
Bachelor’s Thesis Computing Science

Security of the Sponge Construction
with a Random Transformation

Robin Foekens
4666615

January 4, 2023

First supervisor/assessor:
Dr. Bart Mennink

Second supervisor:
Charlotte Lefevre

Second assessor:
Prof. Joan Daemen

Abstract

The sponge construction is often used for the design of cryptographic
hash functions. Some interesting security properties of hash functions are
collision, preimage and second preimage security.

Recently, a tight bound for preimage security has been proven in the case
where this construction uses a permutation. Since tight bounds for collision
and second preimage security had been proven already, this implies we have
tight bounds for all of the above security properties for this construction.

In the case where the sponge uses a transformation instead of a permu-
tation, the collision attack carries over and this proves that the bound for
collision security is tight. However, tight first and second preimage bounds
have not been proven yet. We will prove those bounds and show that they
correspond to the original expectations for the sponge.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Notation . 4
2.2 Generalized Sponge Construction 4
2.3 Security Model . 5

3 Attacks 7
3.1 Preimage attack . 7
3.2 Second preimage attack . 9

4 Preimage Resistance 11
4.1 Setup . 11
4.2 Probability computation . 12

5 Second Preimage Resistance 14
5.1 Setup . 14
5.2 Logic . 15
5.3 Probability computation . 15

6 Conclusion 18

1

Chapter 1

Introduction

The sponge construction of Bertoni et al. [4] is often used for cryptographic
hashing algorithms. It has a b-bit state, which consists of an inner part of c
bits, that is called the capacity, and an outer part of r bits, that is called the
rate. So b = r + c. The construction has two phases, the absorbing phase
and the squeezing phase. In the absorbing phase, data is ‘absorbed’ into the
construction in r-bit parts. During the squeezing phase, data is extracted
from the construction in r-bit parts. After every step of these two phases,
the state is updated with a function f . In the case of a hash function, the
extracted data is then used as a digest.

The developers of PHOTON [5] proposed a generalization of this con-
struction where a higher rate r′ ≥ r is used during the squeezing phase. In
that case, we have b = r+ c = r′+ c′. This is depicted in Figure 2.1. In this
thesis, we will look at the generalized sponge construction, but for simplicity
we will call it the “sponge”.

When studying hash functions, we are generally interested in certain
security properties. These are collision, first and second preimage resis-
tance. For collision resistance, we consider an adversary that tries to find
two different messages that give the same output. For preimage resistance,
we consider an adversary that receives a certain digest and tries to find a
message that gives that digest when inputted into the sponge. For second
preimage resistance, we consider an adversary that receives a message and
tries to find another message that gives the same digest as the received
message when inputted into the sponge.

In the case of a sponge where we take a permutation for f , tight bounds
for collision, first and second preimage resistance are proven [3, 1]. The
bound for first preimage resistance has only been proven recently [6].

We will consider the sponge construction where f can be any transforma-
tion. The bound for collision resistance from the sponge with a permutation
is still tight in this construction. However, tight bounds for first and sec-

2

ond preimage resistance have not been proven yet. The best attacks for
the sponge with a permutation do not work in this case, since these use
the inverse of the permutation. If we use a transformation instead of a
permutation, such an inverse does not need to exist.

When the sponge construction was first proposed, the designers expected
the workload for a preimage attack to be 2n and for a second preimage attack
to be min

{
2c

k , 2
n
}
, where k is the number of r-bit message blocks that the

input consists of [4].

In this thesis, we will solve this open problem and prove that the bounds
of q

2n for the first and q
2b

+ q
2n + q·k

2c for second preimage resistance of the
sponge with a random function are tight up to constants, for any adversary
that can make at most q queries. This is motivated by and closely follows
the paper that proves tight preimage resistance of the sponge construction
[6].

We will first give some notations and give a more detailed description of
the sponge construction and the security model in Chapter 2. Then, we will
look at the best known preimage and second preimage attack in Chapter 3.
In Chapter 4 we will prove a tight bound for preimage resistance, and in
Chapter 5 we will do the same for second preimage resistance. Finally, in
Chapter 6 we will reflect on our findings.

