
Bachelor thesis
Computing Science

Radboud University

Misusing browsers’ login managers for
data exfiltration by third parties

Author:
Lucas van Kasteren
S1039270

First supervisor/assessor:
Assistant professor, Dr. Gunes

Acar
g.acar@cs.ru.nl

Second assessor:
Associate professor, Dr. Ir.

Erik Poll
erikpoll@cs.ru.nl

January 18, 2023

Abstract

In this thesis a research about data exfiltration by third-party scripts has
been conducted. In detail, this entails abuse of browsers’ internal login
managers without the users’ consent. The user fills out a login form on a
website and saves their credentials in the browsers’ login manager. When
the user starts browsing on that particular website a third-party script is
inserted which is autofilled by the browsers’ built-in login manager. The
script then obtains the users’ email address and sends hashes of it to a
third-party server. We run web crawls on 50000 websites to find evidence of
such tracking. Tracker Radar Collector basic instrumentation is extended to
detect whether sensitive data is being injected into the pages’ context. A new
collector is added which uses the MutationObserver API to detect DOM
changes. Moreover, a bait technique is used to allow sensitive data injections
into websites such that third-party scripts can access and exfiltrate the data.
The analysis of our results reveals leaks via URLs and POST request bodies
and discovers input field sniffs. However, no cases were found where login
managers were abused for the purpose of third-party web tracking. We
compare these results to previous research and discuss the limitations of our
own research.

Contents

1 Introduction 2

2 Background and Related Work 4
2.1 Background . 4
2.2 Related Work . 5

3 Research 6
3.1 Developing the crawler . 6
3.2 The dataset . 8
3.3 Leak detection . 9

4 Results 11
4.1 General results . 11
4.2 Comparison with previous work 12
4.3 Other results of note . 12

5 Discussion 14
5.1 Limitations . 14

5.1.1 The dataset . 14
5.1.2 Crawling . 14
5.1.3 Leak detection . 15

5.2 Future work . 15

6 Conclusions 16

A Appendix 20

1

Chapter 1

Introduction

Nowadays, third-party web tracking can be found everywhere. In 2021 94%
of desktop sites included at least one third-party resource and almost 46%
of requests on desktop are third-party requests[5]. Third-party requests can
be used for functionality which includes personalisation, site analytics, and
targeted advertising. It is even claimed that preventing targeted advertising
via third-party requests has a negative economic impact[14]. However, third-
party request can also be used for tracking purposes. With this third-party
tracking, an entity, other than the website directly visited by the user, is
collecting personal identifiable information (PII) about the user. Examples
of such trackers are cookies and browser fingerprinting.

The thesis is inspired by an earlier work[3] performed by Acar et al..
They investigated three data exfiltration attacks by third-party scripts. The
attack that misuses the browsers’ internal login managers is the founda-
tion for this paper. Data was gathered by extending OpenWPM[20] to
behave as if it has already interacted with a website. They found that two
scripts, loaded from AdThink (audienceinsights.net) and OnAudience (be-
havioralengine.com), sent hashes of users’ email addresses to its server for
the purpose of third-party tracking. These scripts were found on 1,110 of the
Alexa top 1 million sites in September 2017. After the publishing of Acar
et al.’s work[3], these two companies stopped using the technique however,
this does not mean that there are other companies who adopt this technique.
Moreover, Senol et al. [23] found that users’ email addresses are exfiltrated
to tracking, marketing and analytics domains before form submission and
without giving consent.

As seen above this tracking often happens without the users’ consent or
knowledge. PII leakage to third-party domains via different methods is a
thriving topic the past few years. This proves the relevance of this thesis
since pages that host tracking forms must respect the users’ privacy and not
leak, on accident or intentionally, user’s PII to third-parties.

This research paper documents the development of a tool, which tries to

2

detect login-manager abuse for email exfiltration based on previous work. In
particular, we ask ourselves the question if browsers’ built-in login managers
are being abused by third-party scripts for the purpose of third-party web
tracking without user awareness?

All major browsers have built-in login managers to save and automat-
ically fill credentials. Every browser determines in their own way which
login forms to autofill, but at least a username and password field must be
available. Browsers’ login managers automatically fill in previously saved
credentials for known form fields. Scripts may misuse this feature and insert
invisible login forms into the web pages’ context. These scripts then trigger
the browsers’ built-in login managers and subsequently read the filled input
field. Hence user credentials are obtained for the purpose of third-party web
tracking.

To help achieve the goal of discovering this non-consensual tracking,
DuckDuckGo’s Tracker Radar Collector (TRC) web crawler is used. Tracker
Radar Collector[11] is a Puppeteer-based[1] crawler used to detect and mea-
sure third-party trackers for their Tracker Radar[10]. While one can use
TRC as it is, some extensions were performed to make it suitable for our
research.

