
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Review of HLS Toolchain

Bringing Flexibility and Performance to Software Engineers

Author:
Thomas Broekman
s1061435

First supervisor/assessor:
Prof. Sven-Bodo Scholz

Second assessor:
Dr. Peter Achten

August 29, 2023

Abstract

FPGAs are a type of hardware that allows developers to configure a circuit
after runtime. FPGAs are more efficient than CPUs and have an easier and
cheaper development process than ASICs. HLS tools take in a software lan-
guage and compile it into a HDL, making FPGA development more efficient
and open to software engineers. This document provides an introduction to
and an overview of the HLS toolchain.

Contents

1 Introduction 3

2 Field Programmable Gate Arrays 5
2.1 Hardware Basics . 5
2.2 FPGA Architecture . 6

2.2.1 XC3000 FPGA Series 7
2.3 FPGA + CPU systems . 10

2.3.1 Garp . 10
2.4 FPGA strengths . 12

3 High Level Synthesis 16
3.1 Hardware Description Languages 16
3.2 High Level HDL . 18
3.3 High Level Synthesis . 19

3.3.1 Academic HLS Compilers 20
3.3.2 Commercial HLS Compilers 22
3.3.3 Performance and Optimizations 23

4 Debugging 24
4.1 Simulating the source code on a CPU 24
4.2 Simulating the circuit . 25
4.3 Observing the circuit . 26
4.4 Observing the circuit and linking observations back to the

source code. 27
4.4.1 Control Trace Buffer optimization 29
4.4.2 Data Trace Buffer optimization 29
4.4.3 Streaming instead of storing 33

4.5 Conclusion . 33
4.6 Existing tools . 34

5 Verification, Testing and Performance Logging 36
5.1 Compiler . 36
5.2 Software Code . 38

1

6 HLS based applications 40
6.1 Applications by domain . 40
6.2 Remarks . 44

7 Future Work 46

8 Conclusion 49

2

Chapter 1

Introduction

Nowadays, multiple types of hardware architectures are available. The most
well known are the Central Processing Unit (CPU) and Graphical Processing
Unit (GPU), which sit in almost every personal computer. Both the CPU
and GPU work with a fixed instruction set, which limits application specific
optimizations to the software domain. If developers want to execute one
task very efficiently, they can develop an Application Specific Integrated
Circuit (ASIC). ASICs are designed for a specific task, allowing for various
application specific optimizations resulting in a very efficient design in terms
of power usage, throughput and/or latency.

A disadvantage of ASICs is that the design cycle is very long and expen-
sive. It is only feasible to develop an ASIC if the market for the final product
is big enough. Another disadvantage is that ASICs cannot be changed after
manufacturing, so any design flaws or missed features cannot be addressed
until the next production batch.

Around 1980, Field Programmable Gate Arrays (FPGA), sometimes ref-
ereed to as User Programmable Gate Arrays, were designed to form a com-
promise between the generality of the CPU and the efficiency of the ASIC.
FPGAs are hardware circuits that can be reconfigured after manufacturing,
allowing for task specific hardware optimizations.

FPGAs are not as efficient as ASICs; a circuit on an FPGA is less effi-
cient than the same circuit as an ASIC in terms of hardware needed, latency
and power usage [35]. On the other hand, FPGAs often outperform CPUs
because they allow developers to make use of optimizations such as paral-
lelism and pipelining that are not always possible on a CPU. FPGAs have
shown significant speedups in computation heavy tasks such as Microsoft
Bing search [50], scanning Genomic DNA databases [38], textual pattern
searching [22], and many other usecases such as Long Integer Arithmetic,
RSA encryption, Molecular Biology, and Neural Networks [60].

An FPGA is configured by a bitstream that can be loaded after man-
ufacturing. To obtain the desired bitstream, engineers provide a Hardware

3

Description Language (HDL) input to a process called synthesis, which turns
the HDL into a bitstream. HDLs have a low level of abstraction, making
development time consuming and error prone. Another problem with HDLs
is that software engineers, who outnumber hardware engineers (e.g. by a
factor 10 in the USA [6]), lack proficiency with HDLs.

Around 1990, academics began to develop High Level Synthesis (HLS)
tools to combat these two problems. HLS takes in a software language such
as C and has its output in HDL, raising the abstraction level for FPGA de-
velopment and making FPGA development available to software engineers.
These tools saw more widespread adoption around 2010, when major com-
panies such as Intel [29], Xilinx [65] and Siemens [56] invested in and released
their own HLS tools.

There is a lot of good work available on HLS, but the barrier of entry for
a novice is still very high, especially for software engineers. This document
tries to fill that gap by providing an introduction to and an overview of the
HLS toolchain. After reading this document, the reader will have enough
background knowledge to start developing HLS based applications and/or
start research in the HLS toolchain.

This document discusses FPGAs in chapter 2. Chapter 3 discusses how
to configure FPGAs and introduces HLS, chapter 4 discusses debugging in
the context of HLS and chapter 5 discusses remaining development steps
such as verification, testing and performance logging. In chapter 6 scientific
HLS based applications are discussed, in order to see what HLS is used for
and which tools are used. This document ends with with a discussion about
future work and a conclusion.

4

Chapter 2

Field Programmable Gate
Arrays

This chapter discusses the hardware that HLS based applications run on:
FPGAs. The first section is a quick refresher on the very basics of a hardware
circuit. The second section discusses how an FPGA works and the third
section discusses how an FPGA can fulfill an accelerator role. Finally, in
section four briefly illustrates how an FPGA can outperform a CPU on both
execution time and energy consumption.

2.1 Hardware Basics

At the lowest logical level, there are bits (0 or 1). Multiple bits can be used
together to represent objects like an integer or a string. By combining basic
operations such as NEGATE, AND, OR and XOR, small components can
be formed such as a full adder, a circuit that takes in a carry bit and two
bits and returns the sum of those and their carry. Bigger components can be
build by combining smaller ones. For example, by combining 32 full adders
one creates 32 bit integer addition. In this manner, arbitrary computations
can be made.

To store state, flip-flops and latches are used. These are circuits that can
save a single bit, by combining them one can store multiple bits and thus
arbitrary data structures. A clock, emitting a signal alternating between 0
and 1 on a given frequency, is used to indicate when the state should be
updated. By negating the clock signal, the flip-flop can be switched to store
on rising edge or falling edge.

However, how fast the state updates is not only determined by clock
frequency. Instead, clock frequency needs to be limited so that actual elec-
tronic signals (e.g. 0-1 volt for 0 and 3-5 volt for 1) have time to stabilize.
The longest path delay between any two storage units will determine how
long the circuit needs to stabilize. This path is called the critical path. It

5

Figure 2.1: Counter circuit.

can be beneficial to break up critical path computation into multiple clock
cycles, in order to allow a higher clock frequency.

As an example consider the circuit in figure 2.1. The 32-bit storage
component consists of 32 flip-flops. The addition by one component consists
of 32 full adders chained together, having as input the output of the 32-bit
storage and a fixed value 1. Every clock cycle (e.g. at the rising edge) the
flip-flops store their new value and the next input value will be incremented
by one. The critical path is the path going from the output of the storage
to the input. Say this takes σ seconds to stabilize, then the frequency of the
clock must be lower than 1

σ in order to guarantee that the counter is stable.
Lastly, some circuits have multiple clock domains with a different clock

frequency. It is important that signals from different clock domains do not
interfere, as this would cause instability in the circuit. This is known as
clock domain crossing.

2.2 FPGA Architecture

As mentioned in the introduction, an FPGA is configured by a bitstream.
This bitstream is stored in non-volatile memory, so that the PFGA can be
turned on and off without losing its configuration. To accommodate for
the configurability needed by developers, a typical FPGA consists of three
components, as can be seen in figure 2.2. This three component architecture
is referred to as the Logic Cell Array (CLA) architecture.

1. An array of configurable logic blocks (CLB)

2. Interconnection resources

3. A perimeter of I/O blocks

A CLB provides a small configurable functionality. Once configured, it
could check if four bits are all zero or add two two-bit integers together.

6

Figure 2.2: FPGA Logic Block Grid.

The interconnect resources have two purposes. Firstly, they allow the
developer to combine multiple CLBs into bigger components. Secondly, they
allow the developer to connect the circuit to I/O blocks. As it is not feasible
to connect every CLB to every other CLB, a typical FPGA will have a hier-
archical interconnect, with the lowest level tightly connecting neighbouring
CLBs and the highest level consisting of across device wires. This makes
sense because neighbouring CLBs will often form a single component, which
can then communicate via higher level wires to form a complete circuit and
connect to I/O blocks.

This hierarchical networking is not reserved to FGPAs and can also be
found in other configurable architectures such as the MATRIX architec-
ture [41]. A benefit of tightly connecting neighbouring CLBs is providing a
minimal network delay between CLBs that use each other in a single com-
putational component, thus decreasing the delay of the critical path.

The I/O blocks allow communication between the FPGA and other parts
of the system. A use case could be reading two big arrays from input pins,
computing their inner product and outputting it back to output pins.

2.2.1 XC3000 FPGA Series

To get a better understanding of how an FPGA works, we look at a concrete
architecture in more detail. The XC3000 FPGA architecture [25] has been

7

Figure 2.3: XC3000 FPGA CLA architecture [25].

Figure 2.4: XC3000 Configurable Logic Block [25].

8

Figure 2.5: XC3000 Routing Resources [25].

around since 1988 and a high level overview of the architecture can be seen
in figure 2.3. One can clearly recognize the three components of the CLA
architecture.

The XC3000 CLB is depicted in figure 2.4. The combinatorial function
block can implement any five input boolean function, or two independent
functions up to four variables each. The output of those functions can
then be stored in the two flip-flops. There is a possibility for a feedback
loop, with inputs Q1 and Q2. The output of the CLB can come from the
flip-flop, but if the developer needs the signal before the next clock cycle,
the CLB can also be configured to have the output come directly from the
combinatorial circuit. This choice is provided by the LUTs connected to the
X and Y output. The LUT right after the clock input enables the CLB to
be configured for either rising or falling edge triggered flip-flops. Note that
in this picture the LUTs do not have choice input bits, because these come
from the bitstream that configures the FPGA.

The routing resources of the XC3000 architecture can be seen in figure
2.5. There are three types of routing resources, clearly representing the
hierarchical network we describe in the beginning of this section.

1. Direct connect. Direct connect wires run directly from the output of
a CLB to its neighbouring CLB’s input.

2. General purpose lines. In the FPGA there is a grid of 5-bit lines that
have a switch matrix at every intersection. A switch matrix connects in
and outputs and allows for arbitrary paths from one CLB to another.

3. Long lines. Long lines run the entire width or height of the device. As
opposed to general purpose lines, there is no switch matrix in between

9

and the signal is available to all CLB and I/O blocks in the given row
or column.

Finally the XC3000 I/O blocks each control a single pin. The options for
the I/O block (e.g. voltage thresholds) lie too close to electrical engineering
for this document and the interested reader is referred to page 2, paragraph
6 of [25].

