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Abstract

This thesis proposes an algorithm that utilizes Large Language Models
(LLMs) for clustering social media posts based on topics and performing
sentiment analysis. The study addresses the challenges of analysing vast
and non-uniform social media data and highlights the benefits of LLMs in
improving accuracy and efficiency. The methodology incorporates Trans-
former models, cluster analysis, dimensionality reduction techniques, and
machine learning models for sentiment analysis.

For displaying the effectiveness of the algorithm, we apply it on a dataset
of Tweets about ChatGPT. The results demonstrate the algorithm’s ability
to correctly capture topic clusters and sentiment distributions within these
topics. The findings contribute to social media analysis and offer insights
into public sentiment.
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Chapter 1

Introduction

1.1 Background

Social media allows us to discuss topics with much larger groups of people,
faster than ever before. Platforms like Twitter, Facebook, or Reddit allow
users to express their opinions and then other users from all around the
globe are able to read these statements and respond to them with just the
click of a button. Depending on the platform used, these posts can be either
the length of a single sentence, or the length of an entire essay, giving us
both in depth looks into issues, or short and comprehensive insights into the
minds of others.

The ease of use for these platforms, however, can act as a double-edged
sword. While more perspectives being shared than ever before is good for
healthy discussions, the large amount of posts can make it difficult to find
specific information, or analyse all the different perspectives to reach a con-
sensus. Especially since users are given a lot of freedom in how they format
their posts. The result of this is that anyone interested in analysing this
online discourse is going to have a hard time working through these huge
amounts of non-uniform data.

Having a proper method of studying these posts could thus prove to be
useful to anyone interested in studying what is being said on social media.
This is not only of interest to social scientists, but also useful for companies
for example, as knowing the general public’s stances on certain issues will aid
in making better business decisions. A lot of prior info on online reputation
monitoring already exists, as can be seen in the work by Carrillo-de-Albornoz
et al. [5], but there is still plenty of room for improvement. For example, the
methods used in that paper rely on supervised machine learning methods
and therefore depend on annotated training and test data.

Now with the recent breakthroughs made in large language models (also
called LLMs for short), it may be possible to develop an unsupervised, or
semi-supervised alternative method. Using this new technology we might
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decrease the computing time, improve on the accuracy of the algorithm
and/or reduce the level of supervision required.

1.2 Overview

This gives us the following research question:
How effective are LLMs in clustering social media posts by topic
and analysing sentiment?

We will create one such algorithm, by using Large Language Models
both for the filtering and grouping of posts, and the sentiment analysis of
the contents of these posts. This process is easily automatable and will give
us the proper data to see whether the public has mostly positive or negative
feelings towards a given subject.

We evaluate our approach using a case-study methodology, specifically
focusing on the analysis of opinions regarding OpenAI’s ChatGPT found on
Twitter. This will be done by first providing the required background infor-
mation. Secondly, all the steps taken in order to create this algorithm will
be explained, as well as the method in which its performance is evaluated.
Thirdly, the results of the study will be presented Fourthly, the results of
the study will be discussed. Finally, the conclusions reached in this paper
will be laid out.
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Chapter 2

Preliminaries

2.1 Transformer Models

To better understand our approach for clustering topics and performing sen-
timent analysis, it is helpful to have a basic understanding of the Transformer
models that will be used. These models are a recent advancement in natu-
ral language processing (NLP) first introduced in a 2017 paper by Vaswani
et al. titled “Attention is All You Need” [21], and have been particularly
effective at processing large amounts of text data.

2.1.1 How Transformers Models Work

Transformers are composed of an encoder and a decoder, each of which con-
sists of multiple layers of self-attention and feedforward neural networks.
The encoder is responsible for processing the input sequence, while the de-
coder is used for generating output sequences, such as in language translation
tasks.

The key innovation of transformers lies in the use of the self-attention
mechanisms to process the input data. Self-attention allows the network to
selectively attend to different parts of the input sequence, based on their
relevance to the current task. This makes transformers particularly effective
at processing long sequences of text, which can be difficult for traditional
neural network architectures to handle.

The self-attention mechanism in transformers uses an attention function
that maps a query and a set of key-value pairs to an output. In this con-
text, the query, key, and value vectors represent the input sequence’s tokens
(words or subwords) in three different projections. The query vector rep-
resents the current input token being attended to, while the key and value
vectors represent all the other tokens.

The attention weights are computed based on learned query, key, and
value vectors that are multiplied to compute a scalar attention score for each
position in the input sequence. These attention weights determine how much
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Figure 2.1: (left) Scalar Attention Score (right) Multiple Attention Layers
Running in Parallel

each token contributes to the output for the current query. This process is
done for each layer of the network, allowing the network to attend to different
parts of the input sequence at different levels of abstraction. These different
layers are all calculated in parallel, in order to keep the algorithm efficient.
A visual explanation of this mechanism can be seen in Figure 2.1, taken
from the work by Vaswani et al. [21].

2.1.2 The Benefits of Transformer Models

One of the key advantages of using self-attention is that transformers are
now able to process input sequences in parallel, rather than sequentially like
other neural network approaches. This makes them much more efficient for
processing long sequences of text, and has led to state-of-the-art performance
on a wide range of natural language processing tasks.

Another benefit of the transformer models is that they are also re-
markably user-friendly. As can be seen in the DIXIT article “Het Succes
van BERT en Huggingface - Taaltechnologie in 5 Regels Code” by Suzan
Verberne, implementing basic functionalities like Sentiment Analysis using
transformer models [22] only takes a few lines of code.

2.2 Cluster Analysis

Cluster analysis is a data mining technique that divides data into groups
(clusters) that are meaningful, useful, or both [20]. These clusters are able
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to capture the natural structure of the data, making the data easier to
understand while preserving the characteristics of the data, or serve as a
useful starting point for further processing.

2.2.1 Similarity Measures

In order for an algorithm to consider which data points to group together, it
needs to be able to calculate how similar or dissimilar two data points are.
To accomplish this, a similarity measure (sometimes called distance metric)
is used. There are several similarity measures to choose from, but the most
frequently used are:

• Euclidean Distance: Measure of similarity as the straight-line distance
between two points in space. It considers the coordinates of the points
in all dimensions and provides a direct measurement of how far apart
they are.

• Manhattan Distance: Measure of the distance between two points by
summing the absolute differences of their coordinates along each di-
mension. It reflects the total number of blocks one must travel hori-
zontally and vertically to reach from one point to another in a grid-like
path.

• Cosine Similarity: Measure of the similarity between two vectors based
on the cosine of the angle between them. It is used to measure the
direction and magnitude of similarity, particularly in high-dimensional
spaces. Cosine similarity is unique in that it ranges between -1 and 1,
with a higher cosine similarity indicating a higher degree of similarity
between the vectors.

2.2.2 How Cluster Analysis Works

The main job of cluster analysis is to group data points together that share
similarities in some characteristics, while being dissimilar to data points
in other clusters. The way this is done can vary greatly, as there exist
many algorithms for clustering that all work differently. The general process,
however, does remain the same over the different algorithms.

1. First, the data needs to be represented in a suitable format to apply
clustering analysis. Most often, this will be a numerical representation.

2. Once the data is in a usable format, a similarity measure needs to
be chosen, so the algorithm is able to calculate how similar two data
points are. This determines whether to cluster these points together
based on the result.
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3. Now that we have chosen how to define similarity, we can initialize
our clusters. Depending on the algorithm, the clusters can be either
initialized randomly, or by using a predetermined number of clusters.

4. After having created our initial clusters, we start iteratively updating
them by assigning the data points to their best fitting cluster. This
depends on what clustering algorithm and what similarity measure is
chosen, the way this happens can vary.

5. Finally, the algorithm converges or reaches a stopping criterion. At
this point we have our final clusters. Now some evaluation metrics
might be applied over the final clusters in order to gain confidence
in the performance of the clustering algorithm. If satisfied with the
results, the data is ready to be interpreted or processed further.

