
Bachelor’s Thesis Computing Science

Stronghold: Automating corporate
security.

A novel approach at pipelining the entire security improvement cycle for (Azure) AD and Google
Workspace environments.

Joost Grunwald
s1057493

June 16, 2023

First supervisor/assessor:
dr. Simona Samardjiska

Second assessor:
dr. ir. Erik Poll

Abstract

This paper outlines a novel approach to the ongoing security improvement
cycle for both Microsoft and Google environments. The aim is to develop
auditing systems for Active Directory, Azure Active Directory, and Google
Workspace. In addition to this, we introduce a tool for auditing websites for
known vulnerabilities. We also introduce phishing simulations specifically
finetuned for Google and Microsoft environments to do aimed phishing simu-
lations. The aim is a complete toolkit to audit companies that use Microsoft
and Google solutions. Therefore the novelty partially lies in direct usability
for these systems without having to finetune or adjust. We call the entire
system Stronghold, a solution to automate the entire security improvement
cycle. Stronghold aims to go from vulnerability detection to remediation
within one single encapsulated cycle. Our audit tools either set a new state-
of-the-art or are novel in their category. In all of our tools, we introduce
a new security remediation pipeline called FRIS. The goal of this pipeline
is to offer information, in-depth information, and even direct solutions and
scripts for found vulnerabilities. All the results are shown in automatically
generated, AI-infused, html reports.

Contents

1 Introduction 4

2 Preliminaries 7
2.1 Active Directory . 7

2.1.1 Services . 7
2.1.2 Group policies . 8
2.1.3 Domain name services 8
2.1.4 Kerberos . 8

2.2 Vulnerabilities inside Active Directory 8
2.3 Azure Directory Passwords 9

2.3.1 Password policy . 9
2.4 Azure Active Directory . 9

2.4.1 MFA . 10
2.4.2 Conditional access . 10
2.4.3 Compliance policies and bitlocker 10

2.5 Google (Cloud) Workspace 11
2.6 Phishing in corporate environments 12

3 FRIS: A cycle based vulnerability approach 14
3.1 FRIS in action . 15

4 Active Directory Auditing 19
4.1 Comparison . 19
4.2 Methodology . 20
4.3 Vulnerability kinds . 20
4.4 Test Environment . 20
4.5 Overlap between tools . 21
4.6 Comparing StrongHold with other AD tools 23
4.7 In-depth test case . 24

4.7.1 Main Report . 25
4.7.2 Management summary 25

1

5 Google Workspace auditing 30
5.1 Methodology . 30
5.2 Vulnerability Assessment . 31
5.3 Current checks . 32
5.4 Future checks . 33

6 Besieger: Automatic web pentesting 35
6.1 Surface level vulnerabilities 36

6.1.1 HTTP(s) (headers) . 36
6.1.2 Cookie vulnerabilities 38

6.2 Version identification and exploitation 39
6.3 Fuzzing and crawling . 39
6.4 DNS and subdomain enumeration 40
6.5 Web Application Firewalls (WAF) 40
6.6 SSL and ciphers . 40
6.7 Additional attacks . 40
6.8 Results on live websites . 41

6.8.1 Benchmarking . 41
6.8.2 Specific vulnerabilities 45

7 Corporate Phishing Simulation 47
7.1 Methodology . 48
7.2 Iterative Improvement . 49
7.3 Sophistication . 50

7.3.1 Attack 1 . 50
7.3.2 Attack 2 . 52
7.3.3 Attack 3 . 52
7.3.4 Uniquely identifying every user 53

7.4 Quiz . 53
7.5 Performance and design . 53

8 Related Work 57
8.0.1 Active Directory . 57
8.0.2 FRIS . 57
8.0.3 Google Workspace . 57
8.0.4 Web penetration testing 58

9 Discussions 59
9.1 Discussion points . 59

9.1.1 Interpretation of results 59
9.1.2 Comparison with previous research 59
9.1.3 Limitations and future research 60
9.1.4 Implications . 60

9.2 Future work . 60

2

10 Conclusions 66

3

Chapter 1

Introduction

Corporate environments are organizations or businesses that operate intend-
ing to generate profits. These environments often handle sensitive informa-
tion such as financial data, intellectual property, and personal information of
employees and customers. Because of this, security is extremely important
in corporate environments [5].

There are several reasons why security is often disregarded in corporate
environments. One reason is that companies may prioritize cost-cutting
measures over security, leading them to neglect investments in strong secu-
rity measures [1]. Another reason is that some companies may not have a
clear understanding of the risks and vulnerabilities that exist within their
systems, leading them to underestimate the importance of security [9]. Ad-
ditionally, some companies may have a culture that does not prioritize secu-
rity, which can lead to a lack of attention to security protocols and practices
[14].

It is common for corporate environments to use solutions from Microsoft
or Google for their domains. These companies offer a range of products and
services such as email, cloud storage, and productivity tools that are widely
used by businesses [12, 60]. Most often used are Google Workspace and
Microsoft (Azure) Active Directory. Using solutions from these companies
can help organizations streamline their operations and improve productiv-
ity, but it is important for companies to also ensure that they have adequate
security measures in place to protect their sensitive data [20].

Overall, security is crucial in corporate environments as it helps to pro-
tect sensitive information and prevent unauthorized access or breaches [65].
Companies need to prioritize security and invest in strong security measures
to protect their assets and maintain the trust of their employees and cus-
tomers [5].

4

This paper presents a novel approach to automate Google Workspace and
(Azure) AD auditing. The audit tools are automated tools that encapsulate
the entire security improvement cycle, with the goal of maximum security
improvements with minimum effort. In our code design, vulnerabilities are
presented as classes with additional information and even solutions. We call
this system FRIS. A class-based methodology that is implemented in all
sub-tools. Fris aims to provide the following features:

• Find as many vulnerabilities in the Google/(A)AD environment as
possible.

• Offer information about all found vulnerabilities.

• Offer links and further reading for all found vulnerabilities.

• Offer impact analysis for possible patches to make sure the system
keeps working properly after patching.

• Offer solutions for all vulnerabilities, completing the pipeline.

This system fits our aims because it offers a complete step-based pattern
quickly.

1. Find the problem.

2. Report about the problem.

3. Inform the user about steps to take, impact to analyze, and informa-
tion to provide to end users.

4. Solve the problem.

The user quickly embarks on a guided journey that allows him/her to im-
prove security without ever having to leave our assessment ecosystem. The
ease of usability is further underlined by offering complete web pages and
reports. The urgency gets underlined by a set of security scores that are
generated based on our findings. Our work for Microsoft is somewhat re-
lated to the Purple Knight [11] and the PingCastle [43] tools, which both
are security frameworks based upon finding vulnerabilities in (Azure) Active
Directory. We differ from these systems by finding more vulnerabilities and
by going further than just finding problems, introducing our FRIS pipeline.

Our work for Google is novel. As far as we know, there are no automatic
tools to enumerate weaknesses in Google Workspace settings, which was
confirmed by a Google employee after a support call from our end [18].

Chapter 2 is about the preliminaries of this research, diving into the Google

5

Workspace and (Azure) Active Directory infrastructures. It is also about
the possible sources of vulnerabilities. Chapter 3 talks about FRIS and
the approach we take when generating findings. Chapter 4 dives into AD
pen-testing. Chapter 5 dives into google workspace auditing. Chapter 6
dives into phishing simulation for Google/Microsoft environments. Chapter
7 goes into our auditing tools for web environments. Chapter 8 is about a
real-life use test scan we did for our Active Directory auditing tool. Chapter
9 talks about related work. Chapters 10 and 11 then provide discussions and
conclusions.

6

Chapter 2

Preliminaries

This chapter aims at introducing the concepts that are important to fully
understand the depth of the work and the concepts that are discussed in later
chapters. It aims to give an extensive overview of the underlying structures
that form the foundation of this work. To fully understand vulnerabilities
it is quite essential to grasp the structures that facilitate them.

2.1 Active Directory

Active Directory is a Microsoft system that functions as a directory service
for the Windows domain [13]. It is composed of a set of processes and ser-
vices, the primary one being the Domain Service Role or Domain Controller.
This server authenticates, authorizes, enforces policies, stores information,
and provides rights and roles to all members of the Domain. The active
directory environment is comprised of multiple components with individual
functions and vulnerabilities.

2.1.1 Services

Active Directory (AD) services provide a centralized, secure, and globally
managed repository of user and resource data [48]. The main services are
authentication, authorization, user management, and information storage.
Authentication verifies the identity of a user in the network, while authoriza-
tion grants access to resources or services. User management tasks include
creating, managing, and deleting user accounts. Information storage en-
ables users to store and manage data securely and reliably. Additionally,
AD services provide single sign-on (SSO) capabilities, allowing users to ac-
cess multiple systems and applications with a single login [3]. AD also offers
directory synchronization, which allows organizations to keep multiple di-
rectories in sync across multiple computers and locations. Overall, Active
Directory services provide a robust and secure platform for managing user

7

and resource data.

2.1.2 Group policies

Group policies enable administrators to centrally manage and control the
configuration of users and computers in a domain [59]. Group policies are
applied to computers or users in a specific organizational unit (OU) which
are placed in a hierarchical structure to divide and manage objects. Group
policies can be used to configure user settings and control computer settings
such as software installations, system updates, network access, security set-
tings, and user rights [59]. In addition to controlling the configuration of
objects, group policies are also used to deploy software and scripts across
the network. Group policies enable administrators to manage and control
the configuration of users and computers and deploy applications and scripts
quickly and easily.

2.1.3 Domain name services

Domain name services (DNS) provide a way to locate resources and services
on a network [44]. DNS is used to translate human interpretable names
(e.g. www.example.com) to IP addresses. DNS resolves the named host or
service to its IP address, thus allowing other hosts to connect to it. DNS
also provides a way to organize and manage information in the domain.
All domain computers are registered with a DNS record, which can also
include information about services offered by the host [44]. DNS enables
users to access resources quickly and easily by providing an easy way to
locate resources and services in the domain.