2.3 FPGA + CPU systems

In the previous sections, we have viewed the FPGA as a computing device on
its own. Similar to GPUs, FPGAs nowadays are also be used as accelerators.
Heterogeneous systems containing an accelerator FPGA usually have the
CPU in a leading role.

To use an FPGA and a CPU in this way, the CPU needs to be able
to send and read data to and from the FPGA, which can be done by con-
figuring the FPGA’s I/O blocks correctly. Secondly, the CPU might need
to configure the FPGA at runtime. This can be done by embedding the
bitstream configurations into the program that runs on the CPU and then
having the CPU send this to the FPGA when needed. Loading a new FPGA
configuration at runtime is only worth it if the time saved is greater than the
configuration time of the FPGA. This could also be estimated at runtime
e.g. based on the size of the dataset.

2.3.1 Garp

An example of such a heterogeneous system is the the Garp architecture
[23]. It uses a MIPS CPU and a reconfigurable coprocessor (in our case, this
is any FPGA). The design flow of Garp can be seen in figure 2.6.

A hardware description is passed through a synthesizer to obtain a bit-
stream in .config files. The function of a synthesizer is equivalent to that of
a compiler for hardware circuits and is described in more detail in section
3.1. Suppose we have a configuration named ”add”, then the corresponding
bitstream can easily be embedded into the C program by the following code:

char config[] =

#include "add3.config"

;

The standard C preprocessor will put the bitstream bytes in the config array.
In order to load the configuration at runtime, the C compiler would need
to be extended with a statement statements for that load configurations
from a CPU onto an FPGA. Assuming that this instruction is present, the
developer can compile the code per usual and obtain an executable that can
be run on a CPU which uses an FPGA as coprocessor.

10

Figure 2.6: Basic heterogeneous (CPU, FPGA coprocessor) programming
environment.

The Garp architecture [23] was not manufactured at the time of writ-
ing the paper. To evaluate the heterogeneous computing system, GARP is
tested in a simulator. The speed ups are reported in table 2.1. Indeed we
observe significant speedups for computation heavy tasks. For the sorting
benchmark a memory usage optimized merge sort is implemented, but the
2.1 speedup is still a lot less than other speedups. Although the authors
do not reflect on this, we think this is because sorting does not utilize the
pipeline computation that FPGAs bring to the table as effectively as other
benchmarks such as DES encryption. Another reasons could be that the
sorting benchmark is dominated by memory accesses.

Bench mark 167 MHz 133 MHz ratio

SPARC Garp

DES encrypt of 1 MB 3.6s 0.15s 24

Dither of 640 by 480 pixel image 160ms 17ms 9.4

Sort of 1 million records 1.44s 0.67s 2.1

Table 2.1: Benchmark results comparing SPARC (simulated) vs Garp [23].

11

2.4 FPGA strengths

Now that we know what an FPGA is capable of, we can take a look at how
it improves performance in terms of execution time and energy consumption
when compared to a CPU. We do this by providing code samples compiled
via Godbolt Compiler Explorer [15] and comparing them to corresponding
handcrafted FPGA circuits. We are using the x86-64 gcc 13.1 C++ compiler
with the optimization flag -O3 passed to it.

The first major strength of the FPGA is parallelism. To illustrate this
example we work with optimization level -O2, as the -O3 assembly output is
not human readable. Consider computing the inner product of a 10 dimen-
sional vector v:

∑10
i=1 v

2
i , see figure 2.7. As we can see on line 4, 9 and 10 of

the assembly, the C code loops through the whole array and then executes
the multiplication to obtain the squares one by one. The circuit on the other
hand can execute as many squares as there are physically available at the
same time.

Even if the length of the array was not given in advance, the FPGA
circuit could make e.g. 16 square components next to each other and stream
the array 16 by 16 elements at a time, still outperforming the sequential
approach of the CPU.

Parallelism can also be useful in other areas such as branching. Consider
figure 2.8, which contains a simple function which calculates x ∗ (y + 4) if b
is true and y ∗ (x+ 4) otherwise. As we can see, the assembly compares the
two and then jumps to the corresponding calculation. Modern CPUs will
have a pipelined execution preparing one of the two branches in advance.
In case of a missed branch prediction, the CPU will calculate execute the
other branch. This incurs a significant delay as essentially the entire branch
needs to be executed from the start. On the other hand, the FPGA circuit
will simply calculate both sums in parallel and select the correct one via a
look up table with the boolean value as choice bit.

Another major strength of the FPGA is pipelining (or operation chain-
ing). As discussed in section 2.2.1, the output of a CLB can be directly
passed on to the next, rather than being saved before being used again.
This means that, depending on the delay and the clock frequency, calcula-
tions that would take multiple cycles in a CPU will only take a single cycle in
the FPGA. Consider figure 2.9, which considers a program multiplying four
numbers. As we can see, there are three multiplications in the assembly
code. This means that at least three cycles are needed on the CPU (as-
suming a single cycle multiplier is available), where we disregard the move
operation on line 4. While on the FPGA this could be done it at most two,
arguably one cycle.

To allow for longer circuit delays, FPGAs generally use a shorter clock
speed (10-250 MHz) compared to CPUs (1-4 GHz). Because of parallelism
and pipelining, an FPGA will get more work done in a single cycle. Hence

12

Figure 2.7: (a) C++ code, (b) assembly code (-O2) and (c) circuit for
computing the inner product of a 10 dimensional vector.

13

Figure 2.8: (a) C++ code, (b) assembly code (-O3) and (c) circuit for a
branched calculation.

14

Figure 2.9: (a) C++ code, (b) assembly code (-O3) and (c) circuit for
multiplying four numbers.

FPGAs can still outperform CPUs in terms of throughput and latency.
The more efficient operations partially explain the energy efficiency that

an FPGA brings. Another factor is that an FPGA does not need to use
unnecessary bits. For example if a program uses a single byte counter, a
64bit architecture still has 64bit registers. An FPGA will only use eight
bits, thus saving energy on 56 non-working bits.

Finally, there are operations for which the FPGA is simply better equipped
than a CPU. For example, bit manipulation operations can be executed
much more efficiently on hardware than in software, which explains why
FPGAs perform so well on cryptographic algorithms. Pipelining and par-
allelism enable the FPGA to perform well in areas such as big data, net-
working and machine learning. In general, the combined strengths make
FGPAs an excellent choice of hardware for implementing computation in-
tensive (streaming) applications.

15

Chapter 3

High Level Synthesis

As described in chapter 2, an FPGA is configured via a bitstream. In this
chapter we take a look at how a functional bitstream can be obtained. This
is normally done through compilers that operate on different levels. We
distinguish three levels.

1. Low level hardware description, directly describing a hardware circuit
using Verilog or HDL.

2. High level hardware description, directly describing hardware using
more abstract packages.

3. High level synthesis, using a compiler that turns software source code
into a hardware circuit.

In section 1 we describe how hardware description works. In section 2 we
discuss high level HDLs and personal experience with the high level HDL
Clash [51]. We end this chapter with section 3, where we discuss high level
synthesis.

3.1 Hardware Description Languages

As we mention at the start of this chapter, FPGAs are configured via a
bitstream. The bitstream describes the actual configuration for a specific
FPGA architecture. But HDLs are the same for all architectures. Similar
to the GCC compiler translating the standardized C code to a specific in-
struction set, HDL compilers compile code into bitstreams via the following
steps:

1. The circuit functionality is described in HDL.

2. Synthesis: The HDL code is turned into a netlist which describes the
logical connections and components of the design.

16

3. Mapping: Depending on the specific FPGA design, the netlist is mapped
to specific resources (e.g. LUTs and flips flops).

4. Place and route: The design is placed onto available CLBs and routing
resources. This step also optimizes for timing and checks if the required
clock speed is feasible (as mentioned in chapter 2, this depends on the
critical path).

5. Finally the bitstream is obtained and this can be loaded onto a specific
FPGA design.

Generally the HDL description is provided by an engineer or a compiler.
Similar to software languages, many HDLs exist. The most well known are
VHDL [47] and Verilog [46]. HDLs are much like software languages in the
way the code connects inputs to outputs. As an example, consider the the
following VHDL code which describes the full adder circuit in figure 3.1.
A full adder circuit is a circuit that can be used inside an integer addition
component. In case of a result greater than 1, a carry is generated and
routed to the CarryOut signal. The the next full adder gets this signal as
an input in CarryIn. Note that there is not a one to one translation between
the XOR, OR and AND operations in the code and the logic gates in the
physical circuit. This is due to optimizations that the VHDL compiler is
allowed to make.

entity full_adder_vhdl_code is

Port (A : in STD_LOGIC;

B : in STD_LOGIC;

CarryIn : in STD_LOGIC;

Result : out STD_LOGIC;

CarryOut : out STD_LOGIC);

end full_adder_vhdl_code;

architecture gate_level of full_adder_vhdl_code is

begin

Result <= A XOR B XOR CarryIn ;

CarryOut <= (A AND B) OR (CarryIn AND A) OR (CarryIn AND B) ;

end gate_level;

With knowledge of the internals of a full adder circuit, someone who
understands software languages can certainly understand the VHDL code
extract. However, a software engineer is generally not equipped to work
with HDLs effectively. This is because of the differences between software
languages and HDLs. We consider there to be three main differences between
hardware and software languages, besides the fact that HDLs are made to

17

Figure 3.1: Full Adder Circuit.

design circuits and software languages are designed to be executed on a
CPU.

Firstly, HDLs are on a very low abstraction level and are close to the
hardware. Even though sophisticated design verification tools exist, this low
abstraction level makes it challenging to design more complex systems. Sec-
ondly, HDLs inherently support concurrent execution. On a circuit multiple
components operate in parallel and this requires a different way of thinking
than software languages that are single threaded by default such as C or
Python. Thirdly, HDLs have an explicit notion of the circuit clock in them
and hardware designers have to optimize for clock speed and the critical
path, whereas software engineers usually focus on leveraging sophisticated
algorithms to minimize the amount of operations needed.

3.2 High Level HDL

To counter this low level nature of HDLs, High Level HDLs have been made.
A well known example of this is SystemC [28], a hardware description lan-
guages that allows description on a cycle-to-cycle level, but also on a more
abstract level using C++ features such as classes. SystemC is mostly used
for complex systems and heterogeneous systems such as described in section
2.3. Another example of such a high level HDL is Clash. Clash is an open
source programming language that borrows its syntax and semantics from
the functional programming language Haskell and compiles source code into
VHDL or Verilog.

I (Thomas), together with a group of other students, have designed hard-
ware components to receive/send packets and verify/generate their check-
sum on the link layer for FPGAs using the high level language Clash for

18

the course Software Engineering (NWI-IBI001). Because the whole group
consisted of software students, the problems we encountered fit very well
inside this thesis. The three differences mentioned in the previous section
turned out to be problematic for our productivity.

The low abstraction level came to us in the form of dealing with ex-
plicit hardware components that were hard to understand with our limited
background knowledge. For example, we had to explicitly think about a
hardware component that turns two 4-bit signals (one on the rising edge
and one on the falling edge of the clock) into a single 8-bit signal. Whereas
in software we would most likely get our input from a pointer or a stream.

