
Bachelor’s Thesis Computing Science

Control Improvisation for infinite regu-
lar languages and feature-based param-
eters

Kevin van de Glind
s1052379

February 5, 2023

First supervisor/assessor:
Dr. Sebastian Junges

Second assessor:
Dr. Jurriaan Rot

Abstract

In this thesis, we will extend the Control Improvisation paradigm [4] by
including a method to create improvisers which, given a infinite regular lan-
guage, is able to generate infinitely many different words. Furthermore, we
propose a feature-based framework, similar to [1] for two different param-
eters of the CI problem, which are dependent on a property of the word
(this could for example be a function based on the length of a word). For
these problems we give necessary and sufficient conditions concerning the
feasibility of the problem and we propose an algorithm to create improvisers
for a restricted family of piecewise constant functions.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Notation & basic automata theory 4
2.2 Control Improvisation . 6

3 Research 10
3.1 Generalizations and remarks 10

3.1.1 Characterization of infinite regular languages 10
3.1.2 General remarks on Control Improvisation problems

over infinite regular languages 11
3.2 Constant ρ,λ . 13

3.2.1 Deciding CI(DFA, -) 13
3.2.2 Deciding CI(DFA,DFA) 16

3.3 λ,ρ as functions . 18
3.3.1 Deciding CI(DFA,-) 18
3.3.2 Deciding CI(DFA,DFA) 22
3.3.3 λ, ρ as finite regular piecewise constant functions . . . 23

3.4 Overview . 28

4 Related Work 29

5 Conclusions 30
5.1 Findings . 30
5.2 Future work . 30

1

Chapter 1

Introduction

The Control Improvisation problem is to construct an improviser: a proba-
bilistic algorithm which generates words. The words which can be generated
are given by means of a language specification, which is called the hard lan-
guage specification in the Control Improvisation paradigm. To ensure there
is enough randomness between the words an improviser creates, two addi-
tional parameters are included in the problem, such that the probability of
such a word being chosen will lay in a certain interval, given by these two
parameters. Lastly, one is allowed to make some families of words, given by
a second language constraint, more favourable by requiring that the words
generated by the improviser must be, for at least a certain fraction, part
of this second family. Therefore, given these parameters and language con-
straints, the problem is to decide whether we can make such a distribution,
and if it is possible, to create such an improviser [4].

One of the applications of Control Improvisation is fuzz testing, where
we want to generate inputs which adhere to some constraints to test soft-
ware [2]. These constraints could be given by language specifications in the
Control Improvisation paradigm. Another application lays in the domain of
robotic planning, of which an illustrative and motivating example for the use
of the Control Improvisation paradigm is given in [6]. If we were to consider
a security robot that follows a fixed path visiting specified landmarks, one
could abuse the knowledge of the path of the robot to visit these landmarks
whilst knowing that the robot would definitely not be there; adding random-
ness to the route of the robot will make the path of the robot less predictable
and therefore it may become more difficult to time your visit of the land-
mark at exact times that the security robot is not present there. Adding
this randomness can once again be done by using different parameters and
language specifications in the Control Improvisation paradigm.

The problem was initially presented in [4]. In this paper, and in many
of the generalizations and adaptations of the original Control Improvisation
problem (such as [5], [6]), only improvisers over words with a length in a

2

given finite interval are considered. Therefore, these papers were consider-
ing different constructions and generalizations of making improvisers over
finitely many different words. The natural question may come to mind as
to how one can generalize this to infinite languages.

In this paper, we will address this question, with language constraints
to be given by regular languages, by using two different constructions:

1. We will consider problems without an additional language constraint,
therefore only having a hard constraint;

2. We will include an additional language constraint, being the soft con-
straint in the Control Improvisation paradigm, using the construction
given in 1.

Furthermore, we aim to give infinitely many words a non-zero probability,
since otherwise we would be back to the original improviser problem which
considers a finite subset of the original language constraint.

Originally, as presented in [4], the parameters which define the interval,
in which the probability of a word being generated by the improviser lays,
are constant. However, one can imagine many use cases in which very short
(or very long) words are undesirable. One such case could be the generation
of passwords which have to adhere to certain constraints. In this case, one
may not want to get passwords with a relatively small length. Neither is it
desirable to get infinitely long passwords. Therefore, we will consider the
upper and lower bound for the probability of a word being dependent on the
length of this word in this case. This example gives us reason to examine
CI problems with upper and lower bound, for a word to be generated, to be
dependent on any property of this word. Necessary and sufficient conditions
for the existence of improvisers for such problems, where parameters are
dependent on a property of the word, will be given for both the finite and the
infinite case. Furthermore, a greedy approach will be presented to construct
improvisers for finite problems of this kind. Some interesting examples of
problems which turn out to be non-feasible will be given as well. These
proofs show that the necessary conditions are violated, by means of showing
that some series diverges. Lastly, when only a finite number of different
intervals are attained, we will give the construction of an improviser.

This thesis is structured as follows: Chapter 2 contains relevant pre-
liminary knowledge of standard automata theory and a formal introduction
to the Control Improvisation problem. Chapter 3 contains the new find-
ings on the Control Improvisation problem for constant and feature-based
parameters, in that exact order.

3

Chapter 2

Preliminaries

In this chapter, the basic automaton theory used in this thesis will be pre-
sented. Furthermore, we give an introduction to the Control Improvisation
problem and the results presented in [4].

2.1 Notation & basic automata theory

Throughout this paper, we will adhere to the standard automata notation
as used in, for example, [8]. A Deterministic Finite Automaton D is a tuple
D := (Q,Σ, δ, q0, F), where:

• Q := The set of states in the automaton

• Σ := The set of all possible input symbols, also called the alphabet of
the automaton. The alphabet is assumed to be finite.

• δ := The function Q × Σ → Q which, given an input symbol and a
state returns a state. This is the transition function.

• q0 := The initial state of the DFA.

• F := The set of final states.

Furthermore, we define Σ∗ to be the language of all words which can be
made with alphabet Σ. And for a DFA D, L(D) to be all of the words
accepted by D, also known as the language of D. This is formally defined as
follows:

Definition 2.1.1. Given a DFA (Q,Σ, δ, q0, F), define δ∗ : Q×Σ∗ → Q by

δ∗(q, w) =

q if w = λ

δ∗(δ(q, a), w′) if w = aw′ for some a ∈ Σ and w′ ∈ Σ∗

The set L(D) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F} is called the language of D.
Furthermore, we say that D accepts a word w if w ∈ L(D).

4

Example 2.1.2. Consider a DFA D which accepts all words given by the
regular expression c(abc)∗(1 + b). That is, L(D) is the set of words starting
with a c, having arbitrarily many abc subwords after and these can either
end with such a abc subword or with a b. Then D is given by the following
schema:

q0

q1

q3

q2

q4

c b

a

b

c

And we have that:

• Q := {q0, ..., q4, sink}

• Σ := {a, b, c}

• δ returns the destination of the transition, given a state and the input
symbol of an outgoing transition of said state. If a state is given in
combination with a transition which is not visually represented in the
visual representation, it will return the sink-state sink.

• F := {q1, q3}

Note that, in the schematic representation of a DFA, we will only include
the transitions which have a path to a final state for readability. And we will
implicitly assume that any transition not drawn is present but goes towards
a sink state.

Lastly, we define the length function and the product of two DFAs. De-
fine

|·| : Σ∗ → N, |w| =

0 If w = λ

1 + |w′| Otherwise, when w = aw′ for some a ∈ Σ and w′ ∈ Σ∗.
be the function which gives the length of a word. Furthermore, we denote
the product construction of two DFAs as follows: Let D and E be two DFAs,
then the product D∩E is defined such that L(D∩E) := L(D)∩L(E) with
the formal definition given in Definition 2.1.3.