3

Chapter 2

Preliminaries

2.1 Notation

For b ∈ N, we use {0, 1}b to denote the set of binary strings with length b. We
define {0, 1}∗ as ∪b∈N{0, 1}b, the set of binary strings with arbitrary length.
For a b-bit string s and 0 ≤ x ≤ y ≤ b− 1, s[x : y] denotes the substring of
s from the bits of position x to y. We denote innerx(s) = s[b−x : b− 1] and
outerx(s) = s[0 : x− 1].

For a finite set S, x
$← S means that x is a uniformly random drawing from

S.
The set Funct(b) denotes the set of functions from {0, 1}b → {0, 1}b. For

a random function f
$← Funct(b) and for i ∈ N, f0 means the identity

function and f i means i iterations of f .

2.2 Generalized Sponge Construction

We will be looking at a generalized sponge construction as seen in Figure 2.1
[5], based on the sponge construction [4], but where we can also use a larger
rate in the squeezing phase. Let b, c, r, c′, r′, n ∈ N such that b = c+r = c′+r′

and r′ ≥ r. Let f ∈ Funct(b) be a function on b bits. Let pad be an injective
padding function that pads a message M into blocks of r bits such that the
last block is non-zero. We will only look at sponge constructions with a
fixed output of n bits and we take l = ⌈n/r′⌉.

For any input message M ∈ {0, 1}∗, we define the sponge construction
with function f ∈ Funct(b), denoted by Hf (M) : {0, 1}∗ → {0, 1}n, as
follows.

• M is padded and split it into blocks or size r with pad, such that
M1 ∥ . . . ∥Mk ← pad(M) for some k.

• Absorbing phase: The sponge construction has a b-bit state that we

4

call Si for i = 0, . . . , k. A state S0 ← 0b is initialized. We have
Si ← f(Si−1 ⊕ (Mi∥0c)).

• Squeezing phase: We take S′
0 as the last state of the absorbing phase.

For i = 1, . . . , l we have S′
i ← f(S′

i−1) and we extract the outer r′ bits
as Zi ← outerr′(S

′
i−1).

• We take as digest Z ← (Z1 ∥ . . . ∥Zl)[0 : n− 1].

Absorbing phase Squeezing phase

0b

r

c

M1

f . . . f

Mk

f

c′

r′

Z1

f . . . f

Zl

Figure 2.1: Generalized sponge construction as described in Section 2.1.

2.3 Security Model

Consider an adversary A, which is a probabilistic algorithm. The adversary

can make queries to a function f
$← Funct(b). The number of queries is

called q. The collection of queries that A has made is called Q and is an
ordered list of tuples (X,Y) ∈ {0, 1}b × {0, 1}b, where f(X) = Y . We can
assume without loss of generality that the adversary never repeats queries.
For i ∈ N, we use Qi to denote the set of the first i queries the adversary
has made.
We use a graph representation to represent the query history Q of an ad-
versary A. The graph representation of Q contains nodes {0, 1}b, which
represents all the possible internal states of the sponge. For each query

(X,Y) ∈ Q for any M ∈ {0, 1}r, the edge X ⊕ (M∥0c) M−→ Y is added.
In the case of a zero-block message, we write X → Y . This occurs in the
squeezing phase.

We look at two security properties for the sponge construction of Section
2.2 in the random function model [7].

5

Everywhere preimage resistance. Given any digest Z ∈ {0, 1}n of
length n bits, an adversary A wants to output a message M such that
Hf (M) = Z. We describe this by M ← Af (Z). Note that we do not as-
sume here that a preimage exists.
More formally, the everywhere preimage advantage of an adversary is:

Advepre
H (A) = max

Z∈{0,1}n
Pr(f

$← Funct(b),M ← Af (Z) : Hf (M) = Z).

Advepre
H (q) is the maximum advantage over all adversaries making at most

q queries.

Everywhere second preimage resistance. Given k ∈ N and any mes-
sage M ∈ {0, 1}∗ of arbitrary length such that |pad(M)| = r · k, an adver-
sary A wants to find a message M ′ ∈ {0, 1}∗ of arbitrary length such that
M ̸= M ′ and Hf (M) = Hf (M ′). We describe this by M ′ ← Af (M).
More formally, the everywhere second preimage advantage of an adversary
is:

Adv
esec(k)
H (A) =

max
M∈{0,1}∗

|pad(M)|=rk

Pr(f
$← Funct(b),M ′ ← Af (M) : M ′ ̸= M,Hf (M) = Hf (M ′)).