The final product will use a bait technique similar to the method used
by Acar et al.[3] and use leak detection methods based on Senol et al.[23]
and Englehardt et al.[12]. It is a practical analysis to explore web privacy
vulnerabilities and address its side-effects.

Chapter 2 will go over previous work and explain differences and sim-
ilarities with this thesis. Moreover, it will explain technical background
and knowledge necessary to understand the design choices for our tool be-
fore diving into the actual research performed in chapter 3. Chapter 4 will
then display the findings before getting to a discussion of the results and
limitations in chapter 5. Finally, chapter 6 will conclude our research.

3

Chapter 2

Background and Related
Work

In this chapter all necessary details to understand the design choices and
the development process of the research are addressed. We will discuss web
tracking and in particular third-party web tracking. Furthermore, we will
discuss related work and dive into the details of previous studies conducted.

2.1 Background

Web tracking refers to the practice of collecting data about an individual’s
online behaviour. There have been many studies to forms of identifying
online behaviour through web tracking. This entails tracking examples via
cookies[13], browser fingerprinting[7], ETags[6], etc.. The gathered data
can be used for different purposes such as website analytics and targeted
advertising/marketing.

When talking about third-party tracking we refer to the use of tracking
technologies by entities other than the website the user is actually visiting.
For instance, when visiting a website which has ads displayed by third par-
ties. These third parties can use tracking techniques to collect data about
the user’s behaviour. This advertising company can then show you targeted
ads based on your behaviour. This may raise concerns about privacy since
these third-party trackers allow companies to collect and use your personal
data without the user’s knowledge or consent[19].

As already briefly touched upon in the introduction section, we will
explain the actual attack we are trying to detect in this research paper.
First, a user fills out a login form on a website and saves their credentials
in the browsers’ login manager. Secondly, the user starts browsing on that
particular website where a third-party script is present. This third-party
script inserts an invisible login form which is autofilled by the browsers’
built-in login managers. Hence, the script obtains the users’ email address

4

and sends hashes of it to a third-party server for the purpose of third-party
tracking.

2.2 Related Work

Several research papers have been written on login-manager abuse for email
exfiltration and personal identifiable information (PII) leaks via third-party
tracking. The inspiration for this paper is the research performed by Acar
et al.[3]. In this paper PII leakage is discovered by tracking scripts misusing
login-managers. The discovery method uses a bait technique, which allows to
inject sensitive user data into the context of real websites in such a way that
third-party scripts can access and exfiltrate the data. This bait technique
is also used in a similar way in this paper, more details can be found in
chapter 4.

Similarly, Senol et al.[23] built a crawler which finds and fills email and
password fields, monitors the network traffic for leaks, and intercepts script
access to filled input fields. As a result, they found that users’ email ad-
dresses are exposed to tracking domains before form submission in over 1800
websites in the EU and over 2900 websites in the US. Although the scope
of this research is not a big as the one performed by Senol et al.[23], the
methodology for detection PII leakage is highly similar between our studies.

Different researches about PII leakage to third-party domains have al-
ready been performed for quite some time. As discussed by Englehardt et
al. leakage can be classified as intentional or unintentional/accidental[12].
The first practise occurs when the website intentionally leaks user’s PII to
third-party trackers, whereas in the second case leaked values are passed
via HTTP referer headers[12]. They discovered that even the simple act of
viewing emails can leak PII to third-parties. More specifically, in majority
of the leaked cases they are intentional.

Moreover, in 2016, Starov et al. reported the first large-scale study
of PII leakage via contact pages of the 100,000 most popular sites of the
web[26]. They witnessed PII leakage towards third-parties in a variety of
ways, including the leakage through third-party form submissions.

More recently, Dao et al. documented the first in-depth analysis of leaked
PII in the users’ sign-up and sign-in flow (authentication flows)[8]. One
of the things they discovered with their analysis is that for 307 popular
shopping sites, 42.3% leak the PII to third-party services.

Above research papers show that PII leakage to third-party domains
via different methods is a hot topic in recent years. This also proves the
relevance of this research paper since pages that host tracking forms must
respect their users and not leak, on accident or intentionally, user’s PII to
third-parties.

5

Chapter 3

Research

To study browsers’ built-in login manager abuse for the purpose of third-
party web tracking we conducted a research based on the methods used by
Acar et al. in their study[3]:

1. Extending Tracker Radar Collector (TRC) with a new collector through
which injecting sensitive data into the page context is observed. The
MutationObserver API is used to detect Document Object Model
(DOM) changes and log these ‘mutations’.

