
Bachelor’s Thesis Computing Science

Semantics of Languages with Goto

Rutger Dinnissen
s4548337

October 24, 2023

First supervisor/assessor:
prof. dr. Herman Geuvers

Second assessor:
dr. Freek Wiedijk

Abstract

The semantics of a programming language can be used to reason about the
behavior of a program. This makes it possible to prove that some program
has the desired outcome, or even that compilations between programming
languages are correct. While by far most programs are written in higher-
level languages, those programs must be compiled to machine code, so that
the program can be executed. Machine code, like other low-level languages,
has goto (or jump) statements, which are harder to reason about. Even
so, semantics of goto languages are needed, if compilers are to be proven
correct by preserving semantics. This paper explains how to reason about
the semantics of goto languages, and why certain constructs in the semantics
are necessary.

Contents

1 Introduction 3

2 Preliminaries 6
2.1 While . 6

2.1.1 Syntax of While . 6
2.1.2 States . 7
2.1.3 Semantic functions . 7
2.1.4 Semantic rules . 9

3 Goto 13
3.1 Syntax of Goto . 13
3.2 Definitions and abbreviations 14
3.3 Semantic functions . 15
3.4 Design choices for Goto . 16

3.4.1 Conditional statement 16
3.4.2 Labels . 16

4 Structural Operational Semantics 17
4.1 SOS Rule design for Goto . 17

4.1.1 The goto rule (SOS) 18
4.1.2 Revised composition rules 19

4.2 Examples . 22
4.2.1 Example 1 . 22
4.2.2 Example 2 . 22
4.2.3 Example 3 . 25
4.2.4 Example 4 . 25

4.3 Properties . 25

5 Natural Semantics 31
5.1 NS transitions for Goto . 32
5.2 Examples . 34

5.2.1 Example 1 . 34
5.2.2 Example 2 . 34
5.2.3 Example 3 . 36

1

5.2.4 Example 4 . 37
5.3 Properties . 37

6 Axiomatic Semantics 41
6.1 The goto rule (AS) . 41
6.2 Labels . 44
6.3 Examples . 46

6.3.1 Example 1 . 46
6.3.2 Example 2 . 48
6.3.3 Example 3 . 50
6.3.4 Example 4 . 50

6.4 Properties . 51

7 Related Work 53

8 Conclusions 54

A Appendix 56
A.1 NS derivation trees . 56

A.1.1 Example 1 . 56
A.1.2 Example 2 (s x = 0) 57
A.1.3 Example 2 (s x = 3) 58

A.2 AS inference trees . 59
A.2.1 Example 1 . 59
A.2.2 Example 2 . 60

2

Chapter 1

Introduction

The world of programming languages can be split into two categories: lan-
guages with goto (or jump) statements, and languages without those. While
the most common high-level programming languages do not contain these
kinds of control flow features, machine code does. Thus every program of
any language will inevitably be compiled to a language with goto state-
ments. Thus, reasoning about the semantics of goto statements is a neces-
sity to prove that compilations preserve semantics. That being said, one
has argued that goto statements make a programming language inherently
non-modular, and thus hard to reason about. Dijkstra even said that he is
“convinced that the go to statement should be abolished from all ‘higher
level’ programming languages” [4].

However, one has argued that the difficulty of understanding programs
with goto is not inherent to the goto statement itself. Rubin argues that
programs can be shorter and less complex when using goto statements: “I
introduce GOTOs to untangle each deeply nested mess of code, I have found
that the number of lines of code drops by 20-25 percent” [8]. Furthermore,
goto statements are an essential part of machine code, so at least when
constructing a compiler, one should understand how the goto statement
works.

Around the year 1970, the concepts for axiomatic and operational se-
mantics emerged, but semantics for a language with goto statements were
only defined a decade later, notably in 1981 by de Bruin in [3]. Natural
semantics were first described in 1987 by Kahn in [5], but (compositional)
natural semantics for a language with goto statements was only defined in
2005 by Saabas and Uustalu in [9].

One reason for it being difficult to define semantics for languages with
goto statements is the fact that pieces of code (may) have multiple entry and
exit points. The exit points are the goto statements, and the entry points
are the labels.

In this thesis, we introduce the model language Goto, which is based on the

3

language While from one of the standard books on semantics by Nielson and
Nielson [6]. Goto is essentially the same language used by de Bruin in [3]. We
define structural operational semantics, natural semantics, and axiomatic
semantics for Goto. For each of these approaches to formal semantics, we
have a simple example to show that the interpretation of the goto statement
is what one would expect, one example of an infinitely looping program, as
well as one example for a program that computes the factorial of a number.

The chapter about structural operational semantics (SOS) is based on
the work of de Bruin from [3], but changed to fit Goto and the notation used
by Nielson and Nielson from [6]. We explain why certain choices have been
made by de Bruin to define SOS rules for Goto. These choices are specific
to the fact that we are working with a language with goto statements. As
an example, the SOS rule for compositional statements in While is this:

⟨S1, s⟩ ⇒ ⟨S′
1, s

′⟩
[comp]1sos⟨S1;S2, s⟩ ⇒ ⟨S′

1;S2, s
′⟩

Which basically means that for every composition S1;S2, do one step in S1

and compose the resulting statement S′
1 with S2 again. However, this does

generally not work, if S1 is a goto statement, since then the program might
jump over S2 entirely, as shown in Section 4.1.1. SOS is also proven to be
deterministic.

The ideas for the natural semantics (NS) we describe for Goto are based
on ideas by Saabas and Uustalu from [9], as well as Nielson and Nielson from
[6]. However, the language used by Saabas and Uustalu is different from our
Goto in multiple subtle ways, which makes their ideas less straightforward
to apply to Goto. One of the two most important factors is that Saabas and
Uustalu do not make use of an if-then-else statement, but a conditional jump
statement (ifnot b then goto l). This results in the conditional statement
being primitive, and not compositional. Saabas and Uustalu make use of this
by giving each primitive statement in a program its own label. They make
use of this fact when defining their NS, but we show that their technique
can also be applied to our Goto language. One of the NS rules we made for
Goto is this:

⟨Spc, s⟩ → ⟨pc′, •, s′′⟩ ⟨P, pc′, s′′⟩ → s′
[find•ns]⟨P, pc, s⟩ → s′

Here, P is the entire program, and pc is the program counter, which points
to the next label, and Spc is the code at label pc. ⟨Spc, s⟩ → ⟨pc′, •, s′′⟩ means
that when executing statement Spc in state s, we have encountered a goto
statement, which jumps the program to label pc′.

Like for SOS, we explain in Chapter 5 how we arrived and why we
defined NS for Goto the way we did. The same example programs we used

4

in the SOS chapter also have an NS interpretation. We prove that NS is
deterministic, and claim that it is equivalent to the SOS we defined.

As for axiomatic semantics (AS), we use the same ideas by de Bruin
from [3] to construct our AS rules. Usually, AS makes use of Hoare triples,
which have the following form:

{ P } S {Q }

where P andQ are both predicates and represent the pre- and postconditions
of the Hoare triple and S is a statement of the program. De Bruin has added
a dictionary to these Hoare triples like this:

⟨D | { P } S {Q }⟩

The dictionary D is a list of pairs of labels and predicates (e.g. D = n1 :
P1, n2 :P2). It is used to keep track of the preconditions for every statement
corresponding to a label in the program. With this, it is possible to construct
the rule

⟨D | { P } goto n { false }⟩
which has the condition of the precondition P being equal to the precondi-
tion corresponding to label n (i.e. the pair n :P is included in the dictionary
D). The postcondition is false, so that the precondition of the following
statements can be met, as false implies every possible predicate. This is
explained in more detail in Section 6.1. Like for SOS and NS, we show how
the AS is applied with some examples. One of these examples is given on
a step-by-step basis, to further show how to apply AS rules. We claim that
AS is sound and complete with respect to the SOS described in this thesis.

The structure of this thesis is as follows:
First, the preliminaries in Chapter 2 give an overview of the work done

by Nielson and Nielson about the language While and how structural oper-
ational semantics, natural semantics, and axiomatic semantics are applied
to While in their work [6].

In Chapter 3 we describe the model language Goto, which we use for the
rest of this thesis. It is based on While and in essence the same language as
described by de Bruin in [3].

Then, Chapter 4 describes structural operational semantics for Goto,
which is based on the work by de Bruin from [3].

This is followed up by defining natural semantics for Goto (based on
ideas by Saabas and Uustalu from [9]) in Chapter 5.

Afterwards, axiomatic semantics for Goto are defined in Chapter 6.
These semantics are the same as described by de Bruin from [3].

We conclude by mentioning some related work, before briefly summariz-
ing this thesis.

5

Chapter 2

Preliminaries

2.1 While

While is the model language used by Nielson and Nielson in [6] to show
different semantic approaches. This chapter summarizes their work but
does not add anything new to it.

Most notably, a clear distinction between the syntax of a programming
language and its semantics (i.e. meaning) is made. One example of this is
the difference between syntactic numerals (like 1101) and integers (like 13).

Another example is the Boolean expressions true and false, and the
actual Boolean values tt and ff. So tt means ”true”, and ff means ”false”.
The words true and false are just considered syntax and have no inherent
meaning.

The semantic functions define the relation between syntax and semantics
as a function from the former to the latter.

2.1.1 Syntax of While

The syntax includes numeric, Boolean, and arithmetic expressions (Num,
Bexp, and Aexp), as well as statements (StmW). The meta-variables n,
b, a, and S range over these respective syntactic categories. Furthermore,
the meta-variable x ranges over syntactic variable names Var. The most
common variable names are x, y, and z, but in general, the set of variable
names includes any string of alphabetical characters.

Note. The category StmW is the only category with a subscript ”W” to
denote statements for the language While. The reason is that this paper
introduces the language Goto, which uses the same syntax for numeric,
Boolean, and arithmetic expressions, as well as the same variables. But
since it uses a different syntax beyond that, we use a subscript letter to
indicate what category of statements is meant.

6

Num n ::= 0 | 1 | n 0 | n 1

Bexp b ::= true | false | b1 = b2 | b1 ≤ b2 | ¬b | b1 ∧ b2

Aexp a ::= x | n | a1 + a2 | a1 ∗ a2 | a1 − a2

StmW S ::= x := a | skip | S1 ; S2 | if b then S1 else S2

| while b do S

Table 2.1: Syntax of the language While [6]

Definition 2.1.1 (Syntax of While). The definition of the syntax of While
can be found in Table 2.1.

2.1.2 States

The values of variables are stored in a state s. A state s ∈ State is a total
function from variable names (Var) to integers (Z).

As an example, if we want to define a state where the value of the variable
x is 5, then we can say ”Let s be a state with s x = 5”. In this case, the
values of other variables are unknown. For these cases, we write s y = ⊥.
Note that this does not mean that the variable y is undefined for this state.

Substitutions, which represent changes in a state, are written like this:
s[x 7→ 5]. In this case, s can be any state, thus in particular, the value of
x is unknown. However, the substitution s[x 7→ 5] results in a state, where
the value of x is 5. Thus s[x 7→ 5] x = 5.

To make states more readable, we use the following notation to abbreviate
substitutions:

sa = s[x 7→ a]

sa,b = s[x 7→ a][y 7→ b]

sa,b,c = s[x 7→ a][y 7→ b][z 7→ c]

Where a, b, and c are integers. In case some variable is unknown, we use
the ⊥ symbol. As an example, all states s where s y = 0 can be written as
s[y 7→ 0], or abbreviated with s⊥,0.

2.1.3 Semantic functions

The semantics of the numerical, Boolean, and arithmetic expressions are
defined with the semantic functions N , B, and A, respectively.

Definition 2.1.2. The semantic function N : Num → Z for the interpre-
tation of numerals can be found in Table 2.2.

7

N J0K = 0

N J1K = 1

N Jn 0K = 2 · N JnK
N Jn 1K = 2 · N JnK + 1

Table 2.2: Semantic functions N : Num → Z for numerical expressions [6].
Integers are written in bold to make the difference between them and syntax
more clear

AJxKs = s x

AJnKs = N JnK
AJa1 + a2Ks = AJa1Ks+AJa2Ks
AJa1 * a2Ks = AJa1Ks · AJa2Ks
AJa1 - a2Ks = AJa1Ks−AJa2Ks

Table 2.3: Semantic function A : Aexp → State → Z for arithmetic ex-
pressions [6]

Note. This definition of numerals only allows binary number representations.
This is done to show the interpretation of numerals more clearly. However,
for the sake of readability, we will make use of decimal numbers in the
examples in this paper. Their interpretation is what one would expect, i.e.
NJ37K = 37.

Definition 2.1.3. The semantic function A : Aexp → State → Z for the
interpretation of arithmetic expressions can be found in Table 2.3.

Definition 2.1.4. The semantic function B : Bexp → State → {tt,ff} for
the interpretation of Boolean expressions can be found in Table 2.4.

Note. To make a more clear distinction between the syntactical and seman-
tic domains, syntax arguments are always passed in between the J and K
brackets. Consider the definition of interpreting the arithmetic expression
of addition:

AJa1 + a2Ks = AJa1Ks+AJa2Ks

Here, the + on the left side is syntax and thus does not have an inherent
meaning. However, the + on the right side is outside the J K brackets, thus
this is the actual addition operator in the domain of semantics.

8

BJtrueKs = tt

BJfalseKs = ff

BJa1 = a2Ks =

tt if AJa1Ks = AJa2Ks

ff if AJa1Ks ̸= AJa2Ks

BJa1 ≤ a2Ks =

tt if AJa1Ks ≤ AJa2Ks

ff if AJa1Ks > AJa2Ks

BJ¬bKs =

tt if BJbKs = ff

ff if BJbKs = tt

BJb1 ∧ b2Ks =

tt if BJb1Ks = tt and BJb2Ks = tt

ff if BJb1Ks = ff or BJb2Ks = ff

Table 2.4: Semantic function B : Bexp → State → {tt,ff} for Boolean
expressions [6]

2.1.4 Semantic rules

The semantics of statements work a bit differently from the semantics func-
tions described so far. There are multiple approaches for interpreting some
statement S. In this paper, we focus on the approaches of operational se-
mantics (in which we look at structural operational semantics and natural
semantics) and axiomatic semantics.

