
Bachelor’s Thesis Computing Science

Comparing the performance of MLPs in
side channel attacks with different dataset
/ architecture customizations

Jasper Hage
s1040782

March 27, 2023

First supervisor/assessor:
Dr Stjepan Picek

Second assessor:
Prof. Lejla Batina

Abstract

In this paper, we compare three different techniques that have been applied
to multilayer perceptrons to improve side channel attacks against AES. For
that we have chosen to compare ensembles, mixup data augmentation and
focal loss ratio against a baseline. Our results showed that ensembles had
the best overall results when more than 25,000 profiling traces were used.
However, if time is an important factor that should be taken into account
then focal loss ratio is a better option for the HW leakage model and the
baseline or FLR better options for the ID leakage model with all three taking
less than 20% of the time it took to train the ensemble models.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Dataset . 5
2.2 Side channel attacks . 5
2.3 Deep learning-based SCA . 6

2.3.1 Profiling attacks . 6
2.3.2 Multilayer perceptrons 7
2.3.3 Loss function . 8
2.3.4 Optimizer and learning rate 8
2.3.5 SCA Metrics . 9
2.3.6 Leakage models . 9

2.4 Techniques . 9
2.4.1 Focal loss ratio . 10
2.4.2 Mixup data augmentation 10
2.4.3 Ensembles . 10

2.5 AISY framework . 10
2.5.1 Z-score normalization 11

3 Related Work 12

4 Research 14
4.1 Experimental setup . 14

4.1.1 Baseline . 14
4.1.2 Loss function . 15
4.1.3 Ensembles . 15
4.1.4 Data augmentation . 16

4.2 Results . 16
4.2.1 Baseline . 16
4.2.2 Loss function . 17
4.2.3 Ensembles . 18
4.2.4 Data augmentation . 19
4.2.5 Further comparison 21

1

5 Conclusions 24

A Ensemble figures 28

B GE and SR tables 33

2

Chapter 1

Introduction

When talking about the security of encryption algorithms, such as the Ad-
vanced Encryption Standard (AES), the focus often lies on flaws that are
part of the theory itself. Another aspect that must be considered in the
security, however, is the implementation of the algorithm and the hardware
that it is running on. If the implementation or the device itself is not prop-
erly protected then it may be susceptible to side channel attacks (SCA) if
an adversary can get access to the device or a copy thereof.

The increase in the number of devices that deal with confidential in-
formation, such as Internet of Things (IoT) devices [15], leads to an ever-
growing attack vector if implementations are not properly secured. As most
of these devices are commonly available to the public it allows an attacker
to easily obtain their own copy of a target device. One of these side channels
is the power consumption of the hardware, it has been shown that informa-
tion that is leaked by measuring the power consumption of microprocessors
can be used to retrieve the key, or parts of that key, that was used during
encryption [14].

Over the last couple of years, deep learning has taken a prominent role
in this research area. Researchers have designed relatively small multi-layer
perceptrons (MLPs) and convolutional neural networks (CNNs) that were
able to successfully retrieve partial or full keys that were used during en-
cryption. We expand upon this work by analyzing several different state-
of-the-art techniques for MLPs that have been proposed by researchers to
improve the performance of SCA on power traces.

The goal of this research paper is to provide a thorough comparison of the
different techniques that have been proposed. We will give an insight into
what the best-performing technique is at this point in time. Furthermore, we
will investigate how these techniques perform when an attacker has access
to fewer profiling traces. To compare their performance we will use the
Guessing Entropy (GE) and Success Rate (SR) metrics that are commonly
used when evaluating the performance of SCA. All comparisons will be done

3

for both the Identity (ID) leakage model as well as the Hamming Weight
(HW) leakage model. The outcome of this paper can be used in future
research as a baseline to compare new novel techniques to.

In the next chapter, we will provide an overview of the different tech-
niques that we will be using and the background knowledge required to read
the rest of the paper. After that there is a chapter in which we will take a
look at other research that has been done in this area. This will be followed
by a chapter in which we will go over the research that we have done and
the results that we have acquired. Finally, we give the conclusion to our
research and explain what can be done in the future by other researchers.

4

Chapter 2

Preliminaries

In this section, we will provide an overview of the techniques that will be
used in this paper. First we will introduce the dataset that we will be using
throughout the paper and what (deep learning-based) side channel attacks
are. After that we will go over the different techniques that we have used
during our research.

2.1 Dataset

The dataset that was used for this paper comes from the ANSSI SCA
Database, referred to as ASCAD. ASCAD is a set of datasets that contains
the power consumption data of a microprocessor doing AES encryptions. At
the time of writing this paper, ASCAD contains three different datasets but
in our research we have focused on the ATM AES v1 variable key dataset.

This dataset contains the power consumption of an ATMega8515 mi-
crocontroller unit that is doing AES encryptions. The dataset consists of
200,000 traces that can be used to train the model, hereafter referred to as
the profiling traces, and an additional 100,000 traces that can be used to
check the performance of the created model, after this referred to as the
attack traces. In the raw dataset each trace consists of 250,000 individual
power measurements. However, the researchers have also provided a smaller,
extracted dataset where each trace only consists of 1400 points of interest
around the spot where the information for the key leaks. In this paper, we
have used the extracted ascad-variable.h5 dataset and any future refer-
ences to ASCAD in this paper will be referring to this particular dataset
unless otherwise stated.