The concurrent execution made us choose for a design where everything
was in a byte by byte stream. The Clash languages facilitated this very well,
but because of this we did have to optimize the code so that the critical path
was short enough for the clock speed to be on the same frequency as the
Ethernet.

Lastly, the explicit notion of clock domains (recall section 2.1) was a
completely new concept which required some time to get used to.

We conclude that even though High Level HDLs exists, they are still hard
for software engineers to understand and use effectively. The main problem
is that the conceptual level is still at a hardware level. Software engineers
generally lack the knowledge and expertise to understand this without extra
education.

3.3 High Level Synthesis

Throughout the previous two sections, we have described (High Level) HDLs
and the challenges they bring. We have concluded that most software en-
gineers, unless educated, are unable to use HDLs effectively. High Level
Synthesis (HLS) compilers are created to solve exactly that problem. HLS
compilers aim to bridge the gap between software and hardware design by
allowing software engineers to describe the desired behavior in a software
language and generating a corresponding hardware implementation. This is
most often done by taking in (a subset of) C as source code and generating
a HDL description, which is then synthesized into a bitstream for a specific
FPGA design, as described in section 3.1.

HLS Compilers are relatively new, with the earliest dating from 1998,
but already more than fourty HLS Compilers have been developed. A list
of HLS compilers can be found in Table 1 of [44]. Although Wikipedia is far
from a scientific source, it is worth to notice that their High Level Synthesis
page reports even more compilers [64].

There exists both academic and commercial HLS compilers. The most
well known academic compilers are Bambu [49], Dwarv [43] and LegUp [6].
The most well known commercial compilers come from companies (some-

19

times FPGA vendors) such as Intel HLS [29], Xilinx’ Vitis HLS [65] (which
replaced Vivado HLS [66]) and Siemens’ Catapult HLS [56]. In the rest of
this section we first go over HLS compiler characteristics by looking at the
three academic compilers and then briefly discuss advantages and disadvan-
tages of using academic compilers compared to commercial compilers. We
finish this section with some pointers to performance and optimization.

3.3.1 Academic HLS Compilers

A typical HLS Compiler takes in (a subset of) an already existing software
language. Bambu, Dwarv and LegUp are all based on the C programming
language. However, FPGAs come with limitations so not all software con-
cepts can be conveniently implemented. For example, there is no stack on
an FPGA and implementing one would limit parallelism, which is one of the
strongest features of FPGA design [43]. This means that function calls can-
not be recursive and that there is no non-const static data. Dynamic memory
allocation is also unsupported for C hardware synthesis. The choice for the
C language also means that object oriented programming is not supported.

On the other hand, the HLS compilers accept a broad range of C concepts
such as unions, function calls, (do-)while loops, return and break statements
and data types such as floats, multi-dimensional arrays, unions and structs.

Next to standard C, the user of a HLS compiler needs to annotate the
source code. These annotations are used to indicate which HLS optimiza-
tions should be applied on what parts of the code. For example, LegUp
supports Pthreads and OpenMP pragmas, and parallel threads are synthe-
sized into parallel-operating hardware [44]. In the case of a heterogeneous
setup, annotation becomes even more important because it tells the compil-
ers which parts should be executed in hardware and which part should be
on the processor.

An example of a HLS compiler targetting heterogeneous systems is LegUp.
It specifically targets a system with a 32-bit MIPS soft processor and an
FPGA. This is ideal because inherently sequential operations such as iterat-
ing over a list is well-suited for software execution, while inherently parallel
operations are better suited for hardware execution. LegUp helps the pro-
grammer choose by profiling the execution and then suggesting program
segments, as can be seen on step 3. of figure 3.2. Once a segment is chosen
to be executed on the FPGA, the function call in the C code is replaced by
a function wrapper responsible for communication with the FPGA: sending
the arguments and receiving the results.

After the source code is provided, the HLS compilers leverages an already
existing compiler to compile and optimize the source code. Bambu uses the
GCC compiler, Dwarv uses the CoSy CFront compiler, but LegUp does not
mention any specific compiler. An advantage of using compilers such as
GCC is that they are robust and allow the user to enable errors, warnings

20

Figure 3.2: Design flow with LegUp [6].

and optimization flags as they normally would.
The resulting abstract syntax tree is used to generate the hardware de-

scription. For general use HLS compilers, modules are generated by pro-
ducing a data path, a finite state machine and a memory interface. The
internals of this process are out of the scope of this document. The inter-
ested reader is referred to the pointers in section III.A of [43] and section
4.1 of [6].

Finally, the obtained HDL can be combined with other hardware mod-
ules or synthesized onto an FPGA directly.

Many HLS compilers verify their own generated circuitry based on the
source code, this is called cosimulation and we discuss this in depth in chap-
ter 5. Cosimulation is done by compiling the source code and simulating
the circuitry. Given the same inputs, the outputs are compared and if they
do not match there is an error in the generated circuitry. This method does
not catch design flaws and should not be mistaken for functionality testing.

All three academic compilers use already existing tools to build their HLS
compiler on. An example of this is the use of already existing C compilers.
Another example is how support floating point operations is implemented:
Dwarv uses Xilinx’s tool coregen and Bambu uses the FloPoCo library.

A special feature of academic compilers is that they are open source
and designed in a modular way so that new features can be easily added.
This helps further research in HLS compilers and other HLS area’s such
as debugging. Because of this, proof of concept implementations are often
based on an already existing academic compiler.

21

3.3.2 Commercial HLS Compilers

As we can see in [44], academic compilers were the majority in 1998-2006.
Most of these compilers are now abandoned, but the success of those com-
pilers generated the interest for commercial HLS compilers. These have a
similar workflow to academic HLS compilers and do not necessarily produce
better results in terms of performance. However, commercial compilers are
more robust and support more features than academic compilers. Examples
of such features are allowing multiple input languages, multiple output lan-
guages and customization of kernels for memory bank usage, interfaces and
throughput.

Another benefit of commercial compilers is the resources around the
compiler. Their documentation is of high quality and extensive manuals are
often freely available via sites of the vendor. Moreover, companies often
invest in teaching modules on how to use their tools, so that engineers have
an easier time using it. The Intel HLS Compiler [29] is a great example of
this.

The Intel HLS Compiler takes in C++ and converts it to a circuit de-
scription. The generated circuit can be automatically simulated in Model-
Sim [57] to verify circuit functionality based on the source code. The Intel
HLS Compiler comes with its own IDE. To get engineers to used to their
FPGA related products, Intel provides high quality public tutorials which
can be found on their YouTube channel Intel FPGA.

Specifically for HLS, there is a 7 part tutorial series which can be found
on YouTube by searching for the following names:

1. Introduction to High-Level Synthesis (Part 1 of 7)

2. HLS Interfaces (Part 2 of 7)

3. HLS Loop Optimizations (Part 3 of 7)

4. HLS Data Types (Part 4 of 7)

5. HLS Local Memory Optimizations (Part 5 of 7)

6. HLS Performance Optimization (Part 6 of 7)

7. HLS Optimization Example: Matrix Decomposition (Part 7 of 7)

Intel also provides free exercises per tutorial, which can be downloaded via
the following url:
https://www.intel.com/content/www/us/en/programmable/customertraining/

Videos/HLSPartX.zip, where X should be replaced by a number 1 to 7.
Other academic compilers also provide these types of resources and links

on their site or a quick google search will direct you to them.

22

https://www.intel.com/content/www/us/en/programmable/customertraining/Videos/HLSPartX.zip
https://www.intel.com/content/www/us/en/programmable/customertraining/Videos/HLSPartX.zip

A downside of commercial tools is their tendency to form a closed system.
For example, the Intel HLS Compiler is inside the Intel Quartus Prime
Design Software package and the Intel HLS Compiler has extra optimizations
for Intel FPGAs. Another downside is that they charge for their product.
Even if a product is free, it is often limited and the developer needs to pay
for a better experience.

3.3.3 Performance and Optimizations

As HLS tools are often used to get better performance in terms of execution
time or power usage, optimizations are of great interest. The first layer of
optimizations is those made by the software compiler (e.g. GCC). Then
come the HLS specific optimizations focus on using FPGA features (see sec-
tion 2.4) such as spatial parallelism, operation chaining and minimizing the
amount of resources used. For an overview of these optimizations, see sec-
tion III of [44]. Some compilers also leverage domain specific optimizations,
see the domain column of table 1 of [44]. Commercial compilers made by
FPGA vendors also support FPGA specific optimizations, as with the Intel
HLS compiler.

In case of heterogeneous systems, performance is also affected by deciding
which part of execution are on the FPGA and which parts on the CPU.
However, this is mostly up to the engineer to decide.

23

Chapter 4

Debugging

When debugging an HLS system one can either simulate or observe the
physical world, and one can either look at the software code or at the hard-
ware circuit. When we combine these two choices, we get a total of four
possibilities.

(1) Firstly, a developer can take the source code and debug it with CPU
software development tools. For example, a developer can take the C source
code and use GDB [14] to check for correctness of the source code. (2)
Secondly, the developer can compile the source code with an HLS compiler
and simulate the resulting circuit to see how it behaves. (3) Alternatively,
the circuit can be loaded onto hardware and the developer can observe the
hardware in execution. (4) Lastly, the hardware execution is observed, but
the signals are linked back to the source code to give the developer insight
into execution on a software level. The circuit is altered to obtain visibility
into the needed signals.

Each method has benefits and drawbacks and we go over all four methods
individually. We end this chapter by taking a look at existing HLS debugging
tools.

4.1 Simulating the source code on a CPU

As we mention in chapter 3, HLS compilers usually take in (a subset of) an
already existing programming language, such as C. In the rest of this chapter
we will take C as our example source code language, but this can really be
replaced with any source code programming language that is accepted by
any HLS compiler.

When one trusts the correctness of HLS compilers, verifying our C code
functionality implies verifying the functionality of the generated circuitry.
Therefore a developer can debug their HLS project by loading C source
code into an already existing debugger and using the software debugging
skills that they already possess. This way, the developer gains insight in

24

Figure 4.1: Graphical representation of software emulation

the runtime behavior of their code and they can simulate in- and output
themselves. A benefit of this approach is that software developers are already
used to this kind of debugging, and mature software debugging tools are
readily available.

A widely used debugger for the C programming language is GDB. GDB
has a very useful interface and is easily understood by software developers.
Its main features are inspecting and modifying variables during runtime
execution and inserting breakpoints at lines in the source code, so that
the program execution stops whenever the program reaches that line. This
allows developers to gain insight into execution at critical points. GDB also
features step by step execution, and the ability to isolate function calls and
test them independently.

However, debugging tools like GDB are not designed for debugging cir-
cuits. And this approach will not give developers real insight into what is
happening inside the generated circuit. This is especially important when
an FPGA interacts with other components such as untrusted networks, or
when the FPGA acts as an accelerator, such as in the garp architecture dis-
cussed in 2. In these settings, developers need information about the data
that is being passed through the FPGA circuit and how that data is being
processed.