2.2.3 The HDBSCAN algorithm

For the purposes of this paper, we will be using the HDBSCAN algorithm,
which is a current state of the art clustering algorithm. HDBSCAN (Hi-
erarchical Density-Based Spatial Clustering of Applications with Noise) is
a density-based clustering algorithm first introduced by Campello et al. in
2013 [3]. It is an extension of the DBSCAN (Density-Based Spatial Cluster-
ing of Applications with Noise) algorithm, that adds a hierarchical approach
and a robust method to determine cluster density thresholds [7].

HDBSCAN works by performing the following steps:

1. First, HDBSCAN identifies areas of high density in the data by as-
signing each data point a reachable distance, which is the maximum
distance within a data point must be to be considered in the same
cluster, and a minimum cluster size. It then identifies “core points”,
which are data points with many neighbours. These points will be
considered the centres of the clusters.

2. After having identified the core points, a MST (Minimum Spanning
Tree) will be constructed between all the core points based on the dis-
tances between them. This MST represents the hierarchical structure
of the data. The root of the tree is the core point with the highest
density, while the leaf nodes are the low density points.

3. This hierarchy is then used to merge clusters together. The high-
est density clusters will first be merged together, and the algorithm
then moves on to the clusters with lower density levels. This merging
continues until either the desired number of clusters is reached, or a
stopping criterion is met.
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4. Finally, once the algorithm has stabilized, it will detect outliers based
on their distances to the clusters. This way, noise will get removed
from the data, resulting in cleaner clusters.

2.2.4 Sentence Embeddings

Since HDBSCAN requires the input data to be in a numerical format, we
will be using sentence embeddings to represent our text data. While the
concept of embeddings exists for quite a while, they were popularized in
Church’s 2013 paper Word2Vec [4].

While representing words as numbers is not new, embeddings are special
in that they are able to retain their syntactical and semantic meaning from
their original context. They are able to do this differs per algorithm. In
the case of Word2Vec, unsupervised learning models were used to train
the model. These models consider the distributional properties and co-
occurrence patterns of words in a given corpus to learn meaningful word
representations. A limitation of this method, however, is that the vector
representations for words are fixed based on what was learned during the
training of the model. It thus is not able to assign different values to words
used in different contexts, but rather assigns a general value it learned.

More recent models fix this problem by making use of the self-attention
and feedforward neural networks of transformer models. Using these to
generate the embeddings makes it possible to process the input tokens bidi-
rectionally, so both the context to the right and left of a word is being
preserved. They then output high-dimensional vectors of a fixed size, each
representing a token and its context.

2.2.5 Curse of Dimensionality

Applying clustering analysis on data with a high dimensionality can cause
some problems. In a high dimensional space, data can be very sparse and
contain a lot of irrelevant features or noise. This makes it harder to cor-
rectly group similar data together. Furthermore, some algorithms are not
able to handle data with high-dimensionality, and will take a much longer
time to run if it has to compute a lot of more data. To solve these issues,
dimensionality reduction techniques exist [20].

Dimensionality reduction algorithms transform the data from its high-
dimensional space to a lower-dimensional space, while preserving the struc-
ture and important characteristics of the original data. The goal is to find
a new, smaller set of variables, known as derived variables or features, that
capture the essence of the original data. Using this new, smaller set of fea-
tures will help speed up the algorithm, as well as make the data easier to
interpret for us.
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2.3 Sentiment Analysis

Sentiment analysis, also known as opinion mining, is a process that involves
determining the subjective nature (sentiment) of a piece of text, first intro-
duced by Pang et al. in their 2002 paper “Thumbs up? Sentiment Clas-
sification using Machine Learning Techniques” [15]. The algorithm aims
to identify and extract the underlying sentiment expressed by the author,
whether it is positive, negative, or neutral.

Sentiment analysis algorithms typically perform the following steps:

1. First the text is preprocessed by removing irrelevant information like
punctuation, stop words, and special characters. In the case a trans-
former model is used (like we will be doing) this step also includes
transforming the text into tokens.

2. Next, the relevant features are extracted from the preprocessed text.
These features are the parts of speech, sentiment lexicons, or word
embeddings that capture the semantic meaning of words.

3. Once the features are extracted, the model is able to assign a sentiment
label to the text. The sentiment label could either be a binary classi-
fication (positive or negative) or a multi-class classification (positive,
negative, or neutral).

These algorithms rely on well-trained machine learning models in order
to correctly classify the text. The models learn patterns and relationships
between extracted features and their corresponding sentiment in a labelled
training set. After being properly trained, a model will be able to correctly
classify new data. These days, many pre-trained models exist and are easily
available to use either straight out of the box, or to be tweaked to suit a
specific use case.
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Chapter 3

Methodology

3.1 Clustering using BERTopic

The first step of the algorithm will be the clustering the documents into
different topics. To do this, the BERTopic topic modelling algorithm created
by Maarten Grootendorst is used [9]. BERTopic clusters text data (and since
recently also images) based on the topic of the contents, precisely what we
want to do with our documents.

3.1.1 The BERTopic Model

BERTopic is a modular approach that consists of in 6 main steps. This
means that we are free to pick and choose algorithms for each step, or even
leave some out entirely, to best fit our scenario. Aside from being highly
customizable to our specific needs, it also means the method is future-proof.
When new, more accurate or faster algorithms are developed for any of these
6 main steps, they can easily be integrated into the algorithm, making the
overall process of clustering the data more accurate and faster.

The six main steps performed by BERTopic are:

1. Embedding documents: convert input documents into numerical repre-
sentations called embeddings. These embeddings capture the semantic
meaning of the documents inside a high dimension vector. The dif-
ferent dimensions of the vectors will allow the clustering algorithm to
group similar data.

2. Dimensionality reduction: reduce the dimensionality of the document
embeddings using dimensionality reduction algorithms. This step aims
to preserve the local structure of the high-dimensional data in a smaller,
more comprehensive data set. The reduced dimensionality of the data
simplifies data interpretation and enhances the effectiveness of the
clustering algorithm.
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3. Clustering: The reduced-dimensional embeddings are then clustered
using a clustering algorithm that groups similar documents together.
These algorithms identify patterns within the data and group docu-
ments based on their similarities.

4. Tokenization of topics: After the documents are clustered, break down
the topic representations into individual words or phrases. This step
allows for a more granular analysis of the topics.

5. Weighting tokens: assign weights to the tokens based on their impor-
tance within each topic. This weighting process helps highlight the
most relevant and informative keywords within each topic. For token
weighting, c-TF-IDF (class-based Term Frequency-Inverse Document
Frequency) or one of its variants are used. This formula considers the
importance of terms within each cluster based on their frequency and
distribution across the entire document collection.

6. Topic representation: generate topic representations by selecting the
most important terms for each cluster based on their weighted values.
These terms reflect the key concepts and themes present in the doc-
uments within each cluster, and the top terms can thus be used as a
representation for the overall topic of the cluster.

The exact implementation for these 6 steps is yet to be defined. In the
following sections, the methods used in this thesis will be explained, as well
as the motivation behind doing so discussed.

3.1.2 BERT Embeddings

For the first step of transforming the text data into a numerical format, we
will be using BERT embeddings. The BERT (Bidirectional Encoder Repre-
sentations from Transformers) model is a pre-trained model first introduced
in BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding by Devlin et al. [6]. This model produces BERT embeddings,
which are numerical vector representations of tokens (words or subwords),
that retain semantic and syntactic information of words in their context.

