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Abstract

Proving the security claims of cryptographic primitives is essential, but not
sufficient. Many implementations have been shown to contain bugs, which
can sometimes destroy the security claim completely. We examine a new
technique to prove implementation correctness of cryptographic primitives,
and show its feasibility by applying it to Keccak-f[200], and an optimized
variant. By first transforming the program into so-called While code, the
technique operates as language-agnostic as possible. Finally, we discuss its
limitations and drawbacks.
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Chapter 1

Introduction

In cryptography, lots of effort is spent on designing secure encryption schemes
and permutation functions. Unfortunately, even a perfect primitive can fail
when an implementation error is made. An example of this is the SHA-
3 competition [18]. Nearly half of the submitted reference implementations
contained bugs, and so did the winner, which was only discovered after seven
years.
Some bugs might only slightly reduce the security claim of an implementa-
tion, while others can reduce it to effectively zero. Due to the nature of bugs
(bugs being accidental errors introduced while writing a program), it is not
possible to compensate for them. The only solution, then, is to reduce or
completely eliminate them.
The goal of this paper is to show that this is feasible, by taking a specific
implementation of a hashing algorithm, and proving that it is semantically
equal to its reference implementation. To achieve this, we transform both
implementations into their While+ equivalents, apply the While derivation
rules [20] on them, and show that the resulting state mappings are equal.
If the state mappings are equal, then so must the semantics of the two
programs be, as well. This reduces the problem of trying to prove imple-
mentation correctness for any program, to showing that the extensions to
While and the transformation rules are correct.

The solution we present in this paper is the first of its kind. It is a one
size fits all approach; through extending While so that we can effectively
reason about cryptographical primitives, we only need to add new transfor-
mation rules if we wish to prove semantic equality for a new language, as
opposed to having to redevelop the entire system.
That is not to say it is the only approach for proving the correctness of pro-
grams which relate to cryptography. Indeed, papers have been written on
the automatic verification of protocols [7, 3], and likewise on the automatic
extraction of a model based on an implementation [5], but these all function
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on one programming language or protocol model.

In Chapter 2, we introduce core concepts from software verification used
in the rest of the thesis. After that, we present the entirety of the formal
definition of our new technique in Chapter 3. We show the application of
said technique in Chapter 4, explaining the results of the transformation
and how to interpret the results of the annotated programs.
The program transformation, annotated programs and various helper scripts
are present within Appendix A. We show that existing techniques do not
cover the points our technique covers in Chapter 5 and finally go over the
feasibility of our technique in Chapter 6.
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Chapter 2

Preliminaries

In this thesis, we use terms relating to software verification, as well as (a
small subset of) cryptography. We shortly explain the core concepts from
each below.

2.1 While

While [20] is a language in which the most advanced construct is a while loop.
It also contains if-then-else statements, integer variables, basic arithmetic
operators (+, −, ∗) and basic Boolean operators (<, <=, ¬, ==, ∧). While
it is Turing complete, While is not very expressive, which makes it unfit
for normal software development, but this also makes it easy to describe its
semantics. For this reason, it is used in software verification.

2.2 Derivation trees

To reason about the correctness of programs written in so-called While, we
make use of natural semantics based on derivation trees. These trees take
a program, and apply derivation rules on it to produce a predicate that
describes the semantics of it. Typically, these predicates are much easier to
reason about than the entirety of the source code. Because While is not very
expressive, the soundness (being able to prove only things that are true) and
completeness (being able to prove all things that are true) of its deriavtion
rules as described in [20] is well known.
We provide the following excerpt from [20], which defines derivation trees:

In a natural semantics we are concerned with the relationship
between the initial and the final state of an execution. Therefore
the transition relation will specify the relationship between the
initial state and the final state for each statement.
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We shall write a transitions as

⟨S, s⟩ → s′

Intuitively this means that the execution of S from s will termi-
nate and the resulting state will be s′.

A rule has the general form

⟨S1, s1⟩ → s′1, . . . , ⟨Sn, sn⟩ → s′n

⟨S, s⟩ → s′
if . . .

where S1, . . . , Sn are immediate constituents of S or are state-
ments constructed from the immmediate constituents of S. A
rule has a number of premises (written above the solid line) and
one conclusion (written below the solid line). A rule may also
have a number of conditions (written to the right of the solid
line) that have to be fulfilled whenever the rule is applied. Rules
with an empty set of premises are called axioms and the solid
line is then omitted.
Intuitively, the axiom [assns] says that in a state s, x := a is
executed to yield a final state s[x 7→ AJaKs], which is as s ex-
cept that x has the value AJaKs. This is really an axiom schema
because x, a and s are meta-variables standing for arbitrary vari-
ables, arithmetic expressions and states but we shall simply use
the term axiom for this. We obtain an instance of the axiom by
selecting particular variables, arithmetic expressions and states.
As an example, if s0 is the state that assigns 0 to all variables
then

⟨x := x+ 1, s0⟩ → s0[x 7→ 1]

is an instance of [assns] because x is instantiated to be x, a to
x + 1, s to s0, and the value AJx + 1Ks0 is determined to be 1.
Similarly [skipns] is an axiom and, intuitively, it says that skip
does not change the state. Letting s0 be as above we obtain

⟨skip, s0⟩ → s0

as an instance of the axiom [skipns].
Intuitively, the rule [compns] says that to execute S1;S2 from
state s we must first execute S1 from s. Assuming that this yields
a final state s′ we shall then execute S2 from s′. The premises
of the rule are concerned with the two statements S1 and S2

whereas the conclusion expresses a property of the composite
statement itself. The following is an instance of the rule:

⟨skip, s0⟩ → s0, ⟨x := x+ 1, s0⟩ → s0[x 7→ 1]

⟨skip;x := x+ 1, s0⟩ → s0[x 7→ 1]
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Here S1 is instantiated to skip, S2 to x := x + 1, s and s′ are
both instantiated to s0 and s′′ is instantiated to s0[x 7→ 1].

For the if-construct we have two rules. The first one, [ifttns], says
that to execute if b then S1 else S2 we simply execute S1 provided
that b evaluates to tt in the state. The other rule, [ifffns], says
that if b evaluates to ff then to execute if b then S1 else S2 we
just execute S2. Taking s0x = 0 the following is an instance of
the rule [ifttns]:

⟨skip, s0⟩ → s0

⟨if x = 0 then skip else x := x+ 1, s0, ⟩ → s0

because BJx = 0Ks0 = tt. However, had it been the case that
s0 ̸= 0 then it would not be an instance of the rule [ifttns] because
then BJx = 0Ks0 would amount to ff. Furthermore it would
not be an instance of the rule [ifffns] because the premise has the
wrong form.

Finally, we have one rule and one axiom expressing how to ex-
ecute the while-construct. Intuitively, the meaning of the con-
struct while b do S in the state s can be explained as follows:

• If the test b evaluates to true in the state s then we first
execute the body of the loop and then we continue with the
loop itself from the state so obtained.

• If the test b evaluates to false in the state s then the exe-
cution of the loop terminates.

The rule [whilettns] formalizes the first case where b evaluates
to tt and it says that then we have to execute S followed by
while b do S again. The axiom [whileffns] formalizes the second
possibility and states that if b evaluates to ff then we terminate
the execution of the while-construct leaving the state unchanged.
Note that the rule [whilettns] specifies the meaning of the while-
construct in terms of the meaning of the very same construct so
that we do not have a compositional definition of the semantics
of statements.

When we use the axioms and rules to derive a transition ⟨S, s⟩ →
s′ we obtain a derivation tree. The root of the derivation tree is
⟨S, s⟩ → s′ and the leaves are instances of axioms. The internal
nodes are conclusions of instantiated rules and they have the
corresponding premises as their immediate sons. We request
that all the instantiated conditions of axioms and rules must be
satisfied. When displaying a derivation tree it is common to have
the root at the bottom rather than at the top; hence the son is
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above its father. A derivation tree is called simple if it is an
instance of an axiom, otherwise it is called composite.

Note that while this excerpt contains the most important information about
derivation trees, it does not cover everything present in While [20]. In par-
ticular, the definition of the state and syntax evaluation functions are not
present.

2.2.1 State

The state can be seen as a mapping from a variable to a number. More
formally,

State = Var→ Z.
The authors of While [20] specify that a state might also be specified as a
list or table. However, in this thesis, the state will always be a function.

2.2.2 Syntax evaluation functions

The link between syntax and semantics is made through evaluation func-
tions. Usually styled as A (for Arithmetic expressions, in this example),
these functions take a piece of syntax and a state, and then provide the
resulting semantic value. More formally,

A : AExp→ (State→ Z),
B : BExp→ (State→ {tt,ff}),

where ‘AExp’ are arithmetic expressions, and ‘BExp’ are boolean expres-
sions.

2.3 Cryptographic primitives

A cryptographic primitive is an algorithm which functions as a building
block. A cryptographic protocol will typically use several primitives to ob-
tain some kind of security-related goal. We briefly discuss several examples
of primitives below.

2.3.1 Authenticated encryption schemes

An authenticated (symmetric) encryption scheme is an algorithm which en-
crypts and authenticates its input using a key. For encryption, it should be
infeasible to figure out what the original data was without the key. For au-
thentication, it computes a tag which proves the data belongs to a person. In
this case, it should be infeasible to generate a new tag that verifies success-
fully, without knowing the key. An example of an authenticated encryption
scheme is Elephant [6].
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2.3.2 Permutations

A cryptographic permutation takes input data, and maps it to a seemingly
unrelated output. Ideally, a permutation should have first pre-image resis-
tance, second pre-image resistance and collision resistance.
A permutation h has first pre-image resistance if it is computationally in-
feasible to compute a hash y for a given x such that h(x) = y.
A permutation h has second pre-image resistance if it is computationally
infeasible to compute a value x′ for a given x such that h(x) = h(x′), and
x ̸= x′.
A permutation h has collision resistance if it is computationally infeasible
to find an x and y such that x ̸= y, but h(x) = h(y).