2. HTMLInputElement is instrumented to observe when input field ob-
jects are accessed. A bait technique with fake credentials acts as the
browsers’ built-in login manager. If the input field gets accessed we
log the value to detect if the bait email was read.

3. A leak detection method to detect whether the username and password
are sent to a third-party server. Further details of this method are
explained in Section 4.3.

A high-level overview of the extension of TRC can be found in figure 3.1.

3.1 Developing the crawler

As mentioned in the introduction chapter, DuckDuckGo’s Tracker Radar
Collector (TRC)[11] is used to crawl the web. TRC is a Puppeteer-based[1]
crawler which uses the Chrome DevTools Protocol to interact with the
browser. TRC uses collectors to gather tracking data from websites, such as
cookies, API calls and requests. Moreover, it uses conditional breakpoints
which allows you to break inside a code block when a defined expression
evaluates to true. If TRC hits such a breakpoint it logs data about the re-
spective function or object accesses. When a website is crawled successfully,
it creates a separate unique JSON file named after the website which con-
tains all the crawled data. Additionally, for each crawl a metadata.json file

6

Figure 3.1: High-level overview of the extension of Tracker Radar Cllector

is created with high-level stats such as start- and endtime, used collectors
and the system environment.

For TRC to work the way it is intended it to work, it is extended with
another collector called MutationCollector. The code for this collector
can be found in appendix A. This collector monitors DOM mutations to
see if new login forms are injected into the page. To achieve this goal the
MutationObserver API is used[25]. MutationObserver is a powerful API
to detect changes in the DOM. At first, you specify a target node to observe
(this can be any object in the DOM) for changes. It waits for a script or task
to be completed, meanwhile recording all DOM mutations in a record queue.
When the execution is completed, it outputs all observed mutations in an
array by making use of a callback function1 instead of just polling the DOM.
The MutationObserver API is an effective way to detect DOM changes and
is supported by all major web browsers and observes basic operations such
as adding or deleting nodes and changing attribute values[16].

The MutationObserver specified in this research looks for invisible in-
jected form and input fields into the DOM. It uses the root document node
as target node to observe the full page. Moreover, it logs the dimension
(width and height) of an injected input field to see if the form injected is
invisible. It is likely to assume that when a form doesn’t have a width and
height position on the page, it is invisible. Finally, it tracks the form’s action
– the URL that processes the form data – to know whether this URL is also
the one that is sending username/password to a third-party server and not
a website using for instance a form builder2.

When input fields are detected, the collector tries to fill the input field
with fake login credentials to detect whether information from an input
field is being read. If a field can be filled it triggers the breakpoint set on

1A function that is passed as an argument to another function such that it can be
executed in that other function.

2A common form builder: https://www.hubspot.com/products/marketing/forms

7

the HTMLInputElement and logs the details of the input element access
specified in the APICallCollector. These details contain the id, type and
value of the input field tag. Moreover, it registers the initial URL and a
timestamp of when the capture happened.

Besides checking for potential PII leaks in URLs, it is also checked
whether PII leaks occur in POST request bodies. An attribute is added
to the request collector to collect the POST data belonging to the request
bodies. Extending it in this way is similar to the one used by Senol et al.
in their research[23].

3.2 The dataset

To detect browsers’ built-in login manager abuse for the purpose of third-
party web tracking 50000 websites were crawled from the Tranco list3 gener-
ated over the period 23 November 2022 to 22 December 2022 (30 days)[17].
This list aggregates the ranks from the lists provided by Alexa[4], Cisco
Umbrella[15], Majestic[18], Quantcast[21] and Farsight[22]. The downloaded
list uses only domains included in the Chrome User Experience Report[2],
which contains actual URLs visited by Chrome users.

The entries were put in a text file as input for Tracker Radar Collector.
To run the crawls a cloud-based server hosted on DigitalOcean[9] was used.
DigitalOcean is an American cloud infrastructure provider headquartered in
New York City with data centers worldwide. DigitalOcean offers a range of
services, including virtual private servers (VPS), object storage, and man-
aged databases. For this research a VPS is used, which in DigitalOcean
is called a droplet. A droplet is a lightweight, isolated, and easily-scalable
virtual machine that can be used to run a wide range of applications. On
this droplet, the image used is Ubuntu 22.10 x64 with a 8GB RAM memory,
80GB of disk space and 4 AMD CPUs. To access this cloud server PuTTY
was used. PuTTY is a free and open-source terminal emulator, serial con-
sole and network file transfer application[24]. It is used to connect to the
Secure Shell (SSH) protocol of the DigitalOcean server.