2.1.4 Kerberos

Kerberos is a network authentication protocol used to authenticate users
and services in a secure manner [50]. Kerberos uses tickets to authenti-
cate users and provides strong cryptography to protect the authentication
process. Tickets are obtained from a Kerberos server and the client must
present the ticket to the service to prove their identity [50]. Kerberos is a
trusted third-party authentication protocol and is used by many organiza-
tions to authenticate users and services in the domain. The use of Kerberos
authentication provides an extra layer of security to the domain and ensures
that user credentials are kept safe and secure.

2.2 Vulnerabilities inside Active Directory

Active Directory is a powerful directory solution and is used in many organi-
zations for authentication, authorization, and user management [13]. How-

8

ever, with the increased use of AD, the threats to its security have increased
as well. Some of the common vulnerabilities of AD include weak passwords,
incorrect permissions settings, inadequate patch management, and lack of
auditing procedures [58]. Additionally, there are security vulnerabilities that
exist within the AD framework itself, such as privilege escalation, replication
issues, and denial of service attacks [58]. As with any system, vulnerabilities
exist even if the system is secure in itself. It is important to identify and
address these vulnerabilities to maintain a secure environment.

2.3 Azure Directory Passwords

Azure Directory, like almost every system nowadays, uses passwords for
authentication [34]. Passwords in Active Directory are of extreme value,
as there is no such thing as Multi-Factor Authentication present in these
environments. Hence knowing a password gives you full access to an account.
Therefore using tools to examine password strength and choice is a big part
of the work we have to do in the assessment of an active directory server.

2.3.1 Password policy

Active Directory uses a global password policy to set certain requirements
for passwords [3]. It allows IT administrators to set a minimum password
length. It also allows them to require complexity, meaning that of lowercase
letters, uppercase letters, numbers, and other symbols, three of these four
have to be used in a password. In addition to this, the password policy
offers options for password history, disallowing previous passwords and an
option for password lockout, to specify after how many attempts a user is
locked out and how long it takes before they can log in after a lockout again
[59]. Notice that this kind of policy allows for a huge amount of problems
to quickly arise. A short minimum password length is an enormous problem
because it makes life way too easy for hash crackers. A lockout amount of 0
allows for unlimited login possibilities and password spraying/brute-forcing
attacks. Therefore carefully setting up this policy is often one of the most
important responsibilities of the AD administrator.

2.4 Azure Active Directory

Azure Active Directory is the cloud-based alternative for Azure Directory
[34]. While this version does not have the number of options and depth as
Azure Directory, it has a load of different features and defense mechanisms.
A substantial example of this is MFA. The system is a little less prone to
vulnerabilities due to old mechanisms and systems because it is hosted on

9

Microsoft’s end. It is also newer, meaning fewer vulnerabilities due to old
age occur.

2.4.1 MFA

MFA, short for Multi-Factor Authentication, is the new and upcoming stan-
dard for authentication [40]. This form of authentication adds a second layer
of defense to authentication as it requires users to verify their authentication
requires using a second factor. In practice, this is often done by using the
Microsoft Authenticator app on their phone. This makes it much harder for
hackers to simply crack a hash and use a password because now they also
need access to a phone. While MFA is a deal changer in the scene, there are
also some weaknesses known.

1. SMS spoofing, the act of spoofing an SMS number to obtain the MFA
verification instead. [37]

2. MFA is often required only once in x days, so you can still use a
colleague’s laptop and use it to bypass MFA.

3. Stolen session cookies can be authenticated for a certain period before
asking for MFA again [40].

2.4.2 Conditional access

In Azure Active Directory, one of the first lines of defense becomes con-
ditional access [34]. Conditional access, as given away by the name, lets
you block traffic or enforce requirements on it based on certain conditions
that you can set up. In practice, this is used to block legacy authentication
(non-MFA authentication). But also to require MFA, to block persistent
browser sessions, noncompliant devices, etc. It can also be used to block
certain countries or exclude certain IP ranges like the company office from
MFA [34].

2.4.3 Compliance policies and bitlocker

Two powerful features which we also think are important security mecha-
nisms inside the AAD environment are compliance policies and a BitLocker
policy [35]. With compliance policies, we can require devices in our network
to be of a certain safe Windows version, in addition to this we can require
secure boot to be on and we can also set requirements in how good their
computer pin/password should be [35]. Therefore we can require some basic
safety precautions for devices that want to be on our network. With a Bit-
Locker policy, we can automatically roll out BitLocker on devices, securing
their hard disk and making sure that the data on it is properly protected in
case of theft [35].

10

2.5 Google (Cloud) Workspace

The Google Workspace (formerly known as G Suite) is a collection of pro-
ductivity and collaboration tools offered by Google [32]. It includes a range
of services such as Gmail, Google Drive, Google Calendar, and Google Docs,
which allow users to communicate, store and access files, schedule events,
and create and edit documents online. Some of the key security options
within Google Workspace include:

1. Encryption: Google Workspace uses encryption to protect the confi-
dentiality of users’ data while it is in transit and at rest [33]. This
includes the use of Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) for data transmission, as well as AES and SSL encryp-
tion for data storage.

2. Two-factor authentication: This is an additional layer of security that
requires users to provide a second form of authentication, such as a
code sent to their phone, to access their account [24]. This helps to
prevent unauthorized access to users’ accounts.

3. Access controls: Google Workspace allows administrators to set up
user accounts and permissions, which can be used to control access to
different tools and services within the suite [29]. This includes setting
up roles and permissions for different users, as well as specifying the
types of actions that users are allowed to take within the tools.

4. Data loss prevention: Google Workspace includes tools for detecting
and preventing the accidental or unauthorized sharing of sensitive data
[28]. This includes the ability to set up data loss prevention policies
to block the sharing of specific types of data, as well as the ability to
track and audit data-sharing activities.

5. Password security: Google Workspace includes tools for managing
password security, including the ability to require strong passwords
and to enforce password expiration policies [30]. Users can also use
tools such as Google’s Password Checkup to check the strength and
security of their passwords.

6. Session length: Google Workspace allows administrators to set the
length of time that user sessions will remain active, which can help to
prevent unauthorized access to accounts if a device is left unattended
[31]. Administrators can also set up inactivity timeout policies to
automatically log users out after a certain period of inactivity.

7. Context-aware access: Google Workspace includes context-aware ac-
cess controls, which allow administrators to set up policies that grant

11

or restrict access to certain tools and services based on the context in
which they are being used [26]. For example, administrators can set up
policies that only allow access to certain tools from specific locations,
devices, or networks.

8. Phishing and spam protection: Google Workspace includes tools for
detecting and blocking phishing and spam emails [23]. These tools use
a combination of machine learning algorithms and user feedback to
identify and block malicious emails. Users can also report suspicious
emails to help improve the effectiveness of the spam filters.

9. SPF, DKIM, and DMARC: Google Workspace supports the use of SPF
(Sender Policy Framework), DKIM (DomainKeys Identified Mail),
and DMARC (Domain-based Message Authentication, Reporting, and
Conformance) to help protect against email spoofing and phishing at-
tacks [25]. These protocols allow administrators to verify the authen-
ticity of emails that are sent from their domain, and to block emails
that fail these checks.

10. External users and external sharing: Google Workspace allows users
to share files and collaborate with people outside their organization
[27]. However, it is important to be cautious when sharing data with
external users, as this can increase the risk of data leaks and other se-
curity vulnerabilities. Google Workspace provides tools for managing
external sharing, including the ability to set up policies that control
who can access shared data and how it can be shared. It is also im-
portant to note that mail forwarding to external addresses is disabled
by default in Google Workspace to prevent data leaks [27].

2.6 Phishing in corporate environments

Phishing can pose significant risks to corporate environments [62]. Phishing
involves the use of fraudulent emails or websites to trick individuals into
revealing sensitive information, such as login credentials or financial infor-
mation [6]. In a corporate environment, phishing can pose several risks.
These include:

• Phishing attacks can require significant time and resources to investi-
gate and mitigate.

• Data breaches: Phishing attacks can lead to the compromise of sensi-
tive corporate information, such as intellectual property or customer
data [36].

• Financial losses: Phishing attacks can result in the theft of financial
information or the unauthorized transfer of funds [19].

12

To mitigate these risks, corporate environments need to implement robust
phishing prevention measures. One effective approach is the use of phishing
simulations, which involve the creation and distribution of simulated phish-
ing attacks to employees [22]. These simulations can help educate employees
about the risks of phishing and test their ability to identify and report sus-
picious emails. Other important background concepts related to phishing
simulations include:

• Social engineering: Phishing attacks often rely on social engineering
techniques to manipulate individuals into revealing sensitive informa-
tion or performing certain actions [49].

• Email security: Measures such as authentication and encryption can
help protect against the interception of emails and the compromise of
sensitive information [21].

• User education: Providing employees with training on how to identify
and report suspicious emails can help mitigate the risk of successful
phishing attacks [38].

13

Chapter 3

FRIS: A cycle based
vulnerability approach

We introduce a novel methodology for the vulnerability-solving process called
FRIS. This methodology expands the normal pipeline used by a security of-
ficer to encapsulate the information-finding and problem-solving part into
the automated and offered pipeline. FRIS is not a tool but an idea that is
solidified in all our tools. We use vulnerability classes in all our systems to
generate information about vulnerabilities. You can see the original pipeline
of auditing tools and our novel extension of it in the figure below:

Figure 3.1: The old security improvement cycle vs the new one

Let us go more in-depth about the FRIS cycle, FRIS stands for Find,
Report, Inform, Solve. A pipeline we will explain a little bit more in-depth:

14

1. Find: we find a vulnerability and confirm it in a fully automated
manner.

2. Report: we generate HTML documentation about the found vulnera-
bilities but also an HTML page per single vulnerability. In addition to
this, we use our novel scoring system to score the target on multiple
categories and to give each vulnerability its unique score.