2.4 Keccak

Keccak is a cryptographic function. The corresponding permutation Keccak-
f[200][17] is the main focus of this thesis. Below, we provide its pseudocode
and list some areas where it is used in practice.

2.4.1 Pseudocode

As listed on the Keccak site[10], the pseudocode of the Keccak function is:

Keccak-f[b](A) {

for i in 0...n-1

A = Round[b](A, RC[i])

return A

}

Round[b](A,RC) {

# sigma step

C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4], for x in 0...4

D[x] = C[x-1] xor rot(C[x+1],1), for x in 0...4

A[x,y] = A[x,y] xor D[x], for (x,y) in (0...4,0...4)

# rho and pi steps

B[y,2*x+3*y] = rot(A[x,y], r[x,y]), for (x,y) in (0...4,0...4)

# theta step

A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]), for (x,y) in (0...4,0...4)

# iota step

A[0,0] = A[0,0] xor RC

10
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return A

}

The way in which Keccak operates can be visualized as a three-dimensional
cube. The ‘steps’ referred to in the pseudocode (which will be referred to
as the diffusion functions in the rest of this thesis) break correlation in this
cube by shifting the data in lanes, columns and rows, as well as adding in
certain constants at the end of each round.

2.4.2 Uses

Instances of Keccak-f are used in numerous primtives and protocols. Some
examples include:

• Sha-3[1] is an instance of Keccak-f, namely Keccak-f[1600]. The Sha
family is perhaps the most well known family of hash functions.

• Isap[2] is a lightweight authenticated encryption scheme that uses
Keccak-f internally. It is one of the finalists in an ongoing compe-
tition for lightweight cryptography at NIST.

• Elephant[6] is another lightweight authenticated encryption scheme
that uses Keccak-f internally. Also a finalist at the aforementioned
NIST competition, it features support for parallel encryption.
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Chapter 3

Definition of While+

In this chapter, we argument our choice for the extensions necessary to
While, give the extensions, and finally provide the derivation rules for the
While+ language that is thus created.

3.1 While+

To reason about encryption schemes in While, we must extend it with several
concepts:

1. Bytes. When boiled down, encryption is some operation on bytes (or
bits, the immediate constituents of bytes), so without the concept of
bytes, proving correctness for encryption schemes is impossible.

2. Arrays. Without arrays, we would have to assign each subsequent byte
to a new variable. Theoretically, this is possible; practically, it is not.

3. Functions. If we count the total source lines of code (or SLOC), then
excluding any comments or white space, we get to 215 lines of code. It
is very likely that the transformation from C to While would increase
this number, as While is more simplistic. Without functions, however,
the amount of code to apply the derivation rules to would become far
too large to reason about. This is because without functions, we would
have to expand each and every function definition to its body. Not
only would this cost a lot of time, it would also be incredibly wasteful;
for each expanded function, we would be re-proving something we
had already proven before. This is why we also extend While with
functions.

4. The modulus statement. In encryption, one often wants to work with
wraparounds. That is to say, if an index i happens to fall outside of an
array with length l, you really want to get the item at index i mod l.
We can simulate a modulo statement with a while loop (repeatedly
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subtracting l from i until i is less than l), but this is rather inefficient;
in the variant of keccak-f alone, we count 21 modulus statements.

In the following sections, we give the definition of this extended While+.

However, before we define our extended While+, we must first explain our
notation for defining functions. We define a function as having a signature,
that being the name, the type of the arguments that are supplied to it and
an optional return type. We have chosen to include both the name and
the type of the arguments, because this precludes confusion as to the actual
type of the argument, given only its name. Below, we give two examples of
function signatures, to show what they look like. Note that the first features
a return type, the second does not:

func1(a
′, b′) : A×B → C,

func2(a
′, b′) : A×B.

To know what a function does, we look at its body. The body is separated
from the signature with an equals sign. To avoid confusion as to which
equals sign means what, we have chosen to use the ← symbol to indicate
that a function returns some value. We again provide two examples; one
function with a return value, and one without. Note that the functions ‘foo’
and ‘bar’ are just illustrative examples; they have no special meaning.

func1(a
′, b′) : A×B → C =

foo(a′)

← bar(b′)

func2(a
′, b′) : A×B =

foo(a′)

bar(b′)

We only use this notation for functions we define as short-hands for seman-
tics. For functions which evaluate syntax, like BY, ARR or A, we adopt
the notation used in [20]. This is because they are always defined in terms
of their arguments, that is to say, for all possible values of the input, the
function is defined to give an output. An example of this is:

func3(a
′) : A→ B,

func3(a
′
0) = b′0,

func3(a
′
1) = b′1,

func3(a
′
2) = b′2.

Where A and B are defined as:

A := {a0, a1, a2},
B := {b0, b1, b2}.

13



3.1.1 State

In While, a state is a mapping from a variable to a real integer. In While+,
a variable can be more than just an integer, so we need a more advanced
state. We define three additional state functions:

Statebi : BITS→ Z2,

Stateby : BYTES→ Z8
2,

Statearr : ARRAYS→ {0, 1}N.

We also rename the ‘normal’ State function of While. Otherwise, it would
be easy to confuse it with the other states.

Statex : VAR→ Z

Using these definitions, we now define the state,

State = (Statebi, Stateby, Statearr,Statex)

When we use the notation s or State in the rest of this thesis, that is a
shorthand for the appropriate state function, for the context it is being used
in.
For example, s bi is shorthand for sbi bi.

3.1.2 Bits

We start by defining bits:

bi ::= 0 | 1 | bi\/bi | bi/\bi | bi ˆ bi | ∼ bi | xbi

Where bi ranges over all bit expressions BIExpr. Then, we define the meta-
variable bi to range over all bits.

Note the underline; it represents a visual distinction between real inte-
gers (0), numerals (0) and bit expressions. We use this notation only in
syntax.

Bits exist on the syntactical level (in the form of bit expressions), but
also on the semantical level. There, bits are represented as values in the
equivalence class of Z2.
We define all commonly used operators on bits; OR, AND, XOR and NEG.
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All of these operate on the semantical level.

∨(x, y) : (Z2 × Z2)→ Z2 =

←

0 if x = 0 and y = 0,

1 otherwise.

∧(x, y) : (Z2 × Z2)→ Z2 =

← x · y
⊕(x, y) : (Z2 × Z2)→ Z2 =

← x+ y

¬(x, y) : (Z2 × Z2)→ Z2 =

← x+ 1

We define the BI function, which allows us to evaluate all bit expressions.

BI : BIExpr→ (State→ Z2)

BIJ0Ks = 0

BIJ1Ks = 1

BIJxbiKs = sbi xbi

BIJbi\/bi′Ks = ∨(BIJbiKs,BIJbi′Ks)
BIJbi/\bi′Ks = ∧(BIJbiKs,BIJbi′Ks)
BIJbi ˆ bi′Ks = ⊕(BIJbiKs,BIJbi′Ks)
BIJ∼ biKs = ¬(BIJbiKs)

3.1.3 Bytes

Using the definition of a bit, we can define byte expressions:

by : := (b i 1 , b i 2 , b i 3 , b i 4 , b i 5 , b i 6 , b i 7 , b i 8 ) | by \/ by | by /\ by
| byˆ by |∼by | by≪ a | by≫ a | xby

As well as the metavariable by, which ranges over all byte expressions
BYExpr.

A byte expression is either an octuple of bits (which we then may call a
byte), two bytes separated by an AND, OR or XOR symbol, a single byte
preceded by the negation symbol, a byte separated from an arithmetic ex-
pression by the left/right shift symbol or a variable containing a byte value.

We will now define functions that describe the semantics of all byte
operators. Because they operate at the semantical level, they do not take
bytes as arguments, but octuples of Z2. This, however, leads to rather
lengthy definitions. Consider the byte which has a value of 01001011. By
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converting it to its decimal representation, we save a lot of space (75), and
by then overlining it, we make it visually distinct from other numbers (75).
Because there is a bijection between the octuple of bits and Z256, we will
use the two interchangeably in the rest of this thesis. This might sometimes
look strange; we can define a variable x to be of type Z256 and then proceed
to reason about the value of x3 (the third bit from the left, in the byte x).
In this case, we use the bijection between Z256 and the octuple of bits to
implicitly convert x.

1. The or:
∨(x, y) : Z256 × Z256 → Z256 =

z = 0

∀i ∈ [1, 8] : zi = ∨(xi, yi)
← z

In natural language: the or of two bytes is calculated by applying the
or function to each bit of the two bytes.

2. The and:
∧(x, y) : Z256 × Z256 → Z256 =

z = 0

∀i ∈ [1, 8] : zi = ∧(xi, yi)
← z

In natural language: the and of two bytes can be calculated by apply-
ing the and function to each bit of the two bytes.

3. The xor:
⊕(x, y) : Z256 × Z256 → Z256 =

z = 0

∀i ∈ [1, 8] : zi = ⊕(xi, yi)
← z

In natural language: the xor of two bytes can be calculated by applying
the xor function to each bit of the two bytes.