Before the main crawl of 50000 websites was ran, a smaller crawl of 10000
websites was crawled4 generated over November 2022[17]. It successfully
crawled 9175 websites and was ran from New York City. However, since
this crawl did not gave desired output a bigger crawl was started using
the above mentioned 50000 websites. This was done to up our chances
of finding a potential leak. This second crawl successfully crawled 46137
websites (92.3%) and was also ran from New York. Both of these crawls
used the same Tranco configuration and used the same DigitalOcean setup
mentioned earlier.

3Available at: https://tranco-list.eu/list/JX5KY/50000
4Available at: https://tranco-list.eu/list/5YW6N/10000

8

The command to run the crawls is:

npm run crawl −− − i . / c r a w l l i s t s / tranco top10000 . txt −o
. / output top10000 / −v −d reques t s , apis , mutations

This configuration is explained in the following points:

• -i ./crawl lists/tranco top10000.txt specifies the path to the
text file with the list of URLs to crawl.

• -o ./output top10000/ specifies the output folder where the output
files will be created.

• -v instructs the crawler to log additional information to the console
while crawling.

• -d requests,apis,mutations instructs the crawler which collectors
to use. It uses the request collector to detect leaks in requests. More-
over, the APICallCollector is used to log input element accesses and
it uses the MutationsCollector to detect changes in the DOM for po-
tential malicious scripts.

3.3 Leak detection

To detect whether potential malicious scripts send our email address and/or
password to their third-party server we need to identify (potentially) en-
coded, hashed or obfuscated leaks. This is a challenge since email addresses
might not be in plaintext but rather, encoded or hashed. For this reason
a technique similar to Englehardt et al.’s[12] and Senol et al.’s[23] methods
are used. Given a set of encoding and hashes, Englehardt et al.’s technique
searches for email leakage in HTTP traffic[12]. Senol et al.’s improves there-
after this method through splitting content by separators and decoding the
resulting strings, to search for different encodings of the search terms (email
and password values)[23]. Senol et al. searches for potential leaks in the re-
ferrer header, cookies, URL and POST bodies of the requests[23]. However,
using all these methods is out of scope for this research so only leak detection
via URL and POST request bodies is used. Similarly to above mentioned
previous work, we detect for a maximum of three encoding/hash layers.
We use likely encodings and hashes as defined in Senol et al.’s research[23],
which can be found in Appendix A.

To use this method on the collected JSON files a Python script has been
written to apply the leak detection method. In this script a leak detector
object is used to search for the ‘fake credentials’ in request URLs and POST
bodies. Moreover, we log whether we find a sniffed value read from an input
field. This is done to determine which source tried to read from an input
field.

9

To fill a potential input field it must be logged if an invisible form has
been injected. As discussed before this is captured by the MutationsCollec-
tor. However, to determine whether an input field leak is actually initiated
by the same party as the one injecting the script we log the forms action
attribute. The forms action attribute specifies where to send the form-data
when a form is submitted. This is then compared to the URL/POST body
which leaked the email address or the password. In the end this will give us
a list of all input field sniffs, all leaks and all injected input fields.

10

Chapter 4

Results

This chapter contains the results of the research described in chapter 4. In
section 5.1 the general results of the conducted research will be discussed.
Next we make a comparison with previous work in section 5.2 and we finish
by sharing other interesting findings from our study

4.1 General results

From the execution of our research, 46127 websites were crawled successfully
out of our dataset of 50000 websites (92.3%). Each successfully crawled
website created a corresponding JSON file with the data. When running
the leak detection program on these JSON files 76 site leaks on 21 websites
and 193 input field sniffs were found. From these leaks almost half of them
came from the known third-party trackers domains ct.pinterest.com and
api.rlcdn.com (15 leaks). The results of this can be found in table 4.1. In
this table the type of leak can be found, including if the leak occurred in
the URL or via POST request bodies. The encoding of the leak type can be
found and if not present there was no encoding detected. Finally, one can
find how many times a collection endpoint made a unique request on that
particular website. In the table you can only find unique requests for the
certain endpoints so therefore in total 38 unique site leaks were found.

From all the input field sniffs that were found, we found that websites
having a leak also had input field sniffs. In most cases these were common
form builders such as hsforms1 or TrustedForms2. The input field sniffs also
recorded sniffs of the known trackers ct.pinterest.com, api.rlcdn.com
and rs.fullstory.com.

Moreover, in our research we used a bait technique with fake creden-
tials to act as the browsers’ built-in login manager. When looking at the
mailbox of this bait email we did not receive any emails. This means our

1https://www.hubspot.com/products/marketing/forms
2https://activeprospect.com/trustedform/

11

bait credentials did not get tracked by third-party web trackers. In addition
to this, no scripts that misused the browser login manager to extract user
email addresses were found. This was confirmed by looking at the results
of the MutationsCollector for each website which had a leak. From this
we could confirm that no scripts with input elements for tracking purposes
were inserted into the webpages context.