Adv
esec(k)
H (q) is the maximum advantage over all adversaries making at most

q queries.

6

Chapter 3

Attacks

We will give the best known generic attack for preimages in Section 3.1 and
for second preimages in Section 3.2. The attacks are based on [4].

3.1 Preimage attack

In this attack, we first assume that a preimage exists.
We make a case distinction depending on the values of n, c′, b and l, with
l = ⌈ nr′ ⌉:

• Case 2n ≤ 2c
′ · (l − 1) + 2b. The adversary picks a message M and

queries Hf (M). Then Hf (M) = Z with probably 2−n, since there
are approximately 2n possible results for this query. After q ≈ 2n

attempts, the adversary has found a preimageM with high probability.

• Case 2c
′ ·(l−1)+2b < 2n. This attack consists of two sequential parts.

– First, the adversary finds a state Y just before the first squeeze,
which satisfies for i = 0, . . . , l:

Zi :=

outerr′(f
i(Y)) for i = 0, . . . , l − 1,

outern−(l−1)r′(f
i(Y)) for i = l.

This state is also shown in Figure 3.1.

We know that the outer r′ bits in Y need to be equal to Z1, so
we have outerr′(Y) = Z1. Picking these bits will mean that the
equation for Z1 will hold. Then the adversary needs to pick the
other c′ bits in such a way that the before mentioned equations
for Y hold.
The adversary can pick any innerc′(Y) and check whether the
equations above hold. Checking this will take at most l−1 queries
per attempt. This means that the adversary has found a state Y

after q ≈ (l − 1) ·min
{
2c

′
, 2n−r′

}
= 2c

′ · (l − 1) queries.

7

– Second, the adversary wants to get from the initial state 0b to
Y . The message that the adversary uses to do this can have
any length other than 0, because of padding, since there are no
restrictions on the size of a preimage.
The adversary takes a message block Mi ∈ {0, 1}r and a state
Yj ∈ {0, 1}b. This state is either the initial state 0b, or a state
that the adversary has queried to before. The adversary queries
f(Yj ⊕ (Mi∥0c)) until a query gives Y .

Since the adversary then has queries 0b
M1−→ . . .

Mi−→ Y in Q
for some i ∈ N+, we know that M ∈ {0, 1}∗ with pad(M) =
M1 ∥ . . . ∥Mi gives a valid preimage.

The probability that the adversary will get (X,Y) for some X ∈
{0, 1}b per query is 1

2b
, since it tries to hit a b-bit state through

a random function. This means that after q ≈ 2b attempts, the
adversary has found a chain to Y with high probability.

Combined, this case requires q ≈ 2c
′ · (l − 1) + 2b evaluations.

These two cases combined give a required amount of

q ≈ min
{
2n, 2c

′ · (l − 1) + 2b
}

evaluations.

However, if we do not assume that a preimage exists, the state Y from
the second case of the attack does not necessarily have to exist. Since
outerr′(Y) = Z1, there are only 2c

′
possible attempts. However, the proba-

bility that one attempt succeeds is 2n−r′ . We will look at this probability in
more detail in Section 4.2. This means that the probability that the second

case of the attack succeeds is only 2c
′

2n−r′ = 2b−n.

8

Absorbing phase Squeezing phase

0b

r

c

M1

f . . . f

Mk

f

c′

r′

Z1

Y

f . . . f

Zl

Figure 3.1: State Y in the preimage attack from Section 3.1.

3.2 Second preimage attack

We make a case distinction depending on the values of n, b, r and k, where
k is the amount of message blocks of M :

• Case 2n ≤ 2b

1+k2r . The adversary picks a message M ′ ̸= M and queries

Hf (M ′). Then Hf (M ′) = Z with probability of approximately 2−n.
After q ≈ 2n, the adversary has found a second preimage M ′ with high
probability.

• Case 2b

1+k2r < 2n. The adversary first queries Hf (M) = Z where Z ∈
{0, 1}n. We take pad(M) = M1∥ . . . ∥Mk and define Yi for i = 0, . . . , k
as Y0 = 0b and Yi = f(Yi−1⊕ (Mi∥0c)) for i = 1, . . . , k. The adversary
then ends up with Figure 3.2.