2.2 Side channel attacks

In this paper we will focus on side channel attacks, which are attacks that
focus on flaws that are not part of the algorithm that we are attacking but

5

rather of the hardware or the system that it is running on. The system
may reveal critical information over these side channels that can be used to
retrieve information that should be secret otherwise.

There are a lot of side channels on modern-day hardware, we have pro-
vided examples of a couple of side channel attacks below but this list is not
exhaustive:

• Timing attacks: these attacks focus on the time that our algorithm
takes. If different branches take different amounts of time then an
attacker can detect that to determine which branch was taken.

• Optical attacks: for these attacks an attacker uses optical signals to
extract information from the system. This can be a simple recording
over someone’s shoulder or more advanced by utilizing the hard disk
or keyboard LEDs on the computer to extract information.

• Power consumption attacks: when a machine computes informa-
tion it uses different amounts of power depending on what it is com-
puting. If we can measure these differences then we can extract critical
information from that.

2.3 Deep learning-based SCA

In this paper we will be focusing on power consumption attacks, with the
power consumption data from the ASCAD dataset. To be able to extract
part of the key that was used during encryption we will be using deep learn-
ing, in particular supervised machine learning. Supervised machine learning
takes as an input labeled data, in our case the input data are the power
traces and the label is the key that was used for each trace, and is then
trained to learn the data so that when given solely the input data that it
can correctly predict the label for the input[17].

2.3.1 Profiling attacks

The side channel attacks that we will be doing in this paper are profiling
attacks. For a profiling attack an attacker needs to have access to a (copy
of) the target device that they want to attack in order to gather useful
information during the profiling phase of an attack. They can control this
device completely, allowing them to extract exactly that information that
they need to gather for their future attack. For this paper, the profiling
phase has been done by the researchers that have provided the ASCAD
databases.

There are also non-profiling attacks, where an attacker does not have
access to a (copy of) the target device. The attacker in this case only has

6

I1

I2

H1.1

H1.2

H1.3

O1

O2

Figure 2.1: MLP consisting of an input layer with 2 nodes, a single hidden
layer with 3 nodes and an output layer with 2 nodes. Each Ii and Hx.y node
has a bias and each arrow has a weight.

access to the leakage information that was gathered but not to information
such as the key that was used to gather it [14].

2.3.2 Multilayer perceptrons

The models that we are learning in this paper are multilayer perceptrons
(MLPs). These models consist of three or more layers; the input layer, one
or more hidden layers and finally the output layer. Each of these layers
consists of one or more nodes and all layers are fully connected to the layer
that comes after it. Each connection between two nodes has a weight and
a bias, which are the values that are actually being modified when we are
training a model. There is a weight for each individual connection between
two nodes but the bias is the same for all outputs of a single node. A very
simple example MLP can be seen in Figure 2.1.

In this paper we have exclusively focused on MLP models. We have
chosen to focus on MLPs as they can be trained more quickly when compared
to for example convolutional neural networks (CNNs) while still having good
performance.

After applying the weights and bias to an input value it is passed through
an activation function, which will determine what the output of this node
will be. For most of our models this is the rectified linear unit activation
function (relu) for the input and hidden layers. This function maps every
negative input to 0 and will not alter already positive inputs. As a function
it looks as follows: relu(x) = max(x, 0).

All of our labels are one-hot encoded, which means that we have a vector
of length x if we have x different output labels. This vector has zeros for
all of the components, except for a single component which has the value 1.
This 1 indicates that this output belongs to that label.

7

The output layer does not use the relu activation function but it instead
uses the softmax activation function. This activation function makes sure
that all of the outputs are a proper probability distribution. This means
that all outputs together sum up to 1 exactly and that all of the outputs are
in the interval (0, 1). The output with the highest probability will then most
likely be the correct output according to the model that we have trained.

Hyper-parameters are those values that are used when creating the model
and which control what a model looks like and how the learning process
functions. Below we have provided a list of a few hyper-parameters, we will
explain the exact meaning of them in layer subsections:

• Number of layers: this controls how many layers our network will
have

• Number of nodes: this controls the number of nodes that each layer
will have

• Learning rate: a value that is used to control how big our weight
and bias updates are

• Activation function: a function that controls the output of a node

• Batch size: the number of inputs that we give to our model before
updating the weights and biases

• Epochs: controls how many times we will process the entire dataset

• Optimizer: algorithms that are used to minimize the loss of our
model

2.3.3 Loss function

When a model is being trained, it needs to know how it is doing so it can
readjust the weights and biases. For that a loss function is used, it assigns
a value to the difference between the guess that our model has made and
the real value that is given by our training data, that value is referred to
as the loss [17]. For most of the models that were trained for this paper,
categorical cross-entropy is used as the loss function.

2.3.4 Optimizer and learning rate

To minimize the loss of the used loss function we need an algorithm that
is able to fine-tune the weights and biases of our model. To achieve this
an optimizer with a given learning rate is used. The learning rate is what
controls the size of the steps that we take when the values are updated; a
smaller learning rate will lead to smaller steps but it may take more time for
the model to fit the data. A learning rate that is too large on the other hand

8

might keep overshooting the best target values, meaning that the model will
never converge [17]. For most of the models that we have trained in this
paper, the RMSprop optimizer was used with a learning rate of 0.00001 [14].