3. Inform: inside our report, we offer information so that the security
researcher using Stronghold is immediately capable to continue his
journey inside the vulnerability. Using summaries we wrote, but also
links to articles and official documentation, we allow the researcher to
catch up on the topic and go more in-depth in a very short amount
of time. Ensuring that all needed resources are already in hand reach
by providing them to the security researcher through links. We also
provide an impact analysis to go in-depth about possible interferences
of solutions with the system.

4. Solve: we offer steps that can be followed to solve the problem and
often offer a power shell script to immediately patch the vulnerability.

In a normal vulnerability scanning environment the Find step could be done
by a vulnerability scanner, after which vulnerabilities and returned/reported
and the Security Officer has to find information about the vulnerability/-
context himself, we aim to cut time and resources and offer this information
immediately. Making sure to also add links to guides and official documen-
tation to further cut time. In addition to this, we offer the solution as well,
trying to make this pipeline of solving vulnerabilities as fast and encapsu-
lated as possible.

Note that we not only aim to extend this pipeline towards usability and
solving but that we also aim to get a new SOTA in the part of the vulnera-
bility assessment pipeline that is already present, so finding vulnerabilities.

3.1 FRIS in action

To showcase FRIS and its ease, we showcase it in a rather small and simple
AD environment. Let us showcase the size of this environment with direct
output of our Stronghold scan:

15

Figure 3.2: Information generated inside a Stronghold report

We already see some interesting things, the environment is rather small
(63) users, but the admin percentage is way too big for what you would
expect in a properly secured environment. The amount of vulnerabilities
found is also quite high. This is a real-life business using Active Directory
on which we ran a Stronghold scan. The scan uses its scoring system to
score the environment.

Figure 3.3: Scoring an actual corporate environment on security

16

The scores are very low, let us take a further look at the environment
and showcase our new FRIS system. For each vulnerability that Stronghold
detects, it creates its database entry using the FRIS methodology, meaning
that we can look at one of the critical vulnerabilities and use Stronghold to
enforce our security.

Figure 3.4: Examining a critical security flaw found by Stronghold

So there we have it, information about our critical vulnerability. This
particular vulnerability makes it easy to just brute-force passwords without
ever being locked out, hence why it is indeed quite critical. Now as you can
see we can reproduce the presence of the vulnerability by simply following
the provided steps, we can also embark further onto our FRIS journey by
looking at a link to the official Microsoft password guidelines that are pro-
vided:

17

Figure 3.5: The inform step of FRIS further expanded

Then, for the last step of FRIS, we also still have to solve the actual
vulnerability, let us embark on the last step in this journey:

Figure 3.6: The solving step of FRIS

Perfect, we have got some user communication to do, the impact analysis
of FRIS is showcased as well here. The PowerShell script provided updates
the entire password policy to conform to Microsoft’s best standards.

18

Chapter 4

Active Directory Auditing

In this chapter, we compare our AD (Active Directory) findings with the
current state of the art in AD vulnerability finding. To do this we compare
our results with Purple Knight [11] by Semperis and with Pingcastle [43].

4.1 Comparison

We compare with Purple Knight [11] by Semperis and with Pingcastle [43].
The choice for these tools was based on my personal experience with them
and knowing they are used quite frequently in the market of AD auditing.
However, to make the choice I also evaluated several different AD auditing
tools:

1. https://github.com/azauditor/ADAudit. This tool does more audit-
ing as in gathering data instead of extracting vulns from it.

2. https://github.com/phillips321/adaudit This specific tool would earn
a respective third place behind Pingcastle and Purple Knight in my
opinion. It uses Powershell to audit some parts of the AD configura-
tion.

3. Testimo, which works fine for more system admin purposes but is not
perfect for AD security yet.

4. Tools like Zbang, Group3r, and Snaffler, which are nice additions but
not (full) audit tools on themselves.

5. Tools like Bloodhound, Mimikatz, etc are fine pentest tools but not
for full auditing purposes.

19

4.2 Methodology

For this benchmark we only consider serious vulnerabilities, that is, vul-
nerabilities that are considered by Pingcastle [43] as scoring points for the
security score. For Purple Knight, we only consider vulnerabilities that are
considered non-baseline. (Warnings and criticals). For our tool Stronghold,
we are even harsher, we only consider vulnerabilities that are either medium
(score > 6), high or critical. Therefore not counting low-scored medium, low,
and baseline vulnerabilities. Note that Stronghold, during the research con-
ducted found around 90-120 vulnerabilities per Active Directory it scanned.
Filtering on serious vulnerabilities therefore partially cripples our system.
We found it important to not only compare the number of serious vulner-
abilities found but to also test how many of the vulnerabilities that other
tools found, were found by Stronghold. We therefore directly compare the
vulnerabilities found to find any vulnerabilities that Stronghold misses.

4.3 Vulnerability kinds

Our tool is meant to be a complete assessment tool of AD systems, vulnera-
bilities found are configuration-based, but also certificate-based, user-based,
or even file based. Examples are no password lockout, and outdated NLTM
protocols (which are very common). Also ESC1 till ESC8 (critical certificate
issues). Another example is Powershell files that are missing but are called
by scheduled tasks. (A user can simply create a PowerShell file and this will
be executed with system rights). Our vulnerability codebase is around 9500
lines of code and hence it is hard to give a complete overview of potential
misconfigurations/vulnerabilities. Future additions could maybe look more
at tools like Bloodhound and how to incorporate weaknesses (which differ
from vulnerabilities).

4.4 Test Environment

Thanks to Fourtop ICT, I could test Stronghold inside real systems. Fourtop
ICT is an MSP company that has multiple clients which leverage Active Di-
rectory systems. Most of the time these clients use all kinds of different AD
infrastructures. I have worked with Microsoft Server 2008, but I also found
a server using Microsoft Server 2022. This makes this environment perfect
for testing and developing Stronghold. Note that all of these environments
are used daily by companies that differ in size, I tested at companies with
8 users but also at companies with more than 200 users. It is important to
me that we catch different Active Directory setups with different amounts of
security measures and different amounts of changed settings over the years.
The fact that we expose some very serious security flaws in these corporate

20

environments underlines how helpful this branch of tools can be.

4.5 Overlap between tools

When compared to the vulnerabilities that state-of-the-art tools PingCastle
[43] and Purple Knight [11] find, Stronghold scores very well, it can find
almost all vulnerabilities that these tools find, let us first compare our tool
with Pingcastle [43] in 6 different corporate environments:

Figure 4.1: Missed vulnerabilities compared with PingCastle

Note that we only consider serious vulnerabilities for this graph, as dis-
cussed above. If we look at the results we see that we find almost all vulner-
abilities that Pingcastle [43] does. This varies from weak password policies
to WSUS being run over an insecure HTTP protection, weak certificates,
or exchange permissions leading to privilege escalation. The missing Vul-
nerability at ANON4 has to do with incomplete subnets. We have written
a script to find these as well, but at the time of testing, this was some-
thing that didn’t work properly for ANON4. Let us now take a look at the
vulnerabilities that we find from the ones purple knight found:

21

Figure 4.2: Missed vulnerabilities compared with Purple Knight

We see that we can find every vulnerability within our test environments
that Purple Knight can find. Purple Knight goes a little bit less into depth
and more into the more general checks like properties, DCsync rights, and
excessive rights. Some of the vulnerabilities in Purple Knight [11] were
not exactly found in the same way. Purple Knight, for instance, finds that
the exchange server has a property that allows it to have admin rights.
Our system Stronghold finds that exchange has been given many rights
and should have its rights reduced. Because our solution fixes the problem
that Purple Knight found and because we have found the vulnerability but
labeled it otherwise, we find that this is not a vulnerability we missed.

22

4.6 Comparing StrongHold with other AD tools

To fully qualify Stronghold as the new state-of-the-art tool in AD security
assessment, we want to directly compare it with its competitors in different
environments. The aim is to show that we can consistently outperform the
current state of the art to set a new standard in AD pen testing:

Figure 4.3: Stronghold compared with similar Tools

The test environments were real-life tenants from the MSP that were
picked because they differ in size, security level, and age. Some servers are
still running on windows server 2008 while others are newer and better. This
allows us to examine the tool on a broad amount of different environments
and to better test it on a broader set of possible vulnerabilities. Note that we
have shown in figures 4.2 and 4.3 that the overlap between pingCastle and
Purple Knight is enormous. We set a baseline of achieving the same as these
state-of-the-art tools to build from that. Note that the extra vulnerabilities
found are often of high or critical severity. Some examples of things that
the other tools miss but which we find are ESC1 till ESC8 which are critical
vulnerabilities and easy privilege escalations. Other examples are dangerous
missing files, with which a user can easily elevate him/herself or GPO abuses
to elevate.

23

4.7 In-depth test case

We have scanned the Active Directory environment of a company that has
more than 900 users, has 54 domain admins, and has been used for several
years. Apart from the number of users, we didn’t know anything about this
before scanning. Due to RSAT not being available, we might have missed
some certificate-based vulnerabilities. There were also minor bugs due to not
being able to run directly on a DC, but nothing that should have impacted
scanning too much. Note that we have already done research on various AD
environments in chapter 4 and have tested FRIS in chapter 3. The size of
this company was a bit bigger and the particular company used to be even
much bigger than it is now. This means that there were a lot of servers and
infrastructure points that were ideal to test our audit tool.

24

4.7.1 Main Report

After running our vulnerability scan system on one of the AD servers in the
network we extracted the generated files and inserted them inside of their
css/js container. We obtained the following Fortifier report:

Figure 4.4: Fortifier AD Report

Results show that we have found 132 vulnerabilities, of which 14 are crit-
ical and 35 are high. The organization scores 0/100 in almost every category
we grade. The exception is password security, as an okayish password policy
with minimum length = 8, the complexity required, and a lockout threshold
of 5 were implemented. The score for password security is still only 20 due
to some critical vulnerabilities we discuss later on. Admin security scores 7
out of a possible 100.