Each form of semantics has its own set of rules for statements. Every
rule has one conclusion.

Some rules have conditional statements, which need to hold to be able
to apply that rule.

Some rules have premises. These are written above the conclusion,
with a horizontal line separating the conclusion and the premises. Multiple
premises of the same rule are separated by white space.

Rules that do not have premises do not have a horizontal line and are
called axiom schemes.

Structural operational semantics

Structural operational semantics (SOS) is a step-by-step approach for inter-
preting the meaning of a statement.

For example, consider the statement if x=0 then skip else x:=0. De-
pending on the current value of x, the next step is either skip or x:=0. So

9

[asssos] ⟨x := a, s⟩ ⇒ s[x 7→ AJaKs]

[skipsos] ⟨skip, s⟩ ⇒ s

[comp1sos]
⟨S1, s⟩ ⇒ ⟨S′

1, s
′⟩

⟨S1;S2, s⟩ ⇒ ⟨S′
1;S2, s

′⟩

[comp2sos]
⟨S1, s⟩ ⇒ s′

⟨S1;S2, s⟩ ⇒ ⟨S2, s
′⟩

[ifttsos] ⟨if b then S1 else S2, s⟩ ⇒ ⟨S1, s⟩ if BJbKs = tt

[ifffsos] ⟨if b then S1 else S2, s⟩ ⇒ ⟨S2, s⟩ if BJbKs = ff

[whilesos] ⟨while b do S, s⟩ ⇒
⟨if b then (S; while b do S) else skip, s⟩

Table 2.5: Structural operational semantics for While [6]

in general, to be able to interpret a statement, we need to know what the
current state of the program is.

The interpretation of any statement S with some state s is a derivation
sequence, where each step is the application of one rule. Transitions are of
the form ⟨S, s⟩ ⇒ ⟨S′, s′⟩ or ⟨S, s⟩ ⇒ s′, depending on the rule.

⟨S, s⟩ and s are both called configurations, while s in particular is also a
final or terminal configuration. If no rule can be applied to some configura-
tion ⟨S, s⟩, then it is called stuck.

Each transition is the conclusion of a derivation tree. However, in SOS,
we generally do not keep track of any derivation trees. The existence of a
derivation sequence ⟨S, s⟩ ⇒ ⟨S′, s′⟩ ⇒ ⟨S′′, s′′⟩ ⇒ . . . implies that there is
a derivation tree with ⟨S, s⟩ ⇒ ⟨S′, s′⟩ as its conclusion.
We can write γ ⇒p γ′, to denote the existence of a derivation sequence from
γ to γ′, which is p steps long.

We can write γ ⇒+ γ′, to denote the existence of a derivation sequence
from γ to γ′, which is at least one step long.

We can write γ ⇒∗ γ′, to denote the existence of a derivation sequence
from γ to γ′, which is at least zero steps long. This means that it is possible
that γ = γ′.

Definition 2.1.5 (SOS for While). The structural operational semantics
for While are defined in Table 2.5.

Natural semantics

Natural semantics (NS) is also based on transitions from a configuration with
a statement and a state. The difference is that the transition directly results

10

[assns] ⟨x := a, s⟩ → s[x 7→ AJaKs]

[skipns] ⟨skip, s⟩ → s

[compns]
⟨S1, s⟩ → s′′ ⟨S2, s

′′⟩ → s′

⟨S1;S2, s⟩ → s′

[if ttns]
⟨S1, s⟩ → s′

⟨if b then S1 else S2, s⟩ → s′
if BJbKs = tt

[if ffns]
⟨S2, s⟩ → s′

⟨if b then S1 else S2, s⟩ → s′
if BJbKs = ff

[whilettns]
⟨S, s⟩ → s′′ ⟨while b do S, s′′⟩ → s′

⟨while b do S, s⟩ → s′
if BJbKs = tt

[whileffns] ⟨while b do S, s⟩ → s if BJbKs = ff

Table 2.6: Natural semantics for While [6]

in some final state. Thus all transitions in NS are of the form ⟨S, s⟩ → s′.
Applying NS rules results in a derivation tree.

Infinite derivation trees do not exist. If the interpretation of ⟨S, s⟩ re-
quires an infinite tree, then there exists no state s′ such that ⟨S, s⟩ → s′.
This means that if S is executed in state s, then the program will not ter-
minate.

Definition 2.1.6 (NS for While). The natural semantics for While are
defined in Table 2.6.

Axiomatic semantics

Axiomatic semantics (AS) is about proving partial correctness of a statement
with respect to two predicates: the precondition and postcondition. If one
were to execute a program S in a state that makes the precondition true,
and the program terminates, then the final state makes the postcondition
true. Such assertions are written as a so-called Hoare triple: { P } S {Q }.

Here, P and Q are predicates, which are functions from State to {tt,ff}.
As an example, let P := (x=5). Then P s5 = (5=5) = tt, and P s0 = (0=
5) = ff.

Applying axiomatic semantic rules results in an inference tree. Such a
tree only proves that if P holds in the initial state, then Q holds in the
final state if the program terminates. The inference tree does not prove
termination, hence only partial correctness can be proven.

11

Definition 2.1.7 (AS for While). The axiomatic semantics for While are
defined in Table 2.7. Rule names have the letter ”p” subscripted to denote
partial correctness.

[assp] { P [x 7→ AJaK] } x := a { P }

[skipp] { P } skip { P }

[compp]
{ P } S1 {Q } {R } S2 {Q }

{ P } S1;S2 {Q }

[ifp]
{ BJbK ∧ P } S1 {Q } { ¬BJbK ∧ P } S2 {Q }

{ P } if b then S1 else S2 {Q }

[whilep]
{ BJbK ∧ P } S { P }

{ P } while b do S { ¬BJbK ∧ P }

[consp]
{ P ′ } S {Q′ }
{ P } S {Q }
if P ⇒ P ′ and Q′ ⇒ Q

Table 2.7: Axiomatic semantics for While [6]

Note. Rules like [assp] are defined with AJaK, instead of AJaKs. This is done,
because predicates are themselves evaluated in a state. As a result, there is
no need to carry over and change states in the rules for AS.

12

Chapter 3

Goto

The most important part of a language with goto is the inclusion of labels
L, as well as some form of a goto L statement.

Including some conditional statement like if b then S1 else S2 or
even just a conditional jump statement like if b then goto L will make
the language Turing complete.

3.1 Syntax of Goto

Goto is designed to be as similar to While as possible. For this reason, the
syntax for numerals, as well as Boolean and arithmetic expressions are the
same. We do not discuss their semantics, as this has already been done in
Secrion 2.1.3. The changes we made to While to form Goto are inspired
by de Bruin from his work in [3]. In essence, our language Goto and the
language used by de Bruin in [3] are syntactically the same.

Definition 3.1.1 (Syntax of Goto). The definition of the syntax of Goto
can be found in Table 3.1.

Num n ::= 0 | 1 | n 0 | n 1

Bexp b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

Aexp a ::= x | n | a1 + a2 | a1 * a2 | a1 - a2
StmG S ::= x := a | skip | S1 ; S2 | if b then S1 else S2

| goto n

Prog P ::= n :S | n :S & P

Table 3.1: Syntax of the language Goto

13

Note. The syntax of both While and Goto do not include parenthesis, but
they can be used to clarify how statements are composed on the meta-level.
In general, the statement composition is considered to be right-associative,
thus S1 ; S2 ; S3 should be read as S1 ; (S2 ; S3).

The same holds for programs: n1 : S1 & n2 : S2 & n3 : S3 should be
read as n1 :S1 & (n2 :S2 & n3 :S3).

Note. The else parts of the if statements are considered to bind stronger
than the statement composition.
if b then S1 else S2 ; S3 and (if b then S1 else S2) ; S3 are equal.

Note. Like with While, we extend the syntax for numerals with decimal
digits, for the sake of readability.

The syntax category for programs Prog has been added to facilitate labels
the goto statements can refer to, which is also done by de Bruin [3]. Labels in
Goto are numerals and have a corresponding statement. The meta-variable
P is introduced and ranges over Prog. Programs are concatenated with the
& symbol, instead of the ; symbol, to show the different levels of composition
more clearly.

Furthermore, the while b do S statement is replaced with the goto n
statement.

3.2 Definitions and abbreviations

All programs in Goto are of the form P := n1 : S1 & . . . & nk : Sk. We
abbreviate this by writing P := [ni :Si]

k
i=1.

The states we use for the semantics of Goto are defined the same way as for
While in Section 2.1.2. They will be abbreviated for Goto in the same way
they are for While:

sa = s[x 7→ a]

sa,b = s[x 7→ a][y 7→ b]

sa,b,c = s[x 7→ a][y 7→ b][z 7→ c]

Where a, b, and c are integers. In case the value of some variable is unknown,
we use the ⊥ symbol.

Definition 3.2.1 (Well-formed programs). A program P := [ni : Si]
k
i=1

from the syntax of Goto is well-formed, if and only if NJn1K = 1 and for all
1 ≤ i < k : NJni+1K = NJniK + 1.

Note. The first label of a well-formed program can be 1, 01, 001, and so
on. The only requirement for a program to be well-formed is to have the
first label being interpreted as the integer 1, and consecutive labels being
interpreted as consecutive integers.

14

Definition 3.2.2 (Called labels). A label l (i.e. the integer) in program P
from the syntax of Goto is called, if P contains a statement goto n with
NJnK = l. This means that

1. l is called in P := [ni :Si]
k
i=1, if it is called in Si for some 1 ≤ i ≤ k.

2. For all statements S1 and S2, l is called in S1 ; S2, if it is called in S1

or S2.

3. For all statements S1 and S2, l is called in if b then S1 else S2, if
it is called in S1 or S2.

4. Label l is called in goto n, if NJnK = l.

Definition 3.2.3 (Defined labels). A label l in program P := [ni : Si]
k
i=1

from the syntax of Goto is defined, if NJniK = l for some 1 ≤ i ≤ k.

Definition 3.2.4 (Normal programs). A program P from the syntax of
Goto is normal, if all called labels in P are defined in P .

Note. For the rest of this thesis, we assume programs are normal and well-
formed unless otherwise specified.

3.3 Semantic functions

The definitions of the semantic functions N , A, and B for Goto are the same
as for While and can be found in Tables 2.2, 2.3, and 2.4.

For proofs about certain properties of the semantics for Goto, we make use of
the function E defined in 3.3.1. De Bruin defined such a function in [3] to be
able to determine if the interpretation of statement S in state s terminates
normally or via a goto statement.

If an operational interpretation (ie. with SOS or NS) of statement S in
state s terminates without executing a goto statement, then EJSKs = s′, for
some state s′.

If an operational interpretation of statement S in state s terminates after
executing a goto n statement, then EJSKs = ⟨s′, n⟩, for some state s′.

Definition 3.3.1 (Function E). We define the function E with type StmG →

15

State → State ∪ (State×Num) inductively by:

EJx := aKs = s[x 7→ AJaKs]
EJskipKs = s

EJS1;S2Ks =

{
EJS2K(EJS1Ks), if EJS1Ks ∈ State

EJS1Ks, if EJS1Ks ∈ State×Num

EJif b then S1 else S2Ks =

{
EJS1Ks, if BJbKs = tt

EJS2Ks, if BJbKs = ff

EJgoto nKs = (s, n)

The function E essentially simulates structural operational semantics as de-
fined in Chapter 4, until either the statement terminates, or a goto statement
is encountered.

3.4 Design choices for Goto

3.4.1 Conditional statement

The language Goto is designed to resemble While. Therefore, it has the same
structure as the language described by de Bruin in [3]. In particular, the
conditional statement in Goto is if b then S1 else S2, which is a composite
element of the syntax.

The non-modular nature of languages with goto statements makes it
more difficult to define semantics for composite elements. The paper [9]
by Saabas and Uustalu defines natural semantics for a language with goto.
Their conditional statement has the form if b then goto n, which is notably
not composite. In Chapter 5, we discuss the significance of this difference.

3.4.2 Labels

The labels in Goto are defined as numerals. This is not a necessity for
structural operational or axiomatic semantics as defined by de Bruin in [3].
However, it helps define natural semantics, as shown by Saabas and Uustalu
in [9]. The reason for this will become more clear in Chapter 5, where the
rules for natural semantics for Goto are defined.

16

Chapter 4

Structural Operational
Semantics

Structural Operational Semantics (SOS) follows the steps a machine would
take when executing a program. The result is a sequence of steps. The
derivation rules used in SOS result in a derivation tree for each step. How-
ever, the more important result of SOS is the sequence of steps, called the
derivation sequence. Such a sequence is finite if and only if the program
terminates or gets stuck (i.e. no rule can be applied, but no final state has
been reached).

This chapter explains the thought process of constructing SOS rules for
Goto, as done by de Bruin in [3].

4.1 SOS Rule design for Goto

The main difference between While and Goto is that While has while loops
and Goto has labels and goto n statements.

However, this does not mean that altering the derivation rule for While
results in correct semantics for the Goto Language. For example, one simple
idea for a rule with goto n would be to skip all statements until the correct
label is found. The problem is, that goto n may refer to a label at the start
of the program. Skipping through the upcoming parts of the program is
generally not sufficient as a rule for the goto n statement.

From this, it follows that there needs to be some construction to store
the entire program, and in particular, the location of all labels and their
corresponding statements, as shown by de Bruin in [3]. The new form for
small-step transitions in Goto is compared to the transitions in While in
Figure 4.1. P will not be altered in any rule and is only used for transitions
with goto n statements. The rule for goto n statements will look up the
appropriate statement in P and set S accordingly.