2.3.5 SCA Metrics

In this paper we are interested in the Guessing Entropy (GE) of our trained
models and the Success Rate (SR) of them. As mentioned in the previous
section, we get a probability distribution as output for each of our inputs.
For each input, we can order the outputs by their probability and store that
in a vector g. g contains as many components as the number of output
labels that our MLP has. The first component in g is the output that had
the highest probability, then the second component is the output with the
second highest probability and so on and so forth for each of the possible
output labels.

The guessing entropy of a number of inputs is the average correct key
position in vector g that was given as output. The success rate of a model
is how often the correct key ended up on the first component in vector g for
all of the inputs [12].

2.3.6 Leakage models

We have trained all models in this paper using two different leakage models:
Hamming Weight (HW) and Identity (ID). These leakage models affect the
number of output labels that we have. The identity leakage model for a
single byte has 256 output classes, one for each possible combination of
zeros and ones for eight bits. This number is greatly reduced if we use the
Hamming weight leakage model, as we then only need nine different output
labels. The Hamming weight of a byte is the number of ones that are in
that byte, so ranging from zero up to and including eight.

An advantage of using the Hamming weight is that it may reduce the
time that it takes for the model to fit the training data correctly, as there
are now fewer output labels. However, this is also a downside of using this
leakage model, because it only learns the number of ones in a byte it reveals
way less information than the identity leakage model. It is also not an equal
distribution for each number of ones; there is only a single way to have zero
ones and the same for eight ones but there are way more combinations of
one to seven ones in a single byte [14].

2.4 Techniques

In this section, we will go over the different techniques that will be used in
our research.

9

2.4.1 Focal loss ratio

This loss function was designed with SCA in mind and tries to address some
of the problems that other loss functions have, such as an imbalance in the
number of output labels that we have for the HW leakage model.

2.4.2 Mixup data augmentation

When training a neural network we need to make sure that our model gen-
eralizes well. With generalization we mean that the model does not only
perform well on the training data but that it also performs well on other
unseen data. Deep learning in general performs better when it has more
input samples to learn from [17]. If our dataset size is limited then we can
use data augmentation on the original dataset to increase the amount of
data by generating new samples from the original set of samples.

These new samples can be constructed using various techniques but in
this paper we will be using mixup data augmentation [18] [1]. With this
technique we can create a new trace and expected answer from two traces
in the original dataset, by mixing their input and output values together.
We do this with the following formulas:

x̂ = λxi + (1 − λ)xj

ŷ = λyi + (1 − λ)yj

In these formulas (xi, yi) and (xj , yj) are two random samples taken from the
original dataset. xi refers to our input data and yi refers to the corresponding
label of that input data. The lambda value is randomly drawn from the beta
distribution for a given α value [18].

2.4.3 Ensembles

Generalization can not only be improved by using data augmentation. An-
other technique that we can use for that is ensembles. Instead of training
one model with the same hyper-parameters, we train multiple models, each
with their own combination of hyper-parameters. When we want to know
the value of our input then we need to pass it through all of the models that
we have learned. To get from multiple outputs to a single output we can
sum up all of the different probabilities from all of the different outputs and
then use the largest probability as the first guess for our ensemble model
[11].

2.5 AISY framework

To create the models and visualizations in this report, we have used the
AISY framework created by Guilherme Perin et al [12]. This framework

10

was created for side channel analysis and attacks that utilize deep learning.
AISY has built-in support for all three of the techniques that we will be
using in this paper but for data augmentation we manually processed it
instead, which is explained in section 4.2.4.

2.5.1 Z-score normalization

AISY framework uses z-score normalization to normalize the profiling, val-
idation and attack traces. It does this by first computing the mean value,
µprofiling, and standard deviation, σprofiling, of the profiling set which
are then used in the following formula for all traces, ti, in the profiling set,
the validation set and the attack set:

ti =
ti − µprofiling

σprofiling

Z-score normalization makes sure that all values in the dataset have a
mean of 0 and a standard deviation of 1. This makes sure that all of the
traces are using the same scale which is helpful when updating the weights
and biases. Furthermore, because the values are now using the same scale it
can help to prevent our weights and biases from becoming too large or too
small.

11

Chapter 3

Related Work

In this chapter of our paper, we will go over other research that has been
done in this particular area.

Gabriel Zaid et al. [16] introduced Ranking Loss, a loss function designed
with SCA in mind. This loss function penalizes guesses where the correct
key has a lower ranking than another incorrect guess. In a paper by Maikel
Kerkhof et al. [6] four different loss functions are compared for training
models on ASCAD, including the Ranking Loss function from [16]. Their
research showed that the cross-entropy ratio loss function, designed by Jiajia
Zhang et al. [19], had the best performance out of the four loss functions
they compared. Maikel Kerkhof et al. later introduced the Focal Loss Ratio
loss function [5] that we used in this paper, which performed better than
the four loss functions that they compared.

Feng Gao et al. [3] proposed ensemble learning in combination with
SMOTE-based preprocessing to recover the key from the DPA Contest V4
power trace dataset. They compared the result of four different ensemble
methods in combination with five different data balancing techniques against
a MLP model. These combinations were all able to improve the performance
compared to the original MLP model.

