
Radboud University Nijmegen

Faculty of Science

Karatsuba Algorithm for multiplication of
Linearized Polynomials

Thesis BSc Computing Science

Author:
Niels Feij

Supervisor:
Simona Samardziska

Second reader:
Peter Schwabe

June 2023

Abstract

This paper explores multiplication of linearized polynomials in the field Fqm as an alterna-
tive for matrix multiplications in the field Fn×n

q . this is done by means of an implementation of
the Karatsuba Algorithm for linearized polynomials. A comparison based on time complexity
is made against Schoolbook multiplication. This comparison shows the Karatsuba algorithm
to be faster for linearized polynomials of degree n > 19 independent of q and for even lower
degrees n when q gets larger. Finally, this research shows naive matrix multiplication in Fn×n

q

to yield the most efficient computation over Karatsuba linearized polynomials multiplications
over Fqm .

1 Introduction

The security of the majority of our digital assets and online activities relies on the strength of the
underlying cryptographic techniques. Public-key cryptography, specifically RSA [8] and Elliptic
Curve Cryptography [3], plays a crucial role in establishing a secure cryptographic infrastructure.

However, with the continuous advancements in quantum computing, the long-term security of
this infrastructure, including (previously) encrypted information and digital signatures, is being
compromised. Once a fully functional quantum computer becomes available, all the currently
standardized and widely-used public-key algorithms can be vulnerable to attacks that can be carried
out in polynomial time using a quantum computer.

In response to this imminent threat to our existing public-key infrastructure, the National
Institute of Standards and Technology (NIST) initiated a process in 2016 to seek, evaluate, and
standardize one or more quantum-resistant public-key cryptographic algorithms [6]. The goal is to
have a new replacement standard in place by 2024. These algorithms are commonly referred to as
post-quantum or quantum-safe algorithms.

Some of these algorithms tend to make use of matrix-heavy computations, mainly multipli-
cations. This enforces researchers to look for better and faster alternatives. In this paper this
alternative comes in the form of multiplication of linearized polynomials. Although a linearized
polynomial and a matrix are different mathematical structures, they can be used to represent the
same elements, thereby deeming the comparison of computational complexity in their respective
’worlds’ interesting. This paper defines, explores and compares the implementation of the Karatsuba
Algorithm (KA) [2], designed for the multiplication of multi-digit numbers, for the multiplication of
linearized polynomials. A multiplication with lower complexity in the ’world’ of linearized polyno-
mials (i.e. Fqm) might result in reconsideration of matrices (i.e. Fm

q) being the industry standard
’world’ of computation.

In order to simplify the problem we assume that the maximum degree of every two elements
which are multiplied is identical.

The work is organized as follows. Firstly, the concepts of the KA and linearized polynomials
will be made clear. Secondly, case studies for the KA for linearized polynomials of degree 1, 2
and 3 are performed. Next, the outcomes of these exploratory applications will be combined in
a generalization, which will be elaborated, evaluated and compared to Schoolbook multiplication.
Lastly, KA for linearized polynomials will be compared to naive matrix multiplication (MM).

1

1.1 Related work: Karatsuba Algorithm with polynomial multiplication

In 2012, S. Mishra and M. Pradhan [5] used polynomial multiplication in the classical KA to
multiply two numbers. This lead to to a single and recursive algorithm which has better time
performance over KA with regular multiplication.

1.2 Karatsuba Algorithm for polynomial multiplication

In 2016, A. Weimerskirch and C. Paar [9] generalized the classical KA for polynomial multiplication
to (i) polynomials of arbitrary degree and (ii) recursive use. Their research provides tables that
describe the best possible usage of the KA for polynomials up to a degree of 127. The results of
the paper are especially useful for efficient implementations of computations over fixed-size fields
like Fpm .

2 Preliminaries: Schoolbook for polynomials

The naive way to multiply two polynomials is often referred to as the schoolbook method. Let A(x)
and B(x) be polynomials of degree-d with n = d+ 1 coefficients:

A(x) =

d∑
i=0

aix
i, B(x) =

d∑
i=0

bix
i

Then the product C(x) = A(x)B(x) is defined as

d∑
i=0

d∑
j=0

aibjx
i+j (1)

With A(x) and B(x) being ’simple’ polynomials, this multiplication takes n2 multiplications and
(n− 1)2 additions.

2.1 Karatsuba Algorithm

The KA [2] makes uses of the reoccurring factors in a multiplication. It has a single iteration
variant as well as a recursive (divide-and-conquer) variant. The classic recursive KA simplifies the
multiplication of two n-digit numbers into three multiplications of n/2-digit numbers by making use
of reoccurring factors. By repeating this reduction process, it ensures a maximum of nlog2 3 ≈ n1.58

single-digit multiplications. This makes it significantly faster than the traditional algorithm, which
performs n2 single-digit products.

As mentioned in section 1.2, KA also has an implementation for the multiplication of polynomials
which is derived by simple algebraic transformations of the naive (Schoolbook) multiplication.
Multiplying two polynomials using the single iteration KA results in a 1

2n
2 + 1

2n multiplications,
and 5

2n
2 − 7

2n+ 1 additions [9].

2

2.1.1 Example Karatsuba Algorithm for polynomials

For sake of clarification, let us work out the simplest instance of the KA for polynomials. Let A(x)
and B(x) be degree-1 polynomials:

A(x) = a1x+ a0, B(x) = b1x+ b0

Let there be three auxiliary variables D0, D1 and D0,1 given by:

D0 = a0b0

D1 = a1b1

D0,1 = (a0 + a1)(b0 + b1)

Then the polynomial C(x) = A(x)B(x) is computed by:

C(x) = D1x
2 + (D0,1 −D0 −D1)x+D0

Using this method, we need 3 multiplication and 4 additions, with the schoolbook method we
needed 4 multiplication and 1 addition. Thus winning 1 multiplication at the cost of 3 additional
additions.

2.2 Linearized polynomials

Linearized polynomials [7] are polynomials of the following form:

a =

t∑
k=0

akx
qk =

t∑
k=0

akx
[k], ak ∈ Fqm

Where q is a prime power, Fq is a finite field with q elements and Fqm is a extension field
over Fq. The notation [k] is used to denote qi. We say linearized polynomial a has q-degree
degqa = max{k ∈ N : ak ̸= 0}.

Multiplication of two linearized polynomials A(x) and B(x) is defined as the composition

C(x) = A(B(x))

The following section derives another general equation to represent multiplication for linearized
polynomials which shows similarity to the Schoolbook algorithm for all polynomials.