The adversary takes a message block m′ ∈ {0, 1}r and a state Y ′′ ∈
{0, 1}b. This state is either the initial state 0b, or a state that the
adversary has queried to before. It then queries f(Y ′′⊕ (m′∥0c)), until
this gives a state Y ′ ∈ {0, 1}b with innerc(Y

′) = innerc(Yi) for some
i ∈ {0, . . . , k − 1} or with Y ′ = Yk. This means the adversary has

found a path 0b
M ′

0−→ . . .
M ′

j−→ Y ′.

If innerc(Y
′) = innerc(Yi) for some i ∈ {0, . . . , k−1}, the adversary has

found a preimage pad(M ′) = M ′
1 ∥ . . . ∥M ′

j ∥ upperr(Y ′)⊕ upperr(Yi)
⊕Mi+1 ∥Mi+2 ∥ . . . ∥Mk.
Otherwise, Y ′ = Yk and the adversary has found a preimage pad(M ′) =
M ′

1 ∥ . . . ∥M ′
j .

9

Per query, the adversary has a 1
2c probability to hit the inner part

state Yi with i = 0, . . . k − 1, so a k
2c probability to hit any of those

cases. The adversary also has a 1
2b

probability to hit the state Yk.

Each query then has a success probability of approximately k
2c +

1
2b
.

After q ≈ 1
2−b+k2−c = 2b

1+k2r the adversary has found a message M ′

such that Hf (M ′) = Hf (M) with high probability.

In total, this attack requires q ≈ min
{
2n, 2b

1+k2r

}
queries. This gives

Adv
esec(k)
H (q) ≈ 1 for this q.

Absorbing phase Squeezing phase

0b

Y0

r

c

M1

f . . .

Y1

f

Mk

Yk−1

f

c′

r′

Z1

Yk

f . . . f

Zl

Figure 3.2: The state of the sponge construction after querying M .

10

Chapter 4

Preimage Resistance

Theorem 1. Let b, c, r, c′, r′, n, q ∈ N with b = c+r = c′+r′ and let l = ⌈ nr′ ⌉.
The sponge construction H of Section 2.2 then satisfies the following bound:

Advepre
H (q) ≤ q

2n
.

In particular, the advantage of the adversary is independent of c.

The proof is given in the remainder of this section.

4.1 Setup

Let Z ∈ {0, 1}n be any image, and Z = Z1∥Z2∥ . . . ∥Zl with |Zi| = r′ for
i ∈ {1, . . . , l − 1} and |Zl| = s ≤ r′. Let A be any preimage adversary as
defined in Section 2.3. We use the graph representation for its query history
Q as introduced in Section 2.3.
Let Zi be defined as follows:

Zi :=


{
Yi ∈ {0, 1}b | outerr′(Yi) = Zi

}
, for i ∈ {1, . . . , l − 1},{

Yi ∈ {0, 1}b | outers(Yi) = Zi

}
, for i = l.

(4.1)

The goal of A is to find a preimage of Z, which implies the event PRE(Q):

PRE(Q) :Q defines a path 0b
M1−→ . . .

Mk−1−→ Y0
Mk−→ Y1 −→ · · · −→ Yl

such that Yi ∈ Zi for i = 1, . . . , l. (4.2)

In the case of the padding we introduced in Section 2.2, finding a preimage
corresponds to PRE(Q) with the restriction that the last message block is
non-zero. The preimage found by A is then the unique message M such
that pad(M) = M1∥ . . . ∥Mk.

11

We are interested in the set S of starting points of good chains in the squeez-
ing phase, which is shown as Y in Figure 3.1. This is defined as:

S =
{
Y | f i−1(Y) ∈ Zi for all i ∈ {1, . . . , l}

}
⊆ Z1. (4.3)

We define BAD(Q) as:

BAD(Q) : Q contains a query (X,Y) for some X ∈ {0, 1}b with Y ∈ S.
(4.4)

Then clearly PRE(Q)⇒ BAD(Q) and thus

Pr(PRE(Q)) ≤ Pr(BAD(Q)). (4.5)

4.2 Probability computation

We have

Pr(BAD(Q)) = Pr(BAD(Qq)) =
∑
s

Pr(BAD(Qq) ∧ |S| = s)

=

q∑
i=1

∑
s

Pr(BAD(Qi) ∧ ¬BAD(Qi−1) ∧ |S| = s)

=

q∑
i=1

∑
s

Pr(BAD(Qi) | ¬BAD(Qi−1) ∧ |S| = s) ·Pr(¬BADi−1 ∧ |S| = s).