4.7.2 Management summary

We will take a look at some of the various vulnerabilities presented to give a
complete view of the output fortifier generates, the emphasis will be on the
higher vulnerabilities, as they often have more impact and usability, but we
will also display some of the lower rated vulnerabilities identified as Fortifier
aims to be fairly complete.

25

Let us start by taking a look at the top 7 vulnerabilities identified:

Figure 4.5: Fortifier top 7

Some serious vulnerabilities can be found. Windows Server 2008 stopped
being securely supported by Microsoft in 2020, which means it has been
pretty insecure for approximately 3 years at the time of writing. According
to Nessus, it is already a 10/10 vulnerability on the CVSS3 scale, windows
servers 2000 and 2003 are even worse. In addition to this, approximately
30 accounts were found that had no password set. There also was a certifi-
cate that had a very bad parameter that allows arbitrary users to upgrade
themselves to domain admin via the creation of malicious certificates. There
were also Windows XP computers found that ran critical tasks, namely be-
ing an essential factor of an entry pass generation system. In addition,
various servers and domain controllers missed 167 days of security patches
by Microsoft.

26

Now let us introduce another 7 very highly rated vulnerabilities:

Figure 4.6: 7 more high-rated vulnerabilities

The first vulnerability found is about kerberroasting, which allows at-
tackers to try and get the cleartext passwords of privileged domain users.
Because a certain value is set, the account is not protected by the lockout
password policy and hence the password can be brute-forced on the AD and
therefore found relatively weak. 4 admin accounts were vulnerable to this,
with three of them having a weak password, reflecting the critical value the
vulnerability got assigned.
The second vulnerability is about the number of domain admins, every do-
main admin (as demonstrated by the kerberroasting above) is a way to pwn
the entire domain, therefore there never should exist so many admins.
The third vulnerability is the high amount of inactive admins, admin ac-
counts that are inactive for a long period form an unneeded risk, amplified
by the fact that they often belong to users who have left an organization.
There were also passwords of users found in online lookups and dictionaries,
42 users had their passwords leaked, including 3 administrators.
SSL 3.0 was used for internal communication by servers, as SSL 3.0 is long
outdated and very vulnerable, this was also reported as high vulnerability.

27

Let us introduce a few more of the high vulnerabilities that were found:

Figure 4.7: 7 more high-rated vulnerabilities

Figure 4.8: 7 more high-rated vulnerabilities

Let us also show some lower vulnerabilities that are still highly usable
for remediation:

28

Figure 4.9: 7 randomly chosen medium vulnerabilities

Figure 4.10: Some low/baseline vulnerabilities

29

Chapter 5

Google Workspace auditing

In this chapter, we introduce a novel system called GoogleAudit which we
created to scan Google Workspace for security misconfigurations and vul-
nerabilities. After discussing with Google support we made sure that to the
best of our knowledge, there is no tool at the moment that can enumerate
Google Workspace for vulnerabilities.

5.1 Methodology

For these tests we look at all kinds of misconfigurations/vulnerabilities, that
is vulnerabilities that CVSS3.1 marks as baseline, low, medium, high, or as
critical.

I could test GoogleAudit inside real systems. Thanks to a foundation that
utilizes a Google Workspace environment with 200 staff and a lot of users.
The fact that we expose some very serious security flaws in our test envi-
ronment underlines how helpful this branch of tools can be. For the sake of
not disclosing vulnerabilities, I can not provide further information about
the organization that we tested on.

To properly audit the Google Workspace environment, we use Selenium,
which is a browser automation tool, to log in to the Google admin console
(even with MFA by reproducing a token with the secret key). After logging
in, our tool automatically traverses sub-sections of the admin console and
gets values of settings, parameters, and users. Based on these values and
our vulnerability database, we generate a report filled with vulnerabilities
and misconfigurations.

30

5.2 Vulnerability Assessment

At the moment, 29 vulnerabilities can be automatically found within Google
Workspace environments. This should be extended in the future to over 100
vulnerabilities and misconfigurations that are possible to be found within
Google Workspace environments. The FRIS pipeline, leveraging solutions
and dictionary objects for full vulnerability embeddings is maintained in
our work for Google Workspace. An example of such an embedding can be
found below.

1. ID: 0019

2. Calendar sharing options are set to ’Share all information, and allow
managing of calendars

3. Vulnerability description: The calendar sharing options are set to
’Share all information, and allow managing of calendars’, this means
that anyone who can access the calendar can edit and delete events,
and see all attendees and details of the event. They can also throw
the entire agenda away or change sharing settings. The impact of
such changes by external users is quite high, and therefore we highly
recommend disabling this setting.

4. Severity: High

5. Steps to resolve: Go to https://admin.google.com/ac/managedsettings/435070579839/sharing,
then disable the ’Share all information, and allow managing of calen-
dars’ setting, select a setting that disallows outsiders or disallows them
from editing or adjusting.

6. Steps to reproduce vulnerability: Go to https://admin.google.com/ac/managedsettings/435070579839/sharing,
then check the ’Share all information, and allow managing of calendars’
setting, if the setting is ’Share all information, and allow managing of
calendars’, the vulnerability is present.

7. Grade: 7.2

8. Category: Services

9. Script to resolve: NVT

10. link1: https://support.google.com/a/answer/60765?

11. link2: https://webapps.stackexchange.com/questions/38995/cannot-share-
more-than-free-busy-outside-of-organization

12. link3: https://www.oreilly.com/library/view/hands-on-g-suite/9781789613018/5655910f-
b4b7-48db-9489-0dda17451a2c.xhtml

31

13. Impact analysis: External users will no longer be able to adjust agen-
das, notify employees of this change, and check who has been ac-
tively using this feature to remediate possible problems arising from
the change.

14. Count: 1

This embedding helps us in generating complex HTML/pdf reports auto-
matically while helping the user by providing a lot of information and fur-
ther references. The solution and impact analysis are also always built in.
Sometimes even with scripts. The tool simply traverses the Google admin
console and some of the possible misconfigurations and prints matches found
using selenium. In the future, this should be further linked to our reporting
environment.

Figure 5.1: Example of output

5.3 Current checks

The checks were added from a top-down point of view of the admin console.
Hence they are not added based on severity but just by walking through the
console and adding the first possible misconfigurations/vulnerabilities.

1. SSO login bypasses additional verifications. (Score 5.1)

2. Password strength is not enforced. (Score 6.3)

3. Password reuse is allowed. (Score 6.0)

4. Minimum password length is low (2 checks)

5. Maximum password length is low (3 checks)

32

6. Advanced protection is not enabled. (Score 3.0)

7. Insecure apps are allowed. (Score 7.0)

8. Never ending, long or short user sessions. (5 checks)

9. Never ending, long or short cloud sessions. (3 checks)

10. Calender sharing settings (3 checks). This one could allow external
users to adjust company calendars if set wrongly.

11. No warnings on external invitations. (Score 5.0)

12. Secondary calendar sharing settings (3 checks)

13. Insecure default drive sharing settings. (Score 4.0)

14. Users can remove security updates (Score 6.0) (2 checks)

15. DKIM is disabled (Score 6.3)

5.4 Future checks

The following checks were not yet added due to time constraints but will be
added in the future. (Note that most of the time is in creating FRIS library
objects for each vulnerability and doing proper research about it). There
might and probably will be even more checks but this is the next step that
I required from myself.

1. Checks for POP, IMAP, link protection, identifying links behind short-
ened URLs, warnings for links to untrusted domains and automatically
applying future mail security recommendations.

2. Checks for attachments security, specifically scripts, anomalous at-
tachments, and encrypted ones.

3. Checks for the protection against domain spoofing, employee name
spoofing, inbound email spoofing, unauthenticated emails, and in-
bound group mail spoofing.

4. Checks for aggressive spam filtering, and the not bypassing of spam
filters with exclusions.

5. Checks for TLS requirements and the disallowance of automatic mail
removal.

6. Checks for insecure group settings, too many admins, insecure admins,
weak passwords, and MFA.

33

The original work was around 2500 lines of code, the tasks that need to be
done for the new entries are:

1. Navigate to the page that they are on

2. Read the current configuration with selenium

3. If the current configuration is weak, create a vulnerability class entry
(after doing complete research on the individual vulnerability)

4. Add the vulnerability to the vulnerability array.

An educated guess would be that doing this for the remaining tasks takes
4-5 days of full-time work. The only constraint to finish this (apart from
someone else needing to have Python and Selenium knowledge) is time.

34

Chapter 6

Besieger: Automatic web
pentesting

In this chapter, we introduce a novel system that does complex web server
audits. Our system called Besieger is designed solely for automated pen-
etration tests of web-related environments. There are many known web
vulnerability scanners for this, however, we wanted a free tool that can
get state-of-the-art (SOTA) results in identifying known vulnerabilities. We
desire to focus on real-life environments, specializing in realistic real-life vul-
nerabilities and problems such as outdated software and probable mistakes.
We utilize the power of open source for this and try to improve on state-
of-the-art DAST tools such as Nessus, Acunetix, Invicti, and Burp Suite
Professional. We created the following set of requirements to adhere to:

• Besieger should be fully automated and very easy to use.

• Besieger should have multiple speed options and should consist of a
high amount of different modular sub-scanners that are selectable and
combineable.

• Besieger should be fully based on free and open-source software.

• Besieger should be a very complete web attack tool, taking into ac-
count some OSINT attack vectors, some Google dorking-related attack
vectors, and version-related attack vectors.

• Besieger should be able to chain attacks and use the results of earlier
modules in later modules.

• Besieger should be able to outperform the current state-of-the-art
DAST tools in real-life environments. It is a clear goal to perform
better in this kind of environment, we do not care about performing
better in test environments or purposely vulnerable web applications.

35

• Besieger should be able to have a nice and easy console interface and
coloring.

• Besieger should be focused on being a complete tool that is usable for
Penetration Tests and reports of web applications.

Besieger is a command line tool, the only input it needs is a single URL.
After a quick check to ensure the URL is reachable and correct, the scan
automatically starts its magic.