Definition 2.1.3. Let D = (QD,Σ, δD, q
D
0 , FD),E = (QE ,Σ, δE , q

E
0 , FE) be

two DFAs, then D∩E = (QD∩E ,Σ, δD∩E , q
D∩E
0 , FD∩E) is defined as follows:

5

• QD∩E = {(qD, qE) | qD ∈ QD, qE ∈ QE}

• δD∩E : QD∩E × Σ→ QD∩E , δD∩E((q0, q1), a) = (δD(q0, a), δE(q1, a))

• qD∩E
0 = (qD0 , qE0)

• FD∩E = {(qD, qE) | qD ∈ FD, qE ∈ FE}

2.2 Control Improvisation

Control Improvisation is a problem which given a language constraint aims
to construct an improviser, an algorithm which generates words from this
language specification. In this section the basic definitions and some relevant
theorems to our contribution will be given.

Both the problem formalization and feasibility results shown below were
introduced and proved in [4]. The CI problem is defined as follows:

Definition 2.2.1. A CI problem instance is a tuple C = (H,S,m, n, ϵ, λ, ρ)
with ϵ, λ, ρ ∈ [0; 1], H,S DFAs (called the hard- and soft language specifica-
tion/constraint respectively), and m,n ∈ N, we define
I := {w ∈ L(H) | m ≤ |w| ≤ n} and A := {w ∈ L(S) | w ∈ I} to be the set
of improvisations and the set of admissible improvisations. Furthermore, we
call D : Σ∗ → [0; 1] an improvising distribution if it adheres to the following
conditions:

1. P (w ∈ I | w ← D) = 1

2. P (w ∈ A | w ← D) ≥ 1− ϵ

3. ∀w ∈ I, λ ≤ D(w) ≤ ρ

First of all, we note that the notation w ← D has the following inter-
pretation: “w is generated by improviser D”.

By having requirements 1-3 in Definition 2.2.1 we make sure that an
improvising distribution always generates words which are in the set of im-
provisations, which is ensured in requirement 1). Furthermore, requirement
2) ensures that a word, generated by the improviser, has at least a prob-
ability of 1 − ϵ to be accepted by the soft constraint, which gives us the
ability to prefer certain families of words. Lastly, the choice of λ, ρ gives
us the ability to assign a certain amount of randomness in the improvising
distribution by requirement 3). That is, by having relatively high values for
λ, ρ we can ensure that a word has a higher probability of being generated,
whilst a lower value of λ, ρ would enforce a lower probability of a given word
to be generated. Furthermore, in favour of readability we will write P (w)
when we mean P (w ← D).

6

Definition 2.2.2. We call C feasible if there exists an improvising distri-
bution D for C.

We will use the notation ‘-’ when no soft constraint is specified, or
the soft constraint is trivial, which is the case when the language of the
soft constraint is a superset of the set of words accepted by the hard con-
straint. Furthermore, we write CI(H,S) for the family of CI problems
with hard language specification of type H and soft constraint of type
S, and similarly as above we use the notation CI(H,−) when we want
to consider the family of CI problems with a trivial soft constraint (e.g.
(H,−, 0, 50, 12 ,

1
2 ,

7
8) ∈ CI(DFA,−)).

In our case, H and S will be DFA’s. But it has to be noted that Defi-
nition 2.2.1 can be extended to include other languages specifications, such
as context free languages.

Thus, our task is to find out whether C is feasible, and if this is the case,
to construct an improviser. An algorithm to create such a distribution is
called an improvisation scheme, and it is defined as follows:

Definition 2.2.3. Let P be a family of CI problems. Then we call an
algorithm S an improvisation scheme for P if it has the following property:

For any C ∈ P: S(C) =

An improviser for C, if C is feasible

⊥ Otherwise

Note that any constructive proof for an improviser of a family of CI
problems P is a proof for the existence of an improvisation scheme for P.
Furthermore, if it does not require us to iterate over infinitely many words,
such a constructive proof will be an improvisation scheme for P.

Remark 2.2.4. Note that (H,S,m,n,0,λ,ρ) with λ > ρ will never be feasible.
And neither is any such problem with m > n.

In this thesis, we will use a result presented in the work of Fremont et
al [4] about Control Improvisation over a finite language, which is shown
below.

Theorem 2.2.5. For any C = (H,S,m, n, ϵ, λ, ρ), the following are equiv-
alent:

1. C is feasible.

2. The following inequalities hold:

(a) 1
ρ ≤ |I| ≤

1
λ

(b) (1− ϵ)1ρ ≤ |A|
(c) |I| − |A| ≤ ϵ

λ

7

3. There is an improviser of C.

Theorem 2.2.5 gives us necessary and sufficient conditions to check
whether or not a CI problem over a finite language is feasible.

We would like to be able to generate words accepted by a DFA D, with
L(D) finite, such that all words in the language of D have an equal prob-
ability of being generated without the need to compute every word. The
theorem which enables us to do so is presented in [7] and shown below in
Theorem 2.2.6.

Theorem 2.2.6. There exists an algorithm that, given a DFA D with L(D)
finite, gives a uniform sample over L(D).

Example 2.2.7. Consider (D,−, 0, 4, ϵ, 0.1, 0.5) with D given by the follow-
ing DFA:

q0

q1

q2

q3

q4

a

b

a, b
a

b
b

a, b
a

Then I = {aa, bba, aba, aaa, aab, bbba, bbab, bbaa} and therefore, by Theorem
2.2.5 we know that the problem is feasible, since 2 ≤ |I| = 8 ≤ 10. Further-
more, using Theorem 2.2.6 we get the following improvising distribution:

8

q0

q2

q1

q3

qf

q4

q5

q6a, 0.5

b, 0.5

b, 1

a, 0.75

λ, 13

a, 13

b, 13

λ, 1

λ, 1

a, 1

b, 0.25

Intuitively, for every word generated by D, D will start in q0 and choose to
take a certain edge, and therefore adding that letter to the word, with its
assigned probability until it reaches the final state. Using this improvising
distribution, we get for example that P (bbba) = 1

8 and P (aa) = 1
8 . A quick

inspection reveals that every word which adheres to the length bounds and
is accepted by the DFA indeed has an equal probability of being generated by
the improviser. Furthermore, we can clearly see that any word which was
not accepted by our hard constraint, has probability 0 of being generated by
the algorithm (E.g. P (a) = 0).

9

Chapter 3

Research

In this section the new research of this thesis will be presented. First of
all, we consider some general remarks on equivalent forms of a DFA and
a characterization on when regular languages are infinite in section 3.1.
After which we will focus on CI problems with infinitely large hard language
specifications and λ, ρ as real values in section 3.2. Lastly, we will consider
λ, ρ : Σ∗ → [0; 1] as functions of words in section 3.3 for problems with
both finite and infinitely large language specifications. An overview of all
conditions and improvisation schemes which have been proven throughout
sections 3.2 and 3.3 can be found in section 3.4.

3.1 Generalizations and remarks

3.1.1 Characterization of infinite regular languages

First of all, we introduce the notion of a pruned DFA:

Definition 3.1.1. Given a DFA D we call D′ the pruned equivalent of D,
if the following hold:

1. Every state in D′ is in D.

2. Every transition in D′ is in D.

3. There exists a path from q0 to every state q in D′.

4. For every state q in D′, either q ∈ F or there exists a qf ∈ F such
that there is a path from q to qf .

Note that pruning a DFA, which essentially means removing states and
transitions which do not adhere to conditions (3) and (4), will not always
result in a DFA. However, the key property of the pruned DFA which is used
for the constructions of improvising distributions is the fact that there exists
at most 1 transition for any character from a given state. Therefore, without

10

loss of generality, we assume that every DFA in the upcoming sections is
represented as its pruned equivalent from Lemma 3.1.3 onwards.

In order to get a characterization of the finiteness of regular languages
we use Lemma 3.1.2 to get an equivalence for the existence of the maximum
length of a word accepted by such a DFA and the existence of a loop in its
pruned equivalent.