Anh Hoang et al. [4] proposed the usage of stacked ensembles to improve
the performance of CNN models. Their approach consists of two separate
training steps. In the first step multiple models are generated and in the
second step a MLP model is trained on outputs and the maximum likelihood
scores of the models trained in the first step. Their work showed significant
improvements in the performance.

Eleonora Cagli et al. [2] used data augmentation to overcome trace
misalignment and overfitting to the training dataset. For that they have
used a shifting window over the original dataset and they simulated a clock
jitter effect. Their results showed that data augmentation could effectively
be used to improve the performance of CNNs.

By adding additional artificial noise to the training data Jaehun Kim et

12

al. [7] were able to increase the performance of their models. The artificial
noise added to their training data helped to prevent overfitting.

In [10] by Naila Mukhtar et al. a neural network is used to generate new
data samples to increase the size of the original dataset. The models that
were trained on the dataset with additional generated samples performed
better than the models trained on the original dataset exclusively.

Zhimin Luo et al. [8] did a more in-depth test of mixup data augmen-
tation on the fixed-key ASCAD dataset. Their results showed that mixup
data augmentation can be used to successfully generate new data samples
even if fewer profiling traces from the original dataset are accessible.

In a paper by Guilherme Perin et al. [13] different feature selection
scenarios are discussed and evaluated. Each scenario has an adversary with
different knowledge of the implementation or secret shares that were used
when the algorithm is running. The extracted ASCAD dataset that we used
falls under the second scenario that they proposed where an adversary has
access to both the implementation details and the random secret shares.
With this information, the window of 1400 samples can be selected around
the point of interest that we were using. The first scenario considers an
even more powerful adversary, allowing for an even smaller window. The
third scenario leaves the selection of the window to the model itself, for our
ASCAD dataset that would mean that we would first need to train a model
to select a window from the 250,000 power measurements instead of having
access to a dataset with 1400 power measurements.

Furthermore, they use hyperparameter search to train MLP and CNN
models using the three different scenarios that they introduced. With this
methodology they were able to train MLP networks that reached a guessing
entropy of 1 which required 328 or 129 traces for the HW and ID leakage
models respectively for our particular dataset.

A more protected dataset, ASCADv2, has been proposed by Löıc Ma-
sure et al. in “Side Channel Analysis against the ANSSI’s protected AES
implementation on ARM “ [9]. This dataset is similar to the ASCAD dataset
that was used in this paper but it has two countermeasures to prevent SCA
like the ones we have talked about in this paper.

13

Chapter 4

Research

In this chapter we will first explain the research that we have done and
following that, the results that we have acquired from our research. In the
final section of this chapter we will discuss our results.

4.1 Experimental setup

For our experiments we have trained a variety of multi-layer perceptron mod-
els on the ASCAD dataset that we introduced in the preliminaries section.
All of these models were trained on a GTX 1070 TI.

For each of the techniques we trained networks with a range of profiling
traces from the original dataset. There are 200,000 profiling traces in the
original dataset but we also trained models with 150,000, 100,000, 50,000,
25,000, 10,000, 5,000 and 1,000 profiling traces.

4.1.1 Baseline

We did not only want to compare the different techniques to each other but
also to a baseline so that we can show that the different techniques do or
do not provide an advantage over a more traditional multi-layer perceptron.
For the baseline MLP we used the work done by Emannuel Prouff et al [14].
Their work was done on the original ASCAD fixed key dataset but during
testing it was also able to reach a good GE and SR on the ASCAD dataset
that we used. Both the loss function and mixup use this exact model as their
starting point, after which their techniques are applied to it. Ensembles uses
a random search space and as such does not use this model as the starting
point.

In their work they showed that a network consisting of 6 fully connected
layers gave the best result. The first 5 layers of the network each had 200
nodes and the relu activation function. The final output layer had one node
for each possible output and the softmax activation function. The optimizer

14

Hyperparameter Min Max Step

Neurons 100 1000 100

Layers 2 8 1

Learning rate 0.0001 0.001 0.0001

Batch size 100 1000 100

Table 4.1: Range of hyperparameters used for the random ensembles

Hyperparameter Values

Loss function Category cross-entropy

Activation function Relu, Selu, elu, tanh

Optimizer Adam

Epochs 50

Table 4.2: Values of hyperparameters used for the random ensembles

that was used during the training phase was the RMSProp optimizer and
categorial cross-entropy was used as the loss function.

4.1.2 Loss function

The setup for Focal loss ratio, developed by Maikal Kerkhof et al. [5] is
the same as for the baseline except for the loss function itself. In their
research they showed that choosing an n of 3 had a negligible impact on
the training time so that is the value that they chose for the number of
iterations. Furthermore, their research showed that the default values for α
and γ, which are 0.25 and 2.0 respectively, are good choices for the dataset
that we are using.

4.1.3 Ensembles

In the research paper by Guilherme Perin et al. [11], they showed that
rather than training one network for more epochs, that training multiple
networks each with less epochs than the single network and combining their
output led to better performance. For the dataset that we used in this paper
they showed that an ensemble of 50 random models trained for 50 epochs
performed better than both 10 models or a single model.

For our experiment we trained 50 networks for 50 epochs with ran-
dom hyperparameters for each network. We used the same hyperparameter
search space as what was used in the original paper, which can be seen in
tables 4.1 and 4.2.