These BERT embeddings are implemented by using the SentenceTrans-
formers model, a Python framework for state-of-the-art sentence, text and
image embeddings, created by Reimers et al. [18]. Since we want to design
an unsupervised approach, we will be using a pre-trained model. Specifi-
cally, we will be using the all-MiniLM-L6-v2 model by Reimers et al. [14], as
this model is 5 times faster than the most accurate all-mpnet-base-v2 model,
while still offering good quality [17]. Thus, this model is a computationally
efficient model, that also gives us reliable embeddings.
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3.1.3 Dimensionality Reduction using UMAP

After the first step, the data will be formatted correctly, but still repre-
sented in high-dimensional vectors. Clustering high dimensional data is a
challenging problem, so we will first reduce the dimension of the embeddings
obtained in the previous step. This is because in a high dimensionality, the
data can be very sparse and contain a lot of irrelevant features or noise.
Reducing the number of dimensions thus can help clean up the data, which
will lead to better performance. There are many dimensionality reduction
algorithms to chose from, but in this paper the state of the art UMAP
algorithm is used.

UMAP (Uniform Manifold Approximation and Projection) is a dimen-
sionality reduction technique first introduced by McInnes et al. [13]. UMAP
works by performing the following steps:

1. First, the nearest neighbours for all data points are identified based
on a chosen similarity measure. A weighted graph is then constructed,
where each point is connected to its neighbours with the weight of
their similarity.

2. We then initialize a lower dimensionality version of the graph. All data
points are plotted in this new graph in such a way that neighbouring
data points retain their similarity score.

3. We now iteratively update the graph by comparing the new graph
to the old graph. A data point is selected and gets moved closer to
its nearest neighbour, and further from a non-neighbouring point in
the low dimension space by comparing it to the original graph. This
happens until a certain stopping criterion is met.

Depending on the clustering algorithm selected, we can adjust the tar-
get dimensionality. In our case, we choose a clustering algorithm that still
works well with 5–10 dimensions. Since the lower the number of attributes
we reduce to, the higher the chance of losing important information, it is
wise to leave the data with a bit more variables. To control the target
number of dimensions, we utilize the UMAP parameter n components. For
this algorithm, we set the value of this parameter to five. This value was
chosen as a starting value after seeing multiple example implementations of
BERTopic use it [8][10]. However, after some further experimentation with
different values we decided to leave it at five, as it seemed to reduce the
dimensionality enough so that sparseness and noise in the data is reduced
and the clustering efficiency improves, but it is not so low that it led to a
significant loss of the original data structure.

Because we will be working with high dimensional vector data, we make
UMAP use the Cosine similarity measure. The Cosine similarity uses the
angle between the two vectors to measure the direction and magnitude of
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similarity. This angle based approach makes it well suited for application
on high dimension data.

Other parameters worth specifying are the n neighbors parameter,
which determines the number of nearest neighbours considered for each data
point during the construction of the neighbourhood graph. Having a higher
number of nearest neighbours captures more fine-grained details of local
data, but also leads to a higher computation time. We set the number of
nearest neighbours to 10, as we are only interested in grouping documents
that share the same topic, which does not require a high level of detail,
preferring the efficiency gain over the loss of accuracy.

We also have the min dist parameter, which controls the minimum dis-
tance between points in the low-dimensional embedding. Having a lower
minimum distance between points results in more densely packed clusters,
and a higher number in more spread out clusters. Whether you want more
dense or more sparse clusters depends on the way the data is structured.
After some trial and error, very densely packed clusters were found to give
the best results, so the min dist parameter is set to 0.0.

3.1.4 Clustering using HDBSCAN

The next step is to cluster the lower dimensional data, where we use the art
HDBSCAN algorithm.

Just like how the UMAP algorithm had to be able to calculate how simi-
lar two data points are to each other in order to maintain the data structure
in a lower dimension, HDBSCAN will need to be able to measure similarity
in order to know which points to cluster together. However, HDBSCAN
does not support the cosine similarity metric. That is why the Euclidean
distance metric will be employed in this instance, which calculates the dis-
tance of two data points simply by taking the straight line distance between
them.

The next decision we have to make is how sensitive we want the clus-
tering to be. To control this, we can set the min samples parameter, which
determines the minimum number of samples in a neighbourhood for a point
to be considered a core point, to a smaller number. With a lower value the
clustering will become more sensitive, while with a higher value data points
would be labelled as noise much earlier. We wanted as many documents to
be clustered as possible, so we set the value for the minimum samples to the
low value of 10.

An additional reason why we are able to leave the minimum number
of samples so low is because we use the EOM method (Excess of Mass)
cluster selection method. This approach works by looking at the size and
density of clusters and picks the clusters (clusters with a large excess of
mass) that are the largest and densest compared to their parent cluster.
Since EOM considers density in its calculation, just like HDBSCAN, they
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work well together and because prominent and dense clusters take priority,
the algorithm will be effective at handling noise and outliers.

Another parameter that is worth experimenting with is the min cluster

size parameter, which sets the minimum number of data points required
to form a cluster. In this instance, this value is set to 150. Having a
higher number here comes with two benefits. First, the higher the minimum
number of data points, the shorter the algorithm will take to run. This is
because instead of many small clusters, we will get less big clusters.

Second, a small cluster is not valuable to us. We still want to apply
sentiment analysis later on, and for this to run reliably, we want a big enough
sample size for each cluster. Since we will also be filtering out documents
of which the clustering algorithm is unsure whether it belongs to the topic,
and documents of which the sentiment analysis is unsure whether it correctly
identified the sentiment, we know the size of the clusters is likely to decrease
later on. Having the initial cluster size thus be quite large, gives us some
leeway to lose a few samples along the way.

That being said, raising these numbers too high will lead to clusters
that are so broad in topic, that we will not be able to obtain a detailed
sentiment analysis. The whole step of clustering would become trivial when
this happens. That is why we decided to still keep the number at 150. We
wanted the sentiment analysis to applied to clusters of at least 100 samples,
to still get reliable results. Setting the minimum cluster size to 150 gives
us enough leeway that we can be confident that more than 100 samples will
be left after the filtering of the data, while also leaving enough room for
HDBSCAN to be flexible in the clusters it creates.

Finally, we set the prediction data flag to be true. This allows HDB-
SCAN to cluster new, unseen data points later on. While this is not useful
during the initial clustering, being able to assign new data to existing clus-
ters can become useful later on. Several techniques will become available
such as the real-time clustering of separate data sets, monitoring data drift
to detect changes over time, incremental learning and transfer learning. It
also allows for adding more data to the clusters after the initial clustering.
Having these extra options comes at the price of the clustering taking a bit
longer, but the added flexibility we gain to do more operations on the data
later on outweighs this negative.

3.1.5 Tokenization of Topics using CountVectorizer

For the tokenization of topics, the Scikit-learn class CountVectorizer[16] will
be used. This class tokenizes the text, builds a lexicon of unique words or
n-grams, and then creates a matrix where each row represents a document
and each column represents the count of a specific word in that document.
This word frequency matrix is what will be used to identify what words
(topics) each cluster represent.
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By default, CountVectorizer only tokenizes unigrams (single words).
However, certain topics that we would like to include in our topic represen-
tation are made up of several words (programming assistant, for example,
is two words). To make sure CountVectorizer is able to create these groups
of words, we use the ngram range parameter. This parameter takes a tu-
ple of two numbers, of which the first represents the minimum number of
words tokenized, and the latter represents the maximum number of words
tokenized.

Ideally we would set the lower bound to one, and the upper bound to
three so that the algorithm would be flexible in how it wants to define its
topics. However, doing so would require more memory, as is this case the
algorithm has to take all unigrams, and all possible combinations for bigrams
and 3-grams into consideration. Due to the limited resources available for
this study, this simply was not possible. That is why we set this parameter
to only consider bigrams, which does allow for some extra context, while
also being possible with the amount of memory available to us.

Depending on the application domain, specific preprocessing of the text
may be desirable, such as the removal of stop words or domain specific
terminology. We discuss this in section 3.3.2 about the case study.