The SOS semantics for While are listed in Table 2.5. Our goal is to create

17

SOS transitions in While SOS transitions in Goto

⟨S, s⟩ ⇒ ⟨S′, s′⟩ ⟨P, S, s⟩ ⇒ ⟨P, S′, s′⟩
⟨S, s⟩ ⇒ s′ ⟨P, S, s⟩ ⇒ s′

Figure 4.1: Comparison between structural operational semantic transitions
in While and Goto

a set of SOS rules for Goto, which are closely related to the SOS rules of
While. We will try to only replace the [whilesos] with a suitable rule for the
goto statement at first.

4.1.1 The goto rule (SOS)

When the statement goto n is interpreted, the next statement should be-
come the statement belonging to the label n (ignoring leading zeroes, see
Definition called labels 3.2.2). But setting the next statement to be the
statement corresponding to n when interpreting the statement goto n is
not enough. A program would continue executing statements, even after
the entire statement corresponding to label n has been executed.

Suppose we have P := [ni : Si]
5
i=1 and want to execute the statement

goto 2. Then we should not just execute S2 next, but S2; . . . ;S5. Thus the
[gotosos] should look like this:

[gotosos]⟨P, goto n, s⟩ ⇒ ⟨P, S, s⟩

with P := [ni :Si]
k
i=1,

NJnK = NJniK for some 1 ≤ i ≤ k,
and S := Si; . . . ;Sk

This rule can only be applied if P is normal (see Definition 3.2.4). If a
statement goto n is encountered, but n is not defined in P , then the program
is stuck.

While this may look like a solid rule, it does not yield the desired result yet.
One example would be the following:

P := 1 : x := 0 ; goto 2 ; x := 1

& 2 : skip
(4.1)

The program P assigns the value 0 to x and then jumps over the next
assignment so that the program terminates in a state s with s x = 0. Thus
we expect a transition like ⟨P, (x := 0; goto 2; x := 1); skip, s⊥⟩ ⇒∗ s0.

However, just replacing the [whilesos] rule with this [gotosos] rule is
not enough. Due to the composition rules, the “correct” interpretation is
⟨P, (x := 0; goto 2; x := 1); skip, s⊥⟩ ⇒∗ s1. The rules used here are

18

⟨P, (x := 0; goto 2; x := 1); skip, s⊥⟩
⇒ ⟨P, (goto 2; x := 1); skip, s0⟩
⇒ ⟨P, (skip; x := 1); skip, s0⟩
⇒ ⟨P, x := 1; skip, s0⟩
⇒ ⟨P, skip, s1⟩
⇒ s1

Figure 4.2: Derivation sequence for P as defined at 4.1, if only the [gotosos]
rule is added to the semantics

the [gotosos] defined above, and the SOS rules for While defined in Table
2.5. The step-by-step transitions are listed in Figure 4.2, and a complete
overview of the used rules can be found in Figure 4.3.

As stated before, the problem arises from the composition rules, specifically
[comp1sos]. Given P as in Example 4.1, the desired transition is

⟨P, (goto 2 ; x := 1) ; skip, s0⟩ ⇒ ⟨P, skip, s0⟩

Suppose we have the statement S1;S2. If a goto statement is executed in
S1, then the composition rule must make sure S2 is not executed. But this
should also extend to S1 being composite with some goto statement.

4.1.2 Revised composition rules

The SOS of While has two composition rules [comp1sos] and [comp2sos]. For
any statement of the form S1;S2, [comp1sos] is applied if S1 does not terminate
in one step, while [comp2sos] is applied if S1 does terminate in one step.

Instead of generalizing what S1 can be, we can also have one rule for
each option for statement S1. Thus, we have one rule for x := a;S, another
for skip;S, and so on, which is what de Bruin did in [3].

In the case of assignments, if statements, and skip statements, the new
composition rules result in the same transition as before. If S1 is a goto
statement, then S2 is ignored and the new statement is generated according
to the label of the goto statement.

There also needs to be a rule for (S1;S2) ; S3. Note that the statements
(S1;S2) ; S3 and S1; (S2;S3) should be equivalent, for all statements S1, S2,
and S3. Due to this, we can create a rule to shift the parenthesis to the
right. This will be the associative-compositions rule [comp-assocsos].

Definition 4.1.1 (SOS for Goto). The structural operational semantics for
Goto are defined in Table 4.4.

19

[asssos]⟨P, x := 0, s⟩ ⇒ s0
[comp2sos]⟨P, x := 0 ; S, s⟩ ⇒ ⟨P, S, s0⟩

[comp1sos]⟨P, (x := 0 ; S) ; skip, s⟩ ⇒ ⟨P, S ; skip, s0⟩

[gotosos]⟨P, goto 2, s0⟩ ⇒ ⟨P, skip, s0⟩
[comp1sos]⟨P, goto 2 ; x := 1, s0⟩ ⇒ ⟨P, skip ; x := 1, s0⟩
[comp1sos]⟨P, S ; skip, s0⟩ ⇒ ⟨P, (skip ; x := 1) ; skip, s0⟩

[skipsos]⟨P, skip, s0⟩ ⇒ s0
[comp2sos]⟨P, skip ; x := 1, s0⟩ ⇒ ⟨P, x := 1, s0⟩

[comp1sos]⟨P, (skip ; x := 1) ; skip, s0⟩ ⇒ ⟨P, x := 1 ; skip, s0⟩

[asssos]⟨P, x := 1, s0⟩ ⇒ s1
[comp2sos]⟨P, x := 1 ; skip, s0⟩ ⇒ ⟨P, skip, s1⟩

[skipsos]⟨P, skip, s1⟩ ⇒ s1

Figure 4.3: Derivation trees for each transition in figure 4.2, where
S := goto 2 ; x := 1

20

[asssos] ⟨P, x := a, s⟩ ⇒ s[x 7→ AJaKs]

[skipsos] ⟨P, skip, s⟩ ⇒ s

[ifttsos] ⟨P, if b then S1 else S2, s⟩ ⇒ ⟨P, S1, s⟩
if BJbKs = tt

[ifffsos] ⟨P, if b then S1 else S2, s⟩ ⇒ ⟨P, S2, s⟩
if BJbKs = ff

[gotosos] ⟨P, goto n, s⟩ ⇒ ⟨P, S, s⟩
with P := [ni : Si]

k
i=1,

NJnK = NJniK for some 1 ≤ i ≤ k,

S := Si; . . . ;Sk

[comp-assocsos] ⟨P, (S1 ; S2) ; S3, s⟩ ⇒ ⟨P, S1 ; (S2 ; S3), s⟩

[comp-asssos] ⟨P, x := a ; S, s⟩ ⇒ ⟨P, S, s[x 7→ a]⟩

[comp-skipsos] ⟨P, skip ; S, s⟩ ⇒ ⟨P, S, s⟩

[comp-ifsos]
⟨P, if b then S1 else S2, s⟩ ⇒ ⟨P, S, s⟩

⟨P, if b then S1 else S2 ; S3, s⟩ ⇒ ⟨P, S ; S3, s⟩

[comp-gotosos]
⟨P, goto n, s⟩ ⇒ ⟨P, S2, s⟩

⟨P, goto n ; S1, s⟩ ⇒ ⟨P, S2, s⟩

Table 4.4: Structural operational semantics for Goto

21

Technically, the rules [comp-asssos] and [comp-skipsos] are not needed, if
one were to keep the [comp1sos] rule from While (with the addition of P
in the configurations). This rule can only be applied to statements of the
form S1;S2, if S1 terminates in one single step. This is only the case for
assignments and skip statements, thus [comp1sos] does not interfere with goto
statements. However, it seemed more clear to have one rule each for every
possible statement of S1, even if the [comp-asssos] and [comp-skipsos] seem
a bit redundant.

These rules work on the statement level and not the program level. One
can change the configurations from ⟨P, S, s⟩ to ⟨P, P ′, s⟩ and ignore the labels
in P ′ for each rule. In this case, the starting configurations for a program
P should be ⟨P, P, s⟩.

Another option is to add a start rule with the following transition:

⟨P, s⟩ ⇒ ⟨P, S1; . . . Sk, s⟩

This makes the starting configuration more explicit. However, in this thesis,
we only use the rules as defined in Table 4.4.

4.2 Examples

Here are some example programs in Goto and their derivation sequences for
certain states s, using the SOS rules found in Table 4.4.

4.2.1 Example 1

This is the same program used to demonstrate the need for different com-
position rules (Example 4.1).

P := 1 : x := 0 ; goto 2 ; x := 1

& 2 : skip

With an arbitrary state s, the derivation sequence starting in

⟨P, (x := 0 ; goto 2 ; x := 1) ; skip, s⟩

can be found in Figure 4.5. The parentheses have been added to show the
effects of the [comp-assocsos] rule more clearly.

4.2.2 Example 2

This program computes the faculty of x, with the assumption that x ≥ 0.
We also define statements S1, S1,t, S2, S2,t and S3 to make the derivation
sequence more readable.

22

⟨P, (x := 0 ; (goto 2 ; x := 1)) ; skip, s⊥⟩ [comp-assocsos]

⇒ ⟨P, x := 0 ; ((goto 2 ; x := 1) ; skip), s⊥⟩ [comp-asssos]

⇒ ⟨P, (goto 2 ; x := 1) ; skip, s0⟩ [comp-assocsos]

⇒ ⟨P, goto 2 ; (x := 1 ; skip), s0⟩ [comp-gotosos]

⇒ ⟨P, skip, s0⟩ [skipsos]

⇒ s0

Figure 4.5: Derivation sequence for Example 4.2.1

P := 1 : if x ≤ 1 then S1 := if x ≤ 1 then

x := 1; S1,t

goto 3 else

else y := x-1

y := x-1 S1,t := x := 1 ; goto 3

& 2 : if ¬(y=1) then S2 := if ¬(y=1) then

x := x*y; S2,t

y := y-1; else

goto 2 skip

else S2,t := x := x*y ; y := y-1 ; goto 2

skip S3 := skip

& 3 : skip

With an arbitrary state s, where s x = 0 (thus s = s0,⊥), the derivation
sequence starting in ⟨P, S1;S2;S3, s3,⊥⟩ can be found in Figure 4.6.

⟨P, if x ≤ 1 then S1,t else y := x-1 ; S2 ; S3, s0,⊥⟩
⇒ ⟨P, (x := 1 ; goto 3) ; S2 ; S3, s0,⊥⟩
⇒ ⟨P, x := 1 ; goto 3 ; S2 ; S3, s0,⊥⟩
⇒ ⟨P, goto 3 ; S2 ; S3, s1,⊥⟩
⇒ ⟨P, skip, s1,⊥⟩
⇒ s1,⊥

Figure 4.6: The derivation sequence for Example 4.2.2 with s0,⊥ as the initial
state

23

With an arbitrary state s where s x = 3 (thus s = s3,⊥), the derivation
sequence starting in ⟨P, S1;S2;S3, s3,⊥⟩ can be found in Figure 4.7.

⟨P, if x ≤ 1 then S1,t else y := x-1 ; S2 ; S3, s3,⊥⟩
⇒ ⟨P, y := x-1 ; if ¬(y=1) then S2,t else skip ; S3, s3,⊥⟩
⇒ ⟨P, if ¬(y=1) then S2,t else skip ; S3, s3,2⟩
⇒ ⟨P, (x := x*y ; y := y-1 ; goto 2) ; S3, s3,2⟩
⇒ ⟨P, x := x*y ; (y := y-1 ; goto 2) ; S3, s3,2⟩
⇒ ⟨P, (y := y-1 ; goto 2) ; S3, s6,2⟩
⇒ ⟨P, y := y-1 ; goto 2 ; S3, s6,2⟩
⇒ ⟨P, goto 2 ; S3, s6,1⟩
⇒ ⟨P, if ¬(y=1) then S2,t else skip ; S3, s6,1⟩
⇒ ⟨P, skip ; skip, s6,1⟩
⇒ ⟨P, skip, s6,1⟩
⇒ s6,1

Figure 4.7: The derivation sequence for Example 4.2.2 with s3,⊥ as the initial
state

24

4.2.3 Example 3

This simple example demonstrates an infinite derivation sequence.

P := 1 :goto 1

Some steps of the derivation sequence can be found in Figure 4.8.

⟨1 :goto 1, goto 1, s⊥⟩ [gotosos]

⇒ ⟨1 :goto 1, goto 1, s⊥⟩ [gotosos]

⇒ ⟨1 :goto 1, goto 1, s⊥⟩ [gotosos]

⇒ . . .

Figure 4.8: The first steps of the derivation sequence for Example 4.2.3

The derivation sequence in Figure 4.8 repeats the same configuration. As a
result, it will never terminate, as it will repeat the same steps.

More complex programs can also be proven to never terminate, by re-
vealing a repeating pattern in the derivation sequence and proving that the
program never exits this loop. Of course, non-termination of any program
is in general unprovable [2].

4.2.4 Example 4

This is a short example of a program where its derivation sequence termi-
nates in a stuck configuration. This cannot happen for normal programs, be-
cause the [gotosos] and [comp-gotosos] rules can always be applied to goto n
and goto n;S, respectively.

P := 1 :skip ; goto 2

The derivation sequence can be found in Figure 4.9

⟨1 :skip ; goto 2, skip ; goto 2, s⊥⟩ [skipsos]

⇒ ⟨1 :skip ; goto 2, goto 2, s⊥⟩

Figure 4.9: The derivation sequence for Example 4.2.4

4.3 Properties

Theorem 4.3.1 (SOS is deterministic for well-formed normal programs in
Goto). For all well-formed normal programs P , statements S, states s, and

25

configurations γ and γ′:
if ⟨P, S, s⟩ ⇒ γ and ⟨P, S, s⟩ ⇒ γ′, then γ = γ′.