15

4.1.4 Data augmentation

Karim Abdellatif et al. [1] explored the use of mixup data augmentation for
side channel attacks. By tripling the original dataset size using mixup data
augmentation they showed that the number of traces that were required to
recover the key decreased drastically.

We recreated their results for our dataset by generating 400,000 addi-
tional traces from the 200,000 traces that our original dataset had. As the α
we used 0.2, similar to what was used in the paper. For our results with fewer
profiling traces, for example, with 10,000 profiling traces, we first picked the
first 10,000 profiling traces from the original dataset and then we generated
an additional 20,000 from those original profiling traces.

To avoid over-fitting to the profiling traces we used drop-out layers after
each hidden layer, like in the original paper. The drop-out value was set to
0.2, so 20% of our values would be discarded after each hidden layer.

4.2 Results

In this section we will go over the results that we have acquired first and
then after that compare those results to each other.

4.2.1 Baseline

In Figure 4.1 we have plotted the guessing entropy and success rate of our
trained models on the attack dataset for both the HW and ID leakage mod-
els. Our model that was trained on the full dataset performed the best out
of all of the base models for both the HW and ID leakage models. The
ID leakage model generally performed slightly better than our HW leakage
models but neither of them was able to reach a guessing entropy of 1 or a
success rate over 0.7.

HW leakage model comparison

The baseline model that we created performed the worse compared to the
three techniques that we analyzed in this paper when trained on less than
or exactly with 100,000 profiling traces using the HW leakage model.

ID leakage model comparison

The base model reached a lower guessing entropy than the mixup technique
for all profiling trace set sizes. When the dataset was limited to 150,000
profiling traces or less it was also able to reach a lower GE than the models
that were trained with FLR.

16

(a) Guessing entropy (HW) (b) Success rate (HW)

(c) Guessing entropy (ID) (d) Success rate (ID)

Figure 4.1: Guessing entropy and success rate of training our base models
with a varying amount of profiling traces.

4.2.2 Loss function

Our results with the model trained using the focal loss ratio (FLR) loss
function can be seen in Figure 4.2. Both the HW and ID leakage models
were able to learn a model that resulted in a guessing entropy close to 1
when it was trained on the full 200,000 traces. The model trained with the
HW leakage model also achieves this guessing entropy when trained on only
150,000 profiling traces, which was not the case when the ID leakage model
was used.

The success rate of the HW leakage models was considerably higher for
both the 200,000 and 150,000 profiling traces but thereafter quickly dropped
to around 0 for both leakage models.

HW leakage model comparison

FLR with the HW leakage model performed slightly better when compared
to the ensembles when trained on 150,000 or more profiling traces. This
technique also reached a success rate of 0.98 when trained on the full data
set, the highest out of all techniques using the HW leakage model. The
networks that were trained with this custom loss function were the second

17

technique to reach a guessing entropy of 2 or lower when trained on 150,000
or more profiling traces, only ensembles was able to reach a GE under 2
with less traces than FLR.

We are unsure as to why the model that was trained on 50,000 profiling
traces was not able to reach a GE and SR in line with the models before
and after it. It does not seem to be caused by overfitting or underfitting as
there is no significant difference visible for the accuracy or the loss for this
particular model.

ID leakage model comparison

The FLR models have the lowest success rate out of all techniques until
150,000 profiling traces after which both the guessing entropy and success
rate are better than the baseline and mixup techniques.

(a) Guessing entropy (HW) (b) Success rate (HW)

(c) Guessing entropy (ID) (d) Success rate (ID)

Figure 4.2: Guessing entropy and success rate of training our models with
a varying amount of profiling traces with the focal loss ratio loss function.

4.2.3 Ensembles

The figures that we have created for ensembles slightly differ from the other
figures that we have shown in this paper so far. At the time of writing, the
aisy framework that we used is not able to combine ensemble models with

18

a varying amount of profiling traces, so the graphs shown in Figure 4.3 are
only from the experiments with 200,000 profiling traces. The graphs for the
remaining experiments with fewer profiling traces can be seen in Appendix
A.

In these graphs there are 51 lines plotted: one for the value of the best
model for the attack set, one for the best model for the validation set, one for
the ensemble of the 50 models combined and then the 48 remaining models
that were trained to create that ensemble in gray.

For both the HW and ID leakage models, the ensemble technique was
able to reach a guessing entropy between 1 and 2 for 200,000 and 150,000
profiling traces. For the HW leakage model it also achieved this GE for
100,000 profiling traces. The success rate for the ensembles trained with
200,000 and 150,000 profiling traces with the ID leakage model are consider-
ably higher than those two ensembles trained with the HW leakage model.
The opposite is the case for the success rate of the ensembles trained on
100,000 profiling traces, for this ensemble the success rate of the HW leak-
age model is higher than the success rate of the ID leakage model. With
less than 100,000 profiling traces, neither of the leakage models managed to
converge to a good guessing entropy or success rate.

HW leakage model comparison

Ensembles with the HW leakage model performed the worse when trained
on only 1,000 profiling traces but quickly improved the guessing entropy
and success rate when the number of profiling traces increased. It reaches a
better guessing entropy and success rate than all other models when between
10,000 and 100,000 profiling traces are used except for FLR with 25,000
profiling traces. It is the first to reach a guessing entropy of 2 or lower.