3.1.6 Weighting Tokens & Topic Representation

The weighting of the tokens and the Topic Representation step allow us
for extracting meaningful and coherent topics from a text corpus using
BERTopic. However, due to the time constraints on this research, these
steps of BERTopic could not be experimented with extensively. This, com-
bined with the fact that the tokenization step already performs worse than
ideal due to the memory constrains, we were unable to come to any mean-
ingful conclusions for this part of the algorithm. For the purposes of this
paper, the topic representations were used as they left the tokenization step
for debugging purposes. In order to still neatly present the final data, new
topic representations will be generated during the Sentiment Analysis part
of the code in a simpler manner.

3.1.7 Creation of BERTopic Model

Having initialized all the models needed to perform the steps of BERTopic,
we can now create the BERTopic model. We pass the UMAP, HDBSCAN
and CountVectorizer models we initialized to the BERTopic model as pa-
rameters.

Alongside these parameters, we also specify a few others. The first of
these is the language parameter. This parameter specifies the language to
be used in the BERTopic model. It determines the underlying BERT lan-
guage model that will be utilized, as these can be pre-trained on a specific
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language, in order to increase performance. Since the value for this param-
eter will depend on the language of the specific data set that is being used,
we will further discuss this parameter in section 3.3.2.

Parameter top n words, determines the number of words per topic that
you want extracted. Too many words here, and the topics become less
cohesive. Too few, and the topic clusters unrelated words. In our imple-
mentation, we set this value to be equal to 20. Since our list of stop words
is not extensive, it is better to consider some more words in order to avoid
most of the data being clustered together in just one cluster.

We can also choose how many topics we want to reduce to after training.
If set to none, no reduction will be applied after training. If set to a specific
amount, we will reduce to that specified number of topics. However, we
opted for the third option, which is auto. In this option, BERTopic will use a
heuristic to evaluate the current clustering, and the iteratively merges/splits
clusters until the heuristic is optimized. A too large value will result in
many clusters that share the same topic. A too low value, on the other
hand, will cause different topics to merge into one cluster as well as causing
the algorithm to take longer to run. Having BERTopic be in charge of
deciding how many topics to reduce to will always result in a good clustering,
regardless of the dataset that is used.

There is also the option to calculate the probabilities that each docu-
ment belongs to the topic it is clustered to. We want documents with a
low probability of belonging to the topic it is clustered to, to not be taken
into consideration when doing the sentiment analysis. If the content of the
document is actually about a different topic, including this document’s sen-
timent into the analysis can interfere with the results of the overall topic’s
sentiment. That is why we take the extra time to calculate the probabil-
ities, so that we are able to identify, and remove the documents with low
probabilities.

Finally, since training the BERTopic model and extracting the topics can
take a while, it can be nice to get some status updates along the way. We
do this by setting the verbose flag to be true. The algorithm will now print
a quick message whenever it completes one of its steps, with a timestamp.
This allows us not only to keep track of how far along we are while it is
running, but also to identify which steps are taking the longest. Having this
knowledge can be helpful when tweaking the parameters for each model.

3.1.8 Training the BERTopic Model

Once the BERTopic model is created, the next step is to train the model
and cluster the data. This is accomplished by utilizing the fit transform

function of the BERTopic model that was previously instantiated. The
fit transform function requires two parameters: the preprocessed docu-
ments and the embeddings model.
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During the training process, BERTopic applies the embeddings model
to the preprocessed documents, generating sentence embeddings. Subse-
quently, BERTopic employs the models provided as parameters in the BER-
Topic instantiation process, executing them in the correct order to create the
clusters. This includes the dimensionality reduction using UMAP, clustering
with HDBSCAN, and the tokenization of topics using CountVectorizer.

By performing these steps, BERTopic effectively trains the model and
clusters the data, allowing for the identification of topics within the prepro-
cessed document dataset.

3.1.9 Visualizing the Topic Clusters

Finally, after all the clustering is done, we visualize the clusters. This is not
a necessary step for applying sentiment analysis, but it can give us insight
into what topics exist in the data, and how prevalent they are. We visualize
the clusters in two ways.

First, we use BERTopic’s visualize topics function. This plots all the
topics on a 2D graph in circles, of which the size corresponds to the number
of items in that cluster. This plot is mainly useful for checking which clusters
are the big ones and which are the smaller ones. You might also see a lot of
clusters close together.

While instinctively you might think these clusters thus share similar
topics, you have to remember that we started off with very high dimensional
data, of which we reduced the dimensionality and are now representing it
in an even lower dimension. There may be some similarity between clusters
that are near each other, but a lot of the structural information got lost
by reducing the dimensionality so far, so this graph does not accurately
represent how similar clusters are.

Second, we use BERTopic’s visualize documents function. This plots
all the individual documents on a 2D plane, and colour codes them based
on what cluster they are in. This makes it easy for us to visually iden-
tifying clusters, assessing their separation and overlap, detecting outliers,
understanding cluster characteristics, recognizing patterns, and effectively
communicating insights about the dataset.

3.2 Sentiment Analysis

Now that we are done clustering the documents into topics, we can move on
to the second step of the algorithm: performing sentiment analysis. How-
ever, this is not as simple as just applying a sentiment analysis algorithm
over the data we currently have. We first have to apply a bit of preprocessing
again before we can use this algorithm.
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3.2.1 Pre-Processing the Clustered Data

We are able to retrieve all the clustered documents into a pandas dataframe
by calling the get document info function of the trained BERTopic model.
This dataframe will be used as the starting point of the preprocessing pro-
cess.

The first problem that needs solving is that not all documents were
clustered with the same amount of confidence. The BERTopic model as-
signs a probability score to each document, indicating the likelihood of it
belonging to the topic it got clustered into. This is because we set the
calculate probabilities flag to true in the creation of the BERTopic
model. Documents that are placed in a cluster where they do not belong
can interfere with the sentiment analysis process, since they are talking
about a different topic on which the public opinion might be different. That
is why we filter out all documents with a probability score below 0.5, so all
the documents are more likely to be relevant to their assigned topics.

Next, this new dataframe with the filtered documents will be grouped
based on their assigned topic. From this grouped data, we are able to
generate a dictionary, which is a data type consisting of key-value pairs. In
our case, the keys will be the topic numbers given by the trained BERTopic
model, and the values will be a list containing all the documents clustered
to the corresponding topic. Now, we can access all the documents of each
individual topic.

Then we move on to the final part of the preprocessing process, which
is the removal of unclassified documents. All the documents BERTopic is
unable to find a cluster for, will be put together in one big cluster. Ap-
plying sentiment analysis on these documents will not give us any useful
information about the public opinion on a certain topic, as the subjects of
the documents can vary widely. BERTopic always assigns the topic number
-1 to this cluster of unclassified documents, so we are able to remove all the
unclassified data by checking whether the key -1 exists in the dictionary we
created, and deleting it if it does.

3.2.2 Sentiment Analysis

Now, it is time to define the sentiment analysis function. This function will
combine the process of analysing the sentiments, with some post-processing,
and finally visualization of the data. Doing this all in 1 function, will allow
us to easily call this process for all the different topics.

The TimeLMs paper by Loureiro, et al. [12] proves that the results of a
particular analysis are better if the model is trained on documents from the
same time period as the test data. Because the time frame of interest will of
course vary for each application of this algorithm, we have to be able to swap
in these models easily. To enable this, we use a pipeline approach, where the
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model in question can be easily replaced as long as it outputs the sentiment
in the same format. This ensures that the algorithm will be applicable to
many research topics, while also maintaining a level of adaptability for future
developments, similar to the approach used in BERTopic. If in the future
we are able to train more accurate sentiment analysis models, those can also
be used.