Lemma 3.1.2. Given a DFA D. maxw∈L(D)(|w|) exists if and only if there
is no cycle in its pruned equivalent D’.

Proof. ’→’ Assume, towards a contradiction, that the pruned DFA contains
a cycle. Thus there is some word, which has a path through the cycle and
is accepted. In that case, this cycle can be repeated an arbitrary amount of
times and still reach a final state. Therefore, there is an unbounded word
in the language.
’←’ This can be immediately seen by the fact that the length of a word is
bounded by the number of edges it can traverse, which in the case of a DFA
without cycle is |Q| − 1.

Now that we have necessary and sufficient conditions for the existence
of a maximum length of a word accepted by a DFA given by Lemma 3.1.2, we
can easily see that for any DFA D, L(D) is infinite if and only if maxw∈L(D)(|w|)
does not exist, as this implies that there is a loop in the pruned DFA and
therefore L(D) is infinite.

3.1.2 General remarks on Control Improvisation problems
over infinite regular languages

For a problem in CI(DFA, -) we use Lemma 3.1.3 to put further constraints
on the feasibility of this problem, since this Lemma gives us that many
Control Improvisation problems are not feasible.

Lemma 3.1.3. Let D be a DFA with L(D) infinite. If C := (D,S,m,+∞, ϵ, λ, ρ)
is feasible, then λ = 0

Proof. Suppose λ > 0 and assume towards contradiction that C is feasible,
thus there exists some function P : Σ∗ → [0; 1] with P (w) ≥ λ for all
w ∈ L(D), then 1 =

∑
w∈L(D) P (w) ≥

∑
w∈L(D) λ > 1. Which clearly is a

contradiction, thus 0 ≤ λ ≤ 0 and we can conclude that λ = 0.

Lemma 3.1.3 is even stronger than initially expected, as we will see in
Theorem 3.2.2 that the condition λ = 0 will be the necessary and sufficient
condition for the feasibility for any Control Improvisation problem in the
class CI(DFA,-) with infinitely large hard constraint.

Lemma 3.1.3 already narrows the number of Control Improvisation prob-
lems we need to inspect. However, in order to construct improvisation

11

schemes for these problems, we would like to limit the problems for which
we need to construct improvisers. That is, we would like to remove some of
the parameters in the Control Improvisation problem by incorporating them
in the hard language constraint, such that any improviser for the changed
Control Improvisation problem is an improviser for the original one as well.

In order to do this, we note that for any DFA D, we can make a DFA
D′ such that only words with lengths in certain bounds are accepted. This
can be done by traversing every possible path in D for the first m steps, and
make these in separate non-final states. After which, we can use D again.
An example of which can be seen in Example 3.1.4

Example 3.1.4. From D (as defined in Example 2.2.7), we could make D′,
which only accepts words of length greater than 4. D′ will then be:

q1

q2

q4

q0

q3

q5

q6 q7

q8

q9

a

b

c b

c

b

a

b

c

a

b

From these previous results we can conclude that any problem
(D,D′,m,+∞, ϵ, 0, ρ) ∈ CI(DFA,DFA) is feasible if and only if the equiv-
alent problem (D̂, D̂′, 0,+∞, ϵ, 0, ρ) is feasible. Furthermore, since the set of
improvisations and the set of admissible improvisations are the same for both
problems, any improvising distribution for (D̂, D̂′, 0,+∞, ϵ, 0, ρ) will also be
an improvising distribution for (D,D′,m,+∞, ϵ, 0, ρ) ∈ CI(DFA,DFA).
Therefore, we only consider the construction of improvisers for Control Im-
provisation problems with trivial length bounds ([m,n] = [0,+∞]) in order
to find an improvisation scheme for all Control Improvisation problems in
the class CI(DFA,-) with infinite hard constraint.

12

3.2 Constant ρ,λ

In this section, we will give algorithms to decide the Control Improvisation
problem for Control Improvisation instances in the class CI(DFA,DFA) with
an infinitely large set of improvisations. We will do this in two steps. First
of all, we give an algorithm for the class of CI problems without a soft
constraint. After this, a construction to decide improvising problems with
a soft constraint will be given, this will use the previous result.

3.2.1 Deciding CI(DFA, -)

To make the construction of an improviser for CI(DFA,-) work, we first
need to introduce a Lemma to transform DFA’s into equivalent NFA’s using
a similar method as used in Theorem 2.2.6.

Lemma 3.2.1. For any DFA D with |F | = n, there exists a NFA D’ with
|F | = 1 such that L(D) = L(D’)

Proof. To do this, we add an extra state qf . Now that we have that state,
we add a transition, for every q ∈ F , (q, qf , λ). Now we can set F = {qf}.
Lastly, we prune D’, with the foresight that this construction will be used in
order to construct improvisers in Theorem 3.2.2. This obviously gives the
same language.

Theorem 3.2.2 gives an improvisation scheme for CI(DFA,-) for DFA’s
accepting infinitely many words. It is important to note that all such prob-
lems will be feasible as long as λ = 0.

Theorem 3.2.2. There exists an improvisation scheme for
C := (D,−, 0,+∞, ϵ, 0, ρ) ∈ CI(DFA,−) with L(D) infinite.

Proof. First of all, we convert D to D′ as given by Lemma 3.2.1. Let Nqi be
the number of outgoing transitions from qi ∈ Q and S be the set of transitions
which are part of a cycle in D. Now, for every qi ∈ Q, the probabilities to
its outgoing transitions are assigned using the following construction:

1. Let Mqi be the set of outgoing transitions from qi with the prop-
erty that after taking this transition, there is no path to a final state
t1,, tn with ti ∈ S for some i ∈ [n].

2. For any m ∈ Mqi , set P (m) = min(ρ; 1
Nqi

) if |Mqi | ≠ Nqi . Otherwise

set P (m) = 1
|Mqi |

= 1
Nqi

.

3. For any t /∈Mqi , set P (t) =
1−

∑
m∈Mqi

P (m)

Nqi−|Mqi |
.

13

Note that this construction guarantees that the sum of all outgoing edges
of a state is exactly equal to 1. Furthermore, the probability of any word is
at most ρ, since the path of any word must go through a transition, after
which there is no path with a transition part of a loop, at least once. Since
otherwise it would imply that every transition is part of a loop. However,
this is in contradiction with the construction of D’, since (q, qf , λ̂) is not
part of a loop (because qf does not have any outgoing transitions).

Lastly, it can not be the case that |Mqi | = Nqi for all i, since this
would imply that there are no cycles in D′. Which gives a contradiction by
Lemma 3.1.2. Therefore, we can conclude that this is a correct improvising
distribution for C.

The construction in Theorem 3.2.2 gives an inverse correlation between
the expected length of a word and the value of ρ. Since by construction a
walk through the model is more likely to choose the path which does not
go through a loop again if the value of ρ is high (close to 1). Further-
more, we know that, if ρ ≥ 1

2 , the construction above would generate words
equivalently as if one were to perform a random walk through the pruned
DFA.

Furthermore, note that there are many possible constructions for an
improvisation scheme. E.g. we could set P (m) = min(ρ

|Mqi |
; 1
Nqi

) for any

m ∈Mqi if |Mqi | ≠ Nqi . This construction would in general lead to a higher
likelihood of larger words to be generated in comparison to the method of
Theorem 3.2.2. Furthermore, in this case the expected length of a word can
be bounded from below by 1

ρ , which is a claim that in general does not hold
for the construction of Theorem 3.2.2.

In Example 3.2.3 we see a case where Theorem 3.2.2 is applied and for
every state, the outgoing transitions have equal probability of being taken.

Example 3.2.3. To demonstrate Theorem 3.2.2, we consider
(D,−, 0,+∞, 0, 0.1, 0.5) ∈ CI(DFA,−) with D defined similarly as in Ex-
ample 2.2.7. Lemma 3.2.1 gives us the following NFA.