ID leakage model comparison

The ensembles reached the best guessing entropy and success rate out of
all techniques when trained on 25,000 or more profiling traces with the ID
leakage model. It was the only model to reach a perfect guessing entropy
and success rate when the full dataset was used.

4.2.4 Data augmentation

The aisy framework that we used in this paper provides built-in methods to
do data augmentation which we used at first. These final results do not use
those methods as they caused the training to take close to 30 hours instead
of just under 3 hours. Most of the time was used up by copying data over
to the GPU for each batch, which we circumvented by instead calculating
all of the augmented data at the start and then moving over that data in
one go.

19

(a) Guessing entropy (HW) (b) Success rate (HW)

(c) Guessing entropy (ID) (d) Success rate (ID)

Figure 4.3: Guessing entropy and success rate of training our ensemble
models with 200,000 profiling traces.

We have plotted the results of our models in Figure 4.4. The number of
traces in these figures is triple that of what is used in the other figures but
2
3 of these traces are generated using mixup data augmentation.

When trained using the HW leakage model, none of the models managed
to reach a good guessing entropy or success rate. With the ID leakage model
only the model trained on the full dataset that was tripled managed to reach
a guessing entropy of 2.88 and a success rate of 0.54.

HW leakage model comparison

The mixup technique performed better than the baseline model when it was
trained on 100,000 or fewer profiling traces, but there was little improvement
compared to the other techniques in the guessing entropy or success rate
after it was trained on 50,000 or more traces, causing the baseline model
to reach a better guessing entropy and success rate when 150,000 or more
profiling traces are used.

20

ID leakage model comparison

The success rate of the mixup technique is 0.01 higher than that of the
baseline for the 1,000, 50,000 and 100,000 profiling traces but for all other
models, the success rate of the baseline models is the same or higher than
that of the mixup technique making it the least performing technique.

(a) Guessing entropy (HW) (b) Success rate (HW)

(c) Guessing entropy (ID) (d) Success rate (ID)

Figure 4.4: Guessing entropy and success rate of training our models with
a varying amount of profiling traces with the mixup data augmentation
method.

4.2.5 Further comparison

To compare the different techniques we will not only be looking at the guess-
ing entropy and the success rate of the models like we have done in the
previous sections but we will also take into account the time that it took to
train them. The combined time for each technique and leakage model can
be seen in Table 4.3, this is the sum of the training time for all eight models
that we trained for each technique and leakage model.

In figure 4.5 we have created four graphs, two for the guessing entropy
and success rate of the HW leakage model with the different techniques and
two similar graphs for the ID leakage model. The graphs were created for the
models that had access to 1,000 traces to retrieve the key byte. In Appendix

21

Technique Leakage model Time

Base HW 1h2m

ID 55m

FLR HW 1h10m

ID 1h11m

Ensembles HW 6h6m

ID 6h39m

Mixup HW 3h09m

ID 3h25m

Table 4.3: Times of the different techniques and leakage models

B we have given the tables with the raw values for each graph created here.
FLR performing better than the baseline can be explained by the fact

that it is able to more efficiently penalize incorrect values while limiting by
how much the weights and biases are updated when the predictions made
by the model are getting closer to the correct predictions.

Compared to the baseline, ensembles overall had better GE and SR
values. This can be explained by the fact that the hyperparameters that
the baseline and the other two techniques used were not optimized for this
particular dataset. The different individual random models that are trained
for ensembles to work can overcome this limitation as they are not bound
to the hyperparameters of the base model.

Mixup overall performed worse than the baseline model. This appears
to be caused by the models overfitting to the training dataset regardless of
the dropout layers that have been added to these models.

HW leakage model

Besides ensembles all three methods had a peak when using 5,000 or 10,000
profiling traces. In certain cases this is caused by overfitting to the training
data set, as indicated by a drop in validation accuracy while the training
accuracy is still improving for these models. In other cases there does not
appear to be a clear cause of the increase in the guessing entropy.

As can be seen in Table 4.3, the baseline models were the quickest to
train, closely followed by the FLR models. The mixup technique takes more
than three times as long to train the baseline models and the ensembles
increase this further to almost six times the baseline time.

22

(a) Guessing entropy (HW) (b) Success rate (HW)

(c) Guessing entropy (ID) (d) Success rate (ID)

Figure 4.5: Guessing entropy and success rate of the different techniques
and a varying number of profiling traces. The graphs were created for the
models that had access to 1,000 traces to retrieve the key byte

ID leakage model

Similarly to the HW leakage models, most of the models that we trained had
a peak in the guessing entropy when a particular range of profiling traces
was used. While this peak for the HW leakage model is most noticeable
when between 5,000 and 10,000 profiling traces are used, for the ID leakage
model these peaks have moved towards the 25,000 to 50,000 profiling traces.
Overfitting does seem to be causing these peaks in most cases because there
is a larger difference between the training and validation accuracy for these
models.

In Table 4.3 the times it took to train all of the models for each technique
are displayed. The baseline models were the quickest, followed by the models
trained using the FLR loss function. Mixup took over three times as long
and the ensembles took almost two times as long as the mixup models to
train.