Since the format of the output is important for the rest of the code to
work, we will describe the format here. Our model outputs a list of key-
value pairs. The ‘label’ key represents the sentiment or classification label,
and the ‘score’ key represents the confidence or probability associated with
the assigned label. The label can be either ‘positive’, ‘negative’, or ‘neutral’
and the score is a value between 0 and 1. If another model is uses a different
scale for the scores, or labels the sentiment using caps, or numbers, then
some extra processing will be necessary to format them properly. Further
discussion on the sentiment model can be found in section 3.3.2.

Post-Processing the Sentiments

After the model has generated the sentiments, we need to perform some
post-processing before we are able to neatly present the results. First of all,
we map each document to the sentiment it got assigned and the confidence
score it got assigned with. Then, we proceed to remove all the documents
with a low confidence score. The threshold for considered being low here
was any score smaller than 0.6. Nearly all the confidence scores we are above
0.5, so we decided to be a bit harsher in removing any possible mistakes.

Now that we removed the documents that were not confidentially clas-
sified, we can count how often each sentiment appeared within the topic.
With this information, we will be able to compare how often each stance on
the issue appears, and thus find out whether a topic is controversial (all sen-
timents are equally represented) or if the public generally shares the same
viewpoints (one sentiment appears far more often than the others).

Visualizing the Sentiments

Finally, we are ready to move on to the output of our algorithm. First, we
are going to have to generate titles for the topics, and then we will create
plots that visualise all the results.

Retrieving Key-Phrases

Because the time constraints on this research prevented us from fully imple-
mented the Weighting Tokens & Topic Representation steps of BERTopic,
we were unable to extract meaningful and coherent topics from a text cor-
pus. However, analysing the sentiment becomes useless if we do not know
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the subject that is being talked about. We thus have to find another way of
retrieving the topics of each cluster.

For this, we use a slightly modified version of a code piece written by
Matthew Schwarz [19]. We save this code as a function, so we are able to call
it later on. This python script is fairly simple, and while there do exist many
alternatives that would be more customizable to suit our needs like Rake,
YAKE!, or TF-IDF for example, setting up these more complex algorithms
properly would again take a lot more time to research and experiment with,
which we simply do not have for the scope of this research. Furthermore,
if we were to set up these more complex algorithms, we might as well fully
integrate them into BERTopic, rather than use them separately.

This function works by looping over each document in the topic given as
a parameter. Each document will get deconstructed into individual words,
and then for all phrases, we keep track of how often it appeared. Phrases
here are groups of words ranging in length from 1 word, to a chosen number
of maximum length. Here we chose the maximum length to be three words,
just like we initially wanted to do in the Tokenization of Topics step of
BERTopic, but there we were limited by memory.

Since the phrases with length of one word will of course appear more
often than phrases of length two or three, this algorithm implements a way
of removing unnecessary sub-phrases. We do not want to just remove all
small phrases, as some sub-phrases may already give enough information on
their own. For example, Google as one word is a valid topic, but search
engine we would rather have grouped together.

After having counted the number of occurrences for all phrases, the
algorithm will filter out phrases that appear only once in order to speed up
the next step. Then the remaining phrases are sorted based on how long they
are, and we then loop over this sorted list to find sub-phrases. Only if the
number of occurrences of the parent-phrase falls within a certain threshold of
the number of occurrences of the sub-phrase, we remove the sub-phrase. The
threshold here being set so that the parent-phrase’s number of occurrences
must be 75% or more of the amount of times the sub-phrase appears.

We made minor changes to the code to remove the preprocessing of the
text data, as this is already done earlier on in our approach, as well as using
our own list of stop words (the same as the one used for the clustering step,
and the one that is discussed in section 3.3.2).

Printing the Charts

Now that we have all the necessary information, we can output the results.
We plot the number of occurrences of each sentiment in a pie chart. A
pie chart enables us to easily discern the ratio of different sentiments in a
quick glance. This helps us determine if a topic is controversial and, if not,
provides insight into the general opinion.
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We title the pie chart in the following format ‘Sentiment Analysis of
Cluster cluster about: title str’, where cluster is the number corre-
sponding to the cluster, and title str is the title generated through the
key-phrase function, both as parameters to the function. This way, it is also
clearly visible from the graph what topic the cluster is about, and what key
value we can use if we want to dive further into the specific documents of
this cluster.

To gain even further insight into what the topic is about, and what
perspectives people have on it, we have implemented a feature that 10 doc-
uments (or less if there are not that many) from each sentiment were ran-
domly chosen. By hovering the cursor over a sentiment, these randomly
sampled documents will be displayed. This way, we are able to view, in
more detail, what is actually being said about the topic, and look at the
different perspectives given.

Alongside the pie chart, we also display the number of documents in the
topic, and the number of documents we were able to confidentially classify.
While not immediately useful when just looking at the opinion on a topic,
these values may give further insight into the overall engagement and scope
of the conversation surrounding the topic.

3.2.3 Running the Analysis

The reason we made the retrieval of key-phrases and the sentiment analysis
their own functions is so that we can easily apply them to all topics without
the code becoming so large that it becomes cumbersome. Right now, we
just implement a simple loop that iterates over all topics.

In each iteration, the key-phrase function first gets called, to determine
how often each phrase appears in this cluster. The result of this function is
then sorted on the number of occurrences in descending order. We then take
the first five phrases of this sorted list, and call the sentiment function with
these five phrases as a parameter, alongside the documents of this topic and
the topic number.

3.3 Case Study

Now we have successfully created an algorithm that identifies the topics of
social media posts, groups posts about the same topic together, and then
analyses the sentiment expressed within each topic. However, we need a
method to verify whether this algorithm actually works. To do this, we
will be conducting a case study. We will be analysing the sentiments people
express towards ChatGPT on Twitter, to see whether our approach produces
the results we expect it to.
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3.3.1 The Data

The first step will be to collect data to work on. Since for the purposes of
this paper we are interested in finding the public sentiment on ChatGPT, it
is best to use a dataset of only social media posts about ChatGPT, rather
than using a dataset that contains about many other topics as well. This
way, the filtering of relevant posts does not have to be done by the algorithm
as well, which already drastically reduces the runtime of the algorithm.

More specifically, we will be analysing Twitter posts regarding Chat-
GPT. Since Tweets have a strict character limit compared to other social
media platforms, the size of each post will be a lot shorter, which will shorten
the computation time. Furthermore, limiting ourselves to one form of social
media tends to lead to a more accurate clustering/sentiment analysis, as we
can use models trained specifically for this social media platform.

A dataset that suits our needs is the ChatGPT Tweets first month of
launch dataset by Minh Pham. This dataset contains all Tweets about Chat-
GPT from 30/11/2022 to 31/12/2022 gathered using the following query:
(chatgpt OR ChatGPT) lang:en -is:retweet -is:reply1. This dataset
was used simply because at the time work on this algorithm started, there
were no alternative datasets that contained Tweets specifically about Chat-
GPT.

The Relevant Data

Now that we have our dataset, we load the data into a Jupyter Notebook.
Since both the process of identifying topics to cluster, and analysing the
sentiment requires just the content of the Tweets, we only need to use the
tweet column of the dataset. Only taking this one column reduces the size
of the data we are working with, and thus saves us some memory usage,
which will increase performance.

While some other columns may also seem of interest in gathering public
opinion, like the country the Tweet came from to measure sentiment per
geographic region or the time the Tweet was created to gather sentiment
over time, these are not very useful within the context of this dataset. The
vast majority of Tweets do not have a country linked to them and by the
nature of this data being gathered in the first month of the ChatGPT launch,
there is not a lot of time to work with yet. Other data like the amount of
likes, retweets, or comments could also be used to make certain popular or
controversial Tweets weigh more in the sentiment analysis, but this proved
to be outside the scope of this paper.