4.2 Comparison with previous work

Since this thesis is inspired by an earlier work[3] performed by Acar et al.
a comparison needs to be made. In their study they found two scripts that
misused the browser login manager to extract user email addresses. This
was found on 1,110 of the Alexa top 1 million sites in September 2017. To
compare this with our results no such scripts as discovered by Acar et al.
were found[3]. In detail, this means that no websites were discovered where
form or input fields were injected. Chapter 5, discussion, will explain why
this might be the case.

On the other hand, it was discovered that rlcdn.com is the most promi-
nent tracker domain that collects hashed email addresses. LiveRamp (the
entity behind rlcdn) collected the MD5, SHA-1 and SHA256 hashes of the
email address typed into login forms. Furthermore, we also found leaks of
the tracker domain fullstory.com. Both these leaks are similar to what Senol
et al. found in their research[23].

4.3 Other results of note

As can be seen in table 4.1 only email address leaks were found. However,
we also discovered our bait password via a POST request body. This was
discovered on the website bikereg.com. According to the leak detection
program we found that the website made a request to itself which means it
collects itself. This sounded hard to believe so the initiators of the specific
request were inspected. We found that bikereg loaded scripts from Code-
Plex, Amazon CloudFront and the jQuery JavaScript library. All of these
either enable users to upload and share their own software (CodePlex), speed
up distribution of static and dynamic webcontent (CloudFront) or simplify
HTML DOM tree traversal and manipulation (jQuery).

Moreover, when looking at the website source code we could not find
a use case which purposely leaks to trackers. Hence, it is likely that this
password which got detected by the leak detection program is not a request
to a third-party domain for the purpose of web tracking. This for the reason
that this request happened by the first-party domain and we excluded first-
party domains from the results. Therefore, it is plausible that bikereg.com
does not purposely leak passwords to third-parties.

12

Leak Type Location Encoding Quantity Website Collection Endpoint

Email URL URL 4 www.bizzabo.com https://ws.zoominfo.com

URL md5-sha1-
sha256

2 www.buzzfeednews
.com

https://api.rlcdn.com

URL URL 1 www.extensis.com https://okt.to

URL md5-sha1-
sha256

1 www.favecrafts.com https://api.rlcdn.com

URL URL 2 www.getambassador
.com

https://ws.zoominfo.com

URL sha256 2 www.gorgias.io https://ct.pinterest.com

URL md5-sha1-
sha256

2 www.searchengine
journal.com

https://api.rlcdn.com

URL md5-sha1-
sha256

1 www.livestrong.com https://api.rlcdn.com

URL sha256 1 www.logi.com https://ct.pinterest.com

URL sha256 1 www.logitech.com.cn https://ct.pinterest.com

URL sha256 1 www.logitech.com https://ct.pinterest.com

URL URL 2 www.mbsy.co https://ws.zoominfo.com

URL md5-sha1-
sha256

2 www.metalinjec
tion.net

https://api.rlcdn.com

URL sha256 2 www.metropolismag
.com

https://ct.pinterest.com

URL URL 2 www.openshift.com https://autocomplete.dem
andbase.com

POST 1 www.bizzabo.com https://forms.hsforms.com

POST 1 www.bizzabo.com https://rs.fullstory.com

POST URL 1 www.bikereg.com https://www.bikereg.com

POST 1 www.getambassador
.com

https://.getambassador.com

POST 1 www.purecars.com https://rs.fullstory.com

POST 1 www.chargebee.com https://api.factors.ai

POST URL 3 www.veteransunited
.com

https://create.leadid.com

POST sha1 1 www.veteransunited
.com

https://api.trustedform.com

POST 1 www.mbsy.co https://getambassador.com

POST 1 www.ex.co https://rs.fullstory.com

Table 4.1: Email address leaks found in request URLs of given collection
endpoints of the crawled websites. Including how many times the leak was
found in a different request URL with that specific endpoint.

13

Chapter 5

Discussion

In this chapter a discussion on the results will be provided. In particular,
limitations of our study will be discussed and possibilities for future work.

5.1 Limitations

When our research was conducted several limiting factors were discovered.
These limiting factors needs to be discussed when interpreting the gathered
results in chapter 4.

5.1.1 The dataset

We used 50000 websites in our crawl. Since no actual scripts were discovered,
50000 websites are not enough. To compare, Acar et al. crawled 1 million
websites in their study which did find two scripts that misuse browser’s
built-in login manager to extract user email addresses[3]. These scripts were
present on more than 1000 websites.