4.2 Simulating the circuit

To get insight into the hardware execution, this approach simulates the ac-
tual circuit, instead of the source code. The developer uses circuit simulation
software such as SYCL [30], Quartus Prime [31] or Isim [2] to analyze the
circuit, in our case a circuit generated by a HLS compiler. See figure 4.1 for
a graphical representation of this process.

Features of software simulation are in principle similar to the GDB fea-
tures that are discussed in the previous section, but translated to circuits.
Developers can pause execution and inspect/modify the state of hardware
units.

Another benefit of software simulation is that, as with approach 1, we do

25

not need to have the actual hardware available in order to make progress.
When working with multiple developers on limited amounts of hardware de-
vices, or when working with developers that work from a distance, this
becomes a point that is worthwhile to consider. Long FPGA synthesis
times, ranging from minutes to hours [10], encourage developers to work
with software simulation, where the circuit can be changed/updated in a
much shorter time. However, it should be mentioned that simulations are
slower than actual hardware, therefore reaching bugs that only occur after
billions of cycles can take significantly more time in a simulation [21].

Another disadvantage of simulation is that there are bugs which occur
in the physical setting, yet are not observable in a simulation. These bugs
may be caused due to interactions with the environment, interfaces with
legacy IP blocks, race conditions or only occur after long running times [33].
Simulation is not sufficient to discover these type of bugs. Developers will
only encounter such bugs after observing unexpected behavior when running
the HLS generated circuit on an FPGA in a production setting. This brings
us to approach 3: observing the circuit in a production setting.

4.3 Observing the circuit

In this debugging approach the developer runs the program on the physical
system. A benefit of this approach, which the previous two approaches do
not have, is that the developer now has the product in a physical environ-
ment. As we discuss in the previous section, this will expose more bugs that
are present in the system. As a result, the developer can make better es-
timates and observations about how their product behaves in a production
setting.

A disadvantage of this approach, compared to approach 1 and 2, is that
the developer is no longer working in a controlled environment, where every-
thing is generated by a computer program and made available for analysis.
Instead, observability on FPGA execution is low due to the limited number
of IO on chips [36]. Another downside of this approach is that develop-
ers lose the ability to pause, step and break execution. And once a bug is
observed, it can be tricky to pinpoint exactly what input caused the bug.

Observing a FPGA circuit can be done in multiple ways [21]. One way
is via readback. Readback is a process that allows all registers within the
FPGA to be read while the device is stopped [18] (section 2E). Readback is
a useful feature, but a drawback is that not all FPGAs support it.

Another way is to use external logic analyzers (ELA), see figure 4.2.
ELAs attach to pins on the FPGA in order to observe signals. The observ-
ability that comes from this is limited, as we only get to observe pin signals.
ELAs do not observe the actual state of an FPGA, but the developer can
temporarily route internal signals to external pins in order to increase ob-

26

Figure 4.2: An external logic analyzer

servability of the state. The functionality of an ELA can also be embedded
into a circuit to remove the need for extra hardware. As an example, Al-
terna SignalTrap Megafunction [11] embeds a circuit into the design which
connects output pins so that we can observe the state of the circuit.

A major drawback of approach 2 and 3 is that they operate on the
hardware level. That is, the developer is observing hardware signals. This
is not optimal, because the input for HLS compilers is a software language.
So, the developer would need to link the observed hardware signals back to
the source code. This is challenging because the circuit need not represent
the source code in a trivial way. The optimizations made by the compiler
add to the challenge. This problem was recognized and techniques have
been developed to link hardware signals back to the software code, leading
to approach 4.

4.4 Observing the circuit and linking observations
back to the source code.

With the previous remarks in mind, we come to the realization that we need
software level insight into real world execution. The techniques discussed in
this section allow the system to run in hardware and therefore accurately
capture the behavior of the system. This includes interaction with other
components. Running the system at speed means encountering real world
behavior and thus capturing real world bugs.

Readback (recall section 4.3) is not feasible here, because starting and
stopping a circuit each time we want to capture the state will prevent the
FPGA from interacting with other parts of the system. Instead debug-
ging is done through instrumentation [19]. Instrumentation is the act of
adding extra circuitry to provide visibility and/or controllability of the de-
sign. In practice, this means storing information on-chip inside a so-called
trace buffer. A trace-buffer is a block of memory that stores information

27

Figure 4.3: A trivial trace buffer that records all signals each cycle [18].

Figure 4.4: Typical HLS circuit structure [18].

about the state at certain times. This trace buffer can then be analyzed
offline and linked back to the source code. Trace buffers are limited and
circular, meaning that new values overwrite old values when the buffer is
full.

The instrumentation of the circuit can be used in two ways [19], [18].

1. Interactive mode. The circuit is instrumented with hardware that
allows for step and breaking, like software engineers are used to with
GDB. When the circuit is stopped, all variables can be inspected by
reading out the most recent values in the trace buffer. A disadvantage
of this is that the circuit does not run at full speed and this might
obstruct interaction with other system parts.

2. Replay Mode. The circuit is instrumented such that it runs at speed
until a certain breakpoint is reached. After this, the (probably) full
trace buffers are read out. Afterwards, the engineer can replay the
execution and inspect variables. A disadvantage of this mode is that
we lose full visibility because resources are limited.

Note that the trace buffers are read out to a regular computer, and inter-
preted by a computer program before shown to the engineer at a software
level.

A trace buffer that captures all values at every cycle (see figure 4.3) is
equivalent to an embedded logic analyzer. However, knowledge about the

28

Figure 4.5: Split Trace Buffer Architecture [19].

circuit can be used to make the trace buffer store more information per
Kb. Because on-chip memory is limited, this is of significant importance.
A generic hardware ELA/trace buffer treats all signals the same. However,
designs produced by an HLS tool tend to have a predetermined structure
with easily identifiable important state bits and data bits. Often, C code
is compiled into low level assembly-like code and then the HLS compiler
maps control instructions such as jump to a finite state machine (FSM)
and computation instructions such as ‘add’ to datapath logic [18]. This
typical structure is visilized in figure 4.4. Highly optimized circuits are an
exception to this pattern, but these are out of scope for a general purpose
HLS debugger.

Because of this pattern, it is useful to have two buffers: a control trace
buffer and a data trace buffer, and optimize them separately. This is called
a split trace buffer architecture [19].

4.4.1 Control Trace Buffer optimization

The control trace buffer is used to store state bits of the FSM. The straight-
forward way is to store the state in each cycle. However, the state value
often is only incremented by one. Especially when the program has a lot of
sequential computations. Therefore a sequence count is stored next to each
state, indicating the amount of sequential state updates. So if our state
trace goes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, then state 1 is stored together with
a sequence count of 9 and in the next row of the buffer we will have state
5. Programs that include a lot of control flow (functions, branches) will see
less benefit of this optimization.

Another optimization is to leverage state information to “generate logic
that captures only the necessary state bits” [19]. Sadly, the authors do not
elaborate on this optimization any further.

4.4.2 Data Trace Buffer optimization

The data trace buffer is used to store signals that correspond to variables in
the source code. Just like with the control flow, the straightforward way is
to store every signal on each cycle. However, this is not feasible and instead
signals are only stored when they change [19]. As a consequence, it is no

29

Figure 4.6: Reconstructing link between control and data without ctrlidx.

Figure 4.7: Trace scheduler [17].

Figure 4.8: Three different trace buffer scheduling methods [18].

30

longer the case that there is exactly one cycle between each row in the data
trace buffer. This is a problem as we need to combine the data and control
buffers for analysis. To keep the link intact, an additional field called ctrlidx
is added to keep track of when the change occurred. This is visualized in
figure 4.5, as we can see the ctrlidx is used to link the data and control traces
together.

However, the link between the control and trace buffer can also be re-
stored without ctrlidx [18], this reduces buffer width as there is no more
need for a ctrlidx field. Instead it is determined per state whether or not a
line is added to the data buffer. The most recent state of the control buffer
is the state the circuit was in when the traces were captured. By starting
at this state and going through the data buffer in reverse, the link between
control and data is restored.

Figure 4.6 depicts this process. The most recent state is state 1. We
see that state 1 writes a single line to the data buffer. So line 228 belongs
to the highest control buffer entry. We then see state 2, which writes zero
lines. We go on to the next control buffer entry: state 3. State 3 writes one
line and thus line 229 belongs to that control buffer entry. Then two times
state 2 and finally a state 1 again, meaning line 230 must belong to the
lowest control buffer entry. This algorithm is trivial to implement in code
by iterating over the control buffer and keeping a pointer to the data buffer,
incrementing it depending on how many lines are written by the current
state.

Selecting signals to store in the trace buffer is done by circuitry called a
Trace Scheduler (figure 4.7). Based on the state, only the relevant signals
are combined into a single signal ractive and passed onto the buffer. As can
be seen in this figure, quite some space is wasted. Therefore [17] suggests
three different optimizations. Their advantages are best understood through
a picture, see figure 4.8.

(a) Delay-worst scheduling As the name suggests, this optimization looks
at the widest line. In the figure, this is S6. To reduce buffer width,
signals that are still available at a later time (r8) can be delayed to a
later state (S7). In case a signal is not available anymore, for example
when a signal is generated and used in the same cycle, an additional
register may be added to the circuit. Determining what signals should
be delayed is done by a greedy algorithm that repeatedly identifies the
worst state and attempts to move the smallest signal to a later state.
Note that the user circuit does not change and that the analyzer tool
knows that the r8 signal actually occurred at S6.

(b) Delay-all scheduling Similar to delay-worst scheduling, but this at-
tempts to move two states together into a single line, as long as it
does not increase the width of the buffer.

31

(c) Dual-ported scheduling FPGAs typically support dual ported memory,
which allows for two writes in a single cycle. By cutting the ractive
in half, and storing both halves under each other, memory is saved
whenever a state fills up less than half of the buffer’s width. In the
figure, only the entry for S3 benefits from dual-ported scheduling. Note
that the removal of ctrlidx is extra useful here, as we no longer need to
store ctrlidx twice for dual ported memory writes. When dual ported
memory is leveraged, the lines per state table in figure 4.6 could also
contain 2 to indicate that the state uses dual memory to store signals
inside the data trace buffer.

The final optimization we discuss is signal restoration [18]. Signal restora-
tion moves online storage load to offline computation (of which there is no
shortage). Consider a = b + c. Because a depends on b and c, the value of
a can be reconstructed offline based on the recorded values of b and c. So,
we do not need to record the value of a anymore. This optimization reduces
the amount of data stored in the data buffer and it also reduces the logic
needed in the Trace Scheduler. In a typical program, there are many such
dependencies and we need an algorithm to choose which signals to trace.
To do this, the problem is viewed as minimizing the amount of traced bits
based on when the signals are available. This is then solved through integer
linear programming; exact details about the constraints and goal function
can be found in section V.B of [18].