23

Chapter 5

Conclusions

In this paper we have compared three different techniques for MLP networks
against a baseline and each other. Out of these techniques, the ensembles
reached the best overall guessing entropy for both the HW and ID leakage
models. FLR was able to reach a better success rate and guessing entropy for
the HW leakage model when 150,000 or more traces were used but ensembles
had a superior GE and SR for the ID leakage model. The mixup data
augmentation models that were trained on 100,000 profiling traces or less
using the HW leakage model reached a better GE and SR than the baseline
model but thereafter had worse GE and SR than the other techniques.

Overall, ensembles are the best option out of the techniques that we
compared when more than 25,000 profiling traces are used. FLR only reaches
a better GE and SR when more than 150,000 profiling traces are used for
the HW leakage model. If time is an important factor that should be taken
into account then FLR is a better option for the HW leakage model and
the baseline or FLR for the ID leakage model depending on the number of
profiling traces.

For this paper, we decided to use one base model which was shared
as a starting point by three of the techniques covered. This is a limiting
factor as different techniques might have performed better with different or
more fine-tuned hyperparameters but that was out of scope for this paper.
Furthermore, in this paper we only looked at three different techniques and
a baseline, that could be expanded upon to provide a larger overview of
techniques that may improve the performance of SCA.

For future work it would be interesting to do a similar comparison for
different CNN model techniques, such as the ones that were discussed in the
related work section. Similarly, this research could be repeated for different
datasets, to see if the results of this paper can also be applied to those, like
the ASCADv2 dataset by Löıc Masure et al [9].

24

Bibliography

[1] Karim M. Abdellatif. Mixup data augmentation for deep learning side-
channel attacks. Cryptology ePrint Archive, Paper 2021/328, 2021.
https://eprint.iacr.org/2021/328.

[2] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional
neural networks with data augmentation against jitter-based counter-
measures. In Wieland Fischer and Naofumi Homma, editors, Crypto-
graphic Hardware and Embedded Systems – CHES 2017, pages 45–68,
Cham, 2017. Springer International Publishing.

[3] Feng Gao, Baolei Mao, Lingjuan Wu, Zongmin Wang, Dejun Mu, and
Wei Hu. Leveraging ensemble learning for side channel analysis on
masked aes. In 2021 7th International Conference on Computer and
Communications (ICCC), pages 267–271, 2021.

[4] Anh Hoang, Neil Hanley, Ayesha Khalid, Dur e Shahwar Kundi, and
Maire O’Neill. Stacked ensemble model for enhancing the dl based
sca. In Proceedings of the 19th International Conference on Security
and Cryptography - Volume 1: SECRYPT,, pages 59–68. INSTICC,
SciTePress, 2022.

[5] Maikel Kerkhof, Lichao Wu, Guilherme Perin, and Stjepan Picek. Focus
is key to success: A focal loss function for deep learning-based side-
channel analysis. Cryptology ePrint Archive, Paper 2021/1408, 2021.
https://eprint.iacr.org/2021/1408.

[6] Maikel Kerkhof, Lichao Wu, Guilherme Perin, and Stjepan Picek. No
(good) loss no gain: Systematic evaluation of loss functions in deep
learning-based side-channel analysis. Cryptology ePrint Archive, Paper
2021/1091, 2021. https://eprint.iacr.org/2021/1091.

[7] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan
Hanjalic. Make some noise. unleashing the power of convolutional neu-
ral networks for profiled side-channel analysis. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2019(3):148–179, May
2019.

25

[8] Zhimin Luo, Mengce Zheng, Ping Wang, Minhui Jin, Jiajia Zhang, and
Honggang Hu. Towards strengthening deep learning-based side channel
attacks with mixup. Cryptology ePrint Archive, Paper 2021/312, 2021.
https://eprint.iacr.org/2021/312.

[9] Löıc Masure and Rémi Strullu. Side channel analysis against the anssi’s
protected aes implementation on arm. Cryptology ePrint Archive, Pa-
per 2021/592, 2021. https://eprint.iacr.org/2021/592.

[10] Naila Mukhtar, Lejla Batina, Stjepan Picek, and Yinan Kong. Fake
it till you make it: Data augmentation using generative adversarial
networks for all the crypto you need on small devices. Cryptology ePrint
Archive, Paper 2021/991, 2021. https://eprint.iacr.org/2021/991.

[11] Guilherme Perin, Lukasz Chmielewski, and Stjepan Picek. Strength in
numbers: Improving generalization with ensembles in machine learning-
based profiled side-channel analysis. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2020(4):337–364, Aug. 2020.

[12] Guilherme Perin, Lichao Wu, and Stjepan Picek. Aisy - deep learning-
based framework for side-channel analysis. Cryptology ePrint Archive,
Report 2021/357, 2021. https://eprint.iacr.org/2021/357.

[13] Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring fea-
ture selection scenarios for deep learning-based side-channel analysis.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2022(4):828–861, Aug. 2022.

[14] Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and
Cecile Dumas. Study of deep learning techniques for side-channel anal-
ysis and introduction to ascad database. Cryptology ePrint Archive,
Paper 2018/053, 2018. https://eprint.iacr.org/2018/053.

[15] Lionel Sujay Vailshery. Number of internet of things (iot) con-
nected devices worldwide from 2019 to 2021, with forecasts from 2022
to 2030. 2022. https://www.statista.com/statistics/1183457/

iot-connected-devices-worldwide/.