5.1.2 Crawling

In our research we choose to run a crawl on a cloud-based server hosted on
DigitalOcean. This may be problematic since the crawler could have been
marked as a bot when visiting websites. This might be a reason why 3873
out of 50000 website visits (7.7%) failed. However, Zeber et al. did point
out that the difference between automated measurements techniques over
human gathered data is rather small for third-party domains and URLs[27].
Since we do not have log files to verify why this happened it will remain
unknown as to why these visits failed.

Another note is that we crawled from a server hosted in the US. This can
have an impact on the amount of third-parties that were found on websites.
This should be taken into account when using our results outside of the US.

14

5.1.3 Leak detection

In our leak detection method only likely hashes and encodings, specified in
Appendix A, are used. This means that our leak detection method may
still miss leaks that are not encoded or hashed using these likely encodings.
Rather, there could have used custom encodings/hashes which we would
have never been able to discover.

Another note is that in this research there has only been searched for
leaks in URLs and POST request bodies. However, leaks can occur in other
places as well such as cookies or referrer header. This is what Senol et al.
did use in their research[23]. As mentioned in chapter 1, introduction, this
was out of scope for this thesis but mentioning it can help future work.

5.2 Future work

When looking at future work there are several options which can be applied.
The first part entails improving upon the used methodology. One can crawl
more websites or use a different crawler configuration to get more complete
data. This can mean that for instance one million websites can be crawled
and instead of using Tracker Radar Collector one can use OpenWPM to get
a more representative dataset. In addition to this, crawls can be run from
the EU as well instead of only the US. This will give more of a comparison
between the third-party trackers used in both regions.

However, not only the methodology can be improved upon for future
work. The analysing of results can also be extended in certain ways. As
already mentioned in the limitations, future work can focus on a better leak
detection method such that leaks that got undiscovered up until now might
be discovered in the future. Moreover, websites can be categorized to see if
websites with similar leaks have similar tracker providers.

15

Chapter 6

Conclusions

In this thesis we studied browsers’ built-in login manager abuse for the pur-
pose of third-party web tracking. A list was collected of the Tranco top 50000
websites generated over the period 23 November 2022 to 22 December 2022
(30 days). We crawled this list using a modified version of DuckDuckGo’s
Tracker Radar Collector. We used the MutationObserver API to detect
DOM changes and detect whether sensitive data is injected into the page’s
context. A bait technique acted as the browsers’ built-in login manager
to know when to log sensitive input reads. Following this we analysed the
gathered data using a leak detection method.

Our findings using our leak detection method found 76 site leaks on
21 websites. More specifically, we found URL and POST request leaks
of known third-party tracker domains such as rlcdn.com (LiveRamp) and
fullstory.com (FullStory). However, we did not discover any third-party
scripts that access and exfiltrate sensitive user data by misusing browsers’
login autofill.

Moreover, we found 193 input field sniffs on our crawled websites. These
results were compared to previous research conducted by Senol et al.[23] and
Acar et al.[3] and showed similar results with the former.

Our bait technique which filled in fake credentials did not get tracked
by third-party web trackers because no emails in the mailbox of this fake
credential were received.

Finally, we discovered that some leaks were not requests to third-party
domains for the purpose of web tracking but common form builders or an
incidental collection of a request made by a first-party.

16

Bibliography

[1] Puppeteer. Puppeteer is a Node library which provides a high-level API
to control headless Chrome or Chromium over the DevTools Protocol.
https://developer.chrome.com/docs/puppeteer/.

[2] The Chrome User Experience Report . https://developer.chrome.

com/docs/crux/about/.

[3] Gunes Acar, Steven Englehardt, and Arvind Narayanan. No bound-
aries: data exfiltration by third parties embedded on web pages. Pro-
ceedings on Privacy Enhancing Technologies, 2020(4):220–238, 2020.

[4] Amazon. Alexa Top Websites – Most Popular Sites List 2022. Alexa
rank is a global ranking system that ranks millions of websites in order
of popularity. https://www.alexatopwebsites.com/.

[5] HTTP Archive. Web Almanac, 2021. https://almanac.httparchive.
org/en/2021/.

[6] Mika D Ayenson, Dietrich James Wambach, Ashkan Soltani, Nathan
Good, and Chris Jay Hoofnagle. Flash cookies and privacy ii: Now
with html5 and etag respawning. Available at SSRN 1898390, 2011.

[7] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor
Imre. User tracking on the web via cross-browser fingerprinting. In
Nordic conference on secure it systems, pages 31–46. Springer, 2012.

[8] Ha Dao and Kensuke Fukuda. Alternative to third-party cookies: in-
vestigating persistent pii leakage-based web tracking. In Proceedings
of the 17th International Conference on emerging Networking EXperi-
ments and Technologies, pages 223–229, 2021.