2.3 Schoolbook for linearized polynomials

Let A(x) and B(x) be linearized polynomials with q-degree 2:

A = a0x
[0] + a1x

[1] + a2x
[2]

B = b0x
[0] + b1x

[1] + b2x
[2]

3

Then the composition will be of the form:

A(B(x)) = a0

(
b0x

[0] + b1x
[1] + b2x

[2]
)[0]

+ a1

(
b0x

[0] + b1x
[1] + b2x

[2]
)[1]

+ a2

(
b0x

[0] + b1x
[1] + b2x

[2]
)[2]

= a0b
[0]
0 x[0][0] + a0b

[0]
1 x[1][0] + a0b

[0]
2 x[2][0] + a1b

[1]
0 x[0][1] + a1b

[1]
1 x[1][1]

+ a1b
[1]
2 x[2][1] + a2b

[2]
0 x[0][2] + a2b

[2]
1 x[1][2] + a2b

[2]
2 x[2][2]

= a0b
[0]
0 x[0] + a0b

[0]
1 x[1] + a0b

[0]
2 x[2] + a1b

[1]
0 x[1] + a1b

[1]
1 x[2]

+ a1b
[1]
2 x[3] + a2b

[2]
0 x[2] + a2b

[2]
1 x[3] + a2b

[2]
2 x[4]

Since:

x[1][2] = xp1×p2

= xp1+2

= xp3

= x[3]

Further simplification gives the following equation:

2∑
i=0

 2∑
j=0

aib
[i]
j x[i+j]

 =

degqa∑
i=0

deqqb∑
j=0

aib
[i]
j x[i+j]

Which, since linearized polynomials are a subset of all polynomials, logically has the same general
form as equation (1) and can therefore be seen as the Schoolbook multiplication of two linearized
polynomials. This computation takes the same amount of multiplications (n2) and additions ((n−
1)2), however the exponents of the b-term require an additional n2 exponentiation operations over
the earlier stated Schoolbook complexity. All operation are done in Fqm .

2.4 Normal bases

Normal bases facilitate calculations in finite fields and can therefore be used to reduce the compu-
tational complexity. We shortly summarize important properties of normal bases in the following
[1]. A basis B = {β0, β1, . . . , βm−1} of Fqm over Fq is a normal basis if βi = β[i] for all i, where
β ∈ Fqm is called a normal element. As shown in [4], there is a normal basis for any finite exten-
sion field Fqm over Fq. If we represent elements of Fqm in a normal basis over Fq, the operation
a → a[j] where a ∈ Fqm , an operation known as the Frobenius automorphism, can be accomplished
in O(1) operations over Fqm as follows. Let A = [A1, . . . , Am]T ∈ Fm×1

q be the vector represen-

tation of a ∈ Fqm in a normal basis. Then, for any j, the vector representation of a[j] is given by
[Am−j , Am−j+1, . . . , A0, A1, . . . , Am−j−1]

T, which is just a cyclic shift of the representation of a.

3 Karatsuba for linearized polynomials

In order to find the generalization of the algorithm for arbitrary degree linearized polynomials, this
paper explores multiplication of linearized polynomials of q-degree 1, 2 and 3. We will encounter

the transformation a0b
[1]
0 → a0b

[0]
0 and explore it. Finally, a concluding generalization is defined.

4

3.1 Karatsuba algorithm for q-degree 1 linearized polynomial (e.g. a1x
q1+

a0x
q0)

Let there be two q-degree-1 linearized polynomials A(x) and B(x) given by:

A(x) = a1x
[1] + a0x

[0] and B(x) = b1x
[1] + b0x

[0]

Then, following the definition of multiplication for linearized polynomials:

degqa∑
i=0

deqqb∑
j=0

aib
[i]
j x[i+j] (2)

the product C(x) = A(x) B(x) can be determined in the following manner:

C(x) = a1b
[1]
1 x[2] + a1b

[1]
0 x[1] + a0b

[0]
1 x[1] + a0b

[0]
0 x[0]

= a1b
[1]
1 x[2] + (a1b

[1]
0 + a0b

[0]
1)x[1] + a0b

[0]
0 x[0]

The coefficient of x[1] in the above linearized polynomial can be written as:

(a1b
[1]
0 + a0b

[0]
1) = ((a0 + a1)(b

[1]
0 + b

[0]
1)− a0b

[1]
0 − a1b

[0]
1)

Let there be three auxiliary variables D0, D1 and D0,1 given by:

D0 = a0b
[1]
0

D1 = a1b
[0]
1

D0,1 = (a0 + a1)(b
[1]
0 + b

[0]
1)

Then the linearized polynomial C ′(x) be can be written as:

C ′(x) = D1x
[2] + (D0,1 −D0 −D1)x

[1] +D0x
[0]

= a1b
[0]
1 x[2] + ((a0 + a1)(b

[1]
0 + b

[0]
1)− a0b

[1]
0 − a1b

[0]
1)x[1] + a0b

[1]
0 x[0]

= a1b
[0]
1 x[2] + ((a0b

[1]
0 + a0b

[0]
1 + a1b

[1]
0 + a1b

[0]
1)− a0b

[1]
0 − a1b

[0]
1)x[1] + a0b

[1]
0 x[0]

= a1b
[0]
1 x[2] + (a1b

[1]
0 + a0b

[0]
1)x[1] + a0b

[1]
0 x[0]S

Which looks similar to, but is not, the result C(x) that we are looking for.

C(x) = a1b
[1]
1 x[2] + (a1b

[1]
0 + a0b

[0]
1)x[1] + a0b

[0]
0 x[0]

C ′(x) = a1b
[0]
1 x[2] + (a1b

[1]
0 + a0b

[0]
1)x[1] + a0b

[1]
0 x[0]

In order to improve in terms of complexity, we need the following operations:

a0b
[1]
0 → a0b

[0]
0

a1b
[0]
1 → a1b

[1]
1

to be computational light (e.g. not factoring a0b
[1]
0 , lowering the exponent of b and multiply).