LoC per Area Time Features

100Kb overhead overhead

ELA 275 0 0 Capture everything every cycle

[19] 1243 11% Unknown Split Trace Buffer Architecture

Logging on change

Sequence count

[17] 4322 10% 6.9% Delay worst

Delay all

Dual ported

[18] 15369 10% 0% Removal of ctrlidx

Signal restoration

Table 4.1: Progress by paper. ELA stands for External Logic Analyzer. In
this case it is the SignalTap II.

We have discussed the optimizations presented in [19], [17], [18] on a per
topic order. It is also worthwhile to note the improvement per new paper,
which we show in table 4.1. The results are obtained against the CHStone

32

benchmark [68]. While area and time overhead are well defined, the term
lines of code (LoC) remains vague and no exact definition is given. This am-
biguity is problematic because the CHStone benchmark contains relatively
simple programs, such as aes and sha. However, when programming on a
higher level, a function call to sha(input) should only count as one line as
there is no use for the engineer to inspect the hundreds of lines of code inside
that function call.

4.4.3 Streaming instead of storing

The techniques discussed in the previous section use on chip memory to
store the signal trace. An advantage of this is that high observability can be
obtained, because on chip bandwith is very high. However, on chip memory
is limited and therefore trace length is limited too. An alternative solution is
to stream the data to off chip memory [16]. Here, the new limitation becomes
band with. The techniques that limit memory usage while capturing signals
still apply.

4.5 Conclusion

Method Conceptual level Needs HW Real World

1 Software level No No

2 Hardware level No No

3 Hardware level Yes Yes

4 Software level Yes Yes

Table 4.2: Overview of debugging methods.

In table 4.2 we give an overview of the methods discussed in this chapter.
As we mention in the discussion of approach 3, approach 1 and 4 are the
most practical for the HLS toolchain as they provide software level insight.
Approach 1 can be of use when the developers do not have access to hardware
and/or are in the early stages of development. However, we need the ability
to observe real world behavior as production moves to deployment, leaving
only approach 4 as sufficient. Approach 4 does suffer from limited trace
lengths, forcing developers do go through multiple debug iterations. To
improve debug efficiency, techniques stated in section 4.4 are leveraged to
optimize the debugging circuitry (instrumentation) for memory usage.

33

Figure 4.9: Software level hardware debugger [20].

4.6 Existing tools

The techniques discussed in approach 4 have been implemented in a proof of
concept based on the academic HLS compiler LegUp [20]. It indeed supports
two modes: a replay mode and a breakpoint mode. The goal is to provide a
debugging interface similar to that of popular software debugging tools like
GDB. An example of the interface provided can be seen in figure 4.9.

The debugging tool only supports hardware execution, and a heteroge-
neous HLS system debugger was introduced in [3]. This heterogeneous de-
bugger uses the same hardware trace and has an additional software trace.
Because of the sequential nature of software, any recording operation is
likely to impact the performance of the system. Therefore the user must se-
lect, through source-code annotations, which parts of the software program
should be recorded. The hardware and software trace are then combined to
give the developer a single interface.

There are also other debugging tools such as Inspect [5], also imple-
mented on LegUp, and a debugger made specifically for the now abandoned
Sea Cucumber Compiler [24]. The HLS debuggers generally try to imitate
software debuggers by implementing features such as single stepping, break-
pointing, observing variables and setting variables. To do this, they utilize
instrumentation. In case of a replay-window (e.g. breakpointing) there is
a compromise between the amount of variables observed and for how long
they are observed. In case of step-by-step features or setting variables, the

34

circuit cannot execute at full speed and this might cause some bugs to go
unnoticed and/or limit interaction with other parts of the system.

35

Chapter 5

Verification, Testing and
Performance Logging

Next to programming and debugging, there are other steps in development.
This chapter discusses verification, testing and performance logging. En-
suring the functionality of a product as the responsibility of the engineer.
However, the engineer should be able to view the compiler as a black box:
it is the job of the compiler vendor to ensure correctness of the compiler.
Especially in cases of a commercial compiler, where engineers do not even
have access to the code of the compiler. In this chapter, we first discuss two
techniques used to verify compiler correctness and then discuss verification,
testing and performance logging in the context of HLS.

5.1 Compiler

Just as with software compilers, HLS compiler vendors employ various tech-
niques to ensure correctness of their tool such as testing, formal verification,
code reviewing and analysis. A technique that is unique to HLS compilers
is cosimulation. In this technique, compilers test correctness of the gener-
ated circuitry based on the source code that is given by the developer. The
process is depicted in figure 5.1. In this picture we take the C program-
ming language combind with the GCC compiler, we also assume the HLS
compiler outputs Verilog. These can be replaced by any matching software
language/compiler and any HLD, respectively.

Initially, the C code is provided by the developer. Based on this, the HLS
compiler generates Verilog code. But the C code itself can also be executed
by compiling it to an executable. This gives us two functional units, one in
software and one in hardware. By utilizing a Verilog simulator, both can
be executed on the PC that the HLS compiler is running on. A computer
generated test bench can be used as input to both and the two outputs can
be compared. If they do not match then we can conclude that the HLS

36

Figure 5.1: High level overview of cosimulation for HLS compilers.

compiler made an error in translating the C code to Verilog.
Cosimulation can also be used to test smaller components instead of

the entire program, because the HLS compiler has knowledge about which
Verilog code belongs to which part of the C code.

Cosimulation strictly tests the translating from the C code to Verilog.
It does not test functionality of the system. As an example, consider the
square function is implemented in C as follows:

unsigned long long square(signed x) {

// Returns x^2.

return 2;

}

It is clear that the code does not match the requirement of the function.
However, cosimulation will not catch this as both the GCC and the Verilog
will simply implement this function as returning 2 at all the time.

Cosimulation relies on correctness of the used software compiler. Recall
from chapter 3 that HLS compilers use an already existing software compiler
to compile the source code, and use the given result to generate HDL. If
the software compiler is not correct, then the abstract syntax tree that the
HLS compiler uses is incorrect in the same way, thus both the software and
hardware implementation will have the same error, meaning their output
will match despite being incorrect. However, this is not a bad thing as
software compilers are already matured. Moreover, the alternative would be
to have HLS compilers implement their own software compiler, which is a
costly process and there is no guarantee that this implementation would be
more correct than already existing ones.

Another technique to detect discrepencies between the software and
hardware execution is to instrument the code to detect mismatches between
software and hardware execution. AutoSLIDE [67] is a framework that does
this for the LLVM compiler. When a mismatch occurs, AutoSLIDE inspects
the datapath and pinpoints the corresponding lines of C/C++ code.

37

5.2 Software Code

As we mention in the previous section, it is the job of the HLS compiler to
generate HLD based on a software language. Providing a correct software
language input is the job of the developer. Proving correctness is done via
testing and verification, and because the engineer is working with a software
language, he/she can simply use already existing tools such as unit testing,
doc testing and functional verification. HLS is therefore not different from
software development when it comes to testing and verification.

However, many HLS implementations have performance as their goal.
To optimize for performance, a developer needs to be able to profile the
execution in order to detect bottlenecks. To profile the FPGA execution we
need insight into execution time of multiple modules that operate in paral-
lel. In simulation it is easy to count the amount of cycles, but profiling is
more accurate when the program is executed on actual hardware. A trivial
approach to performance logging would be to print at the start and stop
of functionality that needs to be profiled, similar to starting and stopping
a timer. To reduce overhead, a developer can use a high performance log-
ging framework such as HLS PRINT [58], which is accurate in the range of
microseconds and therefore also useful for profiling.

A more sophisticated approach is to automatically log activity triggers
via instrumentation. The instrumentation is relatively simple, as profiling
only cares about execution times and does not need to trace the execution
as with the debugging techniques discussed in section 4. Activity triggers
indicate when a module is working and when it is waiting. Based on this in-
formation, the developer can recognize which functionality is the bottleneck
of the program and focus optimizing efforts accordingly. This instrumenta-
tion does come with some overhead, but we do not view this as a problem as
the production version will not have performance logging instrumentation
on it and thus run at maximum speed.

SoCLog [45] is such a HLS profiling tool. It has an activity log which
can be read out at runtime in C/C++ source code via a function call to

int fpga_recv_log (fpga_t *fpga, int chnl,

void *data, long timeout)

SoCLoG comes with a GUI, see in figure 5.2. In this example there are
three pipelined modules running on an FPGA. It is important to find the
bottleneck (if there is one), because the bottleneck of a pipeline limits total
throughput. In the figure on the left hand side one can easily identify the
Discrete Cosine Transform (DCT) module to be the bottleneck. This ob-
servation incentivizes developers to optimize the DCT module. In this case
the DCT module was optimized using loop optimizations of the Vivado HLS
compiler. The optimized version is profiled and the result is shown on the

38

Figure 5.2: GUI example of ScoLog HLS profiling tool [45]. Data flows
through three components: DCT (red) → Q/IQ (orange) → IDCT (green).
(a) Initially we see that DCT is dominating execution time, as a result Q/IQ
and IDCT are underused. (b) After optimizations in the DCT component,
the throughput for the overall system is enhanced.

right hand side. As we can see, all components run almost all of the time,
thus throughput is no longer being limited by a single module.

HLScope [9] is another performance debugging tool used to identify bot-
tlenecks in an HLS FPGA design. Their implementation does not have a
GUI, instead the tool interactions with the user via the command line. The
developer can see how many cycles a module takes and if this module is
on the critical path of overall performance, which contains serially execut-
ing modules and the most time-consuming parallel modules. Based on this

critical path, a stall rate is given by #cycles for module
#cycles longest critical path. Addi-

tionally, the reason for stalling is given. Possible reasons include memory
access, waiting for data of another module (dependency stall) and waiting
for a parallel-executing module to finish (synchronization stall). Based on
this data the developer can target optimization efforts to specific modules
in order to get a better performing system.

39

Chapter 6

HLS based applications

As the HLS toolchain is discussed in chapter 2-5, it is interesting to see what
other researches have done with HLS. To survey this, we look at multiple
HLS based applications on different domains. Although we cannot scan all
papers related to a HLS based applications, this will give us a good idea
of what HLS is used for in reality. Please note that we did not search for
domains specifically, we only used general search terms such as ”HLS” and
”implementation”. We first go over the applications by order of their domain
and we end with some remarks.

6.1 Applications by domain

The first domain is audio signal decoding and encoding, which is done to
reduce the amount of bits going over the network, see figure 6.1. The main
objective in this domain is reducing latency. This way voice calls can be
made with the smallest delay between talking and being heard. We consider
encoder and decoders to be streaming applications, because they convert
audio input into a binary or convert the binary into audio output during a
live voice call. The used algorithms are non-trivial and therefore hard to im-
plemented in HDL. The implementations we discuss all use linear predictive
coding, which can benefit from the pipelining and parallelism of an FPGA.