[9] DigitalOcean, Inc. DigitalOcean. DigitalOcean, Inc. is an American
cloud infrastructure provider with data centers worldwide. https://
www.digitalocean.com/.

[10] DuckDuckGo. Tracker Radar. Tracker Radar is a best-in-class data
set about trackers that is automatically generated and maintained

17

through continuous crawling and analysis. https://spreadprivacy.
com/duckduckgo-tracker-radar/.

[11] DuckDuckGo. Tracker Radar Collector. Modular, multithreaded,
puppeteer-based crawler used to generate third party request
data for the Tracker Radar. https://github.com/duckduckgo/

tracker-radar-collector.

[12] Steven Englehardt, Jeffrey Han, and Arvind Narayanan. I never signed
up for this! privacy implications of email tracking. Proc. Priv. Enhanc-
ing Technol., 2018(1):109–126, 2018.

[13] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmer-
man, Jonathan Mayer, Arvind Narayanan, and Edward W Felten.
Cookies that give you away: The surveillance implications of web track-
ing. In Proceedings of the 24th International Conference on World Wide
Web, pages 289–299, 2015.

[14] Avi Goldfarb and Catherine E Tucker. Privacy regulation and online
advertising. Management science, 57(1):57–71, 2011.

[15] Dan Hubbard. Cisco Umbrella 1 Million. The Cisco Umbrella 1
Million is a free list of the top 1 million most popular domains.
https://umbrella.cisco.com/blog/cisco-umbrella-1-million.

[16] Junaid Iqbal, Ratinder Kaur, and Natalia Stakhanova. PoliDOM: Mit-
igation of DOM-XSS by Detection and Prevention of Unauthorized
DOM Tampering. In Proceedings of the 14th International Conference
on Availability, Reliability and Security, pages 1–10, 2019.

[17] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Ma-
ciej Korczyński, and Wouter Joosen. Tranco: A research-oriented top
sites ranking hardened against manipulation. In Proceedings of the 26th
Annual Network and Distributed System Security Symposium, NDSS
2019, February 2019.

[18] Majestic. The Majestic Million. Majestic Million is a FREE league
table of the top 1 million websites in the world. https://majestic.
com/reports/majestic-million.

[19] Jonathan R Mayer and John C Mitchell. Third-party web tracking:
Policy and technology. In 2012 IEEE symposium on security and pri-
vacy, pages 413–427. IEEE, 2012.

[20] OpenWPM. OpenWPM is a web privacy measurement framework
which makes it easy to collect data for privacy studies on a scale of thou-
sands to millions of websites. https://github.com/openwpm/OpenWPM.

18

[21] Quantcast. Quantcast. https://web.archive.org/web/

20200105223115/https://www.quantcast.com/top-sites/.

[22] Farsight Security. Farsight. https://www.farsightsecurity.com/.

[23] Asuman Senol, Gunes Acar, Mathias Humbert, and Fred-
erik Zuiderveen Borgesius. Leaky forms: A study of email and password
exfiltration before form submission. In 31st USENIX Security Sympo-
sium (USENIX Security 22), pages 1813–1830, 2022.

[24] Simon Tatham. PuTTY. PuTTY is a free and open-source terminal
emulator, serial console and network file transfer application. https:
//www.putty.org/.

[25] DOM Living Standard. MutationObserver. The MutationObserver
interface provides the ability to watch for changes being made to the
DOM tree. https://developer.mozilla.org/en-US/docs/Web/API/
MutationObserver.

[26] Oleksii Starov, Phillipa Gill, and Nick Nikiforakis. Are you sure you
want to contact us? quantifying the leakage of pii via website contact
forms. Proc. Priv. Enhancing Technol., 2016(1):20–33, 2016.

[27] David Zeber, Sarah Bird, Camila Oliveira, Walter Rudametkin, Ilana
Segall, Fredrik Wollsén, and Martin Lopatka. The representativeness
of automated web crawls as a surrogate for human browsing. In Pro-
ceedings of The Web Conference 2020, page 167–178. Association for
Computing Machinery, 2020.