1The dataset “Minh ChatGPT Tweets first month of launch” by Minh Pham, https:
//www.kaggle.com/datasets/pcminh0505/chatgpt-twitter
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Filtering the Data

The data is now loaded in, but it requires a bit more processing before it
is useable. We filter newlines, URLs, mentions and non-alphabetic from
the contents of the Tweets. Remove these attributes from texts is done to
reduce noise, standardize the text, and also just to make the data more
readable. We would not want the clustering algorithm to cluster Tweets
together based on how many of these properties they contain. Furthermore,
these elements of text do not hold any sentimental value, and having them
there could only interfere with the sentiment analysis. This formatting of
the data thus helps ensure consistency and makes the process of clustering
and analysing sentiment simpler.

3.3.2 Case Study Specific Parameters

Throughout our general approach, there are several instances when a pa-
rameter had to be changed depending on the data it is applied to. The
specific instances of this were the list of stop words we had to define for the
Tokenization of Topics using CountVectorizer, the language parameter we
had to set during the Creation of BERTopic Model, and finally the specific
sentiment model we want to use for our Sentiment Analysis.

The List of Stop Words

Because all of our data consists of Tweets mentioning “ChatGPT”, there
is a high chance that the clustering algorithm will create one big cluster
for the topic “ChatGPT”. This is not useful to us, as we would like to
view the sentiment on smaller issues within this large topic. To prevent this
from happening, we can pass a list of words we want to leave out of the
topics to the stop words parameter. The list of stop words we create can
be subdivided into the following three sublists:

• One list with words related to AI and ChatGPT, so we do not get one
big cluster.

• One list with sentiment related words, as running the sentiment anal-
ysis over a cluster based on positive words like “good” and “amazing”
is not going to give any insightful results.

• One list of general stop words with words like “the”, “and”, “I” that
appear very often in English, but do not give a lot of useful information
on the topic.

The list of AI words and sentiment words have both been created manu-
ally by running the algorithm several times, and checking if there were any
topics created with words that fall in either category. The list of general
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stop words are taken from a list created by Sean Bleier [1]. While not being
completely extensive, these three lists together cover a large portion of the
words we would like to ignore in the formation of the topic.

The Language Parameter

Since the dataset was gathered using the command (chatgpt OR ChatGPT)

lang:en -is:retweet -is:reply1, all Tweets should be in English. This
means that setting the language parameter of the BERTopic model to “En-
glish”, will give us a better result. This is because having the language
model be pre-trained on the same language as the test data will lead to
better clustering.

The Sentiment Model

To perform the sentiment analysis, we utilize the pre-trained cardiffnlp

/twitter-roberta-base-sentiment-latest[2] model from the Hugging
Face library. This model is part of the TimeLMs models, with this par-
ticular model being specialized in sentiment analysis.

Since our data set contains Tweets of the first month since the launch of
ChatGPT, or more specifically from 30/11/2022 to 31/12/20221, it would
be best to have a sentiment analysis model that is also trained on Tweets
within this time period. However, at the time this research was performed,
there still was not a trained model available for that specific time period.
That is why we used the latest available model instead, which at the time of
this research was trained on tweets from January 2018 to December 2021,
as it is the closest to our desired time frame.
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Chapter 4

Results

4.1 Clustering and Sentiment Findings

The clustering part of the algorithm resulted in the creation of 258 topic
clusters. This includes the -1 cluster, containing all Tweets that BERTopic
was not able to find a matching topic for. After the removal of this cluster,
we will thus be left with 257 topics to analyse the sentiment for. A graphical
representation of the topic clusters can be seen in Figure 4.1.

Figure 4.1: Visualization of Topic Clusters Generated by the Clustering
Algorithm
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The topics of the Tweets can be divided into 2 categories, Tweets about
possible applications for ChatGPT, and Tweets providing commentary on
societal impact ChatGPT has. We will discuss these two categories sepa-
rately.

4.1.1 Sentiments on Specific Applications for ChatGPT

In this subsection, we explore the sentiments expressed in Tweets about var-
ious applications for ChatGPT. Many possible applications were discussed,
but we chose to present only some of the most notable ones for the sake of
brevity. These notable topics are related to cooking, essay writing, health-
care, image generation, maths, poem writing, programming assistants, and
search engines. Each topic is represented by a separate pie chart, providing
insights into the sentiments associated with these application domains.

Cooking

In Figure 4.2 the sentiments expressed in Tweets related to cooking and
coming up with recipes are represented. People are still mostly positive
about how easily recipes can be generated to suit your specific needs, but
there is also some negativity, with people expressing that not all the recipes
are all that great.

Figure 4.2: Sentiment Analysis Results for Tweets on ChatGPT’s Applica-
tion in Cooking

Essay Writing

The sentiments regarding students using ChatGPT for essay writing are vi-
sualized in Figure 4.3. This topic is a bit more controversial, as there is not
an all that big difference in the percentage of positive and negative senti-
ments. While some people admire ChatGPT’s ability to generate convincing
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essays, many people are also concerned about the ways this will be used to
cheat the current school system.

Figure 4.3: Sentiment Analysis Results for Tweets on ChatGPT’s Applica-
tion in Writing Essays

Healthcare

Then, Figure 4.4 displays the sentiments expressed in Tweets regarding
ChatGPT’s potential applications in the medical field. Here it is again
clearly visible that people are far more positive about the use of ChatGPT
in this field, than they are negative.

Figure 4.4: Sentiment Analysis Results for Tweets on ChatGPT’s Applica-
tion in Healthcare

Image Generation

The sentiments expressed in Tweets discussing ChatGPT’s image generation
capabilities are depicted in Figure 4.5. This is again a pretty controversial
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topic, with a slight edge towards the positive side. Similar to writing essays,
people are impressed by what can be done, while others are worried about
the dilution of real, man-made art.

Figure 4.5: Sentiment Analysis Results for Tweets on ChatGPT’s Applica-
tion in Generating Images

Maths

The sentiments expressed in Tweets related to ChatGPT’s applications in
mathematics are visualized in Figure 4.6. Maths being one of the topics
where the vast majority of Tweets tend to be negative about the use of
ChatGPT. This is mainly due to the amount of answers ChatGPT gets
wrong. In an exact science like maths, even small errors can lead to entirely
inaccurate solutions.

Figure 4.6: Sentiment Analysis Results for Tweets on ChatGPT’s Applica-
tion in Maths
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Poem Writing

Figure 4.7 displays the sentiments expressed in Tweets discussing Chat-
GPT’s application in poem writing. The majority of Tweets here are just
showcasing poems that ChatGPT wrote, these Tweets are mostly neutral
in sentiment, as the poems are often included as images. On the more
opinionated ends of the spectrum, most people seem to like the poems that
ChatGPT writes, while a few complain about satisfied with the amount of
control they have on having the poem be in a certain style.

Figure 4.7: Sentiment Analysis Results for Tweets on ChatGPT’s Applica-
tion in Writing Poetry

Programming Assistant

In Figure 4.8 represents the sentiments expressed in Tweets related to Chat-
GPT’s role as a programming assistant. Again, the neutral Tweets contain
a lot of images of the code it wrote. Disregarding these, the vast majority
of people like are impressed with the code generated, and also praise how
much ChatGPT is able to speed up their workflow. On the other hand, the
code being generated definitely is not perfect, as quite a large portion of
Tweets are complaining about bugs in their code.