The G.723.1 Decoder [34] and MELP Encoder [39] algorithms were im-
plemented by the same authors using the Vivado HLS tool to convert C
into Verilog and then Vivado’s synthesizer to synthesize the Verilog onto
the AMD Zynq-7000 ZC706 FPGA Evaluation board. The authors only
reported the latency, with a maximum of 45k clock cycles for the G.723.1
Decoder and 1743k clock cycles for the MELP Encoder. The kit used has a
33MHz PS System Clock, so this comes down to a latency of 1.36 and 52.38
milliseconds, which are feasible delays for a live voice call. A CELP encoder
[1] was implemented by other authors, who also chose the Vivado HLS com-
piler. All three implementations are evaluated to obtain area usage, but a

40

Figure 6.1: Audio encode/decode flow [34].

baseline is not provided, making it hard to draw any conclusions.
The domain of Neural Networks also benefits from FPGA strengths.

Their accuracy comes at a high cost in terms of computational resources,
and algorithms often include many nested for loops. Therefore the high
performance and low power consumption of FPGAs are very useful. Because
neural networks are an evolving research area, the configurability of FPGAs
is convenient. The availability of HLS tools has enabled the development
of complex neural networks algorithms on the FPGA. All neural network
implementations we discuss were developed using the Vivado HLS tool and
the C programming language.

Resnet50 CNN (Convolution Neural Network) is implemented on an
FPGA [55]. The authors chose for an FPGA over the CPU because it
lacks resources, over the GPU because it has a high power consumption and
over ASICs because their development cycle is too long and expensive. The
focus lies on loop optimizations, because the convolution operation consists
of many inner for loops. Three optimizations are discussed (see also section
III.D [44], mentioned in section 3.3.3).

1. Loop Tiling, dividing data into tiles that fit in the limited on-chip
memory and processing tile by tile instead of all data in a single big
loop.

2. Loop Transformation, reorder the loops so that data reuse factor is
maximized and memory accesses are minimized. This way the HLS
tool can apply optimization 3 better.

3. Loop Pipelining and Unrolling, allowing the next iteration to start
before the previous one is finished and unrolling loops into independent
operations which are then executed in parallel.

For evaluation the Resnet50 CNN implementation was ran on a Xilinx Zynq
UltraScale+ MPSoC ZCU104 Evaluation Kit and achieved a speedup of

41

Figure 6.2: Usage of loop optimizations in Vivado HLS code for convolution
loop. [69].

198x compared to the Xilinx Zynq ZU7EV chip’s processing chip running
at 1.2 GHz.

Similarly, a signal modulation recognition CNN is implemented on the
Xilinx XC7VX690T FPGA [69]. A code snippet can be seen in figure 6.2.
As can be seen, the Vivado HLS compiler is instructed to use loop pipelining
and unrolling. Compared to a GPU GTX1060, a 80.5% energy reduction
and 28% speedup is reported. Another CNN implementation is discussed
in [4], providing a more in-depth discussion on their system by going over
the modules one by one. Just like the two previous applications, loop opti-
mizations are heavily used. A Lenet-5 CNN for picture recognition [53] was
implemented resulting in a 4.7x speedup and ”much less power consump-
tion” on a ZYBO Z7 FPGA compared to a 3.30GHz Intel Core i5x4590.
Lastly YOLO CNN (using small bit integers) was accelerator using a Zynq
7z020 FPGA [26]. The implementation is compared to others works, see
table 1 of [26], and it is shown that the HLS implementation outperforms
implementations made directly in a HDL. The implementation has lower
power usage (at least 16.7%) and higher performance (at least 4,86%) com-
pared to others.

Next to CNN, we other machine learning applications also benefit from
FPGA acceleration. Using Vivado HLS, Support Vector Machine calculation
was accelerated [40], reporting a 10x latency improvement over other HLS
implementations obtained by using a pipelined architecture that processes
the input chunk by chunk, instead of storing all the data on the FPGA at
once. The authors also report that their HLS implementation outperforms
HDL implementations by a factor of 4.4. A Linear Discriminant Analysis
classifier, an algorithm used to find a linear combination of features to sep-
arate the data into classes is implemented using HLS [48], [63] (for details

42

Figure 6.3: Image edge processing: original (left), Sobel (mid) [12] and
Laplace (right) [54].

see section 2 in either of the references). FPGAs are efficient for this type of
algorithm because of loop optimizations, array mapping and division opti-
mization. Array mapping is an optimization where multiple small arrays are
combined into a single larger one. Division optimization tries to reduce the
amount of division operations at the cost of more multiplication operations,
this is done by enlarging intermediate variables and replacing division by x
by multiplication with 1

x . Using these optimizations, [48] reports a 54.6%
latency reduction while using less resources (details in their table II) using
and [63] reports a 15% reduction in latency while achieving a 20% reduction
in resource usage.

Image processing is another computation intensive domain which ben-
efits from FPGA strengths. FPGAs are successful in image processing be-
cause they are able to exploit the inherently parallel nature of many image
processing problems. A Laplace filter, an algorithm to sharpen the edges in
images (see figure 6.3), is implemented using the HLS Tool AccelDSP [54].
The authors mention price, performance, power savings and ease of use as
reasons to choose an FPGA as coprocessor. Their implementation ran on a
Vertex-5 XC5VLX110T FPGA is 3.37x to 5.37x as fast as a 2.0GHz Intel
Core 2 Duo CPU. The authors mention that this result is obtained with-
out using any complex optimizations. However, this claim is a bit vague
considering that the domain of AccelDSP is image processing. (The survey
in [44] mentions that the now discontinued Accel project originated from
MATCH, which has image processing as its domain, see table 1.) The same
system is implemented using Verilog, resulting in similar results compared
to the HLS implementations in terms of performance, but a roughly five
times longer development time. Sobel edge detection, an algorithm to de-
tect edges in images (see figure 6.3), is accelerated using Vivado HLS [37].
The hardware accelerated program performed 15.58x as fast as the Python
only implementation which utilized OpenCV libraries.

Cryptographic calculations often rely on bit manipulation, which is why

43

ASICs and FPGAs outperform CPUs in this domain. Using Vivado HLS, the
SHA-3 hashing algorithm is implemented in [32]. A typical SHA-3 round is
computed through 24 rounds, where each round consists of five fairly simple
operations: column parity, bitwise rotation, word permutation, bitwise row
combination, and bitwise XOR operation with per-round constants. The
aim for the SHA-3 implementation is maximum throughput, and this was
initially 7 Mbps. By instructing Vivado HLS to use loop optimizations a
throughput of 2000 Mbps was achieved. Quantum Schor’s Algorithm is an
integer factoring algorithm, known for its impact on the RSA algorithm, and
is implemented in Vitis HLS [62]. The authors use a technique called matrix
pruning for optimization and show their design is capable of factorising up to
8 digit (∼27 bit) numbers. Which is rather disappointing as typical lengths
for RSA keys are 512, 1024, 2048 and 4096 bits.

Lastly, various computation intensive tasks are accelerated through FP-
GAs, all using Vivado HLS. We only briefly mention them as their details
focus on optimizing algorithms for which background knowledge is required.
Related to cryptography, a Karatsuba modular polynomial multiplier is pro-
duced using HLS tools in [13]. In the field of computational physics we have
an HLS optimizated implementation of the Tau Triggering Algorithm for
data from the Large Hadron Collider at CERN [8] and an implementation
of Chaotic Systems [59]. An HLS optimized version of Merge Sort is repre-
sented in [52] and an Adaptive Notch Filter implementation can be found
in [7].

6.2 Remarks

Based off previous chapters, we expected the domain of HLS to be mainly
computation intensive (streaming) applications and this turned out to be the
case: the implementations we discuss all used the parallelism and pipelining
that FPGAs are capable of. Together with the development in HLS tools
the implementations showcase it is possible to implement abstract systems
such as CNN and cryptographic algorithms with impressive performance in
terms of throughput, latency and energy consumption.

The most used compiler is the Vivado HLS [66] compiler. This compiler
is no longer being worked on, but of course developers can still use the latest
version. The new version is called Vitis HLS [65]. It is interesting that none
of the HLS based implementations in academic papers used an academic
compiler, which confirms the notion that academic compilers are useful for
compiler research but less useful in terms of actual development. However,
there are many commercial compilers and none of the authors mention a
reason for choosing Vivado or Vitis. This could be simply a matter of habit,
but two advantages of Vivado and Vitis are that they can be used for free
and that Xilinx provides a detailed tutorial which helps get developers used

44

to their HLS tool. Most FPGAs used were also manufactured by Xilinx, this
is probably connected to the usage of the Vivado/Vitis HLS compiler (or
the other way around). Again, none of the authors motivated their FPGA
choice.

Lastly, the FPGA was mostly used in an accelerator context. This makes
sense as data such as images and/or CNNs is not particularly useful on
its own and systems using these techniques most likely also provide user
interfaces and/or connect to other components, especially in the case of
robotics.

45

Chapter 7

Future Work

The HLS toolchain has made significant advances in the past 20 years. How-
ever, many authors mention that is not as mature as the software toolchain.
This comparison should be taken with a grain of salt, as the design space
for HLS is significantly larger than the relatively simple assembly instruc-
tions of software. This makes it harder to develop robust tools that support
lots of features while at the same time producing highly optimized circuitry.
Nevertheless, aspiring the same capabilities is still a good target point, es-
pecially because HLS toolchain targets software engineers which are already
used to these types of tools.

The FPGA hardware is fundamental to the HLS toolchain; without FP-
GAs there would be no need for HLS to begin with. However, in order to
research FPGA architecture one would need to have a background in electri-
cal engineering. As far as from the software side, the future work on FPGAs
should aim to produce ”better” FPGAs. That is, improve connectivity be-
tween CLBs, have more CLBs per FPGA and make CLBs more efficient in
terms of power usage and the functionality that they provide. Of course
these types of research is never finished, and manufacturers are expected to
keep improving FPGA architectures.

Moving on to the programming side, it would be good to implement
more features. As mentioned in chapter 3, most compilers take in the C
languages which does not support OOP constructs. Functionalities such as
virtual function calls do not inherently limit parallelism or pipelining, so
might see OOP constructs added to the repertoire of HLS compilers. On
the other hand, the HLS toolchain mainly targets computation intensive
applications and these do not rely on OOP concepts to be implemented.

Many HLS compilers take an OpenMP approach to optimization, requir-
ing the developer to manually insert pragma statements in the source code
to get optimal performance. Future research is needed in order to have this
done by the compiler itself. Even if this cannot be done completely auto-
matically, it could be in the way of suggesting places for pragmas based on

46

static analysis or pattern recognition via machine learning.
The same goes for heterogeneous systems as discussed in section 2.3. For

now, the user has to decide which part of the program is accelerated and
which part is executed on the CPU. Future research is needed to automate
this choice too.

Research into compilers can be done by taking one of the academic com-
pilers and trying to extend them with a new feature. Next to that, the HLS
toolchain will also benefit from optimizations in e.g. C compilers and steps
in the synthesis process such as route and place.

Throughout the reading we have not encountered any mention of needed
resources exceeding the available resources of the FPGA. Surely we cannot
fit the entire Windows OS on a small FPGA chip, so there is a limit. Future
work is needed to determine this limit. It is also interesting to research
which software constructs are particularly costly in terms of area. Can one
say anything about the cost of an if-statement?