5

3.1.1 Exploring a0b
[1]
0 → a0b

[0]
0

In order to find a possible relation between a0b
[1]
0 and a0b

[0]
0 , let us work out the terms. We will

use the normal basis representation of the individual elements, with the use of a normal basis
(B,Bq, ...,Bqm−1

). This results in the following two vector representations:

a0 = (α1, α2, ..., αm)

b0 = (β1, β2, ..., βm)

Then for any j the vector representation of a[j] is given by:

a[j] = (αm−j , αm−j+1, ..., αm−j−1) (3)

The first operation is the exponentiation to get b
[0]
0 and b

[1]
0 from b0. Following the Frobenius

automorphism for normal bases, we get:

b
[0]
0 = (βm−0, βm−0+1, ..., βm−0−2, βm−0−1)

= (βm, β1, ..., βm−2, βm−1)

And:

b
[1]
0 = (βm−1, βm−1+1, ..., βm−1−2, βm−1−1)

= (βm−1, βm, ..., βm−3, βm−2)

Let us write out a0b
[0]
0 with simple algebraic operations for proving purposes:

a0b
[0]
0 = b

[0]
0 a0

= (βm, β1, ..., βm−2, βm−1)(α1, α2, ..., αm−1, αm)

= (βm(α1, α2, ..., αm−1, αm),

β1(α1, α2, ..., αm−1, αm),

...,

βm−2(α1, α2, ..., αm−1, αm),

βm−1(α1, α2, ..., αm−1, αm))

Let us now write out a0b
[1]
0 with simple algebraic operations for proving purposes:

a0b
[1]
0 = b

[1]
0 a0

= (βm−1, βm, ..., βm−3, βm−2)(α1, α2, ..., αm−1, αm)

= (βm−1(α1, α2, ..., αm−1, αm),

βm(α1, α2, ..., αm−1, αm),

...,

βm−3(α1, α2, ..., αm−1, αm),

βm−2(α1, α2, ..., αm−1, αm))

6

For simplification purposes, let us now define γ to represent the basis of a0:

γ = (α1, α2, ..., αm−1, αm)

This now gives:

a0b
[0]
0 = (βmγ, β1γ, ..., βm−2γ, βm−1γ)

And:
a0b

[1]
0 = (βm−1γ, βmγ, ..., βm−3γ, βm−2γ)

Which shows us the following equivalence:

a0b
[0]
0 → a0b

[1]
0 ≡ a0b

[0]
0 ≫ a0b

[1]
0

as well as:
a0b

[1]
0 → a0b

[0]
0 ≡ a0b

[1]
0 ≪ a0b

[0]
0

as well as:
a0b

[0]
0 → a0b

[2]
0 ≡ a0b

[0]
0 ≫2 a0b

[2]
0

where the i in ≫i denotes the offset of the shift.

3.1.2 Combining

With the establishing of the triviality of the relation between a0b
[1]
0 and a0b

[0]
0 , let us explore the

KA once more. Let there be three auxiliary variables D01 , D10 and D0,1 given by:

D01 = a0b
[1]
0

D10 = a1b
[0]
1

D0,1 = (a0 + a1)(b
[1]
0 + b

[0]
1)

As well as D00 and D11 :

D00 = a0b
[0]
0

D11 = a1b
[1]
1

Then the linearized polynomial C(x) can be written as:

C(x) = D11x
[2] + (D0,1 −D0 −D1)x

[1] +D00x
[0]

To summarize the implementation: Let there be two q-degree-1 linearized polynomials A(x) and
B(x) given by:

A(x) = a1x
[1] + a0x

[0] and B(x) = b1x
[1] + b0x

[0]

We have the following variables:
a0, a1, b0, b1

7

Compute the following auxiliary variables:

b
[1]
0 by b0 ≫2 (4)

b
[0]
1 by b1 ≫ (5)

D01 a0b
[1]
0 by a0 · b[1]0 (6)

D10 a1b
[0]
1 by a1 · b[0]1 (7)

D00 a0b
[0]
0 by a0b

[1]
0 ≪ (8)

D11 a1b
[1]
1 by a1b

[0]
1 ≫ (9)

D0,1 (a0 + a1)(b
[1]
0 + b

[0]
1) by (a0 + a1) · (b[1]0 + b

[0]
1) (10)

3.1.3 Concluding Karatsuba algorithm for q-degree 1 linearized polynomials

By using the above approach for acquiring the variables, the computation of C(x):

C(x) = D11x
[2] + (D0,1 −D01 −D10)x

[1] +D00x
[0]

requires 4 shift operations, 3 multiplications and 4 additions.

3.2 Karatsuba algorithm for q-degree 2 linearized polynomial (e.g. a2x
q2+

a1x
q1 + a0x

q0)

Let there be two q-degree 2 linearized polynomials A(x) and B(x) given by:

A(x) = a2x
[2] + a1x

[1] + a0x
[0], B(x) = b2x

[2] + b1x
[1] + b0x

[0]

Then, following the earlier given definition of multiplication for linearized polynomials (2), the
product C(x) = A(x)B(x) can be determined in the following manner:

C(x) = a2b
[2]
2 x[4] + a2b

[2]
1 x[3] + a2b

[2]
0 x[2]

+ a1b
[1]
2 x[3] + a1b

[1]
1 x[2] + a1b

[1]
0 x[1]

+ a0b
[0]
2 x[2] + a0b

[0]
1 x[1] + a0b

[0]
0 x[0]

= a2b
[2]
2 x[4] + (a2b

[2]
1 + a1b

[1]
2)x[3] + (a2b

[2]
0 + a1b

[1]
1 + a0b

[0]
2)x[2]

+ (a1b
[1]
0 + a0b

[0]
1)x[1] + a0b

[0]
0 x[0]

The coefficients of x[1], (part of) x[2] and x[3] in the resulting polynomial C(x) can be written as:

(a1b
[1]
0 + a0b

[0]
1) = ((a0 + a1)(b

[1]
0 + b

[0]
1)− a0b

[1]
0 − a1b

[0]
1)

(a2b
[2]
0 + a0b

[0]
2) = ((a0 + a2)(b

[2]
0 + b

[0]
2)− a0b

[2]
0 − a2b

[0]
2)

(a2b
[2]
1 + a1b

[1]
2) = ((a1 + a2)(b

[2]
1 + b

[1]
2)− a1b

[2]
1 − a2b

[1]
2)

8

Let there be the following auxiliary variables:

D00 = a0b
[0]
0 , D01 = a0b

[1]
0 , D02 = a0b

[2]
0

D10 = a1b
[0]
1 , D11 = a1b

[1]
1 , D12 = a1b

[2]
1

D20 = a2b
[0]
2 , D21 = a2b

[1]
2 , D22 = a2b

[2]
2

D0,1 = (a0 + a1)(b
[1]
0 + b

[0]
1)

D0,2 = (a0 + a2)(b
[2]
0 + b

[0]
2)

D1,2 = (a1 + a2)(b
[2]
1 + b

[1]
2)