Proof. Let P , S, s, and γ, such that ⟨P, S, s⟩ ⇒ γ holds. We prove that
if ⟨P, S, s⟩ ⇒ γ′ holds, then γ = γ′ with induction on the shape of the
derivation.

For the base cases, the derivations are of the form ⟨P, S, s⟩ ⇒ s′:

Case x := a: The only rule which can be used to get ⟨P, x := a, s⟩ ⇒ s′ is
[asssos], thus s

′ = s[x 7→ AJaKs].
As the same is true for ⟨P, x := a, s⟩ ⇒ s′′, we know that s′′ = s[x 7→ AJaKs],
thus s′ = s′′.

Case skip: Analogous to the case x := a.

Now, we prove the derivations of the form ⟨P, S, s⟩ ⇒ ⟨P, S′, s′⟩ determinis-
tic:

Case if b then S1 else S2:

• Suppose the [ifttsos] rule was applied: ⟨P, if b then S1 else S2, s⟩ ⇒
⟨P, S, s′⟩.
Then we know that S = S1, s

′ = s, and BJbK = tt.

Suppose the [ifttsos] rule was applied: ⟨P, if b then S1 else S2, s⟩ ⇒
⟨P, S′, s′′⟩.
Then we know that S′ = S1, s

′′ = s, and BJbK = tt. Thus ⟨P, S, s′⟩ =
⟨P, S′, s′′⟩.

Suppose the [ifffsos] rule was applied: ⟨P, if b then S1 else S2, s⟩ ⇒
⟨P, S′, s′′⟩.
Then we know that S′ = S2, s

′′ = s, and BJbK = ff.
But BJbK = ff contradicts the assumption that BJbK = tt from applying
the [ifttsos] rule to get ⟨P, if b then S1 else S2, s⟩ ⇒ ⟨P, S, s′⟩.
As a result, [ifffsos] cannot have been applied.

• The proof for BJbK = ff is analogous to the case of BJbK = tt.

Case goto n:

• Suppose n is defined in P .
The only rule which can be used to get ⟨P, goto n, s⟩ ⇒ ⟨P, S, s′⟩ is
[gotosos], thus with P := [ni :Si]

k
i=1, NJnK = NJniK for some 1 ≤ i ≤ k,

we know that S = Si; . . . ;Sk, and s′ = s.

If we have ⟨P, goto n, s⟩ ⇒ ⟨P, S′, s′′⟩, then the label nmust be defined
in P , and the [gotosos] rule must have been applied.

26

As a result, with P := [ni :Si]
k
i=1, NJnK = NJnjK for some 1 ≤ j ≤ k,

and S′ = Sj ; . . . ;Sk, and s′′ = s.
If i = j, then ⟨P, S, s′⟩ = ⟨P, S′, s′′⟩.
If i ̸= j, then the premise of P being well-formed is not met.

• Suppose n is not defined in P .
The premise of P being normal is not met, thus the property ”if
⟨P, S, s⟩ ⇒ γ and ⟨P, S, s⟩ ⇒ γ′, then γ = γ′” holds vacuously.

Case S1;S2: We split up the cases for S1:

• Case (S′
1;S

′′
1);S2: Analogous to the case x := a.

• Case x := a;S2: Analogous to the case x := a.

• Case skip;S2: Analogous to the case x := a.

• Case if b then S′
1 else S′′

1 ; S2:
The only rule which can be used to get ⟨P, if b then S′

1 else S′′
1 ; S2, s⟩

⇒ γ is [comp-ifsos].
From this, it follows that ⟨P, if b then S′

1 else S′′
1 , s⟩ ⇒ ⟨P, S, s⟩ for

some S.
Thus γ = ⟨P, S S2, s⟩.

If we have ⟨P, if b then S′
1 else S′′

1 ; S2, s⟩ ⇒ γ′, then the [comp-ifsos]
rule must have been applied.
From this, it follows that ⟨P, if b then S′

1 else S′′
1 , s⟩ ⇒ ⟨P, S′, s⟩ for

some S′.
Thus γ = ⟨P, S′ S2, s⟩.
We already know that if ⟨P, if b then S′

1 else S′′
1 , s⟩ ⇒ ⟨P, S, s⟩ and

⟨P, if b then S′
1 else S′′

1 , s⟩ ⇒ ⟨P, S′, s⟩, then ⟨P, S, s⟩ = ⟨P, S′, s⟩.
As a result, γ = γ′.

• Case goto n;S2: Analogous to the cases if b then S′
1 else S′′

1 ; S2 in
combination with the case goto n.

Corollary. For all well-formed normal programs P , statements S, states s,
s′ and s′′:

if ⟨P, S, s⟩ ⇒∗ s′ and ⟨P, S, s⟩ ⇒∗ s′′, then s′ = s′′.

Definition 4.3.1 (Semantic equivalence). For all well-formed normal pro-
grams P1 := [n1,i :S1,i]

k
i=1 and P2 := [n2,i :S2,i]

q
i=1 with S1 := S1,1; . . . ;S1,k

and S2 := S2,1; . . . ;S2,q, we say that P1 and P2 are semantically equivalent
(denoted with P1 ∼ P2) if the following predicate holds:

For all terminal or stuck configurations γ: ⟨P1, S1, s⟩ ⇒∗ γ, if and only
if ⟨P2, S2, s⟩ ⇒∗ γ.

27

Proposition 4.3.2. All programs that do not terminate are equivalent.

Proof.

1. Let P1 := [n1,i :S1,i]
k
i=1 and P2 := [n2,i :S2,i]

q
i=1 be programs that do

not terminate for any state s.

2. Let S1 := S1,1; . . . ;S1,k and S2 := S2,1; . . . ;S2,q.

3. If P1 ∼ P2, then, for all states s and s′: ⟨P1, S1, s⟩ ⇒∗ s′, if and only
if ⟨P2, S2, s⟩ ⇒∗ s′.

4. From 1, it follows that for all states s and s′: ⟨P1, S1, s⟩ ⇒∗ s′ does
not hold.

5. From 4, it follows that for all states s and s′: ⟨P1, S1, s⟩ ⇒∗ s′ only if
⟨P2, S2, s⟩ ⇒∗ s′ holds.

6. From 1, it follows that there exist no states s and s′ such that ⟨P2, S2, s⟩
⇒∗ s′ holds.

7. From 6, it follows that for all states s and s′: ⟨P1, S1, s⟩ ⇒∗ s′, if
⟨P2, S2, s⟩ ⇒∗ s′ holds.

8. From 5 and 7, it follows that ⟨P1, S1, s⟩ ⇒∗ s′, if and only if ⟨P2, S2, s⟩
⇒∗ s′ holds.

Theorem 4.3.3. For all programs P statements S and states s and s′: the
derivation sequence ⟨P, S, s⟩ ⇒∗ s′ exists and it does not contain the [gotosos]
or [comp-gotosos] rules, if and only if EJSKs = s′.

Proof. We prove this by induction on the shape of S:
Case S = x := a: The derivation sequence starting in ⟨P, x := a, s⟩

must look like this:

⟨P, x := a, s⟩ ⇒ s[x 7→ AJaKs]

Interpreting S with E can be done directly from the definition of E (Defini-
tion 3.3.1):

EJx := aKs = s[x 7→ AJaKs]

Thus the theorem holds if S = x := a.

Case S = skip: Analogous to S = x := a.

Case S = goto n:

28

1. Proof for the “if” direction:
The premise ‘EJgoto nKs = s′’ is never met, since by definition the
result of EJgoto nKs has type State×Num, and not type State. As
a result, the theorem holds for the “if” direction.

2. Proof for the “only if” direction:
The premise ‘⟨P, goto n, s⟩ ⇒∗ s′ exists and it does not contain
the [gotosos] or [comp-gotosos] rules’ is never met, since the only the
[gotosos] rule can be applied to ⟨P, goto n, s⟩. As a result, the theorem
holds for the “only if” direction.

Case S = S1;S2: For the induction hypothesis, we can assume that the
theorem holds for S1 and S2.

1. Proof for the “if” direction:
We can assume that EJSKs = s′ holds.
In other words EJS2K(EJS1Ks) = s′ holds, by the definition of E .
From this, it follows that there exists some state s′′, for which EJS1Ks =
s′′ holds.
Then, it also follows that EJS2Ks′′ = s′ holds. With our induction
hypothesis, from EJS1Ks = s′′ follows that there exists a derivation
sequence ⟨P, S1, s⟩ ⇒∗ s′′, and from EJS2Ks′′ = s′ follows that there
exists a derivation sequence ⟨P, S2, s

′′⟩ ⇒∗ s′, which both do not con-
tain the [gotosos] or [comp-gotosos] rules.
This means that the derivation sequence ⟨P, S1;S2, s⟩ ⇒∗ ⟨P, S2, s

′′⟩ ⇒∗

s′ exists, and in particular ⟨P, S1;S2, s⟩ ⇒∗ s′.

2. Proof for the “only if” direction:
We can assume that the derivation sequence ⟨P, S1;S2, s⟩ ⇒∗ s′ exists
without the [gotosos] or [comp-gotosos] rules being applied.
We can assume that a state s′′ exists, such that ⟨P, S1, s⟩ ⇒∗ s′′ holds.
Otherwise, S1 would never terminate when executed in state s, which
would mean that the derivation sequence ⟨P, S1;S2, s⟩ ⇒∗ s′ cannot
exist.
This means the derivation sequence ⟨P, S1;S2, s⟩ ⇒∗ s′ looks like this:
⟨P, S1;S2, s⟩ ⇒∗ ⟨P, S2, s

′′⟩ ⇒∗ s′.
Since the [gotosos] and [comp-gotosos] rules are never applied in this
derivation sequence, these rules are also not applied in the derivation
sequence ⟨P, S1, s⟩ ⇒∗ s′′.
Because of our induction hypothesis, we know that from ⟨P, S1, s⟩ ⇒∗

s′′ follows that EJS1Ks = s′′, and from ⟨P, S2, s
′′⟩ ⇒∗ s′ follows that

EJS2Ks′′ = s′.
By definition of E , we know that EJS1;S2K = EJS2K(EJS1Ks) = s′.

Case S = if b then S1 else S2: Analogous to S = S1;S2

29

Conjecture 4.3.1. For all programs P statements S and states s and s′:
the derivation sequence ⟨P, S, s⟩ ⇒∗ ⟨P, S′, s′⟩ does not contain either of the
[gotosos] or [comp-gotosos] rules and the next rule is either the [gotosos] or
[comp-gotosos], if and only if there exists a numeral n for which EJSKs =
(s′, n) holds.

The Conjecture 4.3.1, states that for all statements S, the function E and
SOS are equivalent up to the first goto statement. If during the execution
of S no goto statement is encountered, then the resulting state from E is the
final state of SOS.

30

Chapter 5

Natural Semantics

Reasoning about low-level languages (i.e. languages with goto statements)
is believed to be difficult. This is due to the non-compositional nature
that arises from control flow features, like goto statements, as mentioned by
Saabas and Uustalu in [9]. In particular, natural semantics (NS) for such
languages are harder to define.

Unlike programs in While, pieces of code in Goto can have multiple entry
and exit points. The entry points are the labels, and the exit points are the
goto statements, as well as the typical exit point at the end of a statement.

However, these challenges have been solved before. The language Exc is an
extension to While and includes exceptions. In essence, with the expression
begin S1 handle e :S2 end, the statement S1 has multiple exit points in the
form of statements like raise e, as shown by Nielson and Nielson in [6].

Furthermore, the multiple entry points have already been addressed for
SOS in Chapter 4, which is based on the work of de Bruin [3]. That being
said, the approach used for SOS works well, because of the step-by-step
interpretation inherent to SOS. For NS, we will make use of a different
construction.

To facilitate the multiple entry points, we make use of a program counter
pc ∈ N. This program counter points to a label in P := [ni : Si]

k
i=1. This

allows us to construct a rule, which interprets the statement Spc, and then
continues with a new program counter. This idea is based on the work
of Saabas and Uustalu in [9], where essentially transitions of the form
⟨S, pc, s⟩ → ⟨pc′, s′⟩ are used. However, in their goto language, the only
compositional statement is S1;S2. Our language Goto also has the com-
positional statement if b then S1 else S2. In the work from Saabas and
Uustalu in [9] every primitive statement has its own label, which means that
the goto n statement only ever points to one primitive statement. In our
language Goto, the goto n statement can point to a block of statements
with multiple exit points, something Saabas and Uustalu avoided [9].

31

For NS to work with Goto, we introduce the meta-variable c, which rages
over the set C := {◦, •} of control flow symbols. The ◦ symbol means we
continue interpreting as normal, while the • symbol is used when a goto
statement has been encountered.

The resulting transitions used for Goto are compared to NS transitions
from While in Figure 5.1.

NS transition in While NS transitions in Goto

⟨S, s⟩ → s′ ⟨P, pc, s⟩ → s′

⟨S, s⟩ → ⟨pc, c, s′⟩

Figure 5.1: Comparison between structural operational semantic transitions
in While and Goto

5.1 NS transitions for Goto

The NS rules for Goto are split into two groups: one for programs, and one
for statements.

The rules for programs are concerned with finding the statement correspond-
ing to the label equal to pc.

Definition 5.1.1 (NS rules for programs). The NS rules for programs in
goto can be found in Table 5.2.

[find◦ns]
⟨Spc, s⟩ → ⟨pc′, ◦, s′′⟩ ⟨P, pc+ 1, s′′⟩ → s′

⟨P, pc, s⟩ → s′

with P := [ni :Si]
k
i=1, if 1 ≤ pc ≤ k

[find•ns]
⟨Spc, s⟩ → ⟨pc′, •, s′′⟩ ⟨P, pc′, s′′⟩ → s′

⟨P, pc, s⟩ → s′

with P := [ni :Si]
k
i=1, if 1 ≤ pc ≤ k

[endns] ⟨P, pc, s⟩ → s

with P := [ni :Si]
k
i=1, and pc /∈ {1, . . . , k}

Table 5.2: Natural semantics for programs in Goto

The [find◦ns] rule executes the statement belonging to pc completely, if that
statement ends at the normal exit point (i.e. no goto statement has been
encountered).