Search Engine

Lastly, Figure 4.9 shows the discussing on using ChatGPT as an alternative
to a search engine like Google. This is another topic in which both sides of
the argument are prevalent. While a majority seems to believe ChatGPT
can be a good alternative to search engines like Google, others comment
on issues like ChatGPT being slow when server load is high, or its subpar
performance in languages other than English.
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Figure 4.8: Sentiment Analysis Results for Tweets on ChatGPT’s Applica-
tion as a Programming Assistant

Figure 4.9: Sentiment Analysis Results for Tweets on ChatGPT as a Search
Engine

4.1.2 Sentiments on ChatGPT in the Broader Scope

In this subsection, we delve into the sentiments expressed in Tweets regard-
ing the societal impact of ChatGPT. Understanding public perceptions and
attitudes towards ChatGPT’s influence on society is crucial for assessing its
potential implications. We focus on the following key subtopics: environ-
mental impact, ethics, and the impact on the job market. Each subtopic is
again accompanied by a separate analysis, shedding light on the sentiments
associated with these aspects.
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Environmental Impact

Figure 4.10 illustrates the sentiments expressed in Tweets discussing Chat-
GPT’s impact on climate-related issues. A very controversial issue, with
the slight majority of people having a negative view on the environmen-
tal impact of using ChatGPT, while the other side expresses hopefulness
that using ChatGPT will allow scientist to come up with better methods of
reducing climate pollution.

Figure 4.10: Sentiment Analysis Results for Tweets on ChatGPT’s Impact
on the Environment

Ethical Concerns

The sentiments expressed in Tweets regarding the ethical concerns surround-
ing ChatGPT are visualized in Figure 4.11. While the majority of Tweets
on this topic are neutral, a big portion shows to have worries about the
ethical implications of ChatGPT, being worried that people will blindly fol-
low psychological or medical advice without being certain it will work or if
ChatGPT has proper morals.
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Figure 4.11: Sentiment Analysis Results for Tweets on Ethical Concerns
Regarding ChatGPT

Impact on the Job Market

Finally, figure 4.12 showcases the sentiments expressed in Tweets discussing
the potential impact of ChatGPT on jobs and employment. While a larger
portion seems to be worried that this new technology will cause people to lose
their jobs, a significant portion is optimistic about the new job opportunities
it will create.

Figure 4.12: Sentiment Analysis Results for Tweets on ChatGPT’s Impact
on Jobs

4.2 Invalid Results

Unfortunately, not all the results we get are as insightful as the examples
given above. The method does not always result in insightful topics and
sentiment. These instances can be further subdivided into bigger problems,
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or smaller problems that are only issues in some cases.

4.2.1 Problematic Results

The following issues, are problematic to the overall accuracy and usefulness
of the program. These problems are related to unwanted topics, Tweets
labelled to the wrong sentiment, and duplicate topics. Fixing these problems
is important to the general performance of the algorithm, and will be one
of the main areas for further research.

Unwanted Topics

Some of the topic sentiments are extremely one-sided, not because people
agree so much on a topic, but because the topic is not valid. As mentioned
in the Tokenization of Topics using CountVectorizer section, our list of stop
words is not extensive. Because of this, we will sometimes still get clusters
based on sentiment related words, ChatGPT related words, or just general
stop words.

An example of this is Figure 4.13, which shows the sentiment of Tweets
about ChatGPT being a game changer. The Tweets in this cluster are
mostly going to be positive, because they were clustered on words that are
generally considered to be positive. Clusters like these are not going to give
us any insightful information.

Figure 4.13: Example of an Unwanted, Sentiment Related Cluster

Wrong Sentiment Attribution

Sometimes, the sentiment analysis will label a Tweet to the wrong sentiment.
While we did have a filter for removing Tweets of which the model was
uncertain if it got classified correctly, sometimes the algorithm gains false
confidence due to a confusing use of words. Naturally, having Tweets that
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belong to the wrong class, will have a bad influence on the accuracy of our
results.

For example, as can be seen in Figure 4.14 which is about the cost of
ChatGPT, one of the Tweets classified as negative says: “make chatgpt
paid I will pay for this shit”. This Tweet states that ChatGPT is so good,
that if it would cost money, this person would gladly pay it. However, due
to the word “shit” being used, which is generally negative, it got labelled
incorrectly.

Figure 4.14: Example of a Wrong Sentiment Attribution

Duplicate Topics

Finally, an issue that is a bit less damaging to the overall results, but still
not ideal, is that there are several instances of two or more topic clusters
being about the same subject. For example, as can be seen in Figure 4.15,
we have a topic cluster about creating images. This is very similar to the
topic we had in the Image Generation example, which was also about image
generation. Ideally, these clusters about the same subject would be merged
into one bigger cluster, to give a more comprehensive overview of the public
opinion on the matter.

Figure 4.15: Example of a Duplicate Topic
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4.2.2 Potential Problems

The issues presented in the following section will be less damaging to the
overall performance of the algorithm. These problems are related to the in-
clusion of duplicate tweets, incoherent topics, and similar topics. Depending
on the use case, these things may not even be problems at all. However,
to allow for all use cases of an unsupervised topic-based sentiment analysis
tool, at least an option should be made available to avoid them.

Duplicate Documents

In certain instances, we encountered a significant number of duplicate tweets
within the data. In Figure 4.16 for instance, we see the Tweet “This AI chat-
bot is dominating social media with its frighteningly good essays” multiple
times. This largely happens because of Twitter’s Retweet feature, but may
also be caused by bot accounts spamming the same Tweet, or multiple people
reporting on the same news headline, for example. Whether it is necessarily
an issue that multiple instances of the same Tweet is up for debate.

A retweet expresses people agreeing with a statement, and if more people
think share this opinion, it should be included more often. However, some
people might want to eliminate bots, or only look at unique opinions. For
these use cases, a method of removing duplicate data should be implemented.

Figure 4.16: Example of Duplicate Tweets within a Topic

Incoherent Topics

As was already expressed in the Weighting Tokens & Topic Representation
and Retrieving Key-Phrases sections, we did not have enough time to prop-
erly experiment with the naming of topics in this research. Because of this,
some of the words that are supposed to represent a topic, do not really do
a good job of telling what the topic is about.

For example, the graph shown in Figure 4.17 has the title: “Sentiment
Analysis of Cluster 27 about: thing, also, actually, kinda, time”. These
words do not at all indicate that the Tweets are about finding ChatGPT
scary (also another instance of Unwanted Topics).
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This is not a huge problem, as we are able to look at the individual
Tweets within the cluster to identify the topics ourselves, however, this goes
against the goal of being an unsupervised algorithm.

Figure 4.17: Example of an Incoherent Topic Representation

Similar Topics

The last issue is similar to the issue described in the Duplicate Topics section,
but in a more specific sense. In Figure 4.18, we see a cluster about writing
Haikus, a specific form of Japanese poetry. We already had a cluster about
writing poetry in the Poem Writing section.

Whether writing Haikus should be included within this bigger topic of
writing poetry, or left as a standalone topic, can be up for debate. Regard-
less, having the extra option to have control over when to merge subtopics,
and when not, would be a feature worth implementing.

Figure 4.18: Example of a Topic, Similar to Another
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Chapter 5

Discussion

5.1 Discussion

The clustering and sentiment analysis results provided valuable insights into
the public perception and sentiment regarding various applications of Chat-
GPT, and its broader societal impact, but also displayed the areas in which
the method proposed can be further improved. In this section, we will delve
into our findings, highlighting the key observations as well as the potential
areas for improvement in further research.

5.2 The Case Study

We will first be discussing the findings of the case study that motivated this
thesis project.

5.2.1 Discussion: Sentiments on Applications for ChatGPT

The sentiment analysis of Tweets on various applications for ChatGPT re-
vealed that the majority of fields are optimistic. Three of the topics had a
clear positive sentiment, these topics being about cooking, healthcare, and
programming assistant. Of the remaining topics, essay writing, image gener-
ation, and search engines were a bit controversial, with a slight edge towards
being positive. Only in the field of mathematics, the sentiment was mostly
negative.

The majority of the complaints about applications of ChatGPT seem to
be coming from the areas where mistakes are most noticeable. In fields such
as mathematics and programming, even a small mistake can lead to a wrong
answer or not working code. ChatGPT, at this point, just is not accurate
enough to be used for these more exact sciences. Also, when used as a search
engine, many complaints are about ChatGPT being slower, and less accurate
in languages other than English, than a traditional search engine would be.
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These are again limitations of the software. In more abstract topic areas,
like writing poetry or cooking, these small mistakes are less noticeable, and
people tend to think a bit more positively of ChatGPT’s capabilities.