[16] Gabriel Zaid, Lilian Bossuet, François Dassance, Amaury Habrard,
and Alexandre Venelli. Ranking loss: Maximizing the success rate in
deep learning side-channel analysis. Cryptology ePrint Archive, Paper
2020/872, 2020. https://eprint.iacr.org/2020/872.

[17] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive
into deep learning. arXiv preprint arXiv:2106.11342, 2021. https:

//d2l.ai.

26

[18] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-
Paz. mixup: Beyond empirical risk minimization, 2017. https://

arxiv.org/abs/1710.09412.

[19] Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Neng-
hai Yu. A novel evaluation metric for deep learning-based side
channel analysis and its extended application to imbalanced data.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(3):73–96, Jun. 2020.

27

Appendix A

Ensemble figures

In this appendix, all of the ensemble figures that were not displayed in the
research chapter 4.2.3 are given. These graphs are discussed in that section
as well.

(a) Guessing entropy (HW) (b) Success rate (HW)

(c) Guessing entropy (ID) (d) Success rate (ID)

Figure A.1: Guessing entropy and success rate of training our ensemble
models with 150,000 profiling traces.

28

(a) Guessing entropy (HW) (b) Success rate (HW)

(c) Guessing entropy (ID) (d) Success rate (ID)

Figure A.2: Guessing entropy and success rate of training our ensemble
models with 100,000 profiling traces.

(a) Guessing entropy (HW) (b) Success rate (HW)

Figure A.3: Guessing entropy and success rate of training our ensemble
models with 50,000 profiling traces.

29

(c) Guessing entropy (ID) (d) Success rate (ID)

Figure A.3: Guessing entropy and success rate of training our ensemble
models with 50,000 profiling traces.

(a) Guessing entropy (HW) (b) Success rate (HW)

(c) Guessing entropy (ID) (d) Success rate (ID)

Figure A.4: Guessing entropy and success rate of training our ensemble
models with 25,000 profiling traces.

30

(a) Guessing entropy (HW) (b) Success rate (HW)

(c) Guessing entropy (ID) (d) Success rate (ID)

Figure A.5: Guessing entropy and success rate of training our ensemble
models with 10,000 profiling traces.

(a) Guessing entropy (HW) (b) Success rate (HW)

Figure A.6: Guessing entropy and success rate of training our ensemble
models with 5,000 profiling traces.

31

(c) Guessing entropy (ID) (d) Success rate (ID)

Figure A.6: Guessing entropy and success rate of training our ensemble
models with 5,000 profiling traces.

(a) Guessing entropy (HW) (b) Success rate (HW)

(c) Guessing entropy (ID) (d) Success rate (ID)

Figure A.7: Guessing entropy and success rate of training our ensemble
models with 1,000 profiling traces.

32

Appendix B

GE and SR tables

In this appendix we have given four tables that contain the guessing entropies
or success rates of our models that were trained with different techniques
and a varying amount of profiling traces. These values were calculated for
the models that had access to 1,000 profiling traces to retrieve the key byte.

Number of profiling traces used

Technique 1,000 5,000 10,000 25,000 50,000 100,000 150,000 200,000

Base 132.8 140.31 187.58 115.39 89.35 65.16 27.51 5.2

FLR 75.3 131.65 119.79 65.32 95.89 21.73 1.35 1.04

Ensembles 158.71 112.9 93.86 66.35 12.63 1.73 1.61 1.27

Mixup 87.6 96.37 129.63 89.38 50.93 50.83 40.81 38.73

Table B.1: The guessing entropy of our models using the HW leakage model
with different number of profiling traces and different techniques used.

Number of profiling traces used

Technique 1,000 5,000 10,000 25,000 50,000 100,000 150,000 200,000

Base 0 0 0 0 0 0.01 0.06 0.47

FLR 0 0 0 0.02 0.02 0.11 0.87 0.98

Ensembles 0 0 0.01 0.01 0.17 0.72 0.79 0.86

Mixup 0 0.01 0 0.01 0.04 0.04 0.04 0.04

Table B.2: The success rate of our models using the HW leakage model with
different number of profiling traces and different techniques used.

33

Number of profiling traces used

Technique 1,000 5,000 10,000 25,000 50,000 100,000 150,000 200,000

Base 94.05 69.49 89.48 101.72 124.27 17.22 13.26 2.21

FLR 161.81 100.24 97.51 139.79 151.56 39.09 13.88 1.14

Ensembles 207.69 70.27 142.28 63.99 27.29 2.95 1.03 1.0

Mixup 74.82 143.08 133.06 198.66 153.21 22.04 29.01 2.88

Table B.3: The guessing entropy of our models using the ID leakage model
with different number of profiling traces and different techniques used.

Number of profiling traces used

Technique 1,000 5,000 10,000 25,000 50,000 100,000 150,000 200,000

Base 0 0.02 0 0.01 0 0.04 0.1 0.69

FLR 0 0.01 0 0 0 0 0.12 0.9

Ensembles 0 0 0 0 0 0.48 0.97 1

Mixup 0.01 0 0 0 0.01 0.05 0.01 0.54

Table B.4: The success rate of our models using the ID leakage model with
different number of profiling traces and different techniques used.

34