32

The [find•ns] rule executes the statement belonging to pc up to and includ-
ing the first goto statement. The appropriate new program counter value is
then used to execute the next part of the program.

In case the pc is not defined in the program P , then the [endns] rule
will make sure the tree does not grow infinitely. The definition of [endns]
assumes P to be well-formed.

Note. The reason why pc ranges over the natural numbers (although integers
would also have been fine) is the [find◦ns] rule. We found it more elegant to
increase the value of pc by one with +1, rather than defining a function that
increases the value of a syntactical numeral by one. Apart from that, since
numerals allow for leading zeroes, we negate the problem that a label might
be 02, while the pc is 2. In this case, 02 ̸= 2, thus no rule can be applied.
We avoid this problem by matching the labels and program counters with
numbers in the semantic domain.

Note. The program counter pc′ in rule [find◦ns] is not used. This will be
discussed in more detail after the rules for statements in Goto have been
defined.

The rules for statements are similar to those for While.

Definition 5.1.2 (NS rules for statements). The NS rules for statements
in Goto can be found in Table 5.3.

[assns] ⟨x := a, s⟩ → ⟨0, ◦, s[x 7→ AJaKs]⟩

[skipns] ⟨skip, s⟩ → ⟨0, ◦, s⟩

[comp◦ns]
⟨S1, s⟩ → ⟨pc, ◦, s′′⟩ ⟨S2, s

′′⟩ → ⟨pc′, c, s′⟩
⟨S1;S2, s⟩ → ⟨pc′, c, s′⟩

[comp•ns]
⟨S1, s⟩ → ⟨pc, •, s′⟩

⟨S1;S2, s⟩ → ⟨pc, •, s′⟩

[ifttns]
⟨S1, s⟩ → ⟨pc, c, s′⟩

⟨if b then S1 else S2, s⟩ → ⟨pc, c, s′⟩
if BJbKs = tt

[ifffns]
⟨S2, s⟩ → ⟨pc, c, s′⟩

⟨if b then S1 else S2, s⟩ → ⟨pc, c, s′⟩
if BJbKs = ff

[gotons] ⟨goto n, s⟩ → ⟨N JnK, •, s⟩

Table 5.3: Natural semantics for statements in Goto

The rules [assns] and [skipns] result in a configuration with the program
counter set to 0, and the control flow symbol being ◦. As a result, the [find◦ns]

33

and [find•ns] rules could have been defined to match on the program counter
being 0 or not, instead of the control flow symbols ◦ and •, respectively. We
chose to include the control flow symbols, as we felt that it would make the
applications of [find◦ns] and [find•ns] more clear.

Furthermore, we chose for [assns] and [skipns] to result in a specific pro-
gram counter, rather than any number, as that would make the rules for
statements non-deterministic, even if it would not affect the interpretation
of programs.

5.2 Examples

5.2.1 Example 1

This is the same program used as the first example for SOS.

P := 1 : x := 0 ; goto 2 ; x := 1

& 2 : skip

The derivation tree looks like this:

[assns]⟨x := 0, s⟩ → ⟨0, ◦, s0⟩ T1
[comp◦ns]⟨x := 0; goto 2; x := 1, s⟩ → ⟨2, •, s0⟩ T2

[find•ns]⟨P, 1, s⟩ → ⟨3, s0⟩

Where T1 is defined as:

[gotons]⟨goto 2, s0⟩ → ⟨2, •, s0⟩
[comp•ns]⟨goto 2; x := 1, s0⟩ → ⟨2, •, s0⟩

and T2 is defined as:

[skipns]⟨skip, s0⟩ → ⟨0, ◦, s0⟩
[endns]⟨P, 3, s0⟩ → ⟨3, s0⟩
[find◦ns]⟨P, 2, s0⟩ → ⟨3, s′⟩

A full version of this derivation tree can be found in Appendix A.1.

5.2.2 Example 2

This program computes the faculty of x, with the assumption that x ≥ 0.
We also define statements S1, S1,t, S2, S2,t and S3 to make the derivation
sequence more readable.

34

P := 1 : if x ≤ 1 then S1 := if x ≤ 1 then

x := 1; S1,t

goto 3 else

else y := x-1

y := x-1 S1,t := x := 1 ; goto 3

& 2 : if ¬(y=1) then S2 := if ¬(y=1) then

x := x*y; S2,t

y := y-1; else

goto 2 skip

else S2,t := x := x*y ; y := y-1 ; goto 2

skip S3 := skip

& 3 : skip

With an arbitrary state s where s x = 0 (thus s = s0,⊥), the derivation tree
starting in ⟨P, 1, s0,⊥⟩ looks like this:

T1
[ifttns]⟨S1, s3,⊥⟩ → ⟨3, •, s1,⊥⟩

T2
[endns]⟨P, 4, s1,⊥⟩ → s1,⊥
[find◦ns]⟨P, 3, s0,⊥⟩ → s1,⊥

[find•ns]⟨P, 1, s0,⊥⟩ → s1,⊥

Where T1 is defined as:

[assns]⟨x := 1, s0,⊥⟩ → ⟨0, ◦, s1,⊥⟩
[gotons]⟨goto 3, s1,⊥⟩ → ⟨3, •, s1,⊥⟩
[comp◦ns]⟨x := 1 ; goto 3, s3,2⟩ → ⟨3, •, s1,⊥⟩

and T2 is defined as:

[skipns]⟨skip, s1,⊥⟩ → ⟨0, ◦, s1,⊥⟩

A full version of this derivation tree can be found in Appendix A.2.

With an arbitrary state s where s x = 3 (thus s = s3,⊥), the derivation tree
starting in ⟨P, 1, s3,⊥⟩ looks like this:

[assns]⟨y := x-1, s3,⊥⟩ → ⟨0, ◦, s3,2⟩
[ifffns]⟨S1, s3,⊥⟩ → ⟨0, ◦, s3,2⟩

T1 T2
[find•ns]⟨P, 2, s3,2⟩ → ⟨4, s6,1⟩
[find◦ns]⟨P, 1, s3,⊥⟩ → ⟨4, s6,1⟩

35

Where T1 is defined as:

[assns]⟨x := x*y, s3,2⟩ → ⟨0, ◦, s6,2⟩ T ′
1

[comp◦ns]⟨x := x*y; y := y-1; goto 2, s3,2⟩ → ⟨2, •, s6,1⟩
[ifttns]⟨if ¬(y=1) then S2,t else skip, s3,2⟩ → ⟨2, •, s6,1⟩

and T ′
1 is defined as:

[assns]⟨y := y-1, s6,2⟩ → ⟨0, ◦, s6,1⟩
[gotons]⟨goto 2, s6,1⟩ → ⟨2, •, s6,1⟩
[comp◦ns]⟨y := y-1; goto 2, s6,2⟩ → ⟨2, •, s6,1⟩

and T2 is defined as:

[skipns]⟨skip, s6,1⟩ → ⟨0, ◦, s6,1⟩
[ifffns]⟨S2, s6,1⟩ → ⟨0, ◦, s6,1⟩ T ′

2
[find◦ns]⟨P, 2, s6,1⟩ → ⟨4, s6,1⟩

and T ′
2 is defined as:

[skipns]⟨skip, s6,1⟩ → ⟨0, ◦, s6,1⟩
[endns]⟨P, 4, s6,1⟩ → ⟨4, s6,1⟩
[find◦ns]⟨P, 3, s6,1⟩ → ⟨4, s6,1⟩

A full version of this derivation tree can be found in Appendix A.3.

5.2.3 Example 3

This program is a simple example of a non-terminating program. As a result,
it would generate an infinite derivation tree, which do not exist.

P := 1 : goto 1

A derivation tree starting in ⟨P, 1, s⟩ would look like this:

[gotons]⟨goto 1, s⟩ → ⟨1, •, s⟩
T1 T2

[find•ns]⟨P, 1, s⟩ → s′
[find•ns]⟨P, 1, s⟩ → s′

However, this tree with ⟨P, 1, s⟩ → s′ as its conclusion has a tree with the
same conclusion as one of its premises. As a result, there does not exist a
state s′ for which the program P would terminate.

36

5.2.4 Example 4

This program shows how non-normal programs are handled in NS.

P := 1 : skip; goto 2

The derivation tree for P looks like this:

T1
[endns]⟨P, 2, s⟩ → s
[find•ns]⟨P, 1, s⟩ → s

With T1 defined as:

[skipns]⟨skip, s⟩ → ⟨0, ◦, s⟩
[gotons]⟨goto 2, s⟩ → ⟨2, •, s⟩
[comp◦ns]⟨skip ; goto 2, s⟩ → ⟨2, •, s⟩

The [endns] rule results in non-normal programs being terminated, if some
goto n statement is encountered, with N JnK not being a defined label.

5.3 Properties

Note. While this chapter has shown a way of defining natural semantics
for a language with goto statements, this form of NS is not entirely com-
positional. For every [find◦ns] or [find•ns] rule that is applied, we only look
at the part of the program corresponding to the label the program counter
points to. However, then we consider the entire program again to find the
next statement. In the work by Saabas and Uustalu [9], the NS is entirely
compositional, meaning that reasoning about some program is done by rea-
soning about small individual parts, which are then combined with their
composition rule.

Lemma 5.3.1 (NS is deterministic for statements in Goto). For all state-
ments S, states s, s′ and s′′, natural numbers pc and pc′, and control symbols
c and c′: if ⟨S, s⟩ → ⟨pc, c, s′⟩ and ⟨S, s⟩ → ⟨pc′, c′, s′′⟩, then pc = pc′, c = c′,
and s′ = s′′.

Lemma 5.3.1 can be proven in a similar manner SOS was proven to be
deterministic.

Theorem 5.3.2 (NS is deterministic for well-formed normal programs in
Goto). For all well-formed normal programs P , natural numbers pc, and
states s, s′ and s′′: if ⟨P, pc, s⟩ → s′ and ⟨P, pc, s⟩ → s′′, then s′ = s′′.

Proof. Proof by induction on the shape of the derivation tree.

We define the property Q(T) for derivation trees T :

37

For all well-formed normal programs P , natural numbers pc, and
states s, s′ and s′′:
if T has ⟨P, pc, s⟩ → s′ as its conclusion, then for all derivation trees
T ′ with ⟨P, pc, s⟩ → s′′ as its conclusion, s′ = s′′ holds.

Base case - axiom schemes:

1. Assume the last step in tree T is [endns].
Then we know that with P := [ni :Si]

k
i=1, pc /∈ {1, . . . , k} and T looks

like this:
[endns]⟨P, pc, s⟩ → s

Thus s′ = s.

Suppose we have a derivation tree T ′ with ⟨P, pc, s⟩ → s as its conclu-
sion.
The last step of T ′ cannot have been [find◦ns], because then 1 ≤ pc ≤ k
must hold, which contradicts the fact pc /∈ {1, . . . , k}.
The last step of T ′ cannot have been [find•ns] for the same reason.
Thus, the last step must have been [endns], which means T ′ looks like
this:

[endns]⟨P, pc, s⟩ → s

Thus s′′ = s, from which s′ = s′′ follows.

As a result, P (T) holds for all derivation trees T with one rule appli-
cation.

Induction hypothesis (IH) - composite rules:

We may assume that the property P (T ∗) holds for all of the premises T ∗ of
the composite rules.

1. Assume the last step in tree T is [find◦ns].
Then we know that with P := [ni :Si]

k
i=1, 1 ≤ pc ≤ k, S := Spc and T

looks like this:

T ∗
1

[. . .]
⟨S, s⟩ → ⟨pc′, ◦, s′′⟩

T ∗
2

[. . .]
⟨P, pc+ 1, s′′⟩ → s′

[find◦ns]⟨P, pc, s⟩ → s′

We know that T ∗
1 is deterministic (Theorem 5.3.1)

Suppose the last rule in tree T ′ with ⟨P, pc, s⟩ → s′′′ is [endns].
Then with P := [ni :Si]

k
i=1, pc must be greater than k, or smaller than

1.

38

But this contradicts the fact that 1 ≤ pc ≤ k, thus [endns] cannot have
been the last rule of T ′.

Suppose the last rule in tree T ′ with ⟨P, pc, s⟩ → s′′′ is [find◦ns].
Then, due to the existence of T ∗

1 , T
′ must look like this:

T ∗
1

[. . .]
⟨S, s⟩ → ⟨pc′, ◦, s′′⟩

T ∗
3

[. . .]
⟨P, pc+ 1, s′′⟩ → s′′′

[find◦ns]⟨P, pc, s⟩ → s′′′

Since we know that P (T ∗
2) holds, it must be the case that T ∗

2 = T ∗
3 ,

since they have the same conclusion. As a result, we also know that
s′ = s′′′.
Therefore, P (T) holds, if the last step in tree T is [find◦ns].

Suppose the last rule in tree T ′ with ⟨P, pc, s⟩ → s′′′ is [find•ns].
Then with P := [ni : Si]

k
i=1 and S := Spc, we must have ⟨S, s⟩ →

⟨pc′, •, s′′′⟩.
But we know from the fact that T ∗

1 exists, that the transition from
⟨S, s⟩ goes to ⟨pc′, ◦, s′′⟩.
This means that [find•ns] cannot have been the last rule of T ′.

2. The proof for [find•ns] is analogous to the proof for [find◦ns].

Definition 5.3.1 (Semantic equivalence with NS). For all well-formed nor-
mal programs P1 and P2, P1 and P2 are semantically equivalent (denoted
with P1 ∼ P2) if the following predicate holds:

For all states s and s′: ⟨P1, s⟩ → s′, if and only if ⟨P2, s⟩ → s′.