(4.6)

We first calculate Pr(BAD(Qi) | ¬BAD(Qi−1) ∧ |S| = s) for any i, s ∈ N.
We assume that ¬BAD(Qi−1) and |S| = s and calculate the probability that
BAD(Qi). BAD(Qi) means that there is some query (X ′, Y ′) ∈ Qi with
X ′ ∈ {0, 1}b and Y ′ ∈ S. Since we assumed that ¬BAD(Qi−1), (X

′, Y ′)
must be the ith query.
Let the ith query be (Xi, Yi) with Xi, Yi ∈ {0, 1}b. We then only have to
calculate the probability that Yi ∈ S. Since Yi is uniformly drawn from the
set of possible states {0, 1}b, there are 2b possible values for Yi. Of these,
only |S| = s give Yi ∈ S. This gives

Pr(BAD(Qi) | ¬BAD(Qi−1) ∧ |S| = s) =
s

2b
. (4.7)

Then we look at Pr(¬BAD(Qi−1) ∧ |S| = s). Since ¬BAD(Qi−1) ∧ |S| =
s⇒ |S| = s, we have

Pr(¬BAD(Qi−1) ∧ |S| = s) ≤ Pr(|S| = s). (4.8)

12

Combined with (4.7), this gives:

Pr(BAD(Q)) ≤
q∑

i=1

∑
s

Pr(|S| = s)
s

2b
=

q∑
i=1

E(|S|) · 1
2b

=
q

2b
· E(|S|).

(4.9)

What remains is evaluating E(|S|). For this, we define for any Y ∈ {0, 1}b
Bernoulli variable IY as

IY = 1⇐⇒ Y ∈ S.

Since we saw in Section 4.1 that S ⊆ Z1, we have:

E(|S|) = E

 ∑
Y ∈{0,1}b

IY

 =
∑
Y ∈Z1

E(IY) =
∑
Y ∈Z1

Pr(Y ∈ S). (4.10)

We first notice that |Z1| = 2c
′
, since this set contains all b-bit states with

outerr′(Y1) = Z1, which leaves 2c
′
options for the other c′ bits.

We consider Y ∈ Z1. Then Y ∈ S if and only if f i−1(Y) ∈ Zi for i = 2, . . . , l.
Using (4.10) we have

E(|S|) =
∑
Y ∈Z1

Pr(Y ∈ S) =
∑
Y ∈Z1

∏
i=2,...,l

Pr(Y ∈ Zi). (4.11)

For i = 2, . . . , l − 1, Pr(f i−1(Y) ∈ Zi) = 2c
′

2b
, since f i−1(Y) is uniformly

drawn from 2b possible b-bit states, of which 2c
′
give outerr′(f

i−1(Y)) = Zi,

and thus f i−1(Y) ∈ Zi. Similarly, Pr(f l−1(Y) ∈ Zl) =
2b−s

2b
.

Combining these probabilities with (4.11), we have:

E(|S|) =
∑
Y ∈Z1

(2c
′
)l−2 · 2b−s

(2b)l−1

= 2c
′ (2c

′
)l−2 · 2b−s

(2b)l−1

=
(2c

′
)l−1 · 2b−s

(2c′+r′)l−1

=
2b−s

(2r′)l−1

=
2b

2s · 2r′(l−1)

=
2b

2n
. (4.12)

Combining (4.12) and (4.9), we have:

Pr(BAD(Q)) ≤ q

2b
· E(|S|) = q

2b
· 2

b

2n
=

q

2n
.

From (4.5) then PRE(Q) ≤ q
2n .

13

Chapter 5

Second Preimage Resistance

Theorem 2. Let b, c, r, c′, r′, n, q, k ∈ N with b = c+r = c′+r′ and l =
⌈
n
r′

⌉
.

The sponge construction H of Section 2.2 then satisfies the following bound:

Adv
esec(k)
H (q) ≤ q

2b
+

q

2n
+

q · k
2c

.

The proof is given in the remainder of this section.