14

q0

q1

qf

q3

q2

q4

c

λ

λ

b

a

bc

Using the same sets and values as in Theorem 3.2.2, we get the following:
Nq0 = Nq3 = Nq2 = Nq4 = 1, Nq1 = 3 and Mqi = ∅ for all states except for q1
and q3, where we have that Mq1 = {(q1, qf , 1), (q1, q3, b)},Mq3 = {(q3, qf , 1)}
From this we derive the improvising distribution D, using the construction
as given in the proof:

q0

q1

qf

q3

q2

q4

c; 1

λ; 13

λ; 1

b; 13

a; 13

b; 1

c; 1

Using this result, we get, for example, that P (c) = 1
3 and

P (cabcabcabcabcabc) = 1
36

15

Theorem 3.2.2 gives a construction for an improviser of any CI problem
C := (D,−, 0,+∞, ϵ, 0, ρ) ∈ CI(DFA,−) with L(D) infinite. Taking section
3.1 into account, which tells us that for any CI problem (D,−,m,+∞, ϵ, 0, ρ)
there exists an equivalent problem (D′,−, 0,+∞, ϵ, 0, ρ), we get that Theo-
rem 3.2.2 gives a construction for an improviser of any CI problem (D,−,m,+∞, ϵ, 0, ρ).
Furthermore, combining the knowledge of Theorem 3.2.2 and Lemma 3.1.3,
we get that (D,−,m,+∞, ϵ, λ, ρ) ∈ CI(DFA,−) with L(D) infinitely large
is feasible if and only if λ = 0.

Other than this result, Theorem 3.2.2 provides us with a construction
to make an improvisation scheme for problems in CI(DFA,DFA), as can be
seen in the next section.

3.2.2 Deciding CI(DFA,DFA)

In Theorem 3.2.4 a necessary and sufficient condition will be presented for
the feasibility of problems in CI(DFA,DFA), these are problems which do
have both a hard constraint and possibly, but not necessarily, a soft con-
straint. Therefore, this class is a superset of CI(DFA,-), for which we al-
ready found an improvisation scheme in Theorem 3.2.2. This condition is
the feasibility of a different CI problem, which does not have a soft language
constraint, due to which, by Theorem 3.2.2, we know that this condition can
only fail if the hard constraint of this second problem is finite.

Theorem 3.2.4. Assume that L(D) is infinite,
then (D,D′, 0,+∞, ϵ, 0, ρ) ∈ CI(DFA,DFA) is feasible if and only if
(D ∩D′,−, 0,+∞, ϵ, 0, ρ

1−ϵ) is feasible.

Proof. ’→’ Suppose that (D,D′, 0,+∞, ϵ, 0, ρ) is feasible. Furthermore, as-
sume, towards a contradiction, that (D ∩D′,−, 0,+∞, ϵ, 0, ρ

1−ϵ) is not fea-

sible, then L(D ∩D′) is finite. And this implies that 1−ϵ
ρ > |L(D ∩D′)| as

given by Theorem 2.2.5, which implies that∑
w∈L(D∩D′) P (w) ≤ |L(D ∩D′)|ρ < 1− ϵ and this is a clear contradiction.

’←’ Suppose that (D ∩ D′,−, 0,+∞, ϵ, 0, ρ
1−ϵ) is feasible. We make a case

distinction for the size of L(D\D′):

• If L(D\D′) is infinite: Then (D\D′, 0,+∞, ϵ, 0, ρϵ) is feasible and we
can define the following improvising distribution for (D,D′, 0,+∞, ϵ, 0, ρ):

P (w) =

(1− ϵ)P̄ (w) if w ∈ L(D ∩D′)

ϵP̂ (w) otherwise.

Where P̄ , P̂ are derived from the improvising distributions received
from respectively (D∩D′,−, 0,+∞, ϵ, 0, ρ

1−ϵ) and (D\D′,−, 0,+∞, ϵ, 0, ρϵ).
This gives a correct improvising distribution, since:

16

1.
∑

w∈L(D) P (w) =
∑

w∈L(D∩D′) P (w) +
∑

w∈L(D\D′) P (w)

= (1− ϵ)
∑

w∈L(D∩D′) P̄ (w) + ϵ
∑

w∈L(D\D′) P̂ (w) = 1− ϵ+ ϵ = 1

2.
∑

w∈L(D∩D′) P (w) = (1− ϵ)
∑

w∈L(D∩D′) P̄ (w) = 1− ϵ

3. (a) For any w ∈ L(D∩D′): P (w) = (1−ϵ)P̄ (w) ≤ (1−ϵ) ρ
1−ϵ = ρ

(b) For any w ∈ L(D\D′): P (w) = ϵP̂ (w) ≤ ϵρϵ = ρ

• If L(D\D′) is finite: Then that implies that L(D ∩D′) infinite, since
L(D ∩ D′) ∪ L(D\D′) = L(D) which is infinite by assumption. If
|L(D\D′)|ρ ≥ ϵ we can construct the following distribution:

P (w) =

(1− ϵ)P̄ (w) if w ∈ L(D ∩D′)

ϵ 1
|L(D\D′)| otherwise.

Which is a correct improvising distribution, since:

1.
∑

w∈L(D) P (w) =
∑

w∈L(D∩D′) P (w) +
∑

w∈L(D\D′) P (w)

= 1− ϵ+ ϵ
∑

w∈L(D\D′)
1

|L(D∩D′)| = 1

2.
∑

w∈L(D∩D′) P (w) = (1− ϵ)
∑

w∈L(D∩D′) P̄ (w) = 1− ϵ

3. (a) For any w ∈ L(D∩D′): P (w) = (1−ϵ)P̄ (w) ≤ (1−ϵ) ρ
1−ϵ = ρ

(b) For any w ∈ L(D\D′): P (w) ≤ ϵρϵ = ρ

NB ϵ 1
|L(D\D′)| can be interpreted as: “With probability ϵ, generate a

word which is accepted by the DFA D\D′ uniformly”. To generate
this word, we can use Theorem 2.2.6, since L(D\D′) is finite.

Otherwise, if |L(D\D′)|ρ < ϵ we create a new CI problem
(D ∩ D′,−, 0,+∞, ϵ, 0, ρ

1−|L(D\D′)|ρ), which is feasible since, as men-

tioned previously, |L(D ∩D′)| is infinite. Now we can create the fol-
lowing distribution:

P (w) =

(1− |L(D\D′)|ρ)P̄ (w) if w ∈ L(D ∩D′)

ρ otherwise.

Which is a correct improvising distribution, since:

1.
∑

w∈L(D) P (w)
=

∑
w∈L(D∩D′) P (w) +

∑
w∈L(D\D′) P (w)

= 1− |L(D\D′)|ρ+
∑

w∈L(D\D′) ρ

= 1− |L(D\D′)|ρ+ |L(D\D′)|ρ = 1

2.
∑

w∈L(D∩D′) P (w) = (1− |L(D\D′)|ρ)
∑

w∈L(D∩D′) P̄ (w)

= 1− |L(D\D′)|ρ ≥ 1− ϵ

3. (a) For any w ∈ L(D ∩D′): P (w) = (1− |L(D\D′)|ρ)P̄ (w) ≤ ρ

17

(b) For any w ∈ L(D\D′): P (w) = ρ

NB ρ = |L(D\D′)|ρ 1
|L(D\D′)| and therefore that part of the function defini-

tion can be interpreted as: “With probability |L(D\D′)|ρ, generate a word
which is accepted by the DFA D\D′ uniformly”. To generate this word, we
can use Theorem 2.2.6, since L(D\D′) is finite.

And using the constructions above, we have shown that there always ex-
ists an improvising distribution for (D,D′, 0,+∞, ϵ, 0, ρ), thus we can con-
clude that it is feasible.