Lemma 5.3.3 (SOS and NS result in equivalent interpretations for state-
ments). Let P := [ni :Si]

k
i:=1 be a normal and well-formed program. For all

natural numbers pc and i with 1 ≤ pc ≤ k and 1 ≤ i ≤ k, and states s and
s′:

1. If i < k and ⟨Si, s⟩ → ⟨pc, ◦, s′⟩,
then ⟨P, Si; . . . ;Sk, s⟩ ⇒∗ ⟨P, Si+1; . . . ;Sk, s

′⟩

2. If ⟨Sk, s⟩ → ⟨pc, ◦, s′⟩,
then ⟨P, Sk, s⟩ ⇒∗ s′

3. If ⟨Si, s⟩ → ⟨pc, •, s′⟩,
then ⟨P, Si; . . . ;Sk, s⟩ ⇒∗ ⟨P, Spc; . . . ;Sk, s

′⟩

Proof.

39

1. This can be proven by the fact that the [gotons] rule is not used in the
derivation tree with ⟨Si, s⟩ → ⟨pc, ◦, s′⟩ as its conclusion.
As a result, the derivation sequence starting in ⟨P, Si; . . . ;Sk, s⟩ does
no make use of the [gotosos] or [comp-gotosos] rules. This means that
⟨P, Si; . . . ;Sn, s⟩ ⇒∗ ⟨P, Si+1; . . . ;Sk, s

′⟩.

2. This can be proven by the fact that the [gotons] rule is not used in the
derivation tree with ⟨Si, s⟩ → ⟨pc, ◦, s′⟩ as its conclusion.
Since the program terminates, if the statement corresponding to the
last label in P terminates without encountering a goto statement, the
derivation sequence must end in a final configuration (i.e. a state).

3. This can be proven by the fact that the [gotons] rule is used in the
derivation tree with ⟨Si, s⟩ → ⟨pc, •, s′⟩ as its conclusion.
As a result, the derivation sequence starting in ⟨P, Si; . . . ;Sk, s⟩ must
make use of the [gotosos] or [comp-gotosos] rule, before the statement Si

has been executed completely. That goto statement must be goto n,
with NJnK = pc, since otherwise the NS interpretation would have
encountered a different goto statement.
Since the goto statement jumps the program to the statement Spc,
the configuration ⟨P, Spc; . . . ;Sk, s′⟩ must be reached after the first
[gotosos] or [comp-gotosos] rule.

Conjecture 5.3.1 (SOS and NS result in equivalent interpretations). For
all programs P = [ni :Si]

k
i:=1, natural numbers i with 1 ≤ i ≤ k, and states

s and s′: ⟨P, Si; . . . ;Sk, s⟩ ⇒∗ s′, if and only if ⟨P, i, s⟩ → s′.

Corollary. For all programs P = [ni :Si]
k
i:=1, and states s and s′:

⟨P, S1; . . . ;Sk, s⟩ ⇒∗ s′, if and only if ⟨P, 1, s⟩ → s′.

40

Chapter 6

Axiomatic Semantics

Axiomatic semantics (AS) is not about specific states like in SOS or NS, but
it is about properties of the starting and (if it exists) final states.

The assertion
{Q1 } P {Q2 }

is called a Hoare triple, and it consists of two predicates, Q1 and Q2, as well
as a program P . It reads “if Q1 is true in the starting state and we execute
program P , then Q2 is true in the final state if the program terminates.”
The Predicates Q1 and Q2 are called the pre- and postcondition respectively.
Note that AS does not prove that P terminates. Termination is generally
undecidable [2], which is why we read the Hoare triples as described above.
This results in Hoare triples being about partial correctness, which is why
we index the AS rules with a lowercase p.

The AS rules for While can generally be carried over for Goto. The main
concerns are about handling labels and, of course, a rule for the goto state-
ment. For this, the Hoare triple will change a bit, which is described in the
upcoming section. The semantics in this chapter are essentially the same as
described by de Bruin in [3].

6.1 The goto rule (AS)

Since the goto statement replaces the while statement, it makes sense to
analyze the [whilep] rule to understand how a goto rule can be constructed.

{BJbK ∧Q} S {Q}
[whilep]

{Q} while b do S {¬BJbK ∧Q}

Every time the body of the while loop is executed (i.e. the statement S), the
assertion BJbK∧Q must hold. Another way to look at this is if the program
jumps back to execute S again, BJbK∧Q must hold. For [whilep], this is the

41

case, since Q must hold after executing S, and BJbK must hold if the loop is
executed again.

For the goto statement, we can make use of the idea that certain predi-
cates should hold if the program jumps to a different point of the program.
Since goto statements can be anywhere in any program, we need a way
to keep track of all relevant preconditions throughout the axiomatic inter-
pretation. To see which preconditions are relevant, consider the following
inference tree for While:

. . .

{Q1} S1 {Q2}

. . .

{Q2} S2 {Q3}

. . .

{Q3} S3 {Q4}
. . .

{Q4} S4 {Q5}
{Q1} S3;S4 {Q5}

{Q1} S2;S3;S4 {Q5}
{Q1} S1;S2;S3;S4 {Q5}

We see that every statement Si has a corresponding precondition Qi and
postcondition Qi+1. We can rewrite the inference tree above like this:

. . .

{Q1} S1 {Q2}
. . .

{Q2} S2 {Q3}
. . .

{Q3} S3 {Q4}
. . .

{Q4} S4 {Q5}
{Q1} S1;S2;S3;S4 {Q5}

While this inference tree does not follow from the AS rules described by
Nielson and Nielson in [6], we can use it to show why the AS ideas from de
Bruin in [3] work.

Suppose we have a program P = n1 :S1 & n2 :S2 & n3 :S3 & n4 :S4. If we
have an inference tree like the one above, then for every statement goto ni,
we need to make sure that the predicate Qi holds when executing the goto
statement. In particular, we need to keep track of the preconditions of every
statement which corresponds to a label.

For this, in [3], de Bruin introduces a dictionary D:

D ::= n :Q | n :Q, D

This dictionary is a list of label-predicate pairs.

For programs P , we have introduced the notation P = [ni : Si]
k
i=1 as a

shorthand for P = n1 : S1 & . . . & nk : Sk. We will do the same for
dictionaries, where D = [ni :Qi]

k
i=1 is short for D = n1 :Q1, . . . , nk :Qk.

The Hoare triples need to be adjusted to include this dictionary. We
make two kinds of Hoare triples: one for programs, and one for statements.
For statements, we include the dictionary the same way as de Bruin did in
[3]:

{Q1} S {Q2} becomes ⟨D | {Q1} S {Q2}⟩

42

For programs, we keep the original notation for Hoare triples without a
dictionary. The reasons for this are explained in section 6.2.

Now, we can construct a rule for goto statements like this [3]:

[gotop]⟨D | {Q} goto n { ? }⟩
with D := [ni : Qi]

k
i=1,

NJnK = NJniK and Q = Qi for some 1 ≤ i ≤ k

This rule forces the precondition of any goto n statement to be the same
precondition for Sn′ , ifNJnK = NJn′K. As a result, before a program executes
a statement like goto n, we know that the assertion Q holds, so if the
program then jumps to the corresponding label, the precondition of the
next statement holds.

The question now is what the postcondition should be. It can be tempt-
ing to set it to Q as well since that assertion should hold after executing
a goto statement. However, normal programs in Goto (Definition 3.2.4),
always have a statement, which is executed after some goto statement has
been executed. In particular, a program does not terminate immediately
after the execution of a goto statement. As a result, the postcondition for
the goto statement has no real meaning. Postconditions should hold if the
statement is executed and terminates after the precondition holds.

As a result, the postcondition can be set to false. Since false implies
everything, the consequence rule can be used to change the postcondition
to the precondition of the statement directly following the goto statement.

[gotop]⟨D | {Q} goto n { false }⟩
with D := [ni : Qi]

k
i=1,

NJnK = NJniK and Q = Qi for some 1 ≤ i ≤ k

Consider the inference tree from before again (we exclude the dictionary for
simplicity for now):

. . .

{Q1} S1 {Q2}
. . .

{Q2} S2 {Q3}
. . .

{Q3} S3 {Q4}
. . .

{Q4} S4 {Q5}
{Q1} S1;S2;S3;S4 {Q5}

Suppose that the last statement in S1 is goto 3. Then the postcondition of
S1, namely Q2, would be false. However, then the precondition of S2 would
be false as well. This means that the Hoare triple of S2 has lost meaning
because it reads “if the precondition Q2 holds, . . . ”, but the precondition
never holds. As a result, one could setQ3 to false. However, the precondition
of goto 3 must equal Q3, which will in general not be false. This is solved
with the consequence rule like this:

43

. . .

{Q1} S1 {false}
{Q1} S1 {Q2}

. . .

{Q2} S2 {Q3}
. . .

{Q3} S3 {Q4}
. . .

{Q4} S4 {Q5}
{Q1} S1;S2;S3;S4 {Q5}

Now, with the last statement of S1 being goto 3, the precondition of goto 3
does not need to result in the precondition of S2, because the postcondition
of goto 3 is false, and false implies Q2.

If the postcondition of goto 3 would be Q3 (i.e. the same as its pre-
condition), then we need to show that Q3 implies Q2, which might not be
possible depending on the program.

6.2 Labels

For Goto, we can use the same composition rule for statements, as used for
While (after adding the dictionary to it). However, there also needs to be a
rule for programs. First, let us see how the composition rule for statements
works.

⟨D | {Q1} S1 {Q2}⟩ ⟨D | {Q2} S2 {Q3}⟩
[compp]⟨D | {Q1} S1 ; S2 {Q3}⟩

For any two consecutive statements S1 and S2, if assertion Q1 holds, then
after executing S1 some intermediate assertion Q2 holds. This postcondition
of S1 is simultaneously the precondition of S2. Executing S2 in a state where
Q2 holds results in the postcondition of S2, which is Q3. This is also the
postcondition of S1 ; S2.

Note here that if S1 is a goto statement, Q2 would be false. But if the
consequence rule is applied on ⟨D | {Q1} S1 {Q2}⟩, Q2 can be anything,
thus in particular a useful assertion for the precondition of S2.

Also, for any two consecutive statements, the postcondition of the first
statement is the precondition of the second statement. This can be used to
make a rule for programs in Goto.

One rule for programs in goto can look like this [3]:

⟨D | {Q1} S1 {Q2}⟩ . . . ⟨D | {Qk} Sk {Qk+1}⟩
[expp]{Q1} P {Qk+1}

Where P := [ni :Si]
k
i=1, and D := [ni :Qi]

k
i=1. This rule is called the expand

rule.

Here, the postcondition of every statement corresponding to a label is also
the precondition of the next label. Also, the preconditions of all statements
corresponding to a label are stored in D. However, the initial precondition
of the judgement {Q1} P {Qk+1} might not be a suitable assertion for the
dictionary. As a result, we also have a consequence rule for programs.

44

Definition 6.2.1 (AS rules for Goto). The AS rules for statements and
programs in Goto can be found in Table 6.1

[assp] ⟨D | {Q[x 7→ AJaK]} x := a {Q}⟩

[skipp] ⟨D | {Q} skip {Q}⟩

[gotop] ⟨D | {Q} goto n {false}⟩
with D := [ni : Qi]

k
i=1,

NJnK = NJniK and Q = Qi for some 1 ≤ i ≤ k

[cons1p]
{Q′

1} P {Q′
2}

{Q1} P {Q2}
if Q1 ⇒ Q′

1 and Q′
2 ⇒ Q2

[cons2p]
⟨D | {Q′

1} S {Q′
2}⟩

⟨D | {Q1} S {Q2}⟩
if Q1 ⇒ Q′

1 and Q′
2 ⇒ Q2

[compp]
⟨D | {Q1} S1 {Q2}⟩ ⟨D | {Q2} S2 {Q3}⟩

⟨D | {Q1} S1 ; S2 {Q3}⟩

[ifp]
⟨D | {BJbK ∧Q1} S1 {Q2}⟩ ⟨D | {¬BJbK ∧Q1} S2 {Q2}⟩

⟨D | {Q1} if b then S1 else S2 {Q2}⟩

[expp]
⟨D | {Q1} S1 {Q2}⟩ . . . ⟨D | {Qk} Sk {Qk+1}⟩

{Q1} P {Qk+1}
with P := [ni : Si]

k
i=1

and D := [ni : Qi]
k
i=1

Table 6.1: Axiomatic semantics for Goto

In other words for the case of assertions of the form ⟨D | {Q1} S {Q2}⟩, if
statement S is executed in a state s in which Q1 holds, then either:

• no goto statements are executed during the execution of S, which
means if the program terminates in state s′, then Q2 holds in that
state.

• or some goto statement is executed, say goto n. At this point, it does
not matter if Q1 or Q2 holds in the current state. It only matters if
the precondition corresponding to label n holds in the current state.
For this, the dictionary D is used, as it includes some pair n : Q,
and the predicate Q must hold at the time the statement goto n is
encountered.

45

6.3 Examples

6.3.1 Example 1

This example is the same as in equation 4.1, which was used to show com-
plications of the comp rule in SOS. We define P and S1 as follows:

P := 1 : x := 0 ; goto 2 ; x := 1

& 2 : skip

S1 := x := 0 ; goto 2 ; x := 1

Suppose we want to prove that if P terminates, then x = 0 holds for
any precondition. This means that an inference tree with the following
conclusion must exist:

{ true } 1 : x := 0; goto 2; x := 1 & 2 : skip { x = 0 }

This is one step-by-step example of creating such an inference tree:

First, apply the [expp] rule. The completed tree must have the predicates
Q1, Q2, and S3 defined, which come from the application of the [expp] rule.
Fortunately, we already know that Q1 := true and Q3 := x = 0, as those
predicates come from the conclusion. The predicate Q2 will be defined later.