4. The negation:
¬(x) : Z256 → Z256 =

y = 0

∀i ∈ [1, 8] : yi = ¬(xi)
← y

In natural language: the negation of a byte is the negation of each of
its individual bits.
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5. The left shift:

≪ (x, shift) : Z256 × Z8 → Z256 =

res = 0

pivot = 8− shift

∀i ∈ [1, pivot ] : res i = xi+pivot

∀i ∈ [pivot , 8] : res i = 0

← res

In natural language: shifting a byte z bits to the left discards the z
most significant bits, and introduces z zeroes at the right side.

6. The right shift:

≫ (x, shift) : Z256 × Z8 → Z256 =

res = 0

pivot = 8− shift

∀i ∈ [pivot , 8] : res i = xi−pivot

∀i ∈ [1, pivot ] : res i = 0

← res

In natural language: shifting a byte z bits to the right discards the z
least significant bits, and introduces z zeroes at the left side.

We define the function BY. This function, given a byte expression, eval-
uates the semantics of the expression. All the previously defined functions
for operators and bytes are used here.

BY : BYExpr→ (State→ Z256)

BYJbyKs = (BIJby1Ks,BIJby2Ks,BIJby3Ks,BIJby4Ks,
BIJby5Ks,BIJby6Ks,BIJby7Ks,BIJby8Ks)

BYJby\/by′Ks = ∨(BYJbyKs,BYJby′Ks)
BYJby/\by′Ks = ∧(BYJbyKs,BYJby′Ks)
BYJby ˆ by′Ks = ∧(BYJbyKs,BYJby′Ks)
BYJ∼ byKs = ¬(BYJbyKs)

BYJby << aKs =≪ (BYJbyKs,AJaKs)
BYJby >> aKs =≫ (BYJbyKs,AJaKs)

3.1.4 Arrays

Using the definition of a byte, we can now define arrays as

arr ::= (by′, . . . , by′...′) | arr[a] | arr[a] = by | xarr
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where arr ranges over all array expressions ArrExpr.
Note that the notation of by

′...′ indicates that an arbitrary amount of bytes
may be present within the array. We define an array as either an n-tuple of
bytes, an accessor statement (returning the value of the item at index x), or
an assignment statement (assigning a new value on index x). Finally, note
that arrays are defined to only hold bytes, and not bits or numbers.

Representation of arrays

To formally reason about arrays, we must provide them with a proper type.
A tuple of arbitrary length, while nice to reason about, is not quite well
defined, so we use another approach. The infinite sequence {0, 1}N contains
only ones and zeroes. Each element of an array will be translated into eight
zeroes or ones (representing the value of the element), and one trailing zero
or one. This last value indicates whether it is the final element in the array.
Let us consider an example array:

a := (34, 55, 77)

In this case, we translate 34 to 001000100, where the first eight digits are
the binary representation of 34, and the final zero indicates it is not the last
value in the array.
Then, 55 becomes 001101110. Finally, 77 becomes 010011011, where the
final one indicates there are no other values after it.
Thus, we can represent the array a as 001000100001101110010011011 . . . .
The dots represent arbitrary values, because the final nonuplet has a 1 as
its last value, so we know the array ‘ends’ there.
Of course, reasoning about long strings of binary for each array is cumber-
some, so we make use of the surjection between {0, 1}N and n-tuples of bytes.

We define functions which operate on the semantical level, and describe
the getting and setting of array elements:

get(arr′, n′) : {0, 1}N × N→ Z8
2 =

← arr′n′

set(arr′, n′, by′) : {0, 1}N × N× Z8
2 =

arr′n′ = by′

The way we currently write arrays is not very compact, especially when
writing down a new array (which has all of its elements set to 0), we have
to write it as arr′ = (0, 0, . . . , 0, 0). Because we define new arrays to always
be created with each of its elements set to 0, we can shorten the creation of
new arrays to just x = arr{n}, where n is the size of the array. To avoid
ambiguity as to the accessor statement or this new initialization statement,
we use curly braces.
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Now, we define the arrlength function. It maps from an array variable
to the length of the array.

arrlength(arr′) : (Z256 × . . .× Z256)→ N

We only give the signature. For every array that is created, we define
an additional case to the function. An example of an array with a content
of (by′, by′′, by′′′) would be:

arrlength((by′, by′′, by′′′)) = 3

This allows us to enforce array bounds checking.

Finally, we give the ARR function, which defines the semantics of an array:

ARR : ArrExpr→ (State→ {0, 1}N)
ARRJ(by′, . . . , by′...′)Ks = (BYJby′Ks, . . . ,BYJby′...′Ks)

ARRJarr[a]Ks = get(ARRJarrKs,AJaKs)
ARRJarr[a] = byKs = set(ARRJarrKs,AJaKs,BYJbyKs)

3.1.5 Modulus

We extend the definition of arithmetic expressions to include the modulus:

a : := n | x |a1 + a2 | a1 ∗ a2 |a1 − a2 |a1 % a2 .

Then, we define a function which describes the modulus operation on
the semantical level:

mod(x, y) : Z× Z→ Z =

quotient ←
⌈
x

y

⌉
rem ← x− (quotient · y)
← rem,

and finally, we provide the extension to the A function

AJa′ % a′′Ks = mod(AJa′Ks,AJa′′Ks).

3.1.6 Boolean evaluation function

The boolean evaluation function B is defined in While for numbers. Because
While+ introduces bits and bytes, we need to expand B to deal with these
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concepts as well.

BJbi < bi′Ks = sbi bi < sbi bi
′

BJbi > bi′Ks = sbi bi > sbi bi
′

BJbi == bi′Ks = sbi bi = sbi bi
′

BJbi >= bi′Ks = sbi bi = sbi bi
′ ∨ sbi bi > sbi bi

′

BJbi <= bi′Ks = sbi bi = sbi bi
′ ∨ sbi bi < sbi bi

′

BJby < by′Ks = sby by < sby by′

BJby > by′Ks = sby by > sby by′

BJby == by′Ks = sby by = sby by′

BJby >= by′Ks = sby by = sby by′ ∨ sby by > sby by′

BJby <= by′Ks = sby by = sby by′ ∨ sby by < sby by′

3.1.7 Functions

Most programming languages make use of functions. In this context, func-
tions are a fixed sequence of operations, which are carried out on a number
of parameters, and which may (or may not) return some result.
We provide a definition for functions in While+ for the simple reason that if
we did not, we would have to expand each function definition to its function
body.

We define a function as a name, followed by a certain number of arguments
(between brackets), and finally a number of statements, which are applied
upon the arguments:

funcname(arg)(S)

Where we define ‘arg’ as:

arg ::= xvar = var | xbi = bi | xby = by | xarr = arr | arg, arg

With this definition, we state that an argument is some variable of a certain
type, where the value is unknown. Functions do not have a return type.
They also consider arguments to be passed by reference. This combination
means that we can simulate a non-void function by adding a ‘ret’ variable,
to which the return value is assigned. We provide the following example:

foo(x = var) (x := x + 3)

bar() (x := 7; foo(x))

Once the execution of the function ‘bar’ has terminated, the value of ‘x’
will be 10. First, it is assigned the value of 7, then, when foo is called, 3 is
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added to this. When we define the derivation rules in section 3.2, we will
elaborate on this.
We also define a function call as

funccall := funcname(funcargs),

where we define ‘funcargs’ as

funcargs := var | var , funcargs.

3.1.8 Statements

In While, we have the following statements:

S : := x :=a | s k i p | S1 ; S2 | if b then S1 else S2 |
while b do S

Following the definitions in Subsections 3.1.2, 3.1.3, 3.1.4 3.1.5 and 3.1.7
we extend this to include all our new constructs.

S : := x :=a | s k i p | S1 ; S2 | if b then S1 else S2 |
while b do S | xarr := arr | xarr [ a]=by | xbi := b i |

xby := by | funccall(funcargs)

3.1.9 Substitutions of variables

In While, there is a notion of state. A state is some mapping from variables
to values, and so to update the state, we must know how to update each
new type we have introduced. Specifically, for each type, we are interested
in how to replace an exsiting variable y with a new expression.

Substitution of bits

n[y 7→ bi′] = n

a[y 7→ bi′] = a

x[y 7→ bi′] = x

bi[y 7→ bi′] =

bi′ if bi = y

bi if bi ̸= y

by[y 7→ bi′] = (bi1[y 7→ bi′], bi2[y 7→ bi′], bi3[y 7→ bi′], bi4[y 7→ bi′],

bi5[y 7→ bi′], bi6[y 7→ bi′], bi7[y 7→ bi′], bi8[y 7→ bi′])

arr[y 7→ bi′] = (by′[y 7→ bi′], . . . , by′...′[y 7→ bi′])

This should make sense; if we are substituting some bit variable y for the
bit expression bi′, there is no change if the expression we are substituting
on is a numeral or arithmetic expression. If it is a byte or array, we forward
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the substitution onto their components. If it is a bit, we change the value if
it is the bit that is being substituted.

(bi′ ∨ bi′′)[y 7→ bi] = (bi′[y 7→ bi] ∨ bi′′[y 7→ bi])

(bi′ ∧ bi′′)[y 7→ bi] = (bi′[y 7→ bi] ∧ bi′′[y 7→ bi])

(bi′ ⊕ bi′′)[y 7→ bi] = (bi′[y 7→ bi]⊕ bi′′[y 7→ bi])

(¬bi′)[y 7→ bi] = (¬bi′[y 7→ bi])

Above, we define how any bit expression handles its substitution. Similarly
to the definitions for the other types, we send the substitution on to each byte
expression that exists within the byte expression. This recursive definition
allows for an arbitrary amount of nested operators.

