)
(1

−
2
−
r
′)
2
r
′ 2

r
+
w
,

α
? ≥

(w
+
1)
2
r
(w j

)
(1

−
2
−
r
′)
2
r
′ 2

r
+
w
,

α
? ≥
(w j

)
w
+
1

(1
−

1 2
r
′

) 2r′ 2w
.

W
e
as
su
m
ed

th
a
t
r
≥

1.
B
ec
au

se
r′

=
r
+
lo
g
(w

+
1)

>
r,

it
fo
ll
ow

s
th
at

r′
>

1
a
n
d
th
at

2r
′
>

2.
T
h
er
ef
or
e,

w
e
ca
n
u
se

th
a
t

(1−
1 x

) x ≥
e−

x
x
−
1
fo
r
a
ll
x
∈
R
\
{1

}
(s
ee

L
em

m
a
2.
3
on

p
ag

e
7)

b
y
su
b
st
it
u
ti
n
g
x
=

2r
′
to

g
et
:

α
? ≥
(w j

) w
+
1

e−
2
r
′

2
r
′ −

1
2
w

,

α
? ≥
(w j

) e2
r
′

2
r
′ −

1
(w

+
1)

2
w

.

U
si
n
g
th
at

e
2
x

2
x
−
1
≤

e2
o
n
th
e
in
te
rv
a
l
[1
,∞

)
(s
ee

L
em

m
a
2.
4
on

p
ag

e
8)
,
an

d
th
a
t
r′

>
1,

w
e
ca
n
su
b
st
it
u
te

x
=

r′
to

g
et
:

α
? ≥
(w j

) e2 (
w
+
1)

2
w

.

41

From this demonstration, we can conclude that (13) holds under the condition

that α is greater than or equal to
(
w
j

) e2(w+1)
2w . This condition is taken into

account in the rest of the proof of Theorem 4.1.

42

	Introduction
	Preliminaries
	Notation
	Mathematical Bounds
	Suffix Keyed Sponge
	Explanation of the sponge construction
	Explanation of the Suffix Keyed Sponge

	PRF security and NALR-PRF security
	PRF security
	NALR-PRF security

	Uniform and Universal Functions
	Multicollision limit function
	Security Bounds on the Suffix Keyed Sponge

	Tightness of Suffix Keyed Sponge NALR-PRF security bound
	Matching attacks on term 3 of the NALR-PRF bound
	First attack
	Second attack
	Deriving the bound
	Attack in the NALR-PRF security model

	Matching attack on term 2 of the NALR-PRF bound
	Matching attack on term 4 of the NALR-PRF bound
	Attack in the NALR-PRF security model

	Conclusions of the tightness analysis

	Multicollision limit function with Hamming weight leakage
	Balls-and-bins problem
	Bounding the multicollision limit function
	Proof of Theorem 4.1
	Probability in Experiment 1
	Probability in Experiment 2
	Proving the inequality between the probabilities

	Applying Theorem 4.1 to the SuKS bound
	Limitation of the tightened NALR-PRF security bound

	Conclusions
	Appendix