5.1 Setup

Let A be any second preimage adversary as defined in Section 2.3 and let M
be the first preimage. We take pad(M) = M1∥M2∥ . . . ∥Mk with |Mi| = r
for i ∈ {1, . . . , k}. Let Z ∈ {0, 1}b be equal to Hf (M). We take Z =
Z1∥Z2∥ . . . ∥Zl with |Zi| = r′ for i ∈ {1, . . . , l − 1} and |Zl| = s ≤ r′.
We define the states Yi ∈ {0, 1}b for i = 0, . . . , k as Y0 = 0b and Yi for
i = 1, . . . , k as Yi = f(Yi−1⊕ (Mi∥0c)). In other words, Yi is the state of the
sponge construction after absorbing Mi. This is also seen in Figure 3.2.
We use the graph representation again to represent the adversary’s query
history Q as introduced in Section 2.3.
For simplicity, we provide A at the beginning of the game all the queries

Yi−1
Mi−→ Yi for i = 1, . . . , k. These are the queries that are made in the

absorbing phase of Hf (M). While the adversary knows these queries and
will thus not make them again, they are not put in the query history Q.
We again define Zi as (4.1). Then, the goal of A is to find a second preimage
of Z, which implies the event SECPRE(Q):

SECPRE(Q) :Q defines a path

0b
M ′

1−→ . . .
M ′

k′−1−→ Yk′−1

M ′
k′−→ Y sq

1 −→ · · · −→ Y sq
l such that

Y sq
i ∈ Zi for i = 1, . . . , l and M ′

1∥ . . . ∥M ′
k′ ̸= pad(M).

14

5.2 Logic

We define the set S of starting points of good chains in the squeezing phase
as (4.3). In particular Yk ∈ S.

We define INNERY(Q) as:

INNERY(Q) : Q contains a query (X,Y) for some X ∈ {0, 1}b

with innerc(Y) = innerc(Yi) for i ∈ {0, . . . , k − 1}.

We also define HITS(Q) as:

HITS(Q) : Q contains a query (X,Y) for some X ∈ {0, 1}b

with Y ∈ S.

For SECPRE(Q) to happen, the adversary must make a query (X,Y) with
X ∈ {0, 1}b and Y ∈ S, such that we get a different full message than
pad(M). There are two different way in which it can do this. First, it
can get to Yk ∈ S via a state Y ′ with the same inner part as one of the
states Yi with i ∈ {0, . . . , k − 1}. This way, it finds a path containing (Y ′ ⊕
(outerr(Y

′)∥0c)⊕(Mi+1∥0c), Yi+1) and (Yi+1⊕(Mi+1∥0c), Yi+2), . . . , (Yk−1⊕
(Mk∥0c), Yk). Second, it can find some other path to one of the states Y ∈ S,
which includes Yk ∈ S. This first event corresponds to INNERY(Q) and the
second to HITS(Q). Since we assumed that the adversary makes no queries
that it already knows, and we already gave it the queries (Yi−1⊕(Mi∥0c), Yi)
for i ∈ {0, . . . , k}, we know that the full message it finds will be different
from pad(M).

Thus SECPRE(Q)⇒ HITS(Q) ∨ INNERY(Q), so

Pr(SECPRE(Q)) ≤ Pr(HITS(Q)) +Pr(INNERY(Q)). (5.1)

5.3 Probability computation

We first look at Pr(HITS(Q)). Similar to (4.6), we get

Pr(HITS(Q)) =
q∑

i=1

∑
s

Pr(HITS(Qi) | ¬HITS(Qi−1) ∧ |S| = s)

·Pr(¬HITS(Qi−1) ∧ |S| = s). (5.2)

We first evaluate Pr(HITS(Qi) | ¬HITS(Qi−1) ∧ |S| = s) for any i, s ∈ N.
This is the probability that there is query (X,Y) in Qi for some X ∈ {0, 1}b
with X ̸= Yk−1⊕ (Mk∥0c) and Y ∈ S, given that ¬HITS(Qi−1) and |S| = s.
Since ¬HITS(Qi−1) holds, the query that triggers HITS(Qi) must be the ith

15

query.
Let the ith query be (X,Y) with X,Y ∈ {0, 1}b. Since we assumed that
the adversary already knows (Yk−1⊕ (Mk∥0c), Yk) and we assumed that the
adversary only makes queries that it has never made before in Section 2.3,
we know that X ̸= Yk−1 ⊕ (Mk∥0c). This probability is then equal to the
probability that we calculated in (4.7), so we get