Substitution of bytes

n[y 7→ by′] = n

a[y 7→ by′] = a

x[y 7→ by′] = x

bi[y 7→ by′] = bi

by[y 7→ by′] =

by′ if by′ = y

by if by′ ̸= y

arr[y 7→ by′] = (by′[y 7→ by′], . . . , by′...′[y 7→ by′])

As with the bits, substituting a byte variable for another byte expression on
any type that is not a byte doesn’t result in any change. For the array, we
send the substitution on to each of its constituent bytes.

(by′′ ∨ by′′′)[y 7→ by′]) = (by′′[y 7→ by′] ∨ by′′′[y 7→ by′])

(by′′ ∧ by′′′)[y 7→ by′]) = (by′′[y 7→ by′] ∧ by′′′[y 7→ by′])

(by′′ ⊕ by′′′)[y 7→ by′]) = (by′′[y 7→ by′]⊕ by′′′[y 7→ by′])

(¬by′′)[y 7→ by′] = ¬(by′′[y 7→ by′])

(by′′ ≫ a0)[y 7→ by′] = (by′′[y 7→ by′]≫ a0[y 7→ by′])

(by′′ ≪ a0)[y 7→ by′] = (by′′[y 7→ by′]≪ a0[y 7→ by′])

Here we again see the recursive definition of substitution on expressions, this
time for bytes. Two interesting cases here are the last two, as they involve
arithmetic expressions. Therefore, we must also define what happens if we
substitute an arithmetic expression on those byte expressions:

(by′′ ≫ a0)[y 7→ a1] = (by′′[y 7→ a1]≫ a0[y 7→ a1])

(by′′ ≪ a0)[y 7→ a1] = (by′′[y 7→ a1]≫ a0[y 7→ a1])
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Which, similarly to the other substitutions, is achieved by forwarding it onto
its immediate constituents.

Substitution of arrays

As before, we define how an array variable is substituted for a new array
expression. There are no special cases here, because no other type contains
an array.

n[y 7→ arr′] = n

a[y 7→ arr′] = a

x[y 7→ arr′] = x

bi[y 7→ arr′] = bi

by[y 7→ arr′] = by

arr[y 7→ arr′] =

arr′ if arr = y

arr if arr ̸= y

Then, we also show this for array expressions:

(by′, . . . , by′...′)[y 7→ arr′] = (by′[y 7→ arr′], . . . , by′...′[y 7→ arr′])

(arr[a])[y 7→ arr′] = ((arr)[y 7→ arr′])[a[y 7→ arr′]]

(arr[a] = by)[y 7→ arr′] = ((arr)[y 7→ arr′])[a[y 7→ arr′]] = by[y 7→ arr′]

And finally, we see cases where arithmetic expressions and byte expres-
sions are present within array expressions. Thus, we also define how substi-
tution of those types happen on array expressions:

(arr[a])[y 7→ a0] = ((arr)[y 7→ a0])[a[y 7→ a0]]

(arr[a] = by)[y 7→ a0] = ((arr)[y 7→ a0])[a[y 7→ a0]] = by[y 7→ a0]

(arr[a])[y 7→ by′] = ((arr)[y 7→ by′])[a[y 7→ by′]]

(arr[a] = by)[y 7→ by′] = ((arr)[y 7→ by′)[a[y 7→ by′]] = by[y 7→ by′]

Which, similarly to the other substitutions, is achieved by forwarding it onto
its immediate constituents.

3.2 Derivation rules

Let us look at the following toy example:

a(x = var)(b(x));

b(x = var)(c(x));

c(x = var)(x = x + incr);

incr = 3
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If we look at the code, it seems intuitively clear what each function does;
function a calls function b, function b calls function c, and function c incre-
ments the variable passed to it with incr, which is defined to be 3.
Derivation rules are the way in which we can formally parse While+ code, to
obtain the semantics of the given code. In While, as defined in the book [20],
there is one set of derivation rules, because there are no functions or global
constants. In While+, however, those do exist. The ‘intuitive’ non-formal
approach assumed that:

1. Functions need not be defined in order. That is to say, we can define
function a to call function b, even though function b has not been
defined before function a.

2. The variables assigned outside of a function are considered constants,
and cannot be changed (if they could be, we would need to somehow
include them in our state as well).

To formalize those assumptions, we use two sets of derivation rules. The
first set identifies what functions exist, what arguments they have and what
functions they call in turn. This information is then used to create a deriva-
tion order and in doing so, we avoid the problem where one might start by
deriving a function that calls a function that has not been derived yet (going
back to the toy example above, starting by deriving a would fail, because b
is not derived yet). It also reads in all global constants to create a constant
state (which is identical to a normal state, except that we cannot change
the values stored within). The second set is then applied on the results of
the first set, to obtain the semantics of each function.

3.2.1 First pass derivation rules

We define the first set of derivation rules, show their use on the toy example,
and explain how to apply the results to obtain a working derivation order.
To store the information we obtain from these derivation rules, we define an
‘environment’:

environment := (functions, function args, function bodies,

function calls, current function)

We shall briefly explain what each element is, and why we need it in the
environment.
The first element, ‘functions’, is a set of all the function names that have
been encountered so far in the derivation process. We use this set in the
process of finding a derivation order; if the current derivation order has as
many elements as the set has, it is finished.
The second element, ‘function args’, is a function that maps from a function
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name to a set of pairs. Each pair represents a single argument (where the
first element of the pair is the name, and the second the type). We use these
in the second pass, to initialize the state with all arguments at the start of
a function.
Similarly, ‘function bodies’ is a function that maps from a function name
to the corresponding body of the function. We also use these in the second
pass, to obtain the function body we want to derive.
The second-to-last element, ‘function calls’, is a function that maps from a
function name to the set of function names that are called within the func-
tion it maps from. We use this in the process of obtaining a derivation order;
at any given step, a function can be derived if its mapping in ‘function calls’
is the empty set.
The last element, ‘current function’, stores the name of the function that
the derivation process currently is in. It is used to distinguish local variables
within a function from global variables.

Before we give the derivation rules themselves, we first provide a number
of functions to alter the environment with. Similarly to the way functions
are defined on Section 3.1.2, a function that does more than one thing has
every statement on a new line. Furthermore, we refer to elements in the
environment tuple (called ‘env’, here) by their index, for conciseness.

updfunc(env, funcname) := env1 = env1 ∪ {funcname}
env5 = funcname

← env

updarg(env,name, type) := env2[env5] = env2[env5] ∪ {(name, type)}
← env

endfunc(env) := env5 = ””

← env

funccall(env, func, args) := env4[env5] = env4[env5] ∪ func

← env

updbody(env, statement) := env3[env5] = env3[env5] + statement

← env

We briefly explain what each function does. The first function, ‘updfunc’,
updates the environment to reflect that the derivation rules have encoun-
tered a new function declaration, and the statements inside should be read
in as belonging to said function. Next, ‘updarg’, updates the environment
to indicate that the current function has an argument, consisting of a type
and a name. Thirdly, ‘endfunc’ ends the current function, by setting the last
element in the environment tuple to nothing. Penultimately , ‘funccall’ indi-
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cates that the current function has a statement that is a function call. This
is separate, because we want to store the function calls made per function,
but also because we need to know the arguments that are passed within
a function call (i.e. a function call statement of the form func(args) is
needed for the function body mapping, but only the func part for the func-
tion call mapping). Lastly, ‘updbody’ indicates that the current function
has an additional statement belonging to it, that is not a function call to
another function. Finally, note that each function returns the environment
it alters. This is so that we can chain these calls together (for instance, to
properly record a function call, we need to call both ‘updarg’ and ‘funccall’).

Having defined the functions to manipulate the environment, we give the
first set of derivation rules. We give these in four parts; rules that deal with
composition, rules that deal with function arguments, rules that deal with
function bodies and finally, rules that deal with global variables.

1-comp1ns
env ⊢ ⟨S1, s⟩ −→ s′ env ⊢ ⟨S2, s′⟩ −→ s′′

env ⊢ ⟨S1; S2, s⟩ −→ s′′
if env5 = ‘’

1-comp2ns
updfunc(env, func) ⊢ ⟨func, s⟩ −→ s env′ ⊢ ⟨args, s⟩ −→ s

env′ ⊢ ⟨S1, s⟩ −→ s endfunc(env′) ⊢ s −→ s env′′ ⊢ ⟨S2, s⟩ −→ s′

env ⊢ ⟨func(args)(S1); S2, s⟩ −→ s′
if env5 = ‘’

1-comp3ns
env ⊢ ⟨S1, s⟩ −→ s updbody(env, ; ) ⊢ s −→ s env′′′⟨S2, s⟩ −→ s

env ⊢ ⟨S1; S2, s⟩ −→ s
if env5 ̸= ‘’

Table 1: First pass derivation rules for composition.

Additionally, we define:

env′ = updfunc(env, func),

env′′ = endfunc(env’),

env′′′ = upbody(env, ; ).