With a similar argument as used in section 3.2.1, Theorem 3.2.4 gives
that any CI problem (D,D′,m,+∞, ϵ, λ, ρ) ∈ CI(DFA,DFA) is feasible if
and only if λ = 0 and (D ∩D′,−, 0,+∞, ϵ, λ, ρ

1−ϵ) is feasible. Furthermore,
if a CI problem is feasible, Theorem 3.2.4 gives the construction of an impro-
viser. Therefore, Theorem 3.2.4 in combination with the conditions above
form an improvisation scheme.

3.3 λ,ρ as functions

In this section we will consider ρ, λ : Σ∗ → [0; 1] as a function based on a
property of the word. This could, for example, be the number of occurrences
of a certain substring in a word or the length of a word. In order to increase
readability in the upcoming sections, we introduce the following notation:

Definition 3.3.1. We denote the set of words with length n accepted by the
DFA D by Ln(D) := L(D) ∩ Σn = {w ∈ L(D) | |w| = n}.

Unfortunately, but expectedly, we need stronger assumptions to make
conclusions about the feasibility of a problem, when considering ρ, λ as func-
tions, in comparison to Theorem 2.2.5.

3.3.1 Deciding CI(DFA,-)

In this section, the necessary and sufficient condition will be given for the
feasibility of problems in the class of CI(DFA,-) with λ, ρ as functions. Fur-
thermore, when the set of improvisations is finite, we will show the con-
struction of an improvisation scheme. Lastly, for the infinite case we make
several observations with respect to the feasibility of some families of Control
Improvisation instances as well as improvisation schemes for others.

Theorem 3.3.2. Given C := (D,−, 0,+∞, λ, ρ, ϵ) ∈ CI(DFA,−) with
λ, ρ : Σ∗ → [0; 1]. Then C is feasible if and only if the following inequalities
hold:

1. ∀w ∈ L(D) : λ(w) ≤ ρ(w)

18

2.
∑

w∈L(D) λ(w) ≤ 1

3.
∑

w∈L(D) ρ(w) ≥ 1

Proof. ’→’ Assume, towards a contradiction, that
∑

w∈L(D) λ(w) > 1, then
for any function P with the property that P (w) ≥ λ(w) we have that
1 <

∑
w∈L(D) λ(w) ≤

∑
w∈L(D) P (w). Thus any such function would not

be an improvising distribution. Therefore, we can conclude that C is not
feasible, which gives the required contradiction.

Concerning the other inequality, we once again assume towards a contra-
diction that

∑
w∈L(D) ρ(w) < 1, then for any function P with the property

that P (w) ≤ ρ(w), we have that 1 >
∑

w∈L(D) ρ(w) ≥
∑

w∈L(D) P (w).
Thus any such function would not be an improvising distribution either.
Therefore, we can conclude that C is not feasible, which gives the required
contradiction.

Lastly, if we were to assume towards a contradiction that there exists
a word w in L(D) such that λ(w) > ρ(w) we have by definition that the
problem can not be feasible. And we can conclude that the inequalities
must hold.
’←’ Suppose that the inequalities above hold. Then we have the following
algorithm to get an improvising distribution, using a similar approach as in
the greedy strategy used in [6]:

1. For every w ∈ L(D), set P (w) = λ(w)

2. Iterate over the words w0 until
∑

w∈L(D) P (w) = 1:
Set P (w0)← min(ρ(w0), 1−

∑
w∈L(D)\{w0} P (w))

This will definitely terminate in the finite case, since there must exist values
such that the sum of probabilities is equal to 1. Furthermore, it describes a
well constructed improvising distribution in the infinite case. To conclude,
we proved existence of an improvising distribution and this implies that C
is feasible.

Note that Theorem 3.3.2 does not depend on L(D) being finite and thus
holds for infinite languages as well. However, the construction of the im-
provising distribution is not an algorithm for infinite languages, since it
requires, in the worst case, to iterate over all lengths (which means that it
would not terminate in certain cases). This worst case could occur when,

for example, λ = 0 and ρ(w) = 2−(|w|+1)

|L|w|(D)| such that 1 =
∑

k≥0 |Lk(D)|ρ(k).
Therefore, this construction only proves existence when L(D) is infinite.

Example 3.3.3. Let us consider an example of the non-feasibility of a large
family of problems where λ is given by a function which may be of interest.
Suppose that D is a DFA with L(D) infinite.

19

Then, (D,−, 0,+∞, λ(w) := c
|w| , ρ, ϵ) ∈ CI(DFA,−), for any c > 0,

can not be feasible. By Lemma 3.1.2 there must be a cycle in the DFA, thus
there exists some word w without using the cycle, which is accepted by D and
passes through a state which has the cycle, lets call the length of this cycle
k. Therefore, for any function P : Σ∗ → [0; 1] which has the property that
P (w) ≥ λ(w) we have that

∑
w∈L(D) P (w) ≥

∑
n≥1

c
|w|+nk

≥ c
∑

n≥1
1

n(|w|+k) =
c

|w|+k

∑
n≥1

1
n . And this is a divergent series, therefore

the problem can not be feasible.
Furthermore, as a direct corollary, one can see that

(D,−, 0,+∞, λ ∈ Ω(1
|w|), ρ, ϵ) ∈ CI(DFA,−) can not be feasible either.

To get some actual improvising distributions for infinite languages, we
will consider ρ, λ to be in certain families of functions. First of all, let us
cover an easy corollary heavily inspired on Theorem 3.2.2.

Lemma 3.3.4. There exists an algorithm to decide
(D,−, 0,+∞, 0, ρ, ϵ) ∈ CI(DFA,−) with ρ(w) ≥ c > 0 for all w ∈ Σ∗.

Proof. By theorem 3.2.2, the CI problem (D,−, 0,+∞, 0, c, ϵ) is feasible and
the improviser acquired from this problem is an improviser for (D,−, 0,+∞, 0, ρ, ϵ)
as well.

However, this still does not give us any freedom over the choice of λ.
Therefore, we consider a different family of functions in Lemma 3.3.5.

Lemma 3.3.5. Given a DFA D, assume L(D) is infinite and
λ, ρ : Σ∗ → [0; 1]. Then, if there exists an a ∈ (0; 1) and a bijection
f : L(D)→ N such that:

λ(w) ≤ af(w)(1− a), ρ(w) ≥ af(w)(1− a) for all w ∈ L(D)

Then (D,−, 0,+∞, λ, ρ, ϵ) ∈ CI(DFA,−) is feasible.

Proof. Let a, f be as required. Then, define P (w) = af(w)(1− a), this gives
a correct improvising distribution, since it is by construction greater/ lesser
than or equal to respectively λ(w), ρ(w) and∑

w∈L(D) P (w) =
∑

w∈L(D) a
f(w)(1− a) =

∑
n≥0 a

n(1− a) = 1−a
1−a = 1

Note that a bijection f : L(D)→ N always exists, since, by assumption
of Lemma 3.3.5 L(D) is infinite. However, one has to note that, if there
exists a bijective function for which Lemma 3.3.5 holds, this does not nec-
essarily mean that it works for any bijective function f , as can be seen in
the following example.

Example 3.3.6. Consider (D,−, 0,+∞, λ, ρ, ϵ) ∈ CI(DFA,−) with L(D) = L(a∗)
and λ, ρ defined as follows:

ρ(w) =

 1
20 If |w| = 0

1 Otherwise
λ(w) =

1
5 If |w| = 1

0 Otherwise

20

In this case, when the function w 7→ |w| is used (which is clearly bijective),
there is no a ∈ (0; 1) such that ρ majorizes, and λ is majorized by, an(1−a).
However, this problem is clearly feasible and using the following bijection:

f =

λ 7→ 1

a 7→ 0

ak 7→ k

We get that, for example, a = 10−3 would suffice.