Then:

C(x) = D22x
[4] + (D1,2 −D12 −D21)x

[3] + (D0,2 −D02 −D20 +D11)x
[2]+

(D0,1 −D01 −D10)x
[1] +D00x

[0]

3.2.1 Combining

First, we need to pre-compute all individual bi fromD0,1, D0,2 andD1,2, due to the earlier mentioned
need for these single terms (section 3.1.3)

b
[1]
0 , b

[2]
0 , b

[0]
1 , b

[2]
1 , b

[0]
2 , b

[1]
2

These can be computed by shifting bi by an offset of 1, 2 or 3 in order to obtain b
[0]
i , b

[1]
i and b

[2]
i

respectively. Coming down to a total of 6 shift operations.
With these b variables, D0,1, D0,2 and D1,2 can be computed by means of 3 multiplications and 6
additions.
Next, we need one variation of D0i , D1i and D2i . For sake of nothing let us take the lowest possible
exponent out of the above listing for b and compute the following auxiliary variables by means of
3 multiplications:

D01 = a0 · b[1]0

D10 = a1 · b[0]1

D20 = a2 · b[0]2

With the following use of shifts, all other variations of D0i , D1i and D2i can be computed.

D00 = D01 ≪
D02 = D01 ≫
D11 = D10 ≫
D12 = D10 ≫2

D21 = D20 ≫
D22 = D20 ≫2

9

3.2.2 Concluding Karatsuba algorithm for q-degree-2 linearized polynomials

Thus, with a total of 6 multiplications and 12 shifts, all auxiliary variables are computed and can
be filled in in the following equation:

C(x) = D22x
[4] + (D1,2 −D12 −D21)x

[3] + (D0,2 −D02 −D20 +D11)x
[2]+

(D0,1 −D01 −D10)x
[1] +D00x

[0]

Resulting in the product C(x) by means of 13 addition operations.

3.3 Karatsuba algorithm for q-degree-3 linearized polynomial (e.g. a3x
q3+

a2x
q2 + a1x

q1 + a0x
q0)

In order to make the generalization towards q-degree-n linearized polynomials, let us explore the
KA for q-degree-3 linearized polynomials. Let there be two q-degree-3 linearized polynomials A(x)
and B(x) given by:

A(x) = a3x
[3] + a2x

[2] + a1x
[1] + a0x

[0],

B(x) = b3x
[3] + b2x

[2] + b1x
[1] + b0x

[0]

The worked out execution of the KA can be found in Appendix A.

3.4 Generalization

With use of the insight created in the previous sections, a generalization of the KA for arbitrary
q-degree linearized polynomials (e.g.

∑n
i=0 aix

qi) is formed. Let there be two q-degree-n linearized
polynomials (note: these polynomials have n+ 1 terms) A(x) and B(x) given by:

A(x) =

n∑
i=0

aix
qi and B(x) =

n∑
i=0

bix
qi (11)

Let C(x) be the product of A(x) and B(x). The following auxiliary values are needed in order to
perform the KA:

Dij = aib
qj

i [∀i = 0, 1, 2, ..., n, and ∀j = 0, 1, 2, ..., n]

Di,j = (ai + aj)(bij + bji) [∀k = 1, 2, ..., 2(n+ 1)− 3,

and ∀i, j ∈ {0, 1, ..., n} such that i+ j = k and j > i ≥ 0]

Then C(x) of the form:
2n∑
i=0

cix
qi

Where:

c0 = D00

c2n = Dnn

10

ci =


∑

p+q=i,q>p≥0

Dp,q−
∑

p+q=i,q>p≥0

(Dpq +Dqp), for odd values of i, 0 < i < 2n∑
p+q=i,q>p≥0

Dp,q−
∑

p+q=i,q>p≥0

(Dpq +Dqp) +Di/2i/2 , for even values of i, 0 < i < 2n
(12)

3.4.1 Obtaining the auxiliary variables

When following the above algorithm by computing the auxiliary values blatantly, e.g. exponentiate
without use of shifts, it would result in a complexity similar to the schoolbook approach. In order
to profit from this algorithm, the earlier stated insights should be used for obtaining the auxiliary
variables in such a way that computational cost is minimal. The following achieves just that:

bij = b
[j]
i [∀i = 0, 1, 2, ..., n, and ∀j = 0, 1, 2, ..., n such that i ̸= j] (13)

D01 = a0b01 (14)

D00 = D01 ≪ (15)

D0i = D01 ≫i [∀i = 2, ..., n] (16)

Di0 = aibi0 [∀i = 1, 2, ..., n] (17)

Dij = Di0 ≫j [∀i = 1, 2, ..., n and ∀j = 1, 2, ..., n] (18)

Di,j = (ai + aj)(bij + bji) [∀k = 1, 2, ..., 2(n+ 1)− 3, (19)

and ∀i, j ∈ {0, 1, ..., n} such that i+ j = k and j > i ≥ 0] (20)

The set of exponentiations of bi, referenced to as bij , is obtained in step 13, this set has a size of
(n + 1)2 − (n + 1) = n2 + n. These single term elements are part of the computation of the set
Dij and are therefore needed. To compute all elements of bij , n

2 + n shift operations need to be
performed.
Next, the variable D01 is computed instead of D00 because b01 is in bij whereas b00 is not. This is
the only element of Dij that is initially computed with j = 1 instead of j = 0. Thereby justifying
step 15 and 16. All other Dij are computed by step 17 and 18. Combining step 14 - 18, there is a
total of n+ 1 multiplications (to obtain D01 and all Di0) and n(n+ 1) shift operations.

Lastly, Di,j is computed. This set consists of n2+n
2 elements and is computed with the use of tuples

of elements of bij by means of n2+n
2 multiplications and n2 + n additions. All auxiliary variables

are thus computed by means of:

(n2 + n) + n(n+ 1) = n(2n+ 2) exponentiations

n+ 1 +
n2 + n

2
=

n2 + 3n

2
+ 1 multiplications

n2 + n additions

3.4.2 Concluding the generalization

In order to conclude the overall complexity, we need to determine the number of additions used in
the computation of all ci (excluding c0 and c2n). Let us denote that number by A.