The rules in table 1 deal with the composition of statements. In particular,
the first rule deals with the case where the first statement is not a function
declaration, and the statements are not part of a function. The second rule
deals with the case that the first statement is a function declaration. Then,
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we must create a number of branches to handle updating the environment
accordingly. To be specific; we need a branch for the function name, its
arguments, the statement it contains, a seemingly empty branch to ‘close’
or ‘end’ the function, and a last branch for the statement that comes after
the function declaration. These need to occur in specifically that order,
because the first branch updates the environment to indicate that we are
inside of a function, and the next-to-last branch updates the environment to
indicate that we are no longer inside of a function. If the order were to be
changed (by for instance swapping the last two branches), one might change
which statements are considered to be part of a function, and which not.
The last rule is applicable only inside of a function declaration. The main
difference between it and the first rule is that here, we must make a branch to
add the character ‘;’ to the appropriate function body mapping, in between
the branches of the first and second statement.

1-arg-compns
updarg(env, var, type) ⊢ s −→ s env′ ⊢ ⟨arg, s⟩ −→ s

env ⊢ ⟨var = type, s⟩ −→ s

1-argns

updarg(env, var, type) ⊢ ⟨var = type, s⟩ −→ s

Table 2: First pass derivation rules for function arguments.

Additionally, we define

env′ = updarg(env, var, type).

The rules in table 2 deal with function arguments. Because they are defined
recursively, we need to handle two cases; where the argument consists of
two arguments, and where the argument consists of only itself. With each of
these, we simply update the environment through the appropriate function.
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1-funccallns
updbody(funccall(env, func), ‘func(args)’) ⊢ ⟨func(args), s⟩ −→ s

1-funcbodyns

updbody(env,S) ⊢ ⟨S, s⟩ −→ s

1-conditionalns
updbody(env, ‘if(b)then(’) ⊢ s −→ s

env′ ⊢ ⟨S1, s⟩ −→ s updbody(env′, ‘)else(’) ⊢ s −→ s
env′′ ⊢ ⟨S2, s⟩ −→ s updbody(env′′, ‘)’ ⊢ s −→ s

env ⊢ ⟨if(b)then(S1)else(S2), s⟩ −→ s

1-whilens
updbody(env, ‘while(b)do(’) ⊢ s −→ s

env′′′ ⊢ ⟨S, s⟩ −→ s updbody(env′′′, ‘)’) ⊢ s→ s

env ⊢ ⟨while(b)do(S), s⟩ −→ s

Table 3: First pass derivation rules for function bodies.

Additionally, we define

env′ = updbody(env, ‘if(b)then(′),

env′′ = updbody(env′, ‘)else(′),

env′′′ = updbody(env, ‘while(b)do(′).

The rules in table 3 deal with all function bodies. For the purpose of the
first pass, there is only one thing in a function body which we are interested
in; function calls. The first rule handles this case, and the second rule han-
dles the case where the statement is not a function call. The last two rules
deal with if statements and while loops, because these are statements that
contain other statements inside of them.
Note that calls to ‘updbody’ have the syntax that is being added wrapped in
quotation marks. These quotation marks do not have any meaning, and are
only there to distinguish closing parentheses in syntax from closing paren-
theses that actually close the arguments passed to ‘updbody’.
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1-ass-bins
env ⊢ ⟨xbi = bi, s⟩ −→ s[xbi → BIJbiKs] if env5 = ‘’

1-ass-byns

env ⊢ ⟨xby = by, s⟩ −→ s[xby → BYJbyKs] if env5 = ‘’

1-ass-arrns

env ⊢ ⟨xarr = arr, s⟩ −→ s[xarr → ARRJarrKs] if env5 = ‘’

1-ass-arrelemns

env ⊢ ⟨xarr = by, s⟩ −→ ARRJxarr[a] = byKs] if env5 = ‘’

1-ass-varns

env ⊢ ⟨xvar = var, s⟩ −→ s[xvar → AJvarKs] if env5 = ‘’

Table 4: First pass derivation rules for global variables.

These rules handle variable assignment outside of functions (indicated by
the requirement that env5 = ‘’).

We can now apply the rules we have defined to obtain a derivation tree.
For the sake of brevity, we will refer to elements of the environment tuple
by their index, as is also done in the definition of the environment update
functions. The obtained derivation tree is given below:

updfunc(env, a) ⊢ ⟨a, ()⟩ −→ ()
updarg(env′, x, var) ⊢ ⟨x = var, ()⟩ −→ ()

updbody(funccall(env′′, b), b(x)) ⊢ ⟨b(x), ()⟩ −→ ()
endfunc(env′′′) ⊢ () −→ ()

Tree 2

env ⊢ ⟨b(x = var)(c(x)); c(x = var)(x = x+ incr); incr = 3, ()⟩ −→ (incr → 3)

env ⊢ ⟨a(x = var)(b(x)); b(x = var)(c(x)); c(x = var)(x = x+ incr); incr = 3, ()⟩ −→ (incr → 3)

Where ‘Tree 2’ is defined as:

updfunc(env′′′′, b) ⊢ ⟨b, ()⟩ −→ ()
updarg(env′′′′′, x, var) ⊢ ⟨x = var, ()⟩ −→ ()

updbody(funccall(env′′′′′′, c), c(x)) ⊢ ⟨c(x), ()⟩ −→ ()
endfunc(env′′′′′′′) ⊢ ()→ ()

Tree 3

env ⊢ ⟨c(x = var)(x = x+ incr); incr = 3, ()⟩ −→ (incr → 3)

env ⊢ ⟨b(x = var)(c(x)); c(x = var)(x = x+ incr); incr = 3, ()⟩ −→ (incr → 3)
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Where ‘Tree 3’ is defined as:

updfunc(env′′′′′′′′, c) ⊢ ⟨c, ()⟩ −→ ()
updarg(env′′′′′′′′′, x, var) ⊢ ⟨x = var, ()⟩ −→ ()

updbody(env′′′′′′′′′′, x = x+ incr) ⊢ ⟨x = x+ incr, ()⟩ −→ ()
endfunc(env′′′′′′′′′′′) ⊢ ()→ ()

env ⊢ ⟨c(x = var)(x = x+ incr), ()⟩ −→ ()
env ⊢ ⟨incr = 3, ()⟩ −→ (incr → 3)

env ⊢ ⟨c(x = var)(x = x+ incr); incr = 3, ()⟩ −→ (incr → 3)

And where we define

env′ = updfunc(env, a),

env′′ = updarg(env′, x, var),

env′′′ = updbody(funccall(env′′, b), b(x)),

env′′′′ = endfunc(env′′′),

env′′′′′ = updfunc(env′′′′, b),

env′′′′′′ = updarg(env′′′′′, x, var),

env′′′′′′′ = updbody(funccall(env′′′′′′, c), c(x)),

env′′′′′′′′ = endfunc(env′′′′′′′),

env′′′′′′′′′ = updfunc(env′′′′′′′′, c),

env′′′′′′′′′′ = updarg(env′′′′′′′′′, x, var),

env′′′′′′′′′′′ = updbody(env′′′′′′′′′′, x = x+ incr).

Annotated program style

It is immediately obvious that this style of derivation trees is rather verbose.
Indeed, the toy example, which contains only four lines of code (or, if they
are expanded to fit with the normal styling of While+ code, ten), results in
a derivation tree which contains nineteen rule applications. If we consider
that just the reference implementation consists of 580 lines, it should be
clear that we require a more compact visualization. For this, we provide the
annotated program style. This style, inspired by ‘decorated programs’ as
defined by Benjamin Pierce [21] allows us to show a derivation tree much
more compactly.
There is one distinct difference between decorated programs and our styling;
decorated programs are defined for Hoare logic, whereas our derivation rules
fall under Natural Semantics.
Below, we provide the annotated equivalent of each derivation rule, starting
with composition rules:
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[1-comp1ns]

env = (funcs, funcargs, funcbodies, funccalls, currfunc)

state = s

S1; { ⊢ δ1 }
env = (funcs, funcargs, funcbodies, funccalls, currfunc)

state = s′

S2 { δ2 }
env = (functions′, func′args, func

′
bodies, func

′
calls, curr

′
func)

state = s′′

[1-comp2ns]

env = (funcs, funcargs, funcbodies, funccalls, currfunc)

state = s

func { funcs += func, currfunc = func ⊢ }
(

args { δ1 ⊢ }
)

(

S1 { δ2 ⊢ }
); { currfunc =′′ ⊢ }
env = (funcs′, func′args, func

′
bodies, func

′
calls, curr

′
func)

state = s′

S2 { δ3 ⊢ δ4 }
env = (functions′′, func′′args, func

′′
bodies, func

′′
calls, curr

′′
func)

state = s′′

[1-comp3ns]

env = (funcs, funcargs, funcbodies, funccalls, currfunc)

state = s

S1; { δ1, funcbodies[currfunc]+ = ; ⊢ }
S2 { δ2 ⊢ }
env = (funcs′, func′args, func

′
bodies, func

′
calls, curr

′
func)
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Table 5: First pass derivation rules for composition, annotated program
style.

Here, ‘δi’ indicates the differences in environment or state caused by a spe-
cific statement. If a turnstile is present, it denotes that the delta only affects
the environment (if the delta is before the turnstile) or only the state (if it
is present after).
For instance, in the rule 1-comp1ns, ‘funcs

′’ is obtained by applying δ2 on
‘funcs’.
Furthermore, in this rule, the first statement cannot be a function decla-
ration. Thus, it cannot alter the environment, which is why the turnstile
indicates that the delta only applies to the state.

Next, we provide the annotated variants of the rules that deal with function
arguments:

[1-arg-compns]

var = type, {funcargs[currfunc] += (var, type) ⊢ }
arg { δ1 ⊢ }

[1-argns]

var = type {funcargs[currfunc] += (var, type) ⊢ }

Table 6: First pass derivation rules for function arguments, annotated
program style.