Furthermore, note that the constraints in Lemma 3.3.5 are not necessary
conditions, as one can easily construct a counterexample for this case. E.g.

let λ ≡ 0 and ρ(w) = 1 for all w ∈ L(D) with |w| ∈ {0; 1} and ρ(w) = 1
2

|w|2+1

otherwise. Note that this problem is feasible in very many cases, for example
when the hard constraint is given by L(D) = L(a∗), in which case we can
set P (a) = 1 and P (w) = 0 for all other words. But there does not exist a
value for a and a bijection f such that ρ majorizes af(w)(1 − a), since ρ is
strictly decreasing and therefore there can only exist a bijection f for which
ρ majorizes af(w)(1− a), if ρ majorizes a|w|(1− a). However, this is not the
case since a has to be chosen independently of |w| and ρ decreases in the
limit significantly faster than a|w|(1− a).

Using Lemma 3.3.5 we can create improvisation schemes for these fam-
ilies of functions. However, this does require us to know, or to be able to
compute, a value for a and a bijective function beforehand. On the other
hand, we could consider a different example, where λ, ρ are based on the
length of words.

Example 3.3.7. Let us consider L(D) = L(a∗ + b∗) and the following CI
problem (D,−, 0,+∞, ϵ, 1

2|w|+9 ,
1

2|w|+1). Then we can create the following im-
proviser: Generate a word w and its length |w| = n in the following impro-
viser (of an arbitrary problem (a∗,−, 0,+∞, ϵ, 0, 12)):

q0 q1

a, 12

λ, 12

Now we can sample uniformly from Ln(D), which gives an improvising
distribution. Since for any word, the probability of being sampled is
P (w) = 1

2|w|+1
1

|Ln(D)| =
1

2|w|+2 . Lastly, we also have that:∑
w∈L(D) P (w) =

∑
n≥0

∑
w∈Ln(D) P (w) =

∑
n≥0

1
2n+1 = 1. And therefore

we can conclude that this is indeed a correct improvising distribution.

21

3.3.2 Deciding CI(DFA,DFA)

Similarly to Theorem 3.3.2 we need stronger necessary assumptions to guar-
antee the feasibility of instances in the class CI(DFA,DFA) when we consider
ρ, λ as functions, this will be displayed in the proof below:

Theorem 3.3.8. Let λ, ρ : Σ∗ → [0; 1],
then (D,D′, 0,+∞, ϵ, λ, ρ) =: C ∈ CI(DFA,DFA) is feasible if and only if
the following inequalities hold:

1. ∀w ∈ L(D) : λ(w) ≤ ρ(w)

2.
∑

w∈L(D) λ(w) ≤ 1

3.
∑

w∈L(D) ρ(w) ≥ 1

4.
∑

w∈L(D∩D′) ρ(w) ≥ 1− ϵ

5.
∑

w∈L(D\D′) λ(w) ≤ ϵ

Proof. ’→’ Suppose that C is feasible, then there exists an improvising dis-
tribution P and we have that:

1. Inequality (1) holds by definition of the feasibility of the CI problem.

2.
∑

w∈L(D) λ(w) ≤
∑

w∈L(D) P (w) = 1

3. 1 =
∑

w∈L(D) P (w) ≤
∑

w∈L(D) ρ(w)

4. 1− ϵ ≤
∑

w∈L(D∩D′) P (w)
≤

∑
w∈L(D∩D′) ρ(w)

5.
∑

w∈L(D\D′) λ(w)
≤

∑
w∈L(D\D′) P (w)

=
∑

w∈L(D) P (w)−
∑

w∈L(D∩D′) P (w)
≤

∑
w∈L(D) P (w)− (1− ϵ) = 1− (1− ϵ) = ϵ

’←’ Suppose that the inequalities above hold. First of all, we consider the
case that

∑
w∈L(D\D′) ρ(w) < ϵ. For any w ∈ L(D\D′) we set P (w) = ρ(w).

Since L(D ∩D′) ⊂ L(D) we get that:∑
w∈L(D∩D′) λ(w) ≤

∑
w∈L(D) λ(w) ≤ 1.

Furthermore, since
∑

w∈L(D) ρ(w) ≥ 1 we know that there exists some as-

signment of probabilities to words w ∈ L(D∩D′) such that
∑

w∈L(D) P (w) =
1, λ(w) ≤ P (w) ≤ ρ(w) for all w in L(D) and

∑
w∈L(D∩D′) P (w) = 1 −∑

w∈L(D\D′) P (w) = 1 −
∑

w∈L(D\D′) ρ(w) ≥ 1 − ϵ. Therefore P gives the
probabilities assigned to generating any word and describes our improvising
distribution.

In case that
∑

w∈L(D\D′) ρ(w) ≥ ϵ, we once again have a function P

such that λ(w) ≤ P (w) ≤ ρ(w) for all w in L(D ∩ D′), and in this case

22

∑
w∈L(D∩D′) P (w) ≥ 1 − ϵ and

∑
w∈L(D∩D′) P (w) ≤ 1 hold (where we aim

for
∑

w∈L(D∩D′) P (w) = 1− ϵ, which is possible if
∑

w∈L(D∩D′) λ(w) ≤ 1− ϵ,
otherwise we set P (w) = λ(w)), since we still have that∑

w∈L(D∩D′) λ(w) ≤
∑

w∈L(D) λ(w) ≤ 1.
Lastly, we make another case distinction over

∑
w∈L(D∩D′) λ(w):

• In case that
∑

w∈L(D∩D′) λ(w) ≤ 1−ϵ (Therefore making
∑

w∈L(D∩D′) P (w) =
1 − ϵ), the assumption

∑
w∈L(D\D′) λ(w) ≤ ϵ can be used to assign

probabilities to words w in L(D\D′) with the property:∑
w∈L(D\D′) P (w) = ϵ, λ(w) ≤ P (w) ≤ ρ(w). Finally we have that∑
w∈L(D) P (w) =

∑
w∈L(D∩D′) P (w)+

∑
w∈L(D\D′) P (w) = 1− ϵ+ ϵ =

1. Thus in this case we get a correct improvising distribution.

• Otherwise, we have that
∑

w∈L(D∩D′) λ(w) > 1− ϵ (Therefore defining

P (w) = λ(w) for all w in L(D ∩D′)), we get that:∑
w∈L(D\D′) λ(w)

=
∑

w∈L(D) λ(w)−
∑

w∈L(D∩D′) λ(w)
=

∑
w∈L(D) λ(w)−

∑
w∈L(D∩D′) P (w)

≤ 1−
∑

w∈L(D∩D′) P (w)
It has already been shown that

∑
w∈L(D\D′) ρ(w) ≥ ϵ ≥ 1−

∑
w∈L(D∩D′) P (w).

Thus we can assign probabilities to all words w in L(D\D′) such that
λ(w) ≤ P (w) ≤ ρ(w) and

∑
w∈L(D\D′) P (w) = 1−

∑
w∈L(D∩D′) P (w).

Thus this once again gives a correct improvising distribution.

To conclude, for every case we were able to prove the existence of an impro-
viser. Therefore, we can conclude that the problem is feasible.

Note that Theorem 3.3.8 gives necessary and sufficient conditions for
the feasibility of problems in class CI(DFA,DFA) when we consider λ, ρ as
functions. However, we do not give a construction for such an improviser
for every CI instance, as this could require us to iterate over infinitely many
words. Furthermore, similar to Theorem 3.3.2 these conditions do not de-
pend on the language of the hard constraint to be infinite. Even stronger,
in case that the language of the hard constraint is finite, the proof above
gives us a method to assign probabilities to every word of being gener-
ated by an improvising distribution (with a similar algorithm as given in
Theorem 3.3.2), therefore this proof provides an, although very inefficient,
improvisation scheme for these cases.

3.3.3 λ, ρ as finite regular piecewise constant functions

In this section, we will consider λ, ρ to be part of a restricted family of
piecewise constant functions, which we call fRPC as given in Definition 3.3.9.