The implementations discussed in chapter 6 are focused on strictly com-
putational tasks with the only control flow being lots of for loops for summa-
tion across arrays. Similarly, the benchmarks such as CHStone [68] typically
consist of small computational tasks. It is clear that an FPGA performs well
in this case. However, general software is not represented by this. This raises
the question if FPGAs perform well in programs with lots of if-branches and
function calls. Future work is needed to determine if this is indeed the case,
or if the FPGA can only function as an accelerator.

In regards to cryptographic HLS based applications, future research
could try to execute/prevent side channel attacks on FPGAs. This is an
ongoing research field and work has been done to perform attacks based
on power usage [70], based on AI against an AES implementation [61] and
to prevent timing attacks [42]. These attacks and defense measures are not
specifically focused on HLS. Future research could be done to implement side
channel attack prevention features for HLS compilers, essentially making a
HLS compiler with cryptography as its domain.

We also observed that almost all implementation papers used the Vivado
HLS compiler, this raises the question how commercial compilers relate to
each other. A comparison between academic compilers has been done [44],
but as far we know, there is no comparison between commercial compilers.

We encountered pretty sophisticated debugging tools that provide func-
tionality close to GDB in chapter 4. However, the tools suffer from a limited
replay window and/or limited observability. This makes it necessary for de-
velopers to do multiple for the developer to do multiple debug iterations.
Future work is needed to improve visibility and window size in order to
improve productivity.

The current HLS performance logging tools do not support heteroge-
neous systems. Future work is needed to combine the discussed techniques
with already existing CPU profiling techniques in order to provide a single

47

profiling interface for the entire system.
Future work can also be done in implementing more algorithms with the

HLS toolchain, as done in chapter 6. This will increase the knowledge around
HLS systems and also delivers good results in terms of speedups and a lower
energy consumption. To add to the diversity, it would be good to implement
applications using a compiler other than Vivado or Vitis. Describing the use
of other HLS tools (e.g. debugging, profiling) would also be an addition to
the existing literature.

As FPGAs gain popularity, educational institutes that teach software
engineering need to consider teaching courses in FPGA development through
HLS. A mini-course for a hardware implementation of neural networks using
HLS is documented and motivated [27]. More future work is needed to
determine an efficient way of teaching HLS design.

48

Chapter 8

Conclusion

In this document, we have provided an introduction to and overview of the
HLS toolchain. Fundemental to the the HLS toolchain are HLS compilers,
most often taking in C/C++ and outputting Verilog/VHDL. In chapter 6,
we saw that Xilinx’ Vivado HLS and Vitis HLS were by far the most used
compilers. This compiler has proven both functionality and usability and
because of this, we recommend readers who wants to start developing FPGA
applications using HLS to read the Vitis HLS tutorial [65].

We have seen that development steps that provide insight into execution,
such as on-chip debugging and performance logging, require instrumentation
of the circuit to gain the needed insight. However, steps that are about
functionality, such as unit testing and functional verification, the already
existing software tools can be used.

Because of the efficiency of FPGA, the need for high performance com-
puting and the advances in HLS tools, we expect to see more widespread
adoption of FPGA development via HLS tools in the coming years. This
means that both companies and educational institutes will need to adapt to
reap the benefits of FPGA development. We expect future work to focus on
developing more features along the entire development process, with a focus
on heterogeneous systems.

49

Bibliography

[1] Prakash C S Abhijna, N R Sangeetha, Jadav R Sagar, R Rahul, and
Gaurav Gupta. Implementation of celp encoder using vivado hls. In
2017 2nd IEEE International Conference on Recent Trends in Elec-
tronics, Information & Communication Technology (RTEICT), pages
1443–1447, 2017.

[2] Inc Advanced Micro Devices. Ise simulator. https://www.xilinx.

com/products/design-tools/isim.html, 2023. [Online; last accessed
25-7-2023].

[3] Matthew B Ashcraft and Jeffrey Goeders. Unified on-chip software and
hardware debug for hls-accelerated programs. In 2018 International
Conference on Field-Programmable Technology (FPT), pages 354–357,
2018.

[4] Daŕıo Baptista, F. Morgado-Dias, and Leonel Sousa. A platform based
on hls to implement a generic cnn on an fpga. In 2019 International
Conference in Engineering Applications (ICEA), pages 1–7, 2019.

[5] Nazanin Calagar, Stephen D. Brown, and Jason H. Anderson. Source-
level debugging for fpga high-level synthesis. In 2014 24th Inter-
national Conference on Field Programmable Logic and Applications
(FPL), pages 1–8, 2014.

[6] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed
Kammoona, Jason H. Anderson, Stephen Brown, and Tomasz Cza-
jkowski. Legup: High-level synthesis for fpga-based processor/accel-
erator systems. In Proceedings of the 19th ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, FPGA ’11, page
33–36, New York, NY, USA, 2011. Association for Computing Machin-
ery.

[7] Tianbi Cao. Implementation and research of vivado hls’s function on
fpga. In 2022 3rd International Conference on Computer Science and
Management Technology (ICCSMT), pages 240–243, 2022.

50

https://www.xilinx.com/products/design-tools/isim.html
https://www.xilinx.com/products/design-tools/isim.html

[8] Natalia Cherezova, Dmitri Mihhailov, Sergei Devadze, and Artur Jut-
man. Hls-based optimization of tau triggering algorithm for lhc: a case
study. In 2022 18th Biennial Baltic Electronics Conference (BEC),
pages 1–6, 2022.

[9] Young-Kyu Choi and Jason Cong. Hlscope: High-level performance de-
bugging for fpga designs. In 2017 IEEE 25th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
pages 125–128, 2017.

[10] NATIONAL INSTRUMENTS CORP. Labview fpga com-
pile worker compile time benchmarks. https://www.

ni.com/en/support/documentation/supplemental/12/

labview-fpga-compile-worker-compile-time-benchmarks.html,
2023. [Online; last accessed 25-7-2023].

[11] Altera Corporation. Signal tap embedded logic analyzer megafunc-
tion. https://flex.phys.tohoku.ac.jp/riron/vhdl/up1/altera/

ds/signal.pdf, 2000. [Online; last accessed 25-7-2023].

[12] Ashish Fagna. Godbolt compiler ex-
plorer. https://medium.datadriveninvestor.com/

understanding-edge-detection-sobel-operator-2aada303b900/,
2018. [Online; last accessed 6-8-2023].

[13] Michael J. Foster, Marcin Lukowiak, and Stanis law Radziszowski. Flex-
ible hls-based implementation of the karatsuba multiplier targeting ho-
momorphic encryption schemes. In 2019 MIXDES - 26th International
Conference ”Mixed Design of Integrated Circuits and Systems”, pages
215–220, 2019.

[14] Copyright Free Software Foundation. Gdb: The gnu project debugger.
https://www.sourceware.org/gdb/, 2023. [Online; last accessed 25-
7-2023].

[15] Matt Godbolt. Godbolt compiler explorer. https://godbolt.org/,
2023. [Online; last accessed 6-8-2023].

[16] Jeffrey Goeders. Enabling long debug traces of hls circuits using
bandwidth-limited off-chip storage devices. In 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 136–143, 2017.

[17] Jeffrey Goeders and Steve J.E. Wilton. Using dynamic signal-tracing
to debug compiler-optimized hls circuits on fpgas. In 2015 IEEE 23rd
Annual International Symposium on Field-Programmable Custom Com-
puting Machines, pages 127–134, 2015.

51

https://www.ni.com/en/support/documentation/supplemental/12/labview-fpga-compile-worker-compile-time-benchmarks.html
https://www.ni.com/en/support/documentation/supplemental/12/labview-fpga-compile-worker-compile-time-benchmarks.html
https://www.ni.com/en/support/documentation/supplemental/12/labview-fpga-compile-worker-compile-time-benchmarks.html
https://flex.phys.tohoku.ac.jp/riron/vhdl/up1/altera/ds/signal.pdf
https://flex.phys.tohoku.ac.jp/riron/vhdl/up1/altera/ds/signal.pdf
https://medium.datadriveninvestor.com/understanding-edge-detection-sobel-operator-2aada303b900/
https://medium.datadriveninvestor.com/understanding-edge-detection-sobel-operator-2aada303b900/
https://www.sourceware.org/gdb/
https://godbolt.org/

[18] Jeffrey Goeders and Steven J. E. Wilton. Signal-tracing techniques for
in-system fpga debugging of high-level synthesis circuits. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
36(1):83–96, 2017.

[19] Jeffrey Goeders and Steven J.E. Wilton. Effective fpga debug for high-
level synthesis generated circuits. In 2014 24th International Conference
on Field Programmable Logic and Applications (FPL), pages 1–8, 2014.

[20] Jeffrey B. Goeders and Steven J. E. Wilton. Allowing software devel-
opers to debug HLS hardware. CoRR, abs/1508.06805, 2015.

[21] P. Graham, B. Nelson, and B. Hutchings. Instrumenting bitstreams
for debugging fpga circuits. In The 9th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM’01), pages
41–50, 2001.

[22] Gunther, Milne, and Narasimhan. Assessing document relevance with
run-time reconfigurable machines. In 1996 Proceedings IEEE Sympo-
sium on FPGAs for Custom Computing Machines, pages 10–17, 1996.

[23] J.R. Hauser and J. Wawrzynek. Garp: a mips processor with a
reconfigurable coprocessor. In Proceedings. The 5th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines Cat.
No.97TB100186), pages 12–21, 1997.

[24] K.S. Hemmert, J.L. Tripp, B.L. Hutchings, and P.A. Jackson. Source
level debugger for the sea cucumber synthesizing compiler. In 11th
Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, 2003. FCCM 2003., pages 228–237, 2003.

[25] H.-C. Hsieh, K. Dong, J.Y. Ja, R. Kanazawa, L.T. Ngo, L.G. Tinkey,
W.S. Carter, and R.H. Freeman. A 9000-gate user-programmable gate
array. In Proceedings of the IEEE 1988 Custom Integrated Circuits
Conference, pages 15.3/1–15.3/7, 1988.

[26] Jiaming Huang, Junyan Yang, Saisai Nui, Hang Yi, Wei Wang, and
Hai-Bao Chen. A low-bit quantized and hls-based neural network fpga
accelerator for object detection. In 2021 China Semiconductor Tech-
nology International Conference (CSTIC), pages 1–3, 2021.

[27] Nan-Sheng Huang, Jan-Matthias Braun, Jørgen Christian Larsen, and
Poramate Manoonpong. Teaching hardware implementation of neural
networks using high-level synthesis in less than four hours for engi-
neering education of intelligent embedded computing. In 2019 20th
International Carpathian Control Conference (ICCC), pages 1–7, 2019.

52

[28] Accellera Systems Initiative. Systemc standards & implementations.
https://systemc.org/resources/standards/, 2023. [Online; last
accessed 25-7-2023].

[29] Intel. Intel® high level synthesis compiler. https://www.intel.

com/content/www/us/en/software/programmable/quartus-prime/

hls-compiler.html, 2023. [Online; last accessed 25-7-2023].