Note that for the first rule, the δ will denote all subsequent arguments that
are to be processed, due to our definition of ‘args’.

We now provide the annotated variants of the function body rules:
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[1-funccallns]

func(args) { funccalls[currfunc] += func, funcbody[currfunc]+ = func(args) ⊢ }

[1-funcbodyns]

S { funcbody[currfunc] += S ⊢ }

[1-conditionalns]

if(b) then ( {funcbody[currfunc] += if(b)then( ⊢ }
S1 { δ1 ⊢ }

) else ( {funcbody[currfunc] +=)else( ⊢ }
S2 { δ2 ⊢ }

) {funcbody[currfunc] +=) ⊢ }

[1-whileloopns]

while(b)do( {funcbody[currfunc] += while(b)do( ⊢ }
S {δ1 ⊢ }

) {funcbody[currfunc] +=) ⊢ }

Table 7: First pass derivation rules for function bodies, annotated program
style.

Finally, we provide the annotated variants of the rules that deal with global
variables.
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[1-ass-bins]

xbi = bi { ⊢ xbi = BIJbiKs }

[1-ass-byns]

xby = by { ⊢ xby = BYJbyKs }

[1-ass-arrns]

xarr = arr { ⊢ xarr = ARRJarrKs }

[1-ass-arrelemns]

xarr[a] = by { ⊢ xarr = ARRJxarr[a] = byKs }

[1-ass-varns]

xvar = a { ⊢ xvar = AJaKs }

Table 8: First pass derivation rules for global variables, annotated program
style.

An observant reader will note that these rules are not quite the same as one
would expect. Indeed, we are only defining the difference in the environment
on every rule application. This is a consequence of the fact that there are
only two ways we can alter the environment; either we change the value of
‘current function’, or we add some element to a set or tuple. Because this is
so restrictive, there is only one way in which we can interpret those deltas.
Note that we explicitly state the environment and state at the start of the
program, but also at the end. We do this, because it allows any reader to
verify that the result of the annotated program is valid. Using this annotated
program style, we can simplify our toy example derivation tree:

env = ( ∅ , ∅ , ∅ , ∅ , ‘ ‘ ” )
s t a t e = ( )
a { funcs += a , cu r r f unc = a ⊢ }
( x = var ) { f unc a rg s [ a ] += (x , var ) ⊢ }
(
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{ func body [ a ] += b(x ) , f u n c c a l l s [ a ] += b ⊢ }
b(x )

) ; { cu r r f unc = ‘ ‘” ⊢ }
b( { funcs += b , cu r r f unc = b ⊢ }

x = var { f unc a rg s [ b ] += (x , var ) ⊢ }
) (
{ f unc {body } [ b ] += c (x ) , f u n c c a l l s [ b ] += c ⊢ }

c ( x )
) ; { cu r r f unc = ‘ ‘” ⊢ }
c ( { funcs += c , cu r r f unc = c ⊢ }

x = var { f unc a rg s [ c ] += (x , var ) ⊢ }
) (

{ func body [ c ] += x = x+in c r ⊢ }
x = x + in c r

) ; { cu r r f unc = ‘ ‘” ⊢ }
i n c r = 3 { ⊢ i n c r = 3}
env = (

{ a , b , c } ,
{

a 7→ {(x , var ) } ,
b 7→ {(x , var ) } ,
c 7→ {(x , var ) }

} ,
{

a 7→ b(x ) ,
b 7→ c ( x ) ,
c 7→ x=x+in c r

} ,
{

a 7→ { b } ,
b 7→ { c } ,
c 7→ ∅

} ,
””)

s t a t e = { i n c r 7→ 3 }

In order to avoid ambiguity as to which delta applies to which statement,
we added additional newlines to the code. Even with those, however, we can
now simply read the resulting state and environment by applying all deltas
from top to bottom (starting with the empty environment and the empty
state).

Results of application

We see that after the application, both the environment and the state contain
useful information. Let us make the information contained within slightly
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more explicit:

functions = {a, b, c}
function args = {a→ ((x, var)), b→ ((x, var)), c→ ((x, var))}

function bodies = {a→ b(x), b→ c(x), c→ x = x+ incr}
function calls = {a→ {b}, b→ {c}, c→ ∅}

state = {incr 7→ 3}

Note that we have not listed the ‘current function’ part of the environment,
because it contains no useful information; after constructing a derivation
tree of a valid While+ program, it will always be empty.
We now need to decide upon a valid order of derivation, for we cannot derive
a function that calls a function that we have not yet derived (because we
would not know what the called function does). To do this, we can look at
‘function calls’. Indeed, any function which maps to the empty set in this
mapping can be derived at the beginning. A general procedure for obtaining
a valid derivation order is as follows:

1. Apply the first pass derivation rules on a While+ program, to obtain
the resulting environment and state.

2. Create an ordered tuple, which will hold the names of the functions to
be derived, in some order. Let us call this tuple ‘derivation order’.

3. Take each function which, in the mapping of ‘function calls’, currently
maps to ∅, and add it to the end of ‘derivation order’. Afterwards,
remove this element from the domain of ‘function calls’.

4. Update the mapping of ‘function calls’. For each element, we remove
those parts of the co-domain that are also present in ‘derivation order’.
By doing so, ‘function calls’ no longer represents the function calls that
are made per function, but only those that are not yet (simulated to
be) derived.

5. If the size of ‘functions’ is equal to ‘derivation order’, or there are no
elements in ‘function calls’ that currently map to the empty set, stop.
Otherwise, go back to step 3.

Note that this procedure may fail. Indeed, if there are functions that refer to
themselves (or refer to other functions, which in turn refer back to the first
function), there is no valid derivation order. Similarly, if there are function
calls to functions that do not exist, there will be no valid derivation order.
This is the case when the length of the ‘functions’ set is not equal to the
length of the ‘derivation order’ tuple.
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A second important thing to note is that this procedure is not exactly
deterministic. If we arrive at step 3, and we have multiple functions with an
empty co-domain, the procedure does not specify which one should be added
first. However, this does not influence the correctness of the outcome; the
only thing we wish to ensure is that if we derive each function according to
a given ordering, no function calls to non-derived functions are encountered.

Let us apply the procedure on the toy example. We have already applied
step 1, and now apply step 2.

functions = {a, b, c}
function calls = {a→ {b}, b→ {c}, c→ ∅}

derivation order = ()

We apply step 3:

functions = {a, b, c}
function calls = {a→ {b}, b→ {c}}

derivation order = (c)

Step 4:

functions = {a, b, c}
function calls = {a→ {b}, b→ ∅}

derivation order = (c)

Now, we are in step 5, but b maps to the empty set, so we go back to step
3.

functions = {a, b, c}
function calls = {a→ {b}}

derivation order = (c, b)

We again apply step 4:

functions = {a, b, c}
function calls = {a→ ∅}

derivation order = (c, b)

We are again in step 5, but now a maps to the empty set, so we go back to
step 3.

functions = {a, b, c}
function calls = ∅

derivation order = (c, b, a)
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Because there are no elements in ‘function calls’ anymore, we can skip step 4,
and immediately arrive in step 5. Now, we see that the length of ‘functions’
and ‘derivation order’ are equal, so we may stop, as this means that all
functions are present in the derivation order. We have found a derivation
order of (c, b, a), of the functions {a, b, c}.

3.2.2 Second pass derivation rules

The second pass deals with the creation of function mappings for each func-
tion in the ‘derivation order’ tuple. The general process for doing so is as
follows:

1. Remove the first element from the ‘derivation order’ tuple. Let us call
this element ‘current function’.

2. Use ‘current function’ on ‘function args’ to obtain the arguments that
belong to this function. Let us call these arguments ‘args’.

3. Use ‘current function’ on ‘function bodies’ to obtain the function body
that belongs to this function. Let us call this ‘body’.

4. Create an initial state, that contains as its read only part the state of
the first pass. Add every argument pair in ‘args’ to the state, but with
arbitrary values. Let us call this state ‘s’.

5. Apply the second pass derivation rules on ‘body’, with state ‘s’, to
obtain the resulting function mapping. Add that function mapping to
the environment.

6. If there are still functions left in ‘derivation order’, go to step 1.

An arbitrary value, in this context, means a value that is within the
domain of the variable type, but not yet known to be any specific value.
Additionally, if the type is made up of component types, we may specify the
arbitrary value in terms of the component types.
As an example, we show what arbitrary values look like for numbers, bits
and bytes:

(number, var) 7→ x

(bitval, bit) 7→ b

(byteval, byte) 7→ (b′, b′′, b′′′, b′′′′, b′′′′′, b′′′′′′, b′′′′′′′, b′′′′′′′′)

Initializing each argument as an arbitrary value in step 3 might seem
like an odd choice, but it has far-reaching consequences. If we initialize
arguments as concrete values, the results of a derivation only show that
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for some specific input, we get some other specific output. By taking an
arbitrary input, we show that a function mapping holds for all possible
inputs. This makes the equivalence proof a lot stronger.