Furthermore, the dictionary D needs to be defined. It should have the
form 1 : Q1, 2 : Q2. Since the value of Q2 is not known yet, we temporarily
define D as D := 1 : true, 2 : Q2.

(rule?)
⟨D | { true } S1 {Q2 }⟩

(rule?)
⟨D | {Q2 } skip { x = 0 }⟩

[expp]{ true } 1 : x := 0; goto 2; x := 1 & 2 : skip { x = 0 }

The second step is to find inference trees for ⟨D | { true } S1 { Q2 }⟩ and
⟨D | {Q2 } skip { x = 0 }⟩. It is usually easier to find an inference tree for
the last part, as the postcondition is known. Finding an inference tree for
the first part may result in a value for Q2 which does not fit the other parts
of the inference tree.

One rule which can be applied to ⟨D | {Q2 } skip {x = 0}⟩ is the [skipp]
rule. As a result, we know that Q2 := x = 0, thus D := 1 : true, 2 : x = 0.
The tree now looks like this:

(rule?)
⟨D | { true } S1 { x = 0 }⟩

[skipp]⟨D | { x = 0 } skip { x = 0 }⟩
[expp]{ true } 1 : x := 0; goto 2; x := 1 & 2 : skip { x = 0 }

The third step is to construct a tree with ⟨D | { true } S1 { x = 0 }⟩ as
its conclusion. Since S1 is composed of three primitive statements, we will

46

separate this tree from our final result for the sake of readability. This tree
has the following structure:

(rule?1)⟨D | { true } x := 0 {R1 }⟩ T1
[compp]⟨D | { true } x := 0; goto 2; x := 1 { x = 0 }⟩

Where T1 is defined as:

(rule?2)⟨D | {R1 } goto 2 {R2 }⟩
(rule?3)⟨D | {R2 } x := 1 { x = 0 }⟩
[compp]⟨D | {R1 } goto 2; x := 1 { x = 0 }⟩

There are two options for rule?3. One is to apply the [assp] rule, which
results in the precondition 1 = 0. Another option is to apply the [cons2p]
rule. In this example, we use the latter option, which results in T1 looking
like this:

(rule?2)⟨D | {R1 } goto 2 { false }⟩

[assp]⟨D | { 1 = 0 } x := 1 { x = 0 }⟩
[cons2p]⟨D | { false } x := 1 { x = 0 }⟩
[compp]⟨D | {R1 } goto 2; x := 1 { x = 0 }⟩

This application of the [cons2p] rule is correct because false implies 1 =
0, and x = 0 implies x = 0 (in this particular case, they are not only
implications but also equality’s).

As a result of the choice for rule?3, the [gotop] rule can be used for rule?2. For
the rule application to be valid, R1 needs to be the predicate corresponding
to label 2 in the dictionary D. By this point, we already know what that
predicate is, namely x = 0. Thus T1 looks like this:

[gotop]⟨D | { x = 0 } goto 2 { false }⟩

[assp]⟨D | { 1 = 0 } x := 1 { x = 0 }⟩
[cons2p]⟨D | { false } x := 1 { x = 0 }⟩
[compp]⟨D | {R1 } goto 2; x := 1 { x = 0 }⟩

Now that we know that R1 := x = 0, thus to complete the inference tree
for ⟨D | { true } S1 { x = 0 }⟩, we need to construct an inference tree with
⟨D | { true } x := 0 { x = 0 }⟩ as its conclusion. This can also be done with
one application of the [consp] rule.

This results in a tree we call T :

[assp]⟨D | { 0 = 0 } x := 0 { x = 0 }⟩
[consp]

⟨D | { true } x := 0 { x = 0 }⟩ T1
[compp]⟨D | { true } x := 0; goto 2; x := 1 { x = 0 }⟩

47

Again, with D := 1 : true, 2 : x = 0 and T1 defined as:

[gotop]⟨D | { x = 0 } goto 2 { false }⟩

[assp]⟨D | { 1 = 0 } x := 1 { x = 0 }⟩
[cons2p]⟨D | { false } x := 1 { x = 0 }⟩
[compp]⟨D | {R1 } goto 2; x := 1 { x = 0 }⟩

Which results in the inference tree

T
[skipp]⟨D | { x = 0 } skip { x = 0 }⟩

[expp]{ true } 1 : x := 0; goto 2; x := 1 & 2 : skip { x = 0 }

A full version of this inference tree can be found in Appendix A.4.

6.3.2 Example 2

This program computes the faculty of x, with the assumption that x ≥ 0,
like the second example for SOS. We also define statements S1, S1,t, S2, S2,t

and S3 to make the derivation sequence more readable.

P := 1 : if x ≤ 1 then S1 := if x ≤ 1 then

x := 1; S1,t

goto 3 else

else y := x-1

y := x-1 S1,t := x := 1 ; goto 3

& 2 : if ¬(y=1) then S2 := if ¬(y=1) then

x := x*y; S2,t

y := y-1; else

goto 2 skip

else S2,t := x := x*y ; y := y-1 ; goto 2

skip S3 := skip

& 3 : skip

The following inference tree proofs that P calculates the faculty of x:

T1 T2 T3
[expp]{ x = n ∧ n ≥ 0 } 1 : S1 & 2 : S2 & 3 : S3 { x = n! }

With D := 1 : x = n ∧ n ≥ 0, 2 : x = n!/y!, 3 : x = n!.

T1 is defined as:

T1,t T1,f
[ifp]

⟨D | { x = n ∧ n ≥ 0 } S1 { x = n!/y! }⟩

48

and T1,t is defined as:

T ′
1,t

[gotop]⟨D | { x = n! } goto 3 { false }⟩
[cons2p]⟨D | { x = n! } goto 3 { x = n!/y! }⟩

[compp]⟨D | { x ≤ 1 ∧ x = n ∧ n ≥ 0 } x := 1; goto 3 { x = n!/y! }⟩

and T ′
1,t is defined as:

[assp]⟨D | { 1 = n! } x := 1 { x = n! }⟩
[cons2p]⟨D | { n = 0 ∨ n = 1 } x := 1 { x = n! }⟩

[cons2p]⟨D | { x ≤ 1 ∧ x = n ∧ n ≥ 0 } x := 1 { x = n! }⟩

and T1,f is defined as:

[assp]⟨D | { x = n!/(x− 1)! } y := x-1 { x = n!/y! }⟩
[cons2p]⟨D | { x > 1 ∧ x = n ∧ x = x!/(x− 1)! } y := x-1 { x = n!/y! }⟩
[cons2p]⟨D | { ¬(x ≤ 1) ∧ x = n ∧ n ≥ 0 } y := x-1 { x = n!/y! }⟩

and T2 is defined as:

T2,t

[skipp]⟨D | { y = 1 ∧ x = n!/y! } skip { y = 1 ∧ x = n!/y! }⟩
[consp]

⟨D | { ¬¬(y = 1) ∧ x = n!/y! } skip { x = n! }⟩
[ifp]

⟨D | { x = n!/y! } S2 { x = n! }⟩

and T2,t is defined as:

T ′
2,t T ′′

2,t
[compp]⟨D | { ¬(y = 1) ∧ x = n!/y! } S2,t { x = n! }⟩

and T ′
2,t is defined as:

[assp]⟨D | { x · y = n!/(y − 1)! } x := x*y { x = n!/(y − 1)! }⟩
[cons2p]⟨D | { x = n!/y! } x := x*y { x = n!/(y − 1)! }⟩
[cons2p]⟨D | { ¬(y = 1) ∧ x = n!/y! } x := x*y { x = n!/(y − 1)! }⟩

and T ′′
2,t is defined as:

[assp]⟨D | { x = n!/(y − 1)! } y := y-1 { x = n!/y! }⟩ T ′′′
2,t

[compp]⟨D | { x = n!/(y − 1)! } y := y-1; goto 2 { x = n! }⟩

and T ′′′
2,t is defined as:

[gotop]⟨D | { x = n!/y! } goto 2 { false }⟩
[cons2p]⟨D | { x = n!/y! } goto 2 { x = n! }⟩

49

and T3 is defined as:

[skipp]⟨D | { x = n! } skip { x = n! }⟩

A version of this inference tree where T1, T2, and T3 are written in full can
be found in Appendix A.5.

6.3.3 Example 3

This program is a simple example of a non-terminating program. With the
way AS is defined for Goto, the postcondition is false in this case, although
generally speaking AS cannot be used to prove that a program loops forever
in this way.

P := 1 : goto 1

An inference tree with { true } P { false } as its conclusion looks like this:

[gotop]⟨1 : true | { true } goto 1 { false }⟩
[expp]{ true } 1 : goto 1 { false }

6.3.4 Example 4

This program shows how non-normal programs (Definition 3.2.4) are han-
dled in AS.

P := 1 : skip; goto 2

When creating an inference tree for P , one would get stuck at some point:

[skipp]⟨1 :Q1 | {Q1 } skip {Q1 }⟩
[?]

⟨1 :Q1 | {Q1 } goto 2 {Q2 }⟩
[compp]⟨1 :Q1 | {Q1 } skip; goto 2 {Q2 }⟩

[expp]{Q1 } 1 : skip; goto 2 {Q2 }

The only rule which can be applied at [?] is the consequence rule [cons2p].
However, this will not result in finishing this inference tree. The [gotop] rule
can never be applied, since it requires an entry of the label the program
should jump to in the dictionary. Since this goto statement jumps to label
2, but the dictionary has only an entry for label 1, it cannot be applied.
Hence, one cannot create an inference tree for non-normal programs like P
with these semantics.

50

6.4 Properties

For axiomatic semantics (AS), it is desirable to be able to prove that it is
sound and complete. AS is sound, if only valid assertions can be proven,
and AS is complete, if all valid assertions have a proof. De Bruin has proven
soundness and completeness in [3] for the goto language he defined there,
which is essentially the same language as Goto.

Before we properly define soundness and completeness, we define prov-
ability and validity of assertions first.

Definition 6.4.1 (Provable). The assertions {Q1}P{Q2} and ⟨D|{Q1}S{Q2}⟩
are called provable, if and only if there exists an inference tree with the re-
spective assertion as its conclusion. This is written like this:

⊢p {Q1} P {Q2}
⊢p ⟨D | {Q1} S {Q2}⟩

Definition 6.4.2 (Valid). The assertions {Q1}P {Q2} and ⟨D |{Q1}S{Q2}⟩
are called valid, if and only if:

1. (Case {Q1} P {Q2} with P = [ni :Si]
k
i=1)

for all states s and s′, if Q1 holds in state s and the derivation sequence
⟨P, S1; . . . ;Sk, s⟩ ⇒∗ s′ exists (using SOS rules as defined in Table 4.4),
then Q2 holds in state s′

2. (Case ⟨D | {Qa} S {Qb}⟩, with D = [ni :Qi]
k
i=1)

for all states s, if Qa holds in state s, then either

• there exists a state s′, such that EJSKs = s′ and Qb is true in
state s′

• or there exists a state s′ and a label-predicate pair ni :Qi in D,
such that EJSKs = (s′, ni) and Qi is true in state s′.

Validity is written like this:

⊨p {Q1} P {Q2}
⊨p ⟨D | {Q1} S {Q2}⟩

Note. Due to the definition of validity, when proving soundness and com-
pleteness, we need to combine our AS for Goto with some form of opera-
tional semantics, i.e. SOS or NS. Since we consider the results of SOS and
NS equal, we only consider SOS.

Definition 6.4.3 (Soundness). Axiomatic semantics (AS) is sound, if all
provable assertions are valid, i.e.

⊢p {Q1} P {Q2} implies ⊨p {Q1} P {Q2}
⊢p ⟨D | {Q1} S {Q2}⟩ implies ⊨p ⟨D | {Q1} S {Q2}⟩

51

Definition 6.4.4 (Completeness). Axiomatic semantics (AS) is complete,
if all valid assertions are provable, i.e.

⊨p {Q1} P {Q2} implies ⊢p {Q1} P {Q2}
⊨p ⟨D | {Q1} S {Q2}⟩ implies ⊢p ⟨D | {Q1} S {Q2}⟩

Conjecture 6.4.1. The axiomatic semantics for Goto is sound, i.e.
⊢p {Q1} P {Q2} implies ⊨p {Q1} P {Q2} and
⊢p ⟨D | {Q1} S {Q2}⟩ implies ⊨p ⟨D | {Q1} S {Q2}⟩

Conjecture 6.4.2. The axiomatic semantics for Goto is complete, i.e.
⊨p {Q1} P {Q2} implies ⊢p {Q1} P {Q2} and
⊨p ⟨D | {Q1} S {Q2}⟩ implies ⊢p ⟨D | {Q1} S {Q2}⟩

52

Chapter 7

Related Work

This thesis does not include a chapter about denotational semantics for
languages with goto. De Bruin has written a chapter about denotational
semantics in [3], which is the paper we reference a lot in the structural
operational semantics and axiomatic semantics chapter of this thesis.

Also, the language Goto we use here is (like the language While from
Nielson and Nielson in [6]) made for use on a more conceptual level. For
example, we do not specify how states should be implemented. Krebbers
and Wiedijk included explicit memory management in the form of pointer
allocation and deallocation in [7].

More practical research has been done on Typed Assembly Languages
(TALs). TALs can be used to validate the safety of assembly-language
programs. If such a program type checks, then the machine code of that
program follows a predetermined safety policy. Ahmed, Appel, Richards,
Swadi, Tan, and Wang have worked on how TALs can be proven sound in
[1].

53

Chapter 8

Conclusions

In this paper, we have discussed how structural operational semantics (SOS),
natural semantics (NS), and axiomatic semantics (AS) for languages with
goto statements can be defined.

SOS makes use of a construct, which stores the entire program: ⟨P, S, s⟩.
This is used to change the statement S, if a goto statement is executed.
Furthermore, the composition rule for statements like S1;S2 is split into the
five options for S1. This is necessary for the goto rule to be able to change
the entire S in ⟨P, S, s⟩.