Looking at this equation (12) together with the worked out example in section 3.3, we see the
following. We require (at least) 2 additions for computing c1, c2, c2n−1 and c2n−2, 5 additions for

11

computing c3, c4, c2n−3 and c2n−4. This increase of 3 additions goes on. In order to simplify the
determination of the number of additions, let us consider the set of tuples:

θ = {(c1, c2, c2n−2, c2n−1), (c3, c4, c2n−4, c2n−3), . . . }

Where |θ| = n
2 . Note that cn is the only ci that appears twice in this set. The elements of every

tuple in θ share an equal number of additions in their computation (not yet taking the additional
addition for even i into account). Thus, we can compute the following:

A′ = 4

n
2∑

i=1

(3i− 1) (21)

However, the computation of cn is counted twice by i = n
2 in the above equation, despite it only

appearing once (see 3.3). The number of additions for cn, we therefore have to subtract, is equal
to:

A(cn) = 3
n

2
− 1

And the number of additional additions due to the even i statement, we have to add, is equal to:

2n− 2

2
= n− 1

Combining gives A to be:

A = 4

n
2∑

i=1

(3i− 1)− (3
n

2
− 1) + (n− 1) =

3n2

2
+

n

2
(22)

Which lets us conclude the number of operations for the generalized KA for linearized polynomials
of q-degree-n:

n(2n+ 2) exponentiations

n2 + 3n

2
+ 1 multiplications

5n2

2
+

3n

2
additions

Table 1 below shows the number of operations for small prime n for both KA and Schoolbook
multiplication. Note that with increase of n the number of multiplications needed for the KA
gradually become less then for Schoolbook. Also note that the significant difference in number of
exponentiations.

12

KA Schoolbook
n #MUL #ADD #EXP #MUL #ADD #EXP qm

2 6 13 12 4 1 4 32

3 10 27 24 9 4 9 32

5 21 70 60 25 16 25 32

7 36 133 112 49 36 49 32

11 78 319 264 121 100 121 32

13 105 442 364 169 144 169 32

Table 1: comparison for KA and Schoolbook for small primes

4 Karatsuba vs Schoolbook

Next, we consider the complexity of the newly found implementation of the KA for linearized
polynomials and compare that to the complexity of the Schoolbook multiplication. We define the
operations to have the following complexities:

addition in Fqm O(m(log2(q))

multiplication in Fqm O(m log2(q) log2(m log2(q)))

exponentiation in Fqm O(1)

Note that the complexity of the exponentiation is constant since we assume the elements to be in
their normal base representation. These complexities in combination with the number of executions
established in 3.4.1 gives the following complexity for the KA for q-degree-n linearized polynomials:

additions:

(
5n2

2
+

3n

2
− 1) · O(m(log2(q))

= O((
5n2

2
+

3n

2
− 1)m(log2(q))

multiplication:

n2 + 3n

2
+ 1 · O(log2(q) log2(m log2(q)))

= O(
n2 + 3n

2
+ 1(m log2(q) log2(m log2(q))))

shift:

n(2n+ 2) · O(1)

= O(2n2 + 2n)

Combining into an overall complexity for the KA for q-degree-n linearized polynomials:

O((
5n2

2
+

3n

2
− 1)m(log2(q))+

(
n2 + 3n

2
+ 1)(m log2(q) log2(m log2(q))) + 2n2 + 2n)

(23)

13

And for Schoolbook:

additions:

(n− 1)2 · O(m(log2(q))

= O((n− 1)2m(log2(q))

multiplication:

n2 · O(log2(q) log2(m log2(q)))

= O(n2(m log2(q) log2(m log2(q))))

Exponentiations:

n2 · O(1)

= O(n2)

Combining into an overall complexity for Schoolbook for q-degree-n linearized polynomials:

O
(
(n− 1)2m(log2(q)) + n2(m log2(q) log2(m log2(q))) + n2

)
(24)

Since this research aims for an efficient alternative for MM in Fn×n
q we need to be able to represent

matrices in the alternative field. We say m to be equal to n in all comparisons. This way all
elements can be represented in both Fn×n

q and Fqm and thus be compared. Note that not all
elements of Fn×n

q require the degree of the linearized polynomial that represents it in Fqm to be
m. Also note that by letting m = n, quadratic asymptotic complexities with respect to n become
cubic.

14

4.1 Exploring Karatsuba vs Schoolbook

Both complexities, (23) and (24), share the same asymptotic theoretical complexity of O(n2). In
order to determine which multiplication algorithm is most suitable for competing with MM in Fn×n

q ,
let us explore the quantified complexities of both KA and SB in Fqm for various values of q, and n.
Appendix B contains an elaborate table that covers more values of q and n.

n KA SB Diff %Diff
2 50 14 -36 -72.0
4 344 180 -164 -47.7
8 2600 1992 -608 -23.4
16 20960 20240 -720 -3.4
32 175328 195616 20288 11.6
64 1493504 1830976 337472 22.6

(a) q = 2

n KA SB Diff %Diff
2 112 40 -72 -64.3
4 768 472 -296 -38.5
8 5776 4944 -832 -14.4
16 46272 48416 2144 4.6
32 384448 455744 71296 18.5
64 3253248 4182144 928896 28.6

(b) q = 4

n KA SB Diff %Diff
2 260 108 -152 -58.5
4 1736 1184 -552 -31.8
8 12848 11872 -976 -7.6
16 101792 112960 11168 11.0
32 838592 1041536 202944 24.2
64 7047296 9408768 2361472 33.5

(c) q = 16

n KA SB Diff %Diff
2 984 468 -516 -52.4
4 6268 4736 -1532 -24.4
8 45098 45221 123 0.3
16 350813 416229 65416 18.6
32 2852712 3745412 892700 31.3
64 23733952 33200648 9466696 39.9

(d) q = 4093

n KA SB Diff %Diff
2 1183 570 -613 -51.8
4 7494 5723 -1771 -23.6
8 53718 54349 631 1.2
16 416868 498379 81511 19.6
32 3384148 4472105 1087957 32.1
64 28119298 39554879 11435581 40.7

(e) q = 16389

n KA SB Diff %Diff
2 1387 675 -712 -51.3
4 8743 6735 -2008 -23.0
8 62478 63678 1200 1.9
16 483860 582130 98270 20.3
32 3922406 5211524 1289118 32.9
64 32556446 46010317 13453871 41.3

(f) q = 65521

Table 2: quantified complexities for KA and Schoolbook for various n and q common in the field
of cryptography

4.2 Concluding Karatsuba vs Schoolbook

We see that SB is faster for small n, regardless of q. We also see that with increasing n, KA becomes
increasingly superior over SB. This increase is relatively bigger for larger q. We can conclude KA
to be the preferred algorithm for multiplication in Fqm for the comparison with MM.