Restrictions

A function mapping is defined in terms of its variables, but is not always
applicable. Consider the following example:

foo(a = var)

(

if (a > 3) then (

a = 7

) else (

a = 0

)

)

If we were to apply the second pass rules to it, we would obtain two function
mappings. The first has as restriction (or, equivalently, requirement) that
a > 3, and maps a to 7 . The second has as restriction that ¬(a > 3), or
the equivalent a ≤ 3, and maps a to 3.
Formally, we define a restriction as:

ri := (x, s) 7→ {True,False}
∀i ∈ {arr, bi, by, var}

Where x is the variable of type i, and s the state.
Going back to the toy example defined earlier; our two function mappings
are formally defined as:

({a > 3}, (a→ 7))

({a ≤ 3}, (a→ 3))

In the environment, we would visualize the function mappings as:

{foo −→ {
({a > 3}, (a→ 7)),

({a ≤ 3}, (a→ 3))}
}

So when function ‘foo’ is called, the function mapping that is applied is the
one that holds true given the provided state ‘s’.
Note that when the rules are applied properly, we always get cases that are
complete and not overlapping. In some edge cases1, however, we could end

1These edge cases are not invalid, but can never influence the semantics of the program.
Thus, we do not really care about them.
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up with a restriction which can never be true. Take for instance x ≤ 3∧x ≥
8. This simply means that the function mapping is never applicable. An
example piece of code that would lead to such a restriction would be:

if( x <= 3 ) then (

if ( x >= 8 ) then (

S_1

) else (

S_2

)

) else (

S_3

)

The statement S1 would then be unreachable with the above restriction be-
cause although our rule definitions state that the statement is reached when
the requirement is true, it is intuitively clear that x ≤ 3 ∧ x ≥ 8 will never
be true.

With all the rules defined, we show their application on a toy example, and
show that it is equivalent to creating a derivation tree for every valuation of
the arguments.

foo(bar=bit , ret=bit)

(

baz(bar , ret)

);

baz(bar=bit , ret=bit)

(

ret = bar ∨ 1
)

Application of the first pass derivation rules yields the following annotated
program:

env = ( ∅ , ∅ , ∅ , ∅ , ””)
s t a t e = ( )
foo { f un c t i on s += foo , cur rent func t i on = foo ⊢ }
(

bar = b i t { f unc t i on args [ foo ] += ( bar , b i t ) ⊢ }
,
r e t = b i t { f unc t i on args [ foo ] += ( ret , b i t ) ⊢ }

) (
{ f unc t i on c a l l s [ f oo ] += baz , func t i on body [ foo ]

+= baz ( bar , r e t ) ⊢ }
baz ( bar , r e t )

) ; { cur rent func t i on = ”” ⊢ }
baz { f un c t i on s += baz , cur r ent func t i on = baz ⊢ }

40



(
{ f unc t i on body [ baz ] += re t=bar \/ 1 ⊢ }
r e t = bar \/ 1

) { cur rent func t i on = ”” ⊢ }

env = (
{ foo , baz } ,
{

f oo 7→ {( bar , b i t ) , ( ret , b i t ) } ,
baz 7→ {( bar , b i t ) , ( ret , b i t ) }

} ,
{

f oo 7→ baz ( bar , r e t ) ,
baz 7→ r e t = bar ∨ 1

} ,
{

f oo 7→ { baz } ,
baz 7→ ∅

} ,
””

)
s t a t e = ( )

Applying the procedure for obtaining a valid derivation order (omitted for
conciseness), we get:

(baz, foo).

We can manually quickly check this for correctness; baz is called from foo,
but not the other way around. Thus, we can safely derive baz before deriv-
ing foo.

Now we may apply the second pass derivation rules on them. Applying
the procedure:

current function = baz

args = {((bar, bi), (ret, bi)}
body = ret = bar\/1

s = (bar 7→ bi′, ret 7→ bi′′)

Now, we may make an annotated program:

env = ( ∅ )

state = ()

ret = bar \/ 1 { ⊢ ret = 1}
env = ( { } )

state = (ret 7→ 1)
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Where we manually simplify bar ∨ 1 to 1, using the definition of ∨ (i.e.,
because both 0 ∨ 1 and 1 ∨ 1 yield 1).
Note as well that the environment, which contains the function mappings,
is completely empty. This should make sense, as this is the first function for
which we are creating an annotated program.
Then we update the environment with the new function mapping:

{
baz −→ {{}, ((bar, ret)→ (bar, 1))},

}

where the empty set represents the fact that there are no restrictions on this
function.
We will now repeat this with the second function:

current function = foo

args = {((bar, bi), (ret, bi)}
body = ret = baz(bar, ret)

s = (bar 7→ bi′, ret 7→ bi′′)

Creating another annotated program:

env = ({baz −→ {∅, ((bar ,ret) 7→ (bar ,1))}})
state = ( )

ret = baz(bar , ret) { ⊢ ret=1 }

env = ({baz −→ {∅, ((bar ,ret) 7→ (bar ,1))}})
state = ( )

In the third line, a lot of things are happening at once. Let us go through
them step by step, to explain the process clearly:

- We apply the rule that handles function calls. Specifically, the function
is ‘baz’, and it is called with the parameters ‘bar’ and ‘ret’, which are
both bytes2.

- In our environment, we find some mapping for the function ‘baz’. This
maps to a set of pairs, each containing a set of restrictions, and a
function mapping.

- There is exactly one set of pairs.

- The set of restrictions is empty. Therefore, the restrictions are vacu-
ously met3.

2If the name of the function is not found, or the number or types of the parameters
does not match, the function rule would not have been applicable.

3If there would be restrictions, this implies that there are multiple variants of the same
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- The function mapping specifies that ‘bar’ retains the value it had be-
fore, and ‘ret’ maps to 1. We do not need to specify that something
does not change, so in the annotation, we only need to specify that
‘ret’ maps to 1.

Then the output of the derivation rule procedure is the following set of
mappings:

{
baz −→ {{}, ((bar, ret)→ (bar, 1))}
foo −→ {{}, ((bar, ret)→ (bar, 1))}

}

Note that the arrows used to represent the various mappings are indeed
explicitly different; the outermost mappings are represented by −→, whereas
the inner mappings are represented by →. In ASCII format, these are
similarly represented by −→ and 7→.
In this manner, we reduce the chance of people misreading the scoping of
the mappings.

Rule definition

We define the second set of derivation rules, show their use on the same toy
example from Subsection 3.2.1, and explain how to interpret the results.
To store the information we obtain from applying the rules, we define an
‘environment’:

environment := (mappings, current function)

The first element of the environment stores the state mapping(s) of each
function, while the second stores the current function to which the rules
are being applied. For conciseness, we will refer to ‘env[funcname]’ when
accessing the mappings of function ‘funcname’, and to ‘func’ when referring
to the current function.

In the first set of derivation rules, our state was a quadruplet. In the second
set, the state will be a pair of quadruplets. The first element of this pair is
the read-only state, obtained from the first pass (containing all global vari-
ables). The second element is the state of the current function that is being
derived. Consequently, assigning a variable in a function is only possible if

functions (i.e. there are one or more conditional statements in the function, so it is split
into one variant where the true branch is always taken, and one where the false branch
is always taken). Then, we would have had to check for which variant all restrictions
hold. If there would have been no such variant, the function call rule would not have been
applicable.
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it is not present in the read-only state.
No rules enforce this requirement, so it is up to the creator of the derivation
tree to ensure it is not violated.

Before we give the derivation rules themselves, we first provide a number
of functions to interact with the environment. As in Subsection 3.2.1, a
function that does multiple things has each statement on a new line, and
the environment is regarded to be a tuple that may be accessed through its
index.

validcall(env , callfunc, state) := result =⊥
intermediary =⊥
callfunc ∈ env∧

(∃(r, intermediary) ∈ env[callfunc] : ∀r′ ∈ r :

r′(state))→ result = intermediary

← result

arrrestriction(env, arr, len) := env[func]1 = env[func]1 ∪ {length(arr) ≥ len}
← env

arrcreation(env, arr, len) := env[func]1 = env[func]1 ∪ {length(arr) = len}
← env

iftrue(env, cond) := env[func]1 = env[func]1 ∪ {cond}
← env

iffalse(env, cond) := env[func]1 = env[func]1 ∪ {¬cond}
← env

The first function, ‘validcall’, returns the function mapping for a specific
function iff ‘callfunc’ exists in the function mapping, and there is at least one
mapping for ‘callfunc’ for which all of its restrictions hold in the provided
state. If not, the function is undefined.
This is enforced by capturing the current mapping to be considered in ‘m’.
If all restrictions hold, then the right side of the implication is met, meaning
we assign the result to ‘r’. If not, ‘r’ retains its undefined value. The second
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and third functions both add a restriction to the set of restrictions for the
current function. To be more precise, it adds a restriction with respect to
the length of an array. This is usually used to enforce that an array can be
read from or written to within a specific function, if it is a parameter.
The last two functions also add requirements, which are to be used for con-
ditionals; they add requirements to enforce that an if-then-else statement
always falls within its false or true case.

Having defined several functions to manipulate the environment, we give
the second set of derivation rules. We give these in five parts; assignments,
skip, compositions, conditionals, while loops and function calls. Note that
each rule name starts with 2 to indicate that it is part of the rules that
handle the second pass.

2-ass-varns

env ⊢ ⟨xvar = a, s⟩ −→ s[xvar → AJaKs] if env2 ̸= ‘’

2-ass-bins
env ⊢ ⟨xbi = bi, s⟩ −→ s[xbi → BIJbiKs] if env2 ̸= ‘’

2-ass-byns

env ⊢ ⟨xby = by, s⟩ −→ s[xby → BYJbyKs] if env2 ̸= ‘’

2-ass-arrns

arrcreation(env, arr,AJlenKs) ⊢ ⟨xarr = arr{len}, s⟩ −→ s[xarr = ARRJarrKs]

if env2 ̸= ‘’

2-ass-arrelemns

arrrestriction(env, xarr,AJaKs) ⊢ ⟨xarr[a] = by, s⟩ −→ s[xarr = ARRJxarr[a]Ks

if env2 ̸= ‘’

Table 8: Second pass derivation rules for variable assignment.