As for NS, the derivation tree contains a series of transitions of the form
⟨P, pc, s⟩ → s′, accompanied by a find rule. This rule is used to get
the transition of the form ⟨S, s⟩ → ⟨pc′, c, s′′⟩, where S is the statement
corresponding to the label pointed to by pc. This results in statements
corresponding to certain labels being executed one by one, while c indicates
if S has terminated at the normal exit point (c = ◦), or if there was a goto
statement (c = •).

Finally, AS makes use of a dictionary D, which contains tuples of labels
and predicates. Every label and statement ni : Si has one corresponding
precondition Qi, which must always be true, if a goto ni statement is en-
countered (hence {Qi } goto ni { false }). Also, if any Si terminates at the
normal exit point, then Qi+1 must hold.

54

Bibliography

[1] Amal Ahmed and Andrew W. Appel and Christopher D. Richards and
Kedar N. Swadi and Gang Tan and Daniel C. Wang. Semantic founda-
tions for typed assembly languages. ACM Trans. Program. Lang. Syst.,
32(3):7:1–7:67, 2010.

[2] Martin D. Davis. Computability and Unsolvability. McGraw-Hill Series
in Information Processing and Computers. McGraw-Hill, 1958.

[3] Arie de Bruin. Goto Statements: Semantics and Deduction Systems.
Acta Informatica, 15:385–424, 1981.

[4] Edsger W. Dijkstra. Letters to the editor: go to statement considered
harmful. Commun. ACM, 11(3):147–148, 1968.

[5] Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-
Naquet, and Martin Wirsing, editors, STACS 87, 4th Annual Symposium
on Theoretical Aspects of Computer Science, Passau, Germany, Febru-
ary 19-21, 1987, Proceedings, volume 247 of Lecture Notes in Computer
Science, pages 22–39. Springer, 1987.

[6] Hanne Riis Nielson and Flemming Nielson. Semantics with applications
– a formal introduction. Wiley professional computing. Wiley, 1992.

[7] Robbert Krebbers and Freek Wiedijk. Separation Logic for Non-local
Control Flow and Block Scope Variables. In Frank Pfenning, editor,
Foundations of Software Science and Computation Structures - 16th In-
ternational Conference, FOSSACS 2013, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings, volume 7794 of Lecture
Notes in Computer Science, pages 257–272. Springer, 2013.

[8] Frank Rubin. “GOTO Considered Harmful” Considered Harmful. Com-
mun. ACM, 30(3):195–196, 1987.

[9] Ando Saabas and Tarmo Uustalu. A compositional natural seman-
tics and Hoare logic for low-level languages. Theor. Comput. Sci.,
373(3):273–302, 2007.

55

Appendix A

Appendix

A.1 NS derivation trees

A.1.1 Example 1

[a
ss n

s]

⟨x
:=

0,
s⟩
→
⟨0,

◦, s
0
⟩

[g
ot
o ns
]

⟨go
to
2,
s 0
⟩ →

⟨2,
•, s

0
⟩

[co
m
p
•
ns
]

⟨go
to
2;
x
:=

1,
s 0
⟩ →

⟨2,
•, s

0
⟩ [co

m
p
◦
ns
]

⟨x
:=

0;
go
to
2;
x
:=

1,
s⟩
→
⟨2,

•, s
0
⟩

[sk
ip n

s
]

⟨sk
ip
, s

0
⟩ →

⟨0,
◦, s

0
⟩

[en
d n

s]

⟨1
: x

:=
0;
go
to
2;
x
:=

1
&
2
: s
ki
p,
3,
s 0
⟩ →

s 0 [fi
nd
◦
ns
]

⟨1
: x

:=
0;
go
to
2;
x
:=

1
&
2
: s
ki
p,
2,
s 0
⟩ →

s 0 [fi
nd
•
ns
]

⟨1
: x

:=
0;
go
to
2;
x
:=

1
&
2
: s
ki
p,
1,
s⟩
→
s 0

Figure A.1: The full derivation tree for Example 5.2.1

56

A.1.2 Example 2 (s x = 0)

[a
ss
n
s
]

⟨x
:=

1,
s 0
,⊥
⟩ →

⟨0
, ◦
, s
1,
⊥
⟩

[g
ot
o n
s
]

⟨g
ot
o
3,
s 1
,⊥
⟩ →

⟨3
, •
, s
1,
⊥
⟩ [c
om

p
◦ ns
]

⟨x
:=

1
;
go
to

3,
s 3
,2
⟩ →

⟨3
, •
, s
1,
⊥
⟩

[if
tt n
s
]

⟨i
f
x
≤
1
th
en

x
:=

1;
go
to

3
el
se

y
:=

x-
1,

s 3
,⊥
⟩ →

⟨3
,
•,
s 1
,⊥
⟩

[s
ki
p n
s
]

⟨s
ki
p,
s 1
,⊥
⟩ →

⟨0
, ◦
, s
1,
⊥
⟩

[e
nd

n
s
]

⟨P
,
4,

s 1
,⊥
⟩ →

s 1
,⊥
[fi
nd

◦ n
s
]

⟨1
: S

1
&

2
: S

2
&

3
: s
ki
p,

3,
s 0
,⊥
⟩ →

s 1
,⊥
[fi
nd

• n
s
]

⟨1
: i
f
x
≤
1
th
en

x
:=

1;
go
to

3
el
se

y
:=

x-
1
&

2
: S

2
&

3
: s
ki
p,

1,
s 0
,⊥
⟩ →

s 1
,⊥

Figure A.2: A full derivation tree for Example 5.2.2 with abbreviations

57

A.1.3 Example 2 (s x = 3)

[a
ss
n
s
]

⟨y
:=

x-
1,

s 3
,⊥
⟩ →

⟨0
,
◦,
s 3
,2
⟩ [if

ff n
s
]

⟨S
1
,
s 3
,⊥
⟩ →

⟨0
,
◦,
s 3
,2
⟩

[a
ss
n
s
]

⟨x
:=

x*
y,
s 3
,2
⟩ →

⟨0
, ◦
, s
6,
2
⟩

[a
ss
n
s
]

⟨y
:=

y-
1,
s 6
,2
⟩ →

⟨0
, ◦
, s
6,
1
⟩

[g
ot
o n
s
]

⟨g
ot
o
2,
s 6
,1
⟩ →

⟨2
, •
, s
6,
1
⟩ [c
om

p
◦ ns
]

⟨y
:=

y-
1;
go
to

2,
s 6
,2
⟩ →

⟨2
, •
, s
6,
1
⟩ [c
om

p
◦ ns
]

⟨x
:=

x*
y;

y
:=

y-
1;

go
to

2,
s 3
,2
⟩ →

⟨2
, •
, s
6,
1
⟩

[if
tt n
s
]

⟨i
f
¬(
x=
1)
th
en

x
:=

x*
y;

y
:=

y-
1;

go
to

2
el
se

sk
ip
, s
3,
2
⟩ →

⟨2
, •
, s
6,
1
⟩

[s
ki
p n
s
]

⟨s
ki
p,

s 6
,1
⟩ →

⟨0
,
◦,
s 6
,1
⟩ [if

ff n
s
]

⟨S
2
,
s 6
,1
⟩ →

⟨0
,
◦,
s 6
,1
⟩

[s
ki
p n
s
]

⟨s
ki
p,

s 6
,1
⟩ →

⟨0
,
◦,
s 6
,1
⟩

[e
nd

n
s
]

⟨P
,
4,

s 6
,1
⟩ →

s 6
,1

[fi
nd

◦ n
s
]

⟨P
,
3,

s 6
,1
⟩ →

s 6
,1

[fi
nd

◦ n
s
]

⟨P
,
2,

s 6
,1
⟩ →

s 6
,1

[fi
nd

• n
s
]

⟨1
: S

1
&

2
: i
f
¬(
x=
1)
th
en

x
:=

x*
y;

y
:=

y-
1;

go
to

2
el
se

sk
ip

&
3
: s
ki
p,

2,
s 3
,2
⟩ →

s 6
,1

[fi
nd

◦ n
s
]

⟨1
: i
f
x
≤
1
th
en

x
:=

1;
go
to

3
el
se

y
:=

x-
1
&

2
: i
f
¬(
x=
1)
th
en

x
:=

x*
y;

y
:=

y-
1;

go
to

2
el
se

sk
ip

&
3
: s
ki
p,

1,
s 3
,⊥
⟩ →

s 6
,1

Figure A.3: A full derivation tree for Example 5.2.2 with abbreviations

58

A.2 AS inference trees

A.2.1 Example 1

[a
ss
p
]

⟨D
| {

0
=
0
} x

:=
0
{ x

=
0
}⟩
[c
on
s p
]

⟨D
| {

tr
ue

} x
:=

0
{ x

=
0
}⟩

[g
ot
o p
]

⟨D
| {

x
=
0
} g

ot
o
2
{ f
al
se
}⟩

[a
ss
p
]

⟨D
| {

1
=
0
} x

:=
1
{ x

=
0
}⟩
[c
on
s
2 p
]

⟨D
| {

fa
ls
e
} x

:=
1
{ x

=
0
}⟩
[c
om

p p
]

⟨D
| {

R
1
} g

ot
o
2;

x
:=

1
{ x

=
0
}⟩
[c
om

p p
]

⟨D
| {

tr
ue

} x
:=

0;
go
to

2;
x
:=

1
{ x

=
0
}⟩

[s
ki
p p
]

⟨D
| {

x
=
0
} s

ki
p
{ x

=
0
}⟩
[e
xp

p
]

{ t
ru
e
} 1

: x
:=

0;
go
to

2;
x
:=

1
&
2
: s
ki
p
{ x

=
0
}

Figure A.4: The full inference tree for Example 6.3.1 with
D = 1 : true, 2 :x = 0

59

A.2.2 Example 2

T1 T2 T3
[expp]{ x = n ∧ n ≥ 0 } 1 : S1 & 2 : S2 & 3 : S3 { x = n! }

Where T1 is defined as:
[assp]⟨D | { 1 = n! } x := 1 { x = n! }⟩

[cons2p]⟨D | { n = 0 ∨ n = 1 } x := 1 { x = n! }⟩
[cons2p]⟨D | { x ≤ 1 ∧ x = n ∧ n ≥ 0 } x := 1 { x = n! }⟩

[gotop]⟨D | { x = n! } goto 3 { false }⟩
[cons2p]⟨D | { x = n! } goto 3 { x = n!/y! }⟩
[compp]⟨D | { x ≤ 1 ∧ x = n ∧ n ≥ 0 } x := 1; goto 3 { x = n!/y! }⟩

[assp]⟨D | { x = n!/(x− 1)! } y := x-1 { x = n!/y! }⟩
[cons2p]⟨D | { x > 1 ∧ x = n ∧ x = x!/(x− 1)! } y := x-1 { x = n!/y! }⟩
[cons2p]⟨D | { ¬(x ≤ 1) ∧ x = n ∧ n ≥ 0 } y := x-1 { x = n!/y! }⟩

[ifp]
⟨D | { x = n ∧ n ≥ 0 } S1 { x = n!/y! }⟩

T2 is defined as:

[as
sp
]

⟨D
| {
x ·

y
=
n!
/(
y −

1)
! }
x
:=

x*
y
{ x

=
n!
/(
y −

1)
! }⟩ [co

ns
2
p
]

⟨D
| {
x
=
n!
/y
! }
x
:=

x*
y
{ x

=
n!
/(
y −

1)
! }⟩

[co
ns
2
p
]

⟨D
| {
¬(y

=
1)
∧ x

=
n!
/y
! }
x
:=

x*
y
{ x

=
n!
/(
y −

1)
! }⟩

[as
sp
]

⟨D
| {
x
=
n!
/(
y −

1)
! }
y
:=

y-
1
{ x

=
n!
/y
! }⟩

[go
to p

]

⟨D
| {
x
=
n!
/y
! }
go
to
2
{ fa

lse
}⟩ [co

ns
2
p
]

⟨D
| {
x
=
n!
/y
! }
go
to
2
{ x

=
n!
}⟩ [co

m
p p
]

⟨D
| {
x
=
n!
/(
y −

1)
! }
y
:=

y-
1;
go
to
2
{ x

=
n!
}⟩ [co

m
p p
]

⟨D
| {
¬(y

=
1)
∧ x

=
n!
/y
! }
S 2

,t
{ x

=
n!
}⟩

T
′
2 [ifp

]

⟨D
| {
x
=
n!
/y
! }
S 2

{ x
=
n!
}⟩

T ′
2 is defined as:

[skipp]⟨D | { y = 1 ∧ x = n!/y! } skip { y = 1 ∧ x = n!/y! }⟩
[consp]

⟨D | { ¬¬(y = 1) ∧ x = n!/y! } skip { x = n! }⟩

and T3 is defined as:
[skipp]⟨D | { x = n! } skip { x = n! }⟩

Figure A.5: The inference tree for Example 6.3.2 with
D = 1 :x = n ∧ n ≥ 0, 2 :x = n!/y!, 3 :x = n!

60

	Introduction
	Preliminaries
	While
	Syntax of While
	States
	Semantic functions
	Semantic rules

	Goto
	Syntax of Goto
	Definitions and abbreviations
	Semantic functions
	Design choices for Goto
	Conditional statement
	Labels

	Structural Operational Semantics
	SOS Rule design for Goto
	The goto rule (SOS)
	Revised composition rules

	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Properties

	Natural Semantics
	NS transitions for Goto
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Properties

	Axiomatic Semantics
	The goto rule (AS)
	Labels
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Properties

	Related Work
	Conclusions
	Appendix
	NS derivation trees
	Example 1
	Example 2 (s x = 0)
	Example 2 (s x = 3)

	AS inference trees
	Example 1
	Example 2