5 Karatsuba vs Matrix multiplication

As mentioned, a linearized polynomial and a matrix can be used to represent the same element:

Am×m ∈ Fm×m
q ≡ f(x) ∈ Fqm where degq(f(x)) < m

Before comparing computational complexities, let us define the scope of the comparison. Although
most cryptographic algorithms, as of today, make use of MM, we are not considering KA for

15

linearized polynomials as a multiplication algorithm to plug in place of MM by means of transfor-
mations back and forth. We do therefore not explore transformations between the two discussed
’worlds’. The scope of this research is the comparison of:

f1 · f2, where f ∈ Fqm by means of KA (25)

and
A1 ·A2, where A ∈ Fm×m

q by means of naive matrix multiplication (26)

5.1 Complexity of naive Matrix multiplication

In order to determine the complexity of naive MM, we define the following complexities:

addition in Fq O(log2(q))

multiplication in Fq O(log2(q) log2(log2(q)))

And the following number of operations:

n3 multiplications

n3 − n2 additions

Combining these definitions we can state the complexity of naive MM to be:

O(n3 log2(q) + n3 log2(q) log2(log2(q))− n2 log2(q)) (27)

With the earlier found complexity of KA for linearized polynomials (23), we now can compare.

5.2 Exploring Karatsuba vs Matrix multiplication

As can be seen in table 3, with increasing n, the number of operations significantly start to differ. In
order for sensible conclusions to be drawn, the operation complexity must to be taken into account.

16

KA in F3n Naive in Fn×n
3

n #MUL #ADD #EXP #MUL #ADD
2 6 12 12 8 4
3 10 26 24 27 18
5 21 69 60 125 100
7 36 132 112 343 294
11 78 318 264 1331 1210

Table 3: comparison for number of operations KA and MM for small primes

Table 4 shows the quantified complexity of both algorithms for 6 different primes q commonly
used in the field of cryptography. Three of which are on the low side and the other three are on
the high side. Note that for all values of q, n and m, MM is superior over KA. Note that this
superiority decreases with increase of n. This decrease is faster for higher n. However, even on the
high end of the spectrum (q = 65521, n = 64), KA is 35,8% slower than naive MM. Appendix B
contains an elaborate table that covers more values of q and n.

n KA MM Diff %Diff
2 50 4 -46 -92.0
4 344 48 -296 -86.0
8 2600 448 -2152 -82.8
16 20960 3840 -17120 -81.7
32 175328 31744 -143584 -81.9
64 1493504 258048 -1235456 -82.7

(a) q = 2

n KA MM Diff %Diff
2 112 24 -88 -78.6
4 768 224 -544 -70.8
8 5776 1920 -3856 -66.8
16 46272 15872 -30400 -65.7
32 384448 129024 -255424 -66.4
64 3253248 1040384 -2212864 -68.0

(b) q = 4

n KA MM Diff %Diff
2 260 80 -180 -69.2
4 1736 704 -1032 -59.4
8 12848 5888 -6960 -54.2
16 101792 48128 -53664 -52.7
32 838592 389120 -449472 -53.6
64 7047296 3129344 -3917952 -55.6

(c) q = 16

n KA MM Diff %Diff
2 984 392 -592 -60.2
4 6268 3328 -2940 -46.9
8 45098 27398 -17700 -39.2
16 350813 222262 -128551 -36.6
32 2852712 1790384 -1062328 -37.2
64 23733952 14372227 -9361725 -39.4

(d) q = 4093

n KA MM Diff %Diff
2 1183 482 -701 -59.3
4 7494 4083 -3411 -45.5
8 53718 33564 -20154 -37.5
16 416868 272100 -144768 -34.7
32 3384148 2191137 -1193011 -35.3
64 28119298 17586444 -10532854 -37.5

(e) q = 16389

n KA MM Diff %Diff
2 1387 575 -812 -58.5
4 8743 4863 -3880 -44.4
8 62478 39934 -22544 -36.1
16 483860 323575 -160285 -33.1
32 3922406 2604986 -1317420 -33.6
64 32556446 20905427 -11651019 -35.8

(f) q = 65521

Table 4: quantified complexities for KA and MM for various n and q common in the field of
cryptography

17

6 Conclusion

In this research we implemented the Karatsuba Algorithm for same degree linearized polynomials.
We analyzed the complexity and compared that to Schoolbook multiplication for same degree
linearized polynomials. This comparison showed the Karatsuba algorithm to be faster for linearized
polynomials of degree n > 19 independent of q and for even lower degrees n when q gets larger. We
also compared to naive matrix multiplication. Matrix multiplication is superior over the Karatsuba
Algorithm in all cases.

7 Discussion

This research implemented single iteration Karatsuba as contender for matrix multiplication. Re-
cursive Karatsuba (divide & conquer) fell out of the scope of this research. Although this paper
did not conclude in an enticing alternative for matrix multiplication, perhaps the exploration of
recursive Karatsuba could.

As mentioned, this research assumes m to be equal to n. Using cases in which the ’dimension’
of the field of linearized polynomials m is strictly smaller than matrix size n has potency of being
in favor of Karatsuba.

This research assumed and compared to naive matrix multiplication. There are known to be
more efficient matrix multiplication algorithms, of which the Strassen algorithm is best known.
Future research could incorporate other algorithms.

Lastly, this research did not consider real-world implementations of the algorithms, solely theory.
Actual running time might show different results, especially when utilizing hardware in favorable
ways.

18

References

[1] Shuhong Gao. Normal bases over finite fields. University of Waterloo Waterloo, Canada, 1993.

[2] A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on Automata. 7:595–596,
1963.

[3] Neal Koblitz. Elliptic Curve Cryptosystems. 48(177):203–209, Jan 1987.

[4] Rudolf Lidl and Harald Niederreiter. Finite fields. Number 20. Cambridge university press,
1997.

[5] Sudhanshu Mishra and Manoranjan Pradhan. Implementation of karatsuba algorithm using
polynomial multiplication. Indian Journal of Computer Science and Engineering, 3, Feb 2012.

[6] National Institute of Standards and Technology. Post-Quantum Cryptography, Jun 2023.

[7] Oystein Ore. On a special class of polynomials. Transactions of the American Mathematical
Society, 35(3):559–584, 1933.

[8] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Commun. ACM, 21(2):120–126, feb 1978.

[9] André Weimerskirch and Christof Paar. Generalizations of the Karatsuba algorithm for efficient
implementations. Cryptology ePrint Archive, 2006.