Definition 3.3.9. Let Y be a non-empty set. Let f : Σ∗ → Y for some
alphabet Σ. We say that f is finite regular piecewise constant (fRPC(Y)) if

23

there exists a finite partition P = {L(D1), ..., L(Dk+1)} of Σ∗ such that for
any L(Di) ∈ P we have that L(Di) is a regular language and |f(L(Di))| = 1.

Therefore, if λ, ρ are fRPC([0;1]), then there exist partitions Pλ, Pρ such
that λ and ρ attain exactly one value in any of the elements of their respective
partitions. Furthermore, we can create another finite partition, which is a
refinement of Pλ, Pρ, as follows:

P =
⋃

L(Di)∈Pλ, L(Dj)∈Pρ

{L(Di) ∩ L(Dj)}

Note that this partition is once again finite, since both Pλ, Pρ are finite, and
every element of P is a regular language, since regular languages are closed
under intersection. Furthermore, by construction of P, for any L(Di) ∈ P
we have that |λ(L(Di))| = |ρ(L(Di))| = 1.

In order to increase readability we write, with abuse of notation, Di ∈ P
to reference the DFA which generates L(Di). Furthermore, we write λi, ρi for
the value which is attained by respectively λ and ρ for all words w ∈ L(Di).

Remark 3.3.10. An example of such a partition of Σ∗ is given by two
regular languages, where one of which contains all words with length |w| ≡ 3
mod 4. This language {w ∈ Σ∗ | ∃k ∈ N, |w| = 3 + 4k} is given by the
following DFA:

Σ Σ Σ

Σ

Therefore, the set containing this regular language as well as its complement
is a finite partition of Σ∗.

Lemma 3.3.11 gives an improvisation scheme for the class of problems
CI(DFA,-) with λ, ρ fRPC([0;1]). Furthermore, we only cover the instances
where the language of the hard constraint is infinite, since we have already
provided an improvisation scheme for the finite case in Theorem 3.3.2.

Lemma 3.3.11. Let λ, ρ be fRPC([0;1]) and L(D) infinite, then there exists
an improvisation scheme for (D,−, 0,+∞, ϵ, λ, ρ) ∈ CI(DFA,−), under the
assumption that we know the partition P.

Proof. Consider a control improvisation problem
(D,−, 0,+∞, ϵ, λ, ρ) ∈ CI(DFA,−) with λ, ρ fRPC([0;1]) and partition P.
Let P ′

n, P
′
∞ ⊂ P such that L(D ∩ Di) is finite, but not zero, for every

element in Di ∈ P ′
n and infinitely large for every Di ∈ P ′

∞. Note that P ′
∞

24

is not empty, since this would imply that L(D) would be finite, which is a
contradiction with our assumption.

As an initial check, for every i with Di ∈ P ′
∞, λi must be equal to zero,

which can be easily seen with a similar argument as used in Lemma 3.1.3.
Furthermore, the following inequality must hold:∑

Di∈P ′
n
|L(D ∩Di)|λi ≤ 1, otherwise we can once again conclude that the

problem is not feasible (with a similar argument as mentioned in Theo-
rem 3.3.2). If the inequality does hold however, we can assign P (w) = λi

for all w ∈
⋃

Di∈P ′
n
L(D ∩ Di). If

∑
Di∈P ′

n
|L(D ∩ Di)|λi = 1 we are done

and could set the probability of all other words to 0. Moreover, we can
not hope to give infinitely many words a non-zero probability. However,
if

∑
Di∈P ′

n
|L(D ∩ Di)|λi < 1, we set, for w ∈ L(D ∩ Di) with Di ∈ P ′

∞,

P (w) = 1
|P ′

∞|(1 −
∑

Di∈P ′
n
|L(D ∩Di)|λi)P̂ (w) where P̂ is derived from the

improvising distribution of the problem (D ∩Di,−, 0,+∞, ϵ, 0, ρi). This is
a correct construction, since we know by Theorem 3.2.2 that this problem
will be feasible. Moreover, the same Theorem gives us a construction for
such a distribution.

Once again we can extend the improvisation scheme to include a soft
language constraint, this is done in Theorem 3.3.12.

Theorem 3.3.12. Let λ, ρ be fRPC([0;1]) and L(D) infinite, then there ex-
ists an improvisation scheme for (D,D′, 0,+∞, ϵ, λ, ρ) ∈ CI(DFA,DFA),
under the assumption that we know the partition P.

Proof. Consider a control improvisation problem (D,D′, 0,+∞, ϵ, λ, ρ) ∈ CI(DFA,DFA)
where, once again, λ, ρ are fRPC([0;1]) with partition P and L(D) infinite.
Now we define the following subsets of P:

L(Di) ∈ PD′
n ↔ 0 < |L(D ∩D′) ∩ L(Di)| < +∞

L(Di) ∈ Pn ↔ 0 < |L(D\D′) ∩ L(Di)| < +∞

L(Di) ∈ PD′
∞ ↔ 0 < |L(D ∩D′) ∩ L(Di)| = +∞

L(Di) ∈ P∞ ↔ 0 < |L(D\D′) ∩ L(Di)| = +∞

Note that these sets are disjoint and the union of the sets once again is equal
to L(D).

Once again, if the problem were to be feasible, then, for every i such that
Di ∈ P∞∪PD′

∞ , λi must be equal to zero, which can be easily seem with a sim-
ilar argument as used in Lemma 3.1.3. Furthermore, the following inequality
must hold

∑
Di∈Pn

|L(D\D′∩Di)|λi+
∑

Di∈PD′
n
|L(D∩D′∩Di)|λi ≤ 1, oth-

erwise we can once again conclude that the problem is not feasible, since
this would imply that the minimum probability that we have to assign to
a subset of words is already greater than 1. Furthermore, we must require
that

∑
Di∈Pn

|L(D\D′ ∩ Di)|λi ≤ ϵ, such that we are guaranteed to have

25

enough room to give the admissible words a minimum total probability of
1− ϵ.

Lastly, if PD′
∞ = ∅ then we must have that∑

Di∈PD′
n
|L(D ∩ D′ ∩ Di)|ρi ≥ 1 − ϵ to satisfy the constraint on the soft

specification of the CI problem. If all of the inequalities above hold, then
we can conclude that the problem is feasible and we create the following
improvising distribution:

• If PD′
∞ = ∅, then P∞ ̸= ∅ since L(D) is infinitely large by assumption.

Therefore, for any w ∈ L(D ∩D′ ∩Di) with Di ∈ PD′
n we set

P (w) = max(min(ρi, (1− ϵ) 1
|PD′

n |
∑

Di∈PD′
n

|L(D∩D′∩Di)|
), λi) such that∑

w∈L(D∩D′) P (w) ≥ 1− ϵ. Furthermore, we define P (w) = λi for any

w in L(D\D′ ∩Di) with Di ∈ Pn.

Lastly, for any w ∈ L(D\D′ ∩Di) with Di ∈ P∞,
P (w) = 1

|P∞|(1−
∑

w∈L(D∩D′∩Di):Di∈PD′
n

P (w)−
∑

w∈L(D\D′∩Di):Di∈Pn
P (w))P̂ (w)

where P̂ (w) is constructed by the CI problem (D\D′∩Di, 0,+∞, ϵ, 0, ρi)
which is feasible and can be constructed by Theorem 3.2.2.

• If P∞ = ∅, then PD′
∞ ̸= ∅ since L(D) is infinitely large by assump-

tion. Therefore, for any w ∈ L(D ∩ D′ ∩ Di) with Di ∈ PD′
n we set

P (w) = λi, we do the same for any w ∈ L(D\D′ ∩Di) with Di ∈ Pn.
Lastly, for any w ∈ L(D ∩D′ ∩Di) with Di ∈ PD′

∞ we set
P (w) = 1

|PD′
∞ |(1−

∑
w∈L(D∩D′∩Di):Di∈PD′

n
P (w)−

∑
w∈L(D\D′∩Di):Di∈Pn

P (w))P̂ (w)

where P̂ (w) is constructed by the CI problem (D∩D′∩Di, 0,+∞, ϵ, 0, ρi)
which is feasible, and we can construct an improvising distribution, by
Theorem 3.2.2.