Figure 6.1: A first glance at the CLI

6.1 Surface level vulnerabilities

When developing a brand new DAST tool, it is important to implement the
basic but still often very handy sub-tools. We find it important to review
websites based on HTTP settings, headers, and cookie security. These are
all fundamental and easy checkable elements that can still lead to some
serious vulnerabilities when improperly implemented. They are surface level
because you can spot them easily and without doing anything malicious
while they are all also easy to spot and find.

6.1.1 HTTP(s) (headers)

Besieger can find the following vulnerabilities:

• Clickjacking

• Missing security headers

36

• Incorrect security headers

• Content Security Policy bypasses

• HSTS and SRI checks

• Redirection and STS checks

It uses a combination of custom-written code and external tools for this, such
as nuclei and the Mozilla observatory. All findings are reported with our
custom highlighting and printing system, which is partially inspired by the
way nuclei prints its output. Let us show an example from running Besiegers
HTTP module on the website of Radboud University (https://www.ru.nl):

Figure 6.2: Missing HTTP(s) headers

We see some missing headers, of which none are really dangerous, the
most important headers (same-origin-policy, x-frame-options, content-source-
policy and anti-XSS header) seem to all be implemented, as can be expected
from an organization like Radboud. This makes it even nicer that we have
found vulnerabilities using Besieger, there is a low vulnerability inside the
X-Content-Type-Options header because the value is set to an in-legitimate
value. Our second module also finds a low vulnerability:

37

Figure 6.3: CSP can be bypassed

The Content Source Policy (CSP) of the Radboud can be bypassed in
quite a few ways! It contains a few links not set strictly enough, allowing
bypassing via JSONP endpoints and it also misses an object-src and base-
URI.

6.1.2 Cookie vulnerabilities

Besieger currently contains two cookie audit modules, one is manual and
external and the other one is automated. Our first module is part of our
Manual check library, which we will discuss in depth later. It automat-
ically shows results from some websites that audit the input website on
cookie privacy and compliance laws. The second module was custom-coded
and checked for the presence of the secure flag, the same site flag, and the
httponly flag. We also check for the presence of session cookies and session
ids, and adjust the height of the vulnerability based on this information.
Let us show some of the results of this module on the website of Brasilian
University: ufsc.br.

38

Figure 6.4: Insecure session cookies

This example website uses highly insecure session cookies, we use http-
cookiejar to detect cookies and session cookies. In this case, the name also
gives away that this is the ID for a PHP session. This particular cookie has
none of the flags set that should be used to properly protect the cookie.

6.2 Version identification and exploitation

The process of detecting software versions and identifying potential vulner-
abilities requires the use of multiple tools and techniques [54]. One such tool
is Wappalyzer, which specializes in fingerprinting technologies and employs
a combination of regular expressions and dynamic detections to accurately
identify software components and their versions [64]. Another tool, Nuclei,
is a fast and customizable vulnerability scanner that uses templates to iden-
tify software versions and potential vulnerabilities [52]. Additionally, Nmap,
a widely-used network scanning tool, is employed for port fingerprinting,
which can help uncover vulnerable services running on target systems [45].
Web scraping techniques are also used on websites like webtechsurvey.com,
employing the Selenium framework to gather information about software
components [57].
By combining the fingerprints obtained from these tools, it is possible to
cross-reference them against known vulnerability databases, such as the Na-
tional Vulnerability Database (NVD) [51], Searchsploit [56], and Vulners
[63]. This process often uncovers numerous vulnerabilities that might be
missed by other scanners, increasing the chances of identifying exploitable
software components [54]. This method works surprisingly well.

6.3 Fuzzing and crawling

Fuzzing and crawling are essential techniques for identifying security vul-
nerabilities in web applications and services [61]. Tools like Katana [39],
Arjun [7], and dirsearch [15] are employed to identify and fuzz endpoints.
These fuzzing tools are then used to check for various security issues, such as

39

SQL injection, cross-site scripting (XSS), and path traversal [53]. Moreover,
this process can help identify potentially sensitive or configuration files that
might be exposed [61].

6.4 DNS and subdomain enumeration

Automated investigation of DNS records is conducted to check for blacklists,
misconfigurations, and settings such as SPF, DKIM, and DMARC [2]. If an
open SMTP service is detected by Nmap, a submodule is used to audit it [45].
For subdomain enumeration, multiple tools like Amass [4] are combined to
generate passive lists of subdomains, followed by active tools and wordlists
to generate possible subdomains [17].
The results are filtered based on their HTTP response codes, and further
checks for subdomain takeover and identification of secrets on all domains
are performed [2]. These domains can also be used for further manual labor
if necessary.

6.5 Web Application Firewalls (WAF)

To identify WAFs and attempt bypasses, multiple tools are used. Techniques
for bypassing WAFs include searching DNS history for the original IP behind
the WAF and checking if the WAF does not support certain offered ciphers
[8]. A benchmark of the WAF’s performance is compared to a median to
evaluate how effectively it stops malicious queries [41].

6.6 SSL and ciphers

SSL and cipher configurations are inspected for potential misconfigurations
and weaknesses [55]. This includes checking for outdated protocols like SSL
2.0/3.0 and TLS 1.0/1.1, as well as weak ciphers, server bugs, and lack of
forward secrecy [47]. Additionally, normal checks for TLS/SSL configura-
tions are performed to ensure the security and robustness of the encrypted
communication [55]. We integrate testssl.sh under the hood with all param-
eters. But we filter the extensive results based on their color to only return
the actual vulnerabilities/misconfigurations. Because of this, the detection
is state-of-the-art. However, there is no novelty here and the integration is
just made for the sake of completeness.

6.7 Additional attacks

Besieger uses a wide range of additional attacks, such as a manual tour
around Censys, Shodan, and various Google dorks. It also has specific at-

40

tacks on Drupal and WordPress, checks for secrets, tries HTTP request
smuggling, de-serialization attacks, header poisoning, CSRF, and more.
However, for the sake of brevity, not all features are included.

6.8 Results on live websites

We have benchmarked our tool with nuclei (the most Github-starred open-
source web scanner) Acunetix and Nessus (two commercial (web) vulner-
ability scanners that I happen to own) and burp suite professional. (An-
other commercial web pen-testing tool that I happen to own). We have
chosen a variety of real and intentionally vulnerable websites. We used
iecetee.com (my website) three anonymous education-related websites and
Google gruyere (an intentionally vulnerable website). For our Nessus scan,
we did not do a basic scan but one with all optional checks and advanced
options enabled to improve vulnerability finding. Nessus was not able to
do a proper scan for two websites, so its results are somewhat crippled.
We picked the resulting vulnerabilities based on the CVSS3 score, with as
exception that we excluded HSTS, SRI, and untrusted certificate vulnera-
bilities as given by Nessus or Acunetix as medium vulnerabilities. We did
not consider these vulnerabilities from Besieger as well, (it finds the same
ones).

6.8.1 Benchmarking

For this subsection, we have evaluated tools on vulnerabilities with a CVSS3.1
score of medium or above. If CVSS3.1 was not available we used CVSS3.0
or CVSS to classify the vulnerabilities.

41

Figure 6.5: Besieger comparison for Medium+ vulns

As the graph shows, Besieger seems very capable of competing against
some of these tools. Acunetix is a fully specialized web app scanning tool
while Nessus is more of a network scanner tool. The results show that on
the limited set of tools and websites, Besieger improves on what the current
tools are capable of. We did the same tests but then with vulnerabilities
that are either high or worse.

42

Figure 6.6: Besieger comparison for High+ vulns

When looking for high vulnerabilities, Acunetix quickly gets worse. Nes-
sus and Nuclei still prove to be very adequate scanning tools in this regard.
However, it is here where in my opinion Besieger shines as it identifies al-
most 20 high+ vulnerabilities compared to 5 for Nessus, 1 for Acunetix, and
8 for Nuclei. Again we did the same tests but then with vulnerabilities that
are classified as critical by their CVSS score.

43

Figure 6.7: Besieger comparison for Critical vulns

Here Nessus further qualifies itself as an amazing DAST scanner, even
surpassing Nuclei. Besieger is still the best in finding vulnerabilities, finding
6 critical vulnerabilities compared to 4 for Nessus and 1 for nuclei.

44

6.8.2 Specific vulnerabilities

We have documented all the specific vulnerabilities found by the different
tools to gather a complete view of the vulnerabilities they find and some
overlap that we expected to occur.

Figure 6.8: Specific vulnerabilities found other tools

Note that even though we expected some overlap, the found overlap was
very minimal. Nessus found quite some high and critical vulnerabilities at
ANON3 while all the other scanners seem to miss them. The vulnerabilities
nuclei finds are then not found by any of the other scanners. Except for the
WordPress user enum at ANON2, some XSS at ANON2, and the overlap
on iecetee.com. This shows that in DAST scanning using multiple tools can
be very handy. Let us now also look at the findings from Besieger.

45

Figure 6.9: Specific vulnerabilities found Besieger

We can conclude that most vulnerabilities that Besieger finds are version
related. Our custom system of regex + scanning-based identification of
subsystems proves very useful in finding vulnerabilities inside these systems.
We do miss certain vulnerabilities like the SQL injection at ANON3 and
some of the lower or Phpmyadmin vulnerabilities found there. This shows
that Besieger is not perfect, but that it can and will set a new State of the
art result in version identification coupled with finding vulnerabilities inside
of these versions.

46

Chapter 7

Corporate Phishing
Simulation

In this chapter, we introduce a system that does complex phishing simu-
lations on Google and Microsoft-based environments. Our system called
GateKnocker is designed solely for phishing attacks on these two corporate
environments. There are many known phishing tools and phishing simula-
tions. Such as gophish or zphisher. However, we wanted to build a system
that can function inside our current FRIS environment, while also having the
usability, sophistication, and specialization options we require. The power
of the tool lies in automating it from a Gmail/outlook perspective with Se-
lenium and with targeted templates tuned for this specific set of companies.
Its techniques and ideas are not novel but it fits well inside our ecosystem.
We created the following set of requirements to adhere to:

• GateKnocker should be fully automated and very easy to use.