19

A Karatsuba algorithm for q-degree 3 linearized polynomial

Then, following the earlier given definition of multiplication for linearized polynomials (2), the
product C(x) = A(x)B(x) can be determined in the following manner:

C(x) = a3b
[3]
3 x[6] + a3b

[3]
2 x[5] + a3b

[3]
1 x[4] + a3b

[3]
0 x[3]

+ a2b
[2]
3 x[5] + a2b

[2]
2 x[4] + a2b

[2]
1 x[3] + a2b

[2]
0 x[2]

+ a1b
[1]
3 x[4] + a1b

[1]
2 x[3] + a1b

[1]
1 x[2] + a1b

[1]
0 x[1]

+ a0b
[0]
3 x[3] + a0b

[0]
2 x[2] + a0b

[0]
1 x[1] + a0b

[0]
0 x[0]

= a3b
[3]
3 x[6] + (a3b

[3]
2 + a2b

[2]
3)x[5] + (a3b

[3]
1 + a2b

[2]
2 + a1b

[1]
3)x[4]

+ (a3b
[3]
0 + a2b

[2]
1 + a1b

[1]
2 + a0b

[0]
3)x[3] + (a2b

[2]
0 + a1b

[1]
1 + a0b

[0]
2)x[2]

+ (a1b
[1]
0 + a0b

[0]
1)x[1] + a0b

[0]
0 x[0]

The coefficients of x[1], (part of) x[2], (part of) x[3], (part of) x[4], and x[5] in the resulting polynomial
C(x) can be written as:

(a1b
[1]
0 + a0b

[0]
1) = ((a0 + a1)(b

[1]
0 + b

[0]
1)− a0b

[1]
0 − a1b

[0]
1)

(a2b
[2]
0 + a0b

[0]
2) = ((a0 + a2)(b

[2]
0 + b

[0]
2)− a0b

[2]
0 − a2b

[0]
2)

(a3b
[3]
0 + a0b

[0]
3) = ((a0 + a3)(b

[3]
0 + b

[0]
3)− a0b

[3]
0 − a3b

[0]
3)

(a2b
[2]
1 + a1b

[1]
2) = ((a1 + a2)(b

[2]
1 + b

[1]
2)− a1b

[2]
1 − a2b

[1]
2)

(a3b
[3]
1 + a1b

[1]
3) = ((a1 + a3)(b

[3]
1 + b

[1]
3)− a1b

[3]
1 − a3b

[1]
3)

(a3b
[3]
2 + a2b

[2]
3) = ((a2 + a3)(b

[3]
2 + b

[2]
3)− a2b

[3]
2 − a3b

[2]
3)

20

Let there be the following auxiliary variables:

D00 = a0b
[0]
0 , D01 = a0b

[1]
0 , D02 = a0b

[2]
0 , D03 = a0b

[3]
0

D10 = a1b
[0]
1 , D11 = a1b

[1]
1 , D12 = a1b

[2]
1 , D13 = a1b

[3]
1

D20 = a2b
[0]
2 , D21 = a2b

[1]
2 , D22 = a2b

[2]
2 D23 = a2b

[3]
2

D30 = a3b
[0]
3 , D31 = a3b

[1]
3 , D32 = a3b

[2]
3 D33 = a3b

[3]
3

D0,1 = (a0 + a1)(b
[1]
0 + b

[0]
1)

D0,2 = (a0 + a2)(b
[2]
0 + b

[0]
2)

D0,3 = (a0 + a3)(b
[3]
0 + b

[0]
3)

D1,2 = (a1 + a2)(b
[2]
1 + b

[1]
2)

D1,3 = (a1 + a3)(b
[3]
1 + b

[1]
3)

D2,3 = (a2 + a3)(b
[3]
2 + b

[2]
3)

Then:

C(x) = D33x
[6]+

(D2,3 −D23 −D32)x
[5]+

(D1,3 −D13 −D31 +D22)x
[4]+

((D0,3 −D03 −D30) + (D1,2 −D12 −D21))x
[3]+

(D0,2 −D20 −D02 +D11)x
[2]+

(D0,1 −D01 −D10)x
[1]+

D00x
[0]

21

B Complexities

The following table contains the complexity for different values of q and n. The KA and SB
columns display the complexity of Karatsuba and Schoolbook respectively. The SB-KA and the
% column that follows that, show the difference between SB and KA with respect to KA, absolute
and percentage-wise. The MM column displays the complexity of naive matrix multiplication.
The MM-KA and the % column that follows that show the difference between MM and KA with
respect to KA, again, absolute and percentage-wise.

q n KA SB SB-KA % MM MM-KA %
2 2 50 14 -36 -72.0 4 -46 -92.0

4 344 180 -164 -47.7 48 -296 -86.0
8 2600 1992 -608 -23.4 448 -2152 -82.8
16 20960 20240 -720 -3.4 3840 -17120 -81.7
32 175328 195616 20288 11.6 31744 -143584 -81.9
64 1493504 1830976 337472 22.6 258048 -1235456 -82.7
128 12813440 16760960 3947520 30.8 2080768 -10732672 -83.8
256 110070272 150929664 40859392 37.1 16711680 -93358592 -84.8
512 943986176 1341915648 397929472 42.2 133955584 -810030592 -85.8
1048 8672291052 12698621885 4026330833 46.4 1149924288 -7522366764 -86.7

4 2 112 40 -72 -64.3 24 -88 -78.6
4 768 472 -296 -38.5 224 -544 -70.8
8 5776 4944 -832 -14.4 1920 -3856 -66.8
16 46272 48416 2144 4.6 15872 -30400 -65.7
32 384448 455744 71296 18.5 129024 -255424 -66.4
64 3253248 4182144 928896 28.6 1040384 -2212864 -68.0
128 27740416 37699840 9959424 35.9 8355840 -19384576 -69.9
256 236983296 335348224 98364928 41.5 66977792 -170005504 -71.7
512 2022452224 2952004608 929552384 46.0 536346624 -1486105600 -73.5
1048 18496703001 27698190651 9201487650 49.7 4601893760 -13894809241 -75.1

16 2 260 108 -152 -58.5 80 -180 -69.2
4 1736 1184 -552 -31.8 704 -1032 -59.4
8 12848 11872 -976 -7.6 5888 -6960 -54.2
16 101792 112960 11168 11.0 48128 -53664 -52.7
32 838592 1041536 202944 24.2 389120 -449472 -53.6
64 7047296 9408768 2361472 33.5 3129344 -3917952 -55.6
128 59740928 83771904 24030976 40.2 25100288 -34640640 -58.0
256 507783680 737739776 229956096 45.3 201064448 -306719232 -60.4
512 4314389504 6440617984 2126228480 49.3 1609564160 -2704825344 -62.7
1048 39299846499 59999373367 20699526868 52.7 13807877888 -25491968611 -64.9