• If P∞ ̸= ∅ and also PD′
∞ ̸= ∅, then, once again define, for any

w ∈ L(D ∩ D′ ∩ Di) with Di ∈ PD′
n , P (w) = λi, we do the same for

any w ∈ L(D\D′ ∩ Di) with Di ∈ Pn. Furthermore to get a non-
zero probability for infinitely many other words, we use the following
construction: For any w ∈ L(D ∩D′ ∩Di) with Di ∈ PD′

∞ we set
P (w) = 1

|PD′
∞ |(max(0, 1−ϵ−

∑
w∈L(D∩D′∩Di):Di∈PD′

n
P (w)))P̂ (w) where

P̂ (w) is constructed by the CI problem (D ∩D′ ∩Di, 0,+∞, ϵ, 0, ρi).
This ensures that 1 ≥

∑
w∈L(D∩D′) P (w) ≥ 1− ϵ.

Lastly, we define similarly, for any w ∈ L(D\D′ ∩Di) with Di ∈ P∞,
P (w) = 1

|P∞|(1−
∑

w∈L(D∩D′) P (w)−
∑

w∈L(D\D′∩Di):Di∈Pn
P (w))P̂ (w)

where P̂ (w) is constructed by the CI problem (D\D′∩Di, 0,+∞, ϵ, 0, ρi).

Since this process will correctly give an improvising distribution, when a
problem is feasible, we can conclude that this is a correct improvisation
scheme.

26

Unlike Theorem 3.3.8, Theorem 3.3.12 has a constructive proof for which
we do not have to explicitly generate infinitely many words and therefore
gives an improvisation scheme.

Furthermore, note that the condition that we know P is not a very strict
condition, since λ, ρ could very well be given with their respective partitions,
with which we can construct the refinement of their partitions using the
method above.

27

3.4 Overview

Throughout this thesis, we have considered many different classes of CI
problems, for some of which we were able to find constructive proofs, and
therefore actual improvisation schemes. Whilst for others we have only
shown the necessary and sufficient conditions for the feasibility of such prob-
lems. These results are summarized in the following two tables. Note that
Theorem 2.2.5 has been proven in the research of Fremont et al [4].

L(D) finite

λ, ρ: CI Class Feasibility conditions Improvisation scheme

λ, ρ real valued
CI(DFA,-) Theorem 2.2.5 Theorem 2.2.5

CI(DFA,DFA) Theorem 2.2.5 Theorem 2.2.5

λ, ρ fRPC([0;1])
CI(DFA,-) Theorem 3.3.2 Theorem 3.3.2

CI(DFA,DFA) Theorem 3.3.8 Theorem 3.3.8

λ, ρ : Σ∗ → [0; 1]
CI(DFA,-) Theorem 3.3.2 Theorem 3.3.2

CI(DFA,DFA) Theorem 3.3.8 Theorem 3.3.8

L(D) infinite

λ, ρ: CI Class Feasibility conditions Improvisation scheme

λ, ρ real valued
CI(DFA,-) Lemma 3.1.3 Theorem 3.2.2

CI(DFA,DFA) Theorem 3.2.4 Theorem 3.2.4

λ, ρ fRPC([0;1])
CI(DFA,-) Lemma 3.3.11 Lemma 3.3.11

CI(DFA,DFA) Theorem 3.3.12 Theorem 3.3.12

λ, ρ : Σ∗ → [0; 1]
CI(DFA,-) Theorem 3.3.2 Open problem

CI(DFA,DFA) Theorem 3.3.8 Open problem

28

Chapter 4

Related Work

Control improvisation was first proposed as a concept to generate random
sequences of music by Donze et al [3]. This idea was formalized by Fremont
et al [4], where a construction for an improviser and feasibility conditions
for finite problems were introduced (See preliminaries 2 for the relevant
results for this research). A multitude of adaptations and generalizations
have been made based on this research. Such as the research by Gittis et
al [6], where assigning costs for words was introduced. Furthermore, the
research on Reactive Control Improvisation by Fremont et al [5] modeled
two-player games in the Control Improvisation paradigm. All of these have
in common that they are focused around finite subsets of possibly infinitely
large languages. Therefore, Theorem 3.2.4 extends the theory as defined
in [4] and has opportunities to be applied in the different generalizations as
well.

Furthermore, the consideration of λ, ρ as functions based on properties of
words in a language is an extension of research done by Boneschanscher [1],
where feature constraint functions fc : Σ

∗ → Q∩[0; 1] were introduced. Once
again, finite sets of words were considered in this case, which gets extended
to infinite regular languages in this research. Furthermore, we extend the
theory presented by both giving necessary and sufficient requirements for
feasibility of such problems and considering the lower and upper bound as
functions based on a feature of the word instead of only the upper bound.

29

Chapter 5

Conclusions

5.1 Findings

The main contributions of this thesis are given in Theorems 3.2.4, 3.3.12 and
3.3.8 where we propose a construction, whilst considering infinite languages,
for an improvisation scheme when λ, ρ are constant or of class fRPC([0;1])
and give necessary and sufficient conditions for the feasibility of CI problems
when λ, ρ : Σ∗ → [0; 1] respectively. Furthermore, when we consider λ, ρ as
functions based on some property of the words in the language, we made
several observations concerning the feasibility and constructions of impro-
visers for different families of functions. However, the conditions in this case
may be very challenging to check.

5.2 Future work

For future research, it would be interesting to find an improvisation scheme
for any CI problem over regular languages with λ, ρ as functions based on
some property of the words in the language. However, we suspect that this
would be quite challenging and therefore one could focus on a different family
of feature based parameters, such as parameters described by unary weighted
automata and/or absorbing markov chains. These models could possibly
be described as functions using their Jordan Normal Form decomposition.
However, the check for feasibility may not be as easy as one hopes for. That
is, Theorem 3.3.2 and Theorem 3.3.8 can not be easily checked, since the
series limit is not known in general.

Secondly, one could be interested in finding (more) efficient improvisa-
tion schemes for the CI problems, as in this thesis we did not investigate
the complexity of our proposed improvisation schemes. There is still a big
improvement to be made as it is for example clearly undesirable to generate
all words in cases as Theorem 3.3.8 and 3.3.2, even in the finite case.

30

Bibliography

[1] Stefan Boneschanscher. Feature-based Randomness Constraints in Con-
trol Improvisation. Bachelor’s thesis, Radboud University, 2022.

[2] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and
Wenqian Liu. A systematic review of fuzzing techniques. Computers &
Security, 75:118–137, 2018.

[3] Alexandre Donzé, Rafael Valle, Ilge Akkaya, Sophie Libkind, Sanjit A
Seshia, and David Wessel. Machine improvisation with formal specifi-
cations. Ann Arbor, MI: Michigan Publishing, University of Michigan
Library, 2014.

[4] Daniel J Fremont, Alexandre Donzé, and Sanjit A Seshia. Control im-
provisation. 2017.

[5] Daniel J Fremont and Sanjit A Seshia. Reactive control improvisation. In
International conference on computer aided verification, pages 307–326.
Springer, 2018.

[6] Andreas Gittis, Eric Vin, and Daniel J Fremont. Randomized syn-
thesis for diversity and cost constraints with control improvisation. In
Computer Aided Verification: 34th International Conference, CAV 2022,
Haifa, Israel, August 7–10, 2022, Proceedings, Part II, pages 526–546.
Springer, 2022.

[7] Timothy Hickey and Jacques Cohen. Uniform random generation
of strings in a context-free language. SIAM Journal on Computing,
12(4):645–655, 1983.

[8] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to
Automata Theory, Languages, and Computation, chapter 3.2. Pearson,
2001.

31