• GateKnocker should be diverse in its attacks and amount of sophisti-
cation used.

• Gateknocker should be able to use sophisticated techniques like email
spoofing or link masking techniques.

• Gateknocker should be able to use fully customized HTML templates
for Microsoft and Google environments.

• Gateknocker should be able to identify mistakes by employees on a
per-user basis and should report clicking on a per-user basis.

• Gateknocker should include pre-written awareness emails and cus-
tomized quizzes for Microsoft and Google environments.

• Gateknocker should be able to generate HTML documentation within
our FRIS ecosystem.

47

The two key components to focus on are sophistication and usability.

7.1 Methodology

Our methodology is developed based on maximum performance increase for
the spotting of phishing by employees. Therefore the goal is not only to
assess the current state of phishing identification within an environment
but also to maximize the skill set of identifying phishing for the employees
concerned. Bruner [10] showed that repetition is vital for all learning. In
addition, this research from [42] proves that making mistakes is an essential
factor in learning as it helps us adjust wrong behavior. Taking this research
into account, our system must use a systematic approach to repeat certain
information in different ways, while also making sure said challenges are
not too easy, so employees become aware of the mistakes they make while
identifying phishing. We introduce our system called AT IT:

Figure 7.1: Our phishing learning system

48

ATIT, which stands for Alert, Test, Improve Test, is our system to grad-
ually keep improving phishing awareness. Employees start with a set of
knowledge about phishing and how to detect it, we amplify this knowledge
by improving their awareness. Our initial Alert Step. We then Test to get an
initial view of employee performance. We follow up with our Improve step:
a lengthy quiz aimed at identifying indicators of phishing and improving
from past mistakes. We finish with a retest inside a new simulation to make
a precise measure of made progress. This leaves us with a set of employees
that are fine-tuned on the task of phishing identification, [16] While this also
makes it possible to statistically grasp the improvements we made.

We have 4-fold repetition and a 3-fold ability to learn from made mistakes,
adhering to the methodology we developed. We get a 3-fold chance to prop-
erly document and report our results within our FRIS ecosystem. We gen-
erate a report of the first simulation, where key awareness is pointed toward
the mistakes that are most often made and the percentage of mistakes made.
We specify our biggest area of growth here and use our quiz and tips to fur-
ther train the employees. After the quiz, we generate a report of the results
from the quiz and compare this with previous iterations to be able to report
on the abilities of this particular batch of employees. We then retest and
generate a third report on the performance of the employees after fine-tuning
and on the improvements that were made using our AT IT methodology.

7.2 Iterative Improvement

Iterative improvement is the act of approximating the ideal result in small
steps. [46] In phishing environments, awareness created by phishing simula-
tions and education becomes less over time. Research from [66] shows that
the percentage of clicks in phishing simulations continues to lower over time,
even after 20 simulation campaigns were run. We believe that in phishing,
the employees that have the hardest time identifying phishing are the weak-
est link. As they are, by far, the biggest probable way of entry a phishing
campaign could find into your environment. Hence, taking into account the
algorithm for iterative improvement and the ongoing improvements shown
when simulating for a longer period. We try to implement our idea of Itera-
tive Improvement within our AT IT ecosystem: We take the users that were
tricked by our test, together with the 10 percent of worst-scoring employees
on our quiz, and apply a follow-up learning step and simulation to reiterate
their improvement cycle. We do this after one month has passed. We also
advise companies to redo phishing simulations every x year, to make sure
they stay up to date with the latest sophisticated attacks discovered in the
world of phishing.

49

7.3 Sophistication

We subdivide the number of users inside an organization into three groups,
with three different types of attacks and three different phishing emails. This
approach is aimed to test the environment for multiple different sources of
attack and sophistication. In addition, the attacks are highly customized
for the environment they try to penetrate.

7.3.1 Attack 1

The first attack is not aimed to surpass anti-spam (if present), as many
phishing attacks will get detected and classified as spam. Instead of this, it
is aimed to give a realistic simulation of the reaction of your environment
and employees. (Which means some emails could go into spam) Let us show
our HTML example for a Google environment:

Figure 7.2: GateKnocker first attack

This attack is designed to be sophisticated and to get people to recognize
the familiar Google ’check activity’ dashboard. It tests how well people
spot this sophisticated attack and how well people check links and their
spam sections. We can execute the attack with or without a handy piece of

50

software called Maskurl. This means that we can either use a bit.ly link or
a https:www.google.com/security-measures@ZDFA kinda link. The HTML
uses personal information (the victim’s email) and looks realistic. We have
a similar-looking example for Microsoft businesses:

Figure 7.3: GateKnocker first attack

Note that while these attacks are sophisticated, they are also realistic
and have even some built-in flaws we hope employees can use to recognize
phishing/spam and which we can point out after a successful phishing sim-
ulation. The flaws here are:

• Send from a Gmail/outlook account closely related to the organization
(for example for IeThee the mail comes from IeThee@gmail.com). The
fact that the company domain is not used is an indication of possible
phishing and should also mark emails as external when an environment
is properly set up.

• Sophisticated emails like these should be marked as spam, which is a
huge indicator that there could be something wrong with this mail.

• The name of the sender is Googl Support or Microsof Support. Notice
the missing letter that should be an indicator of something being off.

• The link is either a bit.ly link or a Google @ZDfA link, both are hidden
but when hovering over the link should be an indicator of phishing.

51

7.3.2 Attack 2

The second attack will use email spoofing as its primary weapon, email
spoofing is an attack in which we use a mail tool to send the email as if
it comes from someone inside the organization. In this example, we use
the fact that we send out phishing awareness emails earlier and fake a mail
from internal IT staff that asks you to enable enhanced phishing protection
settings and provides a link. We spoof the email address of someone working
in IT and copy their mail signature to the end of our phishing mail, we then
provide a link that is either a bit.ly link or a Google @ZDfA link that directs
to accounts recovery settings. We test credibility, email spoofing detection,
and the use of credible information in phishing. We make sure there are
also some weaknesses in this attack. The first one is a banner/spam section
which should be attached by properly configured anti-spam.

Figure 7.4: Email spoofing warning banner

Other weaknesses are:

• The link can be spotted again.

• The sender has no profile picture in spoofed mail while he has one in
non-spoofed mail.

• The email should enter the spam section if spam settings are configured
well enough.

7.3.3 Attack 3

The third attack is the most simple but also the most effective, as in our
experience, it seems to bypass the spam settings. We do not use links
to track who failed this attack. We create a simple email message from
Google support that asks a user if they can ask a single local IT personnel
to disable the MFA of the victim. Leaving him/her vulnerable to attacks,
we then monitor who of the victims mails our IT personnel asking him to
disable the Multi-Factor Authentication. The email tests common sense and
user reaction when not helped with banners/spam filters. There are some
weaknesses in this mail again:

• Send from a Gmail/outlook account closely related to the organization
(for example for IeThee the mail comes from IeThee@gmail.com). The

52

fact that the company domain is not used is an indication of possible
phishing and should also mark emails as external when an environment
is properly set up.

• The name of the sender is Googl Support or Microsof Support. Notice
the missing letter that should be an indicator of something being off.

• The mail asks to disable security settings, which should be a red flag
without any other indicators already.

7.3.4 Uniquely identifying every user

We use the website wasitviewed.com and Python to create custom emails
for every user we mail to. We swap in their details and also create a unique
link on Wasitviewed. Wasitviewed mails us whenever one of these links is
clicked, sending us the unique identifier as well and excluding traffic from
bots and our IP. This way our phishing bot can automatically register how
many users fell for our traps and also exactly which users. Which is very
handy information to register and use to automate our reporting step.

7.4 Quiz

A phishing quiz is a tool that presents users with a series of simulated
phishing attempts and asks them to identify the signs of phishing. This
type of quiz can be an effective way to educate users about the types of
tactics that attackers may use and help them become more vigilant in rec-
ognizing phishing attacks. We use our quiz to make sure our employees
are trained to recognize the key patterns of phishing attacks, with a focus
on the grammar of phishing emails, email addresses where emails are from,
emails trying to be someone they are not, phishing and spam banners, email
spoofing, and link authentication. With these examples and tips, we hope
to use iterative improvement to take small steps in correcting the mistakes
employees make in identifying phishing. We also introduce the examples
employees were tricked by in our phishing simulation, allowing them to see
the exact indicators they missed and providing a sense of urgency to our
quiz. We specify these indicators and ask users to identify all indicators in
various emails, training them on this and also telling them how to identify
the ones they missed by automatic grading and tips provided in the Google
Forms/Microsoft Forms environments.

7.5 Performance and design

The system is designed to perform well, it has the following features for
in-depth phishing simulation.

53

1. The automated use of email spoofing in phishing campaigns.

2. The automated use of mail masking.

3. Reports which users click on links on a per-user basis, allowing us to
see who clicked on what link.

4. Fully automatic sending of phishing emails based on a list of email
addresses.

In using sophisticated attacks lies no novelty, the novelty in our system is
provided by the specialization towards Gmail/outlook and in the introduc-
tion of a further phishing simulation pipeline.

1. We created HTML templates used for specific use against Gmail and
outlook users, by exploiting real warning html from their respective
security platforms.

2. All our phishing emails have specific mistakes that are identifiable,
such as one of the template emails being automatically sent by an
account with the name Googl Support. (Note the missing e). We use
these mistakes in our phishing quiz to show users what they missed.

3. Our Google and Microsoft phishing quizzes are built inside Google
Forms and Microsoft Forms and use the specific Google and Microsoft
phishing templates in their questions.

4. Phishing posters and awareness material is made in accordance with
the other tools.

5. Complex reports are generated that fit inside of the pdf reporting
environment that is used in all our tools collectively.

The idea is to establish GateKnocker as the world’s first highly specific
phishing simulation chain for Gmail and outlook. It goes beyond just sending
emails by providing users with a full awareness improvement cycle.