However, while many are criticising ChatGPT for the errors it makes,
there are others expressing optimism about the future of ChatGPT. These
people acknowledge the faults ChatGPT makes, but also keep in mind that
this technology is fairly new, and still being worked on. They are hopeful
that in a few years, there will not be any false outputs any more, and they
are thinking about all the things that would be possible once this software
is more developed.

It is interesting to note some of the contradictions here. People are
negative towards ChatGPT being used in the field of maths, due to it giving
incorrect answers. But, while it would be reasonable to assume that for
something as delicate as healthcare, providing correct answers would be
even more important, the opinions on this issue are much more positive.

5.2.2 Discussion: Sentiments on ChatGPT’s Social Impact

The sentiment analysis of Tweets on ChatGPT in a broader scope lead to
more controversial issues. The opinions on all topics here are also much more
pessimistic, with the sentiments on ethical concerns and the impact on the
job market being mostly negative. The discussion on the environmental
impact this technology will have was a bit more divided, but still also leans
towards a mostly negative overall opinion. This is a stark contrast to the
mostly optimistic opinions of ChatGPT’s possible use cases.

It seems these broader discussions on societal issues with generative AI
are much more controversial than the discussions on applications, because
there are much more perspectives to consider on an issue like ethics, than
on the ability of ChatGPT correctly being able to answer mathematical
problems. Different people have different morals to live by, and because of
this they will all look at the ethical implications of these chatbots differently,
while with a programming assistant the code simply works, or not.

It also appears that most of the negative sentiment towards ChatGPT
comes from a fear of what might happen, rather than a problem with the
software itself. People are scared of losing their jobs due to their work being
automated, scared that someone will harm themselves or others because of
bad advice, or scared of the increase in energy consumption constant use
of this software will have. These are not problems of technology itself, but
rather side effects of the existence of this software.

On the other side of the spectrum, we have the people who are hopeful
about the prospects ChatGPT will bring with it. These chatbots are energy
intensive, but they may aid researchers in finding ways of reducing emissions.
Some jobs may disappear, but new ones will take their place. These hopeful
arguments, however, are being outnumbered by the more fearful ones.

39



5.3 Discussion: Limitations and Future Work

The results also displayed the shortcomings of the approach we developed,
some problematic, some only inconvenient. The majority of these problems
stem from the topic identification and clustering part of the program. Of the
six issues found, four of them arise in this step, two of which are considered
to be a big problem. The issues that need fixing the most are related to
the existence of unwanted topics due to our list of stop words not being
extensive, and the existence of multiple topics about the same subject. The
other problems are related to the topic representation and not having control
over the level of detail of the topics.

The problem of the unwanted topics, as well as the topic representation,
can likely be solved quite easily. As mentioned in the Weighting Tokens &
Topic Representation section, we did not have enough time for this research
to properly implement the last two steps of the BERTopic algorithm. If
we were to implement the last two steps in the future, these issues are
likely resolved, or at least mitigate it somewhat. With the weighting of the
tokens it should be possible to give stop words, not in the stop word list, a
lower weight. This will remove the unwanted topics due to our list of stop
words not being extensive. The final topic representation step should help
summarize better what a cluster is about, and thus solve the problem of
incoherent topics.

Solving the problem of duplicate and similar topics may be a bit more
difficult. If we are lucky, this problem is only caused by some parameters of
one of the BERTopic steps being off. We chose to use very densely packed
clusters, as we did not want any vague topics that were not about any specific
topic. However, it might be that the clusters we created are so dense, that
things that one topic gets split further into more subtopics. If this is the
case, tweaking some of the parameters that are involved in how dense the
clusters are, like UMAP’s min dist and n components, might be enough to
mitigate this problem.

If it turns out that just tweaking the parameters is not enough, then the
BERTopic model should be modified in such a way that the user has control
over when to merge certain topics or not. An attempt at this has been made
before by Ariel Ibaba [11]. Unfortunately, again due to time constraints, this
method has not been tested during this research, and we are not able to say
whether this solution works or not. Nevertheless, the version it was built on
is an outdated version of BERTopic from 2021, and it has not been updated
since then. Because of this, it may be that it does not work that well, and a
more up-to-date method has to be developed. An interactive method using
visual analytics would be an interesting direction for future research.

Just because the majority of the problems arise in the topic creation,
does not mean that the sentiment analysis is without faults. Some of the
documents were classified as the wrong sentiment, which interferes with the
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final sentiment distribution. This may in part be because we had to use
a model that was trained on Tweets from a different time period than the
Tweets in the test data, like described in Sentiment Analysis, but it can also
be due to these models not being entirely accurate in general. Fixing this
issue will be a matter of training better sentiment analysis models.

Then the problem of duplicate documents should be pretty easy to solve.
Just adding a simple function that removes duplicate entries can already do a
lot of the work necessary here. Sometimes two documents are not identical,
but are eerily similar. To remove these cases, a more advanced method
of removing very similar documents has to be implemented, however such
methods already exist as well. Just integrating a function like this will give
the user the choice to remove duplicates when wanted.

A final suggestion, for future research, would be to implement a method
of measuring how the sentiment changes over time. Implementing this would
be especially interesting for seeing how the more controversial discussions
evolve over time, however, this regrettably was outside the scope of this
research. Creating such a feature should be doable, as the exact time the
post was created is often saved in the metadata. By also using this data,
we should be able to split the topic clusters into smaller groups based on
their time frame, apply sentiment analysis over all these timeframes, and
then graph the prevalence of each sentiment over time. Ideally, the size of
the timeframe could also be set as a parameter, to be either years, months,
or weeks for example.
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Chapter 6

Conclusions

In conclusion, this paper addresses the impact of social media on public
discourse and presents a solution to the challenges of analysing vast amounts
of non-uniform data. Our proposed algorithm leverages the capabilities of
LLMs to cluster social media posts based on topics and perform sentiment
analysis.

Throughout this study, we explored key concepts and methodologies. We
examined Transformer models, which process large text datasets through
self-attention mechanisms. We introduced cluster analysis, similarity mea-
sures, and the HDBSCAN algorithm for hierarchical density-based cluster-
ing. To handle high-dimensional data challenges, we explored sentence em-
beddings and dimensionality reduction techniques. Additionally, we dis-
cussed the steps in sentiment analysis and the role of machine learning
models.

The methodology for analysing the sentiment of documents in separate
topics involved data preparation steps, such as document filtering and topic
grouping using the BERTopic algorithm. Sentiment analysis was performed
using a pre-trained model, with post-processing techniques mapping doc-
uments to sentiment labels. Finally, the sentiment analysis results were
visualized through informative pie charts.

The final results of our case study of applying this algorithm on Tweets
about ChatGPT were able to shed light on public perception and sentiment
regarding ChatGPT’s applications and broader societal impact. We ob-
served that people tend to think positively of the application of ChatGPT
in more abstract fields, while in the more exact sciences people are more
negative as they think the software is not accurate enough. On broader
discussions about the societal impact of this new technology, some people
are hopeful about the future possibilities this software will bring with it, but
the majority are still fearful for the negative implications on the world.

While the algorithm created was able to give us insights into the public
opinions on many topics, as it was intended, there are still some limitations.
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These limitations are mainly connected to the identification and clustering
of topics part of the paper, partly because of a limited implementation of the
BERTopic model due to time constraints, but also because of some missing
features in this model. The sentiment analysis also was not completely
accurate yet, and better models should be trained in the future to improve on
this. Aside from these issues, some lacking features were also identified, such
as an option for removing duplicate documents, and analysis of sentiment
of time.
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