Pr(HITS(Qi) | ¬HITS(Qi−1) ∧ |S| = s) =
s

2b
. (5.3)

We then evaluate Pr(¬HITS(Qi−1) ∧ |S| = s). Similar to (4.8), we get

Pr(¬HITS(Qi−1) ∧ |S| = s) ≤ Pr(|S| = s). (5.4)

Combining (5.2) with (5.3) and (5.4) gives

Pr(HITS(Q)) ≤
q∑

i=1

∑
s

s

2b
·Pr(|S| = s)

=

q∑
i=1

E(|S|) · 1
2b

=
q

2b
· E(|S|). (5.5)

Now we evaluate E(|S|). We know that Yk ∈ S, so (4.10) gives

E(|S|) =
∑
Y ∈Z1

Pr(Y ∈ S) = Pr(Yk ∈ S) +
∑

Y ∈Z1\Yk

Pr(Y ∈ S)

= 1 +
∑

Y ∈Z1\Yk

Pr(Y ∈ S). (5.6)

We have |Z1 \ Yk| = 2c
′ − 1 ≤ 2c

′
. If we combine this with (4.12), we get

E(|S|) = 1 +
∑

Y ∈Z1\Y ′

Pr(Y ∈ S) = 1 +
∑

Y ∈Z1\Y ′

(2c
′
)l−2 · 2b−s

(2b)l−1

≤ 1 + 2c
′ (2c

′
)l−2 · 2b−s

(2b)l−1
= 1 +

2b

2n
. (5.7)

Combining (5.5) and (5.7) gives

Pr(HITS(Q)) ≤ q

2b
·
(
1 +

2b

2n

)
=

q

2b
+

q

2n
. (5.8)

We then look at Pr(INNERY(Q)). Then

Pr(INNERY(Q)) = Pr(INNERY(Qq))

≤
q∑

i=1

Pr(INNERY(Qi) | ¬INNERY(Qi−1)). (5.9)

16

Pr(INNERY(Qi) | ¬INNERY(Qi−1)) is the probability that there is a query
(X,Y) in Qi for some X ∈ {0, 1}b with X ̸= (Yi−1 ⊕ (Mi∥0c)) for some
i ∈ {1, . . . , k− 1} and Y = innerc(Yi) for some i ∈ {0, . . . , k− 1}, given that
¬INNERY(Qi−1). Since ¬INNERY(Qi−1) this query must be the ith query.
Since we assumed that the adversary does not repeat any queries and that
it already knows (Yi−1⊕ (Mi∥0c), Yi) for all i ∈ {1, . . . , k−1}, we know that
X ̸= (Yi−1 ⊕ (Mi∥0c)) for all i ∈ {1, . . . , k − 1}.
The Y from the ith query will be uniformly drawn from the set of possible
states. There are 2b possible b-bit states, so Y is uniformly drawn from a
set of 2b elements.
We then want to know for how many Y ∈ {0, 1}b, innerc(Y) = innerc(Yi)
for some i ∈ {0, . . . , k − 1} holds. For a certain i ∈ {0, . . . , k − 1}, there
are 2r elements Y with innerc(Y) = innerc(Yi). There are clearly at most
k options for i, so this means that there are at most k · 2r elements Y with
innerc(Y) = innerc(Yi) for some i ∈ {0, . . . , k − 1}. This gives

Pr(INNERY(Qi) | ¬INNERY(Qi−1)) ≤
k · 2r

2b
=

k

2c
. (5.10)

Combining (5.9) with (5.10), we get

Pr(INNERY(Q)) ≤
q∑

i=1

Pr(INNERY(Qi) | ¬INNERY(Qi−1))

≤
q∑

i=1

k

2c
=

q · k
2c

. (5.11)

Lastly, combining (5.1) with (5.8) and (5.11) gives

Pr(SECPRE(Q)) ≤ q

2b
+

q

2n
+

q · k
2c

.

17

Chapter 6

Conclusion

We will now look into our bounds from Chapter 4 and 5. First, by comparing
them with the best existing attacks, as described in Chapter 3, which are
based upon the descriptions of the designers of the sponge. Second, by
comparing them with the expectations for the sponge [4].

First of all we look at everywhere preimage resistance. We obtained the
following bound in Theorem 1:

Advepre
H (q) ≤ q

2n
.