54

Figure 7.5: Automatic generated phishing report

Figure 7.6: Phases and AT-IT plan for management

55

Figure 7.7: Anonymized individual responses

56

Chapter 8

Related Work

8.0.1 Active Directory

Currently, there are a number of approaches to improve the security of AD.
These include manual processes such as setting up Group Policies and Secu-
rity Policies, as well as various tools, such as Microsoft’s Security Compliance
Manager and Microsoft’s Advanced Group Policy Management. These tools
can be used to detect and address security vulnerabilities in AD, but they
are labor-intensive and require extensive expertise.
In addition, there are a number of open-source and third-party solutions
available for AD security, such as Splunk, Rapid7, AlienVault, and Qualys.
These solutions provide automated vulnerability scanning and reporting,
but they do not provide a comprehensive solution for the entire security
improvement cycle and they do not adhere to the high standars set by for
example PingCastle and Purple Knight.

8.0.2 FRIS

There are a lot of tools that generate automatic reports for vulnerabilities.
Pingcastle does it for AD, but tools like Nessus, OpenVas and acunetix do
it as well. There are no tools to the best of our knowledge tho, that provide
scripts AND step by step solutions to fix vulnerabilities immediatly, while
providing a set of steps to walk trough, identifying possible negative impact.

8.0.3 Google Workspace

There are numerous firms and companies that audit Google Workspace and
Google cloud environments. However there is no automatic tool that does
it yet. We also provide solutions and explanations while working with MFA
based account scanning for optimal security of the scanner.

57

8.0.4 Web penetration testing

While there are numerous tools for automatically finding version based vul-
nerabilities. There are to the best of my knowledge no such tools that use
Artificial Intelligence to automatically convert found versions to common
platform enumerations and use these to query a set of online database such
as NVD, vulners, exploitdb and a few others. Using this system combined
with advanced version detection systems based or regex and changes in ver-
sions to identify versions, provides a State of the art performance in the
specfific field of version based vulnerability identification. The combination
of Wappalyzer, nuclei, whatweb, webtechsurvey.com and GPT based source
code version identification sets a new standard in specifically website version
identification. Version identification itself is enough to compete with some
of the household names in web vulnerability scanning, such as DAST tools
acunetix and burp suite pro that cost hunderds if not thousands per year
for automatic website scanning.

58

Chapter 9

Discussions

9.1 Discussion points

In this study, we proposed the Stronghold system, a novel approach to au-
tomating the security improvement cycle for both Microsoft and Google
environments. Our primary aim was to develop tools that could effec-
tively address vulnerabilities in Active Directory, Azure Active Directory,
Google Workspace, and Google Cloud while also providing automatic audit-
ing, phishing simulations, and remediation capabilities. Although we had
ambitious goals, we were able to achieve significant success in several aspects
of our research.

9.1.1 Interpretation of results

The Stronghold system demonstrated state-of-the-art results in vulnerability
detection and remediation. As shown in sections 4.6, 5.2, and 6.8. Further-
more, we introduced the FRIS pipeline, which provided valuable informa-
tion, further research, and direct solutions for addressing the discovered vul-
nerabilities. These results highlight the potential of the Stronghold system
to effectively combat security threats in corporate environments, particu-
larly in scenarios where budget constraints often lead to the negligence of
security issues.

9.1.2 Comparison with previous research

Compared to PingCastle and Purple Knight, the Stronghold system offers
a more comprehensive approach to security improvement, as was shown in
section 4.6. By targeting both Microsoft and Google environments and in-
corporating a seamless process from vulnerability detection to remediation,
our system offers a unique solution to address the ever-evolving cybersecu-
rity landscape. While also providing direct solutions to problems. It offers

59

better results than previous DAST web vulnerability scanning tools, specif-
ically in the areas of version-based vulnerability identification, as shown in
section 6.8.

9.1.3 Limitations and future research

Despite our successes, there were limitations to our study. We acknowledge
that improvements can be made in the Web, and Google components of
the Stronghold system. Mainly in building more checks and adding more
building blocks, as shown in section 5.4. Moreover, we hope to surpass the
current state-of-the-art in even more benchmarks in future research by doing
trials with multiple additional tools on bigger and more diverse benchmark
sets. It is also essential to continually update and refine our system to keep
up with the rapidly changing cybersecurity landscape.

9.1.4 Implications

The Stronghold system has significant implications for the security of corpo-
rate environments utilizing Microsoft and Google platforms. By providing
an effective, user-friendly, and cost-efficient solution to identify and address
vulnerabilities, organizations can better protect their digital assets and re-
duce the risk of cyberattacks. Furthermore, the development of the FRIS
pipeline offers valuable resources for IT professionals to research and re-
mediate detected vulnerabilities, further strengthening the overall security
posture of their organizations.

9.2 Future work

• It would be very nice to do an official benchmark on a broader set
of Active Directory systems. Especially with even bigger systems. It
would also be nice to do these benchmarks with multiple tools, adding
ones like Testimo and Adaudit.

• A good addition would be to implement the additional Google Workspace
checks. (Around 70) This will improve the coverage and results from
Google system audits.

• A full comparison with multiple DAST web scanning tools on more
websites would help us identify weaknesses in Besieger and would help
us further establish it as state-of-the-art in version detection and ver-
sion vulnerability detection.

• Further integration of GPT-4 inside of Besieger to do further analysis
of website javascript and source code. GPT-4 has proven to be a very

60

good Code scanner that could have advantages even from a black box
perspective.

• I am currently working very hard on extending the frameworks that
were laid out in Besieger for web testing. Creating a phased approach
would allow us to do full external pen tests.

1. Find passive subdomains.

2. Bruteforce subdomains with wordlists.

3. Check which subdomains are alive from the combined list, sepa-
rated into multiple Txt files per status code (200, 403 for exam-
ple)

4. Find open ports

5. Use tools like Nessus and Besieger and automatic pentest tools
like PentestGPT to automatically audit and pentest every sub-
domain.

6. Extract all findings and create one big report using GPT-4.

All steps are working in this except for improving further and improv-
ing PentestGPT in particular. When done it would be a nice system
for full external automated pentests that build upon the systems pro-
vided here. The system is named BeSieger.

• All tools should be enhanced to add scheduled scanning, automated
mail notifications, automated discovery of new subdomains, and au-
tomatic re-reporting. This would add features to make our systems
passive scanning tools that keep evaluating for possible security holes.

• Automatic generation of 3D networks with all the sub-fields we audit
for inside the main section of our automatically generated report. This
would allow for a more comprehensive and detailed visualization of the
networks being tested and the sub-scores of departments.

• A segmentation graph generator that generates graphs of networks
audited and the segmentation in them based on simple inputs. This
would provide a clear overview of the different segments and sub-
networks within a network.

• Rumourwatcher: an employee OSINT model that gets info about em-
ployees from several sources like social media websites and generates
password lists from these. To the best of my knowledge, this is a new
task as existing tools can create password lists from information but I
want to also scrape this information automatically.

61

• A large language model like GPT-4 that is finetuned on pen-testing/hacking
books and info. This would be a language model that has been trained
on large amounts of pen-testing and hacking information to assist in
identifying vulnerabilities, generating attack scenarios, and more. This
is not yet done as finetuning still has to be released to the public. I
have access to GPT-4 and I am waiting for finetuning to become avail-
able to the public.

• Eventually all tools should be integrated into a continuous scanning
architecture with central databases and multi-agent options. A com-
plete infrastructure for this in a modular, async way with automated
systems will be the subject of my research internship at SURF. I hope
to then take this framework and create a fully functioning full com-
pany analysis system in my master thesis, in which I plan to expand
my master internship to fully integrate additional components such as
AD, Azure, and Google, into this async automata-based design. The
result should be a single automated tool embedded in all of the com-
pany sub-systems which allows for continuous scans every single day.
The system is adopted for speed, running internet lines that allow for
scanning with a few GB of network speed per second to scan networks
of the size of SURF’s ip ranges (8 million IPs) daily.

62

Figure 9.1: The orchestrator

The orchestrator as portrayed above does prescanning with Masscan,
saving IPs, open ports, and banners into a MySQL database. It also
uses a single .yaml configuration file to create modular sub-component-
based scanning classes that just use different templates but act the
same way.

63

Figure 9.2: Scanning agents

We combine Nuclei, Nessus, and Nmap with open-source intelligence
feeds such as Shodan, Censys, and netlas.io. We enrich this with
our custom version-based scanners and GPT-based analyses and pen-
testing. Possibly combined with agent modules on the PC’s protected
this gives a very in-depth analysis. Note that the scanner classes as
discussed earlier are base classes and they can be enriched by individ-
ual components such as Wpscan or web scanners such as Acunetix for
specific which are added inside the superclasses of specific ports.

64

Figure 9.3: Elasticstack reporting

Our agents give feedback on running to our orchestrator but send all
output to our single elastic stack-based scan result stack, which aims
to enrich information, generate reports, and automate notifications. It
allows for direct SIEM integration by giving output that is parseable
such as JSON or CSV.

65

Chapter 10

Conclusions

In conclusion, our research demonstrates the potential of the Stronghold sys-
tem to address the ongoing security improvement cycle in both Microsoft and
Google environments. Our system for Google Workspace is novel (section
5.1/5.2), while our system for Active Directory has been shown to consis-
tently improve on the current state-of-the-art by finding more vulnerabilities
in every test subject (section 4.6). We further improved on existing solu-
tions by using FRIS and by adding solution scripts directly to vulnerability
reports, being the first AD auditing tool to do so (section 3). We also im-
plemented a web application scanning system to set a new state-of-the-art
in finding vulnerabilities based on not properly updated web components
(section 6.8). Combined, this presents Stronghold as a big step forward
in the domains of AD-, Google Workspace- and web auditing, while also
providing complementary systems for phishing simulations (section 7). We
hope to further expand on this to provide a vulnerability-scanning ecosys-
tem that allows companies to monitor vulnerabilities in all of their systems
and environments in real time.