[30] Intel. Types of sycl fpga compilation. https://www.intel.com/

content/www/us/en/docs/oneapi/programming-guide/2023-0/

types-of-sycl-fpga-compilation.html, 2023. [Online; last
accessed 25-7-2023].

[31] Intel. Intel quartus prime software. https://www.intel.com/

content/www/us/en/products/details/fpga/development-tools/

quartus-prime/article.html, Uknown. [Online; last accessed
25-7-2023].

[32] H S. Jacinto, Luka Daoud, and Nader Rafla. High level synthesis using
vivado hls for optimizations of sha-3. In 2017 IEEE 60th International
Midwest Symposium on Circuits and Systems (MWSCAS), pages 563–
566, 2017.

[33] Al-Shahna Jamal, Jeffrey Goeders, and Steven J.E Wilton. An fpga
overlay architecture supporting rapid implementation of functional
changes during on-chip debug. In 2018 28th International Conference
on Field Programmable Logic and Applications (FPL), pages 403–4037,
2018.

[34] M Koushik, Shashidhar Shivanagi, Gaurav Gupta, Jawed Qumar, and
D. Saravanan. Implementation of g.723.1decoder on zynq fpga using
hls. In 2017 International Conference on Inventive Computing and
Informatics (ICICI), pages 263–266, 2017.

[35] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and
asics. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 26(2):203–215, 2007.

[36] R. Leatherman and N. Stollon. An embedding debugging architecture
for socs. IEEE Potentials, 24(1):12–16, 2005.

[37] Han Sung Lee and Jae Wook Jeon. Accelerating image processing on
fpgas using hls and pynq. In 2020 IEEE International Conference on
Consumer Electronics - Asia (ICCE-Asia), pages 1–2, 2020.

[38] E. Lemoine and D. Merceron. Run time reconfiguration of fpga for scan-
ning genomic databases. In Proceedings IEEE Symposium on FPGAs
for Custom Computing Machines, pages 90–98, 1995.

53

https://systemc.org/resources/standards/
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2023-0/types-of-sycl-fpga-compilation.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2023-0/types-of-sycl-fpga-compilation.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2023-0/types-of-sycl-fpga-compilation.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/article.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/article.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/article.html

[39] Koushik M, Shashidhar Shivanagi, Jawed Qumar, Jyoti Yadav, and
D. Saravanan. Implementation of melp encoder on zynq fpga using
hls. In 2017 International Conference on Current Trends in Computer,
Electrical, Electronics and Communication (CTCEEC), pages 87–91,
2017.

[40] Mohammad Amir Mansoori and Mario R. Casu. Hls-based dataflow
hardware architecture for support vector machine in fpga. In 2022 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 41–
45, 2022.

[41] Mirsky and DeHon. Matrix: a reconfigurable computing architecture
with configurable instruction distribution and deployable resources. In
1996 Proceedings IEEE Symposium on FPGAs for Custom Computing
Machines, pages 157–166, 1996.

[42] Shyamapada Mukherjee, Swapnanil kr Saikia, Stuti Anand, Ritu
Chouhan, and Hiresh Das. A counter measure to prevent timing-
based side-channel attack on fpga. In 2021 6th International Conference
on Communication and Electronics Systems (ICCES), pages 983–988,
2021.

[43] Razvan Nane, Vlad-Mihai Sima, Bryan Olivier, Roel Meeuws, Yana
Yankova, and Koen Bertels. Dwarv 2.0: A cosy-based c-to-vhdl
hardware compiler. In 22nd International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 619–622, 2012.

[44] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair
Fort, Andrew Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fab-
rizio Ferrandi, Jason Anderson, and Koen Bertels. A survey and evalua-
tion of fpga high-level synthesis tools. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 35(10):1591–1604,
2016.

[45] Ioannis Parnassos, Panagiotis Skrimponis, Georgios Zindros, and Niko-
laos Bellas. Soclog: A real-time, automatically generated logging and
profiling mechanism for fpga-based systems on chip. In 2016 26th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), pages 1–4, 2016.

[46] Meher Krishna Patel. Fpga designs with verilog. https://

verilogguide.readthedocs.io/en/latest/, 2017. [Online; last ac-
cessed 25-7-2023].

[47] Meher Krishna Patel. Fpga designs with vhdl. https://vhdlguide.

readthedocs.io/en/latest/, 2017. [Online; last accessed 25-7-2023].

54

https://verilogguide.readthedocs.io/en/latest/
https://verilogguide.readthedocs.io/en/latest/
https://vhdlguide.readthedocs.io/en/latest/
https://vhdlguide.readthedocs.io/en/latest/

[48] Dezhi Peng and Jin Sha. Efficient hls implementation of fast lin-
ear discriminant analysis classifier. IEEE Embedded Systems Letters,
13(4):214–217, 2021.

[49] Christian Pilato and Fabrizio Ferrandi. Bambu: A modular frame-
work for the high level synthesis of memory-intensive applications. In
2013 23rd International Conference on Field programmable Logic and
Applications, pages 1–4, 2013.

[50] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott
Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka,
James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong,
Phillip Yi Xiao, and Doug Burger. A reconfigurable fabric for acceler-
ating large-scale datacenter services. In 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA), pages 13–24,
2014.

[51] QBayLogic. Clash. https://clash-lang.org/, 2023. [Online; last
accessed 25-7-2023].

[52] P. Asha Rani, M C Chinnaiah, Apurva Kumari, G. Preethika, and
Y. Prem Kumar Reddy. Hls based design and optimization of merge sort
algorithm for high performance computing. In 2023 4th International
Conference for Emerging Technology (INCET), pages 1–4, 2023.

[53] Dai Rongshi and Tang Yongming. Accelerator implementation of lenet-
5 convolution neural network based on fpga with hls. In 2019 3rd
International Conference on Circuits, System and Simulation (ICCSS),
pages 64–67, 2019.

[54] Mahendra Samarawickrama, Ranga Rodrigo, and Ajith Pasqual. Hls
approach in designing fpga-based custom coprocessor for image prepro-
cessing. In 2010 Fifth International Conference on Information and
Automation for Sustainability, pages 167–171, 2010.

[55] Muhammad Sarg, Ahmed H. Khalil, and Hassan Mostafa. Efficient
hls implementation for convolutional neural networks accelerator on an
soc. In 2021 International Conference on Microelectronics (ICM), pages
1–4, 2021.

[56] Siemens. Catapult high-level synthesis and verification. https://eda.
sw.siemens.com/en-US/ic/catapult-high-level-synthesis/,
2023. [Online; last accessed 27-7-2023].

[57] Siemens. Modelsim hdl simulator. https://eda.sw.siemens.com/

en-US/ic/modelsim/, 2023. [Online; last accessed 25-7-2023].

55

https://clash-lang.org/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://eda.sw.siemens.com/en-US/ic/modelsim/

[58] Nupur Sumeet and Manoj Nambiar. Hls print: High performance
logging framework on fpga. In 2021 31st International Conference
on Field-Programmable Logic and Applications (FPL), pages 390–390,
2021.

[59] Mobin Vaziri and Hadi Jahanirad. Highly efficient implementation of
chaotic systems utilizing high-level synthesis tools. In 2022 30th Inter-
national Conference on Electrical Engineering (ICEE), pages 501–506,
2022.

[60] J.E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H.H. Touati, and
P. Boucard. Programmable active memories: reconfigurable systems
come of age. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 4(1):56–69, 1996.

[61] Huanyu Wang and Elena Dubrova. Tandem deep learning side-channel
attack against fpga implementation of aes. In 2020 IEEE International
Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), pages
147–150, 2020.

[62] Juhi Wani, Tarun Kumar Allamsetty, Rushikesh Gherde, and Vanita
Agarwal. Hls implementation of quantum shor’s algorithm using ma-
trix pruning. In 2022 Second International Conference on Advances in
Electrical, Computing, Communication and Sustainable Technologies
(ICAECT), pages 1–4, 2022.

[63] Michael R. Wasef and Nader Rafla. Hls implementation of linear dis-
criminant analysis classifier. In 2020 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1–4, 2020.

[64] Wikipedia. High-level synthesis. https://en.wikipedia.org/wiki/

High-level_synthesis, 2023. [Online; last accessed 25-7-2023].

[65] Xilinx. Vitis hls. https://www.xilinx.com/support/

documentation-navigation/design-hubs/dh0090-vitis-hls-hub.

html, 2023. [Online; last accessed 6-8-2023].

[66] Xilinx. Vivado 2020.1 - high-level synthesis (c based).
https://www.xilinx.com/support/documentation-navigation/

design-hubs/dh0012-vivado-high-level-synthesis-hub.html,
2023. [Online; last accessed 27-7-2023].

[67] Liwei Yang, Swathi Gurumani, Deming Chen, and Kyle Rupnow. Au-
toslide: Automatic source-level instrumentation and debugging for
hls. In 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 127–130,
2016.

56

https://en.wikipedia.org/wiki/High-level_synthesis
https://en.wikipedia.org/wiki/High-level_synthesis
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0090-vitis-hls-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0090-vitis-hls-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0090-vitis-hls-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html

[68] Sinya Honda Yuko Hara, Hiroyuki Tomiyama and Hiroaki Takada. Ch-
stone benchmark suite. https://www.jstage.jst.go.jp/article/

ipsjjip/17/0/17_0_242/_pdf, 2009. [Online; last accessed 25-7-2023].

[69] Jian Zhao, Yaqin Zhao, Hongbo Li, Yun Zhang, and Longwen Wu.
Hls-based fpga implementation of convolutional deep belief network for
signal modulation recognition. In IGARSS 2020 - 2020 IEEE Interna-
tional Geoscience and Remote Sensing Symposium, pages 6985–6988,
2020.

[70] Yilin Zhao, Qidi Zhang, Hiroki Nishikawa, Xiangbo Kong, and Hiroyuki
Tomiyama. Power side-channel analysis for different adders on fpga. In
2021 18th International SoC Design Conference (ISOCC), pages 367–
368, 2021.

57

https://www.jstage.jst.go.jp/article/ipsjjip/17/0/17_0_242/_pdf
https://www.jstage.jst.go.jp/article/ipsjjip/17/0/17_0_242/_pdf

	Introduction
	Field Programmable Gate Arrays
	Hardware Basics
	FPGA Architecture
	XC3000 FPGA Series

	FPGA + CPU systems
	Garp

	FPGA strengths

	High Level Synthesis
	Hardware Description Languages
	High Level HDL
	High Level Synthesis
	Academic HLS Compilers
	Commercial HLS Compilers
	Performance and Optimizations

	Debugging
	Simulating the source code on a CPU
	Simulating the circuit
	Observing the circuit
	Observing the circuit and linking observations back to the source code.
	Control Trace Buffer optimization
	Data Trace Buffer optimization
	Streaming instead of storing

	Conclusion
	Existing tools

	Verification, Testing and Performance Logging
	Compiler
	Software Code

	HLS based applications
	Applications by domain
	Remarks

	Future Work
	Conclusion