31 2 337 145 -192 -57.0 111 -226 -67.1
4 2232 1560 -672 -30.1 969 -1263 -56.6
8 16429 15471 -958 -5.8 8075 -8354 -50.8
16 129687 146108 16421 12.7 65872 -63815 -49.2
32 1065584 1339855 274271 25.7 532050 -533534 -50.1
64 8936354 12053092 3116738 34.9 4276695 -4659659 -52.1
128 75625365 106958498 31333133 41.4 34294731 -41330634 -54.7
256 641861499 939365625 297504126 46.4 274682526 -367178973 -57.2
512 5446677244 8182193649 2735516405 50.2 2198758926 -3247918318 -59.6
1048 49556809471 76071955705 26515146234 53.5 18861783586 -30695025885 -61.9

127 2 512 230 -282 -55.1 184 -328 -64.1
4 3340 2416 -924 -27.7 1590 -1750 -52.4
8 24365 23575 -790 -3.2 13167 -11198 -46.0
16 191214 220213 28999 15.2 107132 -84082 -44.0
32 1564584 2003330 438746 28.0 864213 -700371 -44.8

22

64 13078958 17910499 4831541 36.9 6942331 -6136627 -46.9
128 110391266 158150270 47759004 43.3 55653155 -54738111 -49.6
256 934835817 1383297950 448462133 48.0 445683255 -489152562 -52.3
512 7917356589 12007780192 4090423603 51.7 3567298088 -4350058501 -54.9
1048 71909038804 111304051268 39395012464 54.8 30600422610 -41308616194 -57.4

251 2 601 274 -327 -54.4 222 -379 -63.1
4 3895 2851 -1044 -26.8 1910 -1985 -51.0
8 28316 27656 -660 -2.3 15794 -12522 -44.2
16 221733 257345 35612 16.1 128397 -93336 -42.1
32 1811490 2334514 523024 28.9 1035340 -776150 -42.8
64 15124903 20825483 5700580 37.7 8315374 -6809529 -45.0
128 127535777 183563173 56027396 43.9 66653605 -60882172 -47.7
256 1079132300 1603218882 524086582 48.6 533751264 -545381036 -50.5
512 9132897922 13899578519 4766680597 52.2 4272099806 -4860798116 -53.2
1048 82895128418 128699070826 45803942408 55.3 36645781808 -46249346610 -55.8

256 2 604 276 -328 -54.3 224 -380 -62.9
4 3912 2864 -1048 -26.8 1920 -1992 -50.9
8 28432 27776 -656 -2.3 15872 -12560 -44.2
16 222624 258432 35808 16.1 129024 -93600 -42.0
32 1818688 2344192 525504 28.9 1040384 -778304 -42.8
64 15184512 20910592 5726080 37.7 8355840 -6828672 -45.0
128 128035072 184304640 56269568 43.9 66977792 -61057280 -47.7
256 1083333120 1609631744 526298624 48.6 536346624 -546986496 -50.5
512 9168274432 13954715648 4786441216 52.2 4292870144 -4875404288 -53.2
1048 83214772695 129205829166 45991056471 55.3 36823936512 -46390836183 -55.7

2039 2 886 418 -468 -52.8 348 -538 -60.7
4 5663 4252 -1411 -24.9 2961 -2702 -47.7
8 40832 40727 -105 -0.3 24392 -16440 -40.3
16 318069 375693 57624 18.1 197956 -120113 -37.8
32 2588969 3386224 797255 30.8 1594906 -994063 -38.4
64 21555650 30055565 8499915 39.4 12804285 -8751365 -40.6
128 181345292 263839503 82494211 45.5 102614404 -78730888 -43.4
256 1531462824 2296525779 765062955 50.0 821635712 -709827112 -46.3
512 12939224354 19853233240 6914008886 53.4 6575967616 -6363256738 -49.2
1048 117263243027 183358053040 66094810013 56.4 56406735256 -60856507771 -51.9

4093 2 984 468 -516 -52.4 392 -592 -60.2
4 6268 4736 -1532 -24.4 3328 -2940 -46.9
8 45098 45221 123 0.3 27398 -17700 -39.2
16 350813 416229 65416 18.6 222262 -128551 -36.6
32 2852712 3745412 892700 31.3 1790384 -1062328 -37.2
64 23733952 33200648 9466696 39.9 14372227 -9361725 -39.4
128 199550825 291140986 91590161 45.9 115174406 -84376419 -42.3
256 1684348673 2531934722 847586049 50.3 922181616 -762167057 -45.2
512 14224630791 21871958972 7647328181 53.8 7380598384 -6844032407 -48.1
1048 128860229796 201868316337 73008086541 56.7 63308232880 -65551996916 -50.9

16389 2 1183 570 -613 -51.8 482 -701 -59.3
4 7494 5723 -1771 -23.6 4083 -3411 -45.5
8 53718 54349 631 1.2 33564 -20154 -37.5
16 416868 498379 81511 19.6 272100 -144768 -34.7
32 3384148 4472105 1087957 32.1 2191137 -1193011 -35.3
64 28119298 39554879 11435581 40.7 17586444 -10532854 -37.5
128 236175965 346237093 110061128 46.6 140920942 -95255023 -40.3
256 1991732478 3006543936 1014811458 51.0 1128285073 -863447405 -43.4
512 16807637297 25938515383 9130878086 54.3 9029950721 -7777686576 -46.3
1048 152152972999 239127599600 86974626601 57.2 77455027831 -74697945168 -49.1

23

65521 2 1387 675 -712 -51.3 575 -812 -58.5
4 8743 6735 -2008 -23.0 4863 -3880 -44.4
8 62478 63678 1200 1.9 39934 -22544 -36.1
16 483860 582130 98270 20.3 323575 -160285 -33.1
32 3922406 5211524 1289118 32.9 2604986 -1317420 -33.6
64 32556446 46010317 13453871 41.3 20905427 -11651019 -35.8
128 273203450 402138028 128934578 47.2 167505559 -105697891 -38.7
256 2302277782 3487553430 1185275648 51.5 1341093029 -961184753 -41.7
512 19415632121 30055968481 10640336360 54.8 10732938452 -8682693669 -44.7
1048 175658002840 276820659349 101162656509 57.6 92061785874 -83596216966 -47.6

24