The best existing attack as described in Section 3.1 requires q ≈
min

{
2n, 2c

′ · (l − 1) + 2b
}
queries when we assume a preimage exists. How-

ever, when we consider everywhere preimage, we do not assume a preimage
exists. In that case, the second part of the attack only succeeds with prob-
ability 2b−n. The first part of the attack does still work, which requires
q ≈ 2n queries. This means this bound is tight. It also corresponds with the
expectation of the designers of the sponge.

Then we look at everywhere second preimage resistance. We obtained the
following bound in Theorem 2:

Adv
esec(k)
H (q) ≤ q

2b
+

q

2n
+

q · k
2c

.

The best existing attack as described in Section 3.2 requires q ≈
min

{
2n, 2b

1+k2r

}
queries in Section 3.2. However, the factor q

2b
in the bound

of Theorem 2 is negligible, since b = r + c and thus b > c. Since this factor
is negligible, the bound is tight and corresponds with the expectations.

Another interesting security property that we did not manage to look into,
is domain-oriented preimage resistance [2]. In short, for domain-oriented

18

preimage resistance, we take some M ∈ {0, 1}∗ and consider an adversary
who receives the digest Z = Hf (M). The adversary also receives the length
|M |, but not M itself, and wants to find some M ′ ∈ {0, 1}∗ with Hf (M ′) =
Z.

The second case of the preimage attack that we found in Chapter 3 will
then succeed after the required amount of queries, which means that there

exists an attack that requires q ≈ min
{
2n, 2c

′ · (l − 1) + 2b
}
queries.

If we want to prove a bound on the advantage of an adversary with
at most q queries, we can follow the proof of Chapter 4 to a degree. A
difference is, that since we assume that a preimage exists, E(|S|) will be
as in (5.7). However, we run into problems when we want to calculate
Pr(BAD(Qi) | ¬BAD(Qi−1) ∧ |S| = s) for some i, s ∈ N, since this prob-
ability depends on the query history Qi−1. This is the case because the
adversary is allowed to guess M and return that value. This means that the
adversary can try to find M by querying all messages of length |M |. Specif-
ically, if the adversary already guessed the first |pad(M)|

r − 1 message blocks
in Qi−1, the probability that the adversary guesses M in the ith query will
be large.
Note that this problem did not occur for second preimage resistance, since
the adversary was not allowed to output M in that case.

19

Bibliography

[1] Elena Andreeva, Bart Mennink, and Bart Preneel. Security reductions of
the second round SHA-3 candidates. In Mike Burmester, Gene Tsudik,
Spyros S. Magliveras, and Ivana Ilic, editors, Information Security - 13th
International Conference, ISC 2010, Boca Raton, FL, USA, October
25-28, 2010, Revised Selected Papers, volume 6531 of Lecture Notes in
Computer Science, pages 39–53. Springer, 2010.

[2] Elena Andreeva and Martijn Stam. The symbiosis between collision and
preimage resistance. In Liqun Chen, editor, Cryptography and Coding -
13th IMA International Conference, IMACC 2011, Oxford, UK, Decem-
ber 12-15, 2011. Proceedings, volume 7089 of Lecture Notes in Computer
Science, pages 152–171. Springer, 2011.

[3] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
On the indifferentiability of the sponge construction. In Nigel P. Smart,
editor, Advances in Cryptology - EUROCRYPT 2008, 27th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, volume
4965 of Lecture Notes in Computer Science, pages 181–197. Springer,
2008.

[4] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Sponge functions. Ecrypt Hash Workshop 2007, May 2007.

[5] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family
of lightweight hash functions. In Phillip Rogaway, editor, Advances in
Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of
Lecture Notes in Computer Science, pages 222–239. Springer, 2011.

[6] Charlotte Lefevre and Bart Mennink. Tight preimage resistance of the
sponge construction. IACR Cryptol. ePrint Arch., page 734, 2022.

[7] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function
basics: Definitions, implications and separations for preimage resistance,
second-preimage resistance, and collision resistance. IACR Cryptol.
ePrint Arch., page 35, 2004.

20

	Introduction
	Preliminaries
	Notation
	Generalized Sponge Construction
	Security Model

	Attacks
	Preimage attack
	Second preimage attack

	Preimage Resistance
	Setup
	Probability computation

	Second Preimage Resistance
	Setup
	Logic
	Probability computation

	Conclusion