19

Appendix A

Appendix

Code snippet of the MutationCollector which was created to extend
Tracker Radar Collector:

const puppeteer = r equ i r e (’puppeteer’) ;
const BaseCo l l e c to r = r equ i r e (’./BaseCollector’) ;

class Mutat ionsCo l l ec tor extends BaseCo l l e c to r {

id () {
return ’mutations’ ;

}
/**

* @param {import(’./BaseCollector ’).CollectorInitOptions}

options

*/

i n i t ({ log , u r l }) {
/**

* @type {any[]}

*/

this . i n s e r t edNodes = [] ;
}

/**

* @param {{cdpClient: import(’puppeteer ’).CDPSession , url:

string , type: import(’./TargetCollector ’).TargetType ,}}

targetInfo

*/

async addTarget ({ cdpClient , ur l , type }) {
await cdpCl ient . send (’Page.enable’) ;
await cdpCl ient . send (’DOM.enable’) ;
const SOURCE STRING = ‘
const f i l l I n p u t F i e l d s = function (f i e l d s) {

f o r (const f i e l d o f f i e l d s) {
f i l l I n p u t F i e l d (f i e l d) ;

}

20

} ;

const f i l l I n p u t F i e l d = function (/** @type {

HTMLInputElement} */ f i e l d) {
//check type and fill accordingly

i f (f i e l d . type == ’email’ && f i e l d . tagName != ’form’)
{
f i e l d . va lue = ’hello@gmail.com’ ;

}
else i f (f i e l d . type == ’password’ && f i e l d . tagName

!= ’form’) {
f i e l d . va lue = ’myPwd1234’ ;

}
else {

conso l e . l og (’No␣email␣or␣password␣fields␣to␣fill
’) ;

}
} ;

var r e s u l t L i s t = [] ; const observeTargets = function () {
// Specify root document node as target node to

observe full page

const targetNode = window . document . documentElement ;
const c on f i g = { a t t r i b u t e s : true , c h i l d L i s t : true ,

subt ree : true } ;
const c a l l b a ck = function (/** @type {MutationRecord

[]} */ mutationList , /** @type {MutationObserver}

*/ obse rver) {
mutat ionList . forEach (function (mutation) {

f o r (var i =0; i<mutation . addedNodes . l ength ; i
++){

i f (mutation . addedNodes [i] . nodeName == "#

text" | | mutation . addedNodes [i] .
nodeName == "#comment") {
cont inue ;

}
// @ts-ignore

var forms = mutation . addedNodes [i] .
qu e rySe l e c t o rA l l (’form ,␣input’) ;

i f (forms . l ength == 0) {
cont inue ;

}
var elemDimension = forms [i] .

getBoundingClientRect () ;
var parentFormAction = forms [i] . form .

ac t i on ;
//Push the mutation to the result list

together with its position and action

r e s u l t L i s t . push (forms [i] . outerHTML , ("
Form␣element␣width:␣" + elemDimension
. width) , ("Form␣element␣heigth:␣" +
elemDimension . he ight) ,

21

parentFormAction) ;
//Call the function to fill the input

fields

setTimeout (f i l l I n p u t F i e l d s , 1000 , forms) ;
}

}) ;

} ;
//Create the MutationObserver object to initiate

callback

const obse rver = new MutationObserver (c a l l b a ck) ;
// Start observing target node

obse rve r . observe (targetNode , c on f i g) ;
} ;

//Start observering targets when the whole DOM content

has been loaded

window . addEventListener (’DOMContentLoaded’ , (event) => {
observeTargets () ;

}) ;
‘ ;
await cdpCl ient . send (’Page.

addScriptToEvaluateOnNewDocument’ , { source : ‘ c on so l e .
l og ("INJECTED␣SCRIPT") ‘}) ;

await cdpCl ient . send (’Page.
addScriptToEvaluateOnNewDocument’ , { source :
SOURCE STRING}) ;

}

/**

* @param {Options} options

*/

async getData (opt ions) {
this . op t i on s = opt ions ;
this . page = opt ions . page ;
this . f i n a lU r l = opt ions . f i n a lU r l ;
var r e s u l t = await this . page . eva luate (‘ r e s u l t L i s t ‘) ;
this . i n s e r t edNodes . push (r e s u l t) ;
return this . i n s e r t edNodes ;

}

}

module . export s = Mutat ionsCo l l ec tor

/**

* @typedef {number} NodeId

*/

/**

* @typedef Options

22

* @property {string} finalUrl

* @property {function(string):boolean} urlFilter?

* @property {puppeteer.Page} page

* @property {string} outputPath

* @property {puppeteer.BrowserContext} context

*/

/**

* @typedef NodeData

* @property {Node} node

*

*/

23

Likely encoding and hashes used for URL and POST bodies leak detection:

LIKELY ENCODINGS = [
’ base64 ’ ,
’ ur l encode ’ ,
’ e n t i t y ’ ,
’ l z s t r i n g ’ ,
’ custom map 1 ’
]

LIKELY HASHES = [
’md5 ’ ,
’ sha1 ’ ,
’ sha256 ’ ,
’ sha512 ’ ,
’ s h a s a l t e d 1 ’
]

24