66

Bibliography

[1] A. Acquisti and J. Grossklags. Security and Decision Making, pages
10–17. IGI Global, 2012.

[2] Mohammad Al-Duwailah, Ahmad Al-Hammouri, and Khaled Taha.
Comprehensive dns-based enumeration and analysis of domains. In
2018 IEEE Symposium on Computers and Communications (ISCC),
pages 00134–00139. IEEE, 2018.

[3] R. Allen. Windows Server 2003 Active Directory Design and Implemen-
tation: Creating, Migrating, and Merging Networks. Packt Publishing
Ltd., 2006.

[4] Amass. Owasp amass, 2021. URL: https://github.com/OWASP/

Amass.

[5] J. Andress. The basics of information security: Understanding the fun-
damentals of InfoSec in theory and practice. Syngress, 2014.

[6] APWG. Phishing activity trends report,, 2018. URL: https://docs.
apwg.org/reports/apwg_trends_report_q1_2018.pdf.

[7] Arjun. Arjun: Http parameter discovery suite, 2021. URL: https:
//github.com/s0md3v/Arjun.

[8] Mario Heiderich Barnett, Tobias Holz, Pravir Chandra Mehta, Aashish
Nukala, and Carlos Rios. Web Application Obfuscation. Syngress, 2011.

[9] R. Baskerville. Information security governance: Toward a framework
for action. Information Systems Management, 21(3):36–47, 2004.

[10] Robert F. Bruner. Repetition is the first principle of all learning, 2001.

[11] Semperis B.V. Purple castle, 2022. Tool to improve AD security https:
//www.purple-knight.com/.

[12] Charles Cooper. Microsoft office 365, google apps go head
to head. https://www.cnet.com/tech/services-and-software/

microsoft-vs-google-and-the-race-for-the-top-cloud/, 2012.

67

[13] B. Desmond, J. Richards, R. Allen, and A.G. Lowe-Norris. Active Di-
rectory: Designing, Deploying, and Running Active Directory. O’Reilly
Media, Inc., 2008.

[14] G. Dhillon. Principles of information systems security: text and cases.
John Wiley Sons, 2006.

[15] Dirsearch. Dirsearch: Web path scanner, 2021. URL: https://github.
com/maurosoria/dirsearch.

[16] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh
Hajishirzi, and Noah Smith. Fine-tuning pretrained language models:
Weight initializations, data orders, and early stopping. feb 2020. Sub-
mitted on 15 Feb 2020.

[17] Zakir Durumeric, David Adrian, Ariana Mirian, and J Alex Halderman.
A search engine backed by internet-wide scanning. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 542–553, 2015.

[18] Google Employee. Personal communication, 2021.

[19] FBI. 2017 internet crime report, 2017. URL: https://pdf.ic3.gov/
2017_IC3Report.pdf.

[20] R. Gandhi, A. Sharma, W. Mahoney, W. Sousan, Q. Zhu, and P. A.
Laplante. Dimensions of cyber-attacks: Cultural, social, economic, and
political. IEEE Technology and Society Magazine, 33(1):28–38, 2014.

[21] S. Garfinkel. Email-based identification and authentication: An alter-
native to pki? IEEE Security Privacy, 3:20–26, 2005.

[22] Gartner. Market guide for security awareness computer-based
training, 2018. URL: https://www.gartner.com/doc/3880573/

market-guide-security-awareness-computerbased.

[23] Google. Machine learning in gmail to block sneaky spam, 2021. URL:
https://workspace.google.com/blog/product-announcements/

ridding-gmail-of-100-million-more-spam-messages-with-tensorflow.

[24] Google. 2-step verification, 2023. URL: https://www.google.com/
landing/2step/.

[25] Google. Authenticate email with spf, dkim, and dmarc, 2023. URL:
https://support.google.com/a/answer/174124.

[26] Google. Context-aware access, 2023. URL: https://cloud.google.
com/context-aware-access.

68

[27] Google. Control who can access google services, 2023. URL: https:
//support.google.com/a/answer/1668854.

[28] Google. Data loss prevention (dlp) for google workspace, 2023. URL:
https://cloud.google.com/dlp.

[29] Google. Manage user access, 2023. URL: https://support.google.
com/a/answer/172176.

[30] Google. Password security, 2023. URL: https://support.google.
com/a/answer/139399.

[31] Google. Set session lengths for google services, 2023. URL: https:
//support.google.com/a/answer/7576830?hl=en.

[32] Google. Google workspace (formerly g suite),
https://workspace.google.com/. URL: https://workspace.google.

com/.

[33] Google. Encryption in transit in google cloud, n.d. URL: https://
cloud.google.com/security/encryption-in-transit.

[34] R. Grimes. Mastering identity with azure active directory. In Proceed-
ings of the 2016 IEEE Systems and Information Engineering Design
Symposium (SIEDS), pages 1–6, 2016.

[35] D. Horn. Protecting your enterprise with azure active directory and
windows 10. In Proceedings of the 2017 IEEE Military Communications
Conference (MILCOM), pages 497–502, 2017.

[36] Ponemon Institute. 2018 cost of a data breach study: Global overview,
2018. URL: https://www.ibm.com/security/data-breach.

[37] Roger Piqueras Jover. Security analysis of sms as a second factor of
authentication. Communications of the ACM, 63(12):46–52, Novem-
ber 2020. URL: https://www.researchgate.net/publication/

347577317_Security_analysis_of_SMS_as_a_second_factor_

of_authentication, https://doi.org/10.1145/3424260 doi:

10.1145/3424260.

[38] M.E. Kabay. Security Awareness: Concepts and Practices. John Wiley
Sons, 2001.

[39] Katana. Katana: A python tool for google hacking, 2021. URL: https:
//github.com/adnane-X-tebbaa/Katana.

[40] A. Kok. Multi-factor authentication: A survey. In Proceedings of the
2018 IEEE Conference on Dependable and Secure Computing (DSC),
pages 1–8, 2018.

69

[41] Ronald L Krutz and Russell Dean Vines. Cloud Security: A Compre-
hensive Guide to Secure Cloud Computing. Wiley Publishing, 2010.

[42] Lendita Kryeziu. Learning from errors. ILIRIA International Review,
5(1):393, 2015. URL: https://www.researchgate.net/publication/
357341305_Learning_from_errors.

[43] Vincent le Toux. Ping castle, 2022. Tool to improve AD security https:
//github.com/vletoux/pingcastle.

[44] C. Liu and P. Albitz. DNS and BIND. O’Reilly Media, Inc., 2006.

[45] Gordon Fyodor Lyon. Nmap Network Scanning: The Official Nmap
Project Guide to Network Discovery and Security Scanning. Nmap
Project, 2009.

[46] Rebecca A. Maynard, Rebecca N. Baelen, Phomdaen Souvanna, et al.
Using iterative experimentation to accelerate program improvement:
A case example. Educational Evaluation and Policy Analysis, 46(5),
2020. First published online May 28, 2020. URL: https://pubmed.
ncbi.nlm.nih.gov/32462935/.

[47] Christopher Meyer and Jörg Schwenk. Sok: Lessons learned from ss-
l/tls attacks. In International Workshop on Constructive Side-Channel
Analysis and Secure Design, pages 189–203. Springer, 2013.

[48] M. Minasi and C. Rice. Mastering Windows Server 2003. Sybex, 2004.

[49] K.D. Mitnick and W.L. Simon. The Art of Deception: Controlling the
Human Element of Security. John Wiley Sons, 2002.

[50] C. Neuman and T. Ts’o. Kerberos: An authentication service for com-
puter networks. IEEE Communications Magazine, 32:33–38, 2011.

[51] NIST. National vulnerability database, 2021. URL: https://nvd.
nist.gov/.

[52] Nuclei. Nuclei - fast and customizable vulnerability scanner, 2021. URL:
https://github.com/projectdiscovery/nuclei.

[53] OWASP. Owasp top ten project, 2021. URL: https://owasp.org/
www-project-top-ten/.

[54] Andriy Panchenko, Fabian Lanze, and Igor Ponce-Alcaide. Website fin-
gerprinting at internet scale. In Proceedings of the 23rd Annual Network
and Distributed System Security Symposium (NDSS), 2016.

[55] Ivan Ristic. Bulletproof SSL and TLS: Understanding and Deploying
SSL/TLS and PKI to Secure Servers and Web Applications. Feisty
Duck, 2013.

70

[56] Offensive Security. Searchsploit manual, 2021. URL: https://www.
exploit-db.com/searchsploit.

[57] Selenium. Selenium webdriver, 2021. URL: https://www.selenium.
dev/documentation/en/webdriver/.

[58] R. Sidelnikov. Active directory security: Best practices and vulnerabili-
ties. In Proceedings of the 2018 IEEE Conference of Russian Young Re-
searchers in Electrical and Electronic Engineering (EIConRus), pages
1040–1045, 2018.

[59] W.R. Stanek. Windows Group Policy: Windows Server 2008 and Win-
dows Vista Resource Kit. Microsoft Press, 2009.

[60] D. Sullivan. Google apps for your domain: The
good & the bad. https://searchengineland.com/

google-apps-for-your-domain-the-good-the-bad-12063, 2007.

[61] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute
Force Vulnerability Discovery. Addison-Wesley Professional, 2007.

[62] Symantec. 2018 internet security threat report, 2018. URL:
https://www.symantec.com/content/dam/symantec/docs/

reports/istr-23-2018-en.pdf.

[63] Vulners. Vulners: Vulnerability data base, 2021. URL: https:

//vulners.com/.

[64] Wappalyzer. Wappalyzer: Identify technologies on websites, 2021.
URL: https://www.wappalyzer.com/.

[65] M. E. Whitman and H. J. Mattord. Principles of information security.
Cengage Learning, 2011.

[66] Emma J. Williams, Joanne Hinds, and Adam N. Joinson. Exploring
susceptibility to phishing in the workplace. International Journal of
Human-Computer Studies, 120:1–13, 2018.

71