The first three rules, 2-ass-varns, 2-ass-bins and 2-ass-byns are essentially
identical to the ones for assignment in the first set of derivation rules, except
for the fact that they now update the second quadruple of the state as
opposed to the first. However, 2-ass-arrns and 2-ass-arrelemns differ, in the
sense that they add restrictions; if an array is created with size x, it trivially
follows that it must be of size x. It might seem strange to create a restriction
for this, but this can then be used to reduce additional restrictions.
If an array is read from or written to at index x, then it follows that it must
be of length ≥ x. If the array is local, we can always directly show that it
holds or that it does not hold (in which case the While+ code is invalid),
but if the array is a parameter, the restriction will remain in the function
mapping.
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2-skipns
env ⊢ ⟨skip, s⟩ −→ s

Table 9: Second pass derivation rules for the skip statement.

The skip statement, like in normal While, does nothing.

2-compns
env ⊢ ⟨S1, s⟩ −→ s′, env ⊢ ⟨S2, s

′⟩ −→ s′′

env ⊢ ⟨S1;S2, s⟩ −→ s′′

Table 10: Second pass derivation rules for composition.

Next, the composition rule. Unlike in the first pass, there is only one case
to deal with, because the second pass always applies to a function body4.

2-ifttns
env ⊢ ⟨S1, s⟩ −→ s′

env ⊢ ⟨if(b)then(S1)else(S2), s→ s′
if BJbKs = tt

2-ifffns
env ⊢ ⟨S2, s⟩ −→ s′

env ⊢ ⟨if(b)then(S1)else(S2), s→ s′
if BJbKs = ff

2-if⊥ns
iffalse(env, b) ⊢ ⟨S1, s⟩ −→ s′, iftrue(env, b) ⊢ ⟨S2, s⟩ −→ s′′

env ⊢ ⟨if(b)then(S1)else(S2), s⟩ ⇒ (s′, s′′)
if BJbKs =⊥

Table 11: Second pass derivation rules for conditionals.

There are three rules for if statements. The first two deal with the cases
where the state allows us to immediately determine whether the condition
is true. As a toy example; a condition of x < 6, with a state of (x 7→ 8)
clearly makes the condition evaluate to ff.
The 2-if⊥ns rule, however, deals with the case where the condition refers to
variables which have an arbitrary value, or are partially made up of an
arbitrary value. Consider the example where the condition is x < 6, and

4Recall that the second pass rules apply upon the contents of ‘function bodies’, for
each function name in ‘functions’.
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the state is (x 7→ y + 3), where all we know of y is that it is also a number.
Clearly, we cannot apply the first two rules, but the third allows us to
overcome the problem by introducing restrictions. Effectively, it splits the
current function into two parts. We then apply the second pass rules to
each part to obtain two mappings, with differing restrictions. This is why
the result of this derivation rule is (s′, s′′) as opposed to a singular state. To
make this more visually distinct, we use ⇒ instead of →.
To refer back to the example, we would split the derivation tree into two
branches, where one branch continues with the restriction that (y + 3) < 6,
or the equivalent y < 3, and the other that ¬(y < 3), or the equivalent
y ≥ 3. This then trivially allows us to verify in which case the if statement
is.

2-whilettns
env ⊢ ⟨S, s⟩ −→ s′, ⟨while(b)do(S), s′⟩ −→ s′′

env ⊢ ⟨while(b)do(S), s⟩ −→ s′′
if BJbKs = tt

2-whileffns
env ⊢ ⟨while(b)do(S), s⟩ −→ s if BJbKs = ff

Table 12: Second pass derivation rules for while loops.

The while rules are identical to those in While.

2-funccallns
env ⊢ ⟨func(args), s⟩ → m(s) if valid call(env, func, s) = m

Table 13: Second pass derivation rules for function calls.

The function call rule applies the specified mapping to the state, if one is
produced by the ‘valid call’ environment function. If not, the rule itself will
not be applicable.

Annotated program style

Similar to the first pass rules, the second pass rules are also verbose. To
solve this, we also introduce an annotated program style for the second pass
rules.
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[2-ass-varns]

xvar = a { ⊢ xvar = AJaKs }

[2-ass-bins]

xbi = bi { ⊢ xbi = BIJbiKs }

[2-ass-byns]

xby = by { ⊢ xby = BYJbyKs }

[2-ass-arrns]

xarr = arr{len} { len(xarr) = AJlenKs ⊢ xarr = ARRJarrKs }

[2-ass-arrelemns]

xarr[a] = by { len(xarr) ≥ AJaKs ⊢ ARRJxarr[a] = byKs }

Table 14: Second pass derivation rules for variable assignment, annotated
program style.

Similar to the first pass, the annotated style replaces calls to environment
functions with their effects on the environment.
And also similar to the first pass, the effects on the environment and state
are represented by the statements before and after the turnstile, respectively.
They provide us with the differences in state and environment that occurs
from the statement the annotation is applied to.
As an example; the first rule does not alter the environment in any way, but
changes the stored value of the variable that is assigned to whatever the A
function says the arithmetic expression a evaluates to.

[2-skipns]

skip { ⊢ }

Table 14: Second pass derivation rule for the skip statement, annotated
program style.
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[2-compns]

env = (restrictions, func)

state = s

S1; { δ1 ⊢ δ2 }
env = (restrictions′, func)

state = s′

S2; { δ3 ⊢ δ4 }
env = (restrictions′′, func)

state = s′′

Table 15: Second pass derivation rules for the composition statement,
annotated program style.
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[2-ifttns]

if (b) then(

S1 { δ1 ⊢ δ2 }
)else(

S2

)

[2-ifffns]

if (b) then(

S1

)else(

S2 { δ1 ⊢ δ2 }
)

[2-if⊥ns]

if (b) then(

S1 { restrictions += b ⊢ δ1 }
)else(

S2 { restrictions += ¬b ⊢ δ2 }
)

For 2-if⊥ns, the annotations might not make it entirely clear that this rule
causes the derivation tree to be split. Therefore, we introduce an alternative
notation:
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[2-if⊥ns]

%true case :

if (true) then(

S1 { restrictions += b ⊢ δ1 }
)else(

S2

)

%false case :

if (false) then(

S1

)else(

S2 { restrictions += ¬b ⊢ δ2 }
)

Table 16: Second pass derivation rules for conditionals, annotated program
style.

Note that the lines starting with a ‘%’ have no semantic meaning, and
are there solely to indicate the ‘split’. Furthermore, because the split has
introduced a restriction, we may replace the conditions by true or false to
make it exceedingly clear which case the split is in.

[2-whilens]

while (b) do

(

{ δ1 ⊢ δ2 }
. . .

{ δn−1 ⊢ δn }
S

)

Table 17: Second pass derivation rules for while loops, annotated program
style.
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Note that in this rule, there are as many annotations as there are iterations
of the loop. If there are nested loops, this might become confusing, which
is why we introduce the following notation:

while (b) do

(

while (b′) do

(

%outer loop 1

{ δ1 ⊢ δ2 }
. . .

{ δn−1 ⊢ δn }
%outer loop ...

{ δ1 ⊢ δ2 }
. . .

{ δn−1 ⊢ δn }
%outer loop m

{ δ1 ⊢ δ2 }
. . .

{ δn−1 ⊢ δn }
S

)

)

Where the lines starting with ‘%’ have no semantic meaning, but are
used to indicate the start of a new outer loop. Note that if a higher level
of nesting occurs, the creator of the derivation tree is free to change the
specific wording of the lines starting with ‘%’.

[2-funccallns]

func(args){ ⊢ validcall(env, func, s)(s) }

Having defined all annotated variants, we now show their application on
the toy example from earlier.
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The derivation order we obtained before is:

(c, b, a).

Thus, following the general process laid out, we first select the function c

to be derived. Recall that our read-only part of the state is (incr 7→ 3), the
argument to c is (x, var), and that the body is x = x + incr.
As we are just starting to derive programs, the first element of the environ-
ment (containing function mappings) will be empty. The second element is
the name of the function being derived. Thus, the annotated program for
the function c is:

state = ()

env = ( ∅, c)

{ ⊢ x = x + 3 }

x = x + incr

state = (x 7→ x = x + 3)

env = ( ∅, c)

There are no restrictions in this function, and the resulting state trivially is
(x 7→ x+ 3). Thus, the state mapping of c is:

c 7→ { ({ ∅, (x 7→ x + 3)}) }

Next, we select the function b to be derived.
The argument to b is (x, var), and the body is c(x).
We have derived c, and so we have now added it to the first element of the
environment. Furthermore, we update the second element of the environ-
ment to be b. The annotated program for the function b is:

state = ()

env = ( {c 7→ { ({ ∅, (x 7→ x + 3)}) }}, b)

{ ⊢ x = x + 3}

c(x)

state = (x 7→ x + 3)

env = ( {c 7→ { ({ ∅, (x 7→ x + 3)}) }}, b)

Note that although there is only one annotation, a lot happens in it. In
order:

1. We see the function being called is c, so we look up c in the function
mapping. It exists.

2. We check if there exists any pair from the set of function mappings of
c for which the restriction holds. There is one; the first and only pair
has an empty set of restrictions, so all restrictions vacuously hold.

3. We apply the state mapping of the pair we just found to the current
state, resulting in the delta that is visible in the annotation.

53



There are again no restrictions, and the resulting state is again trivially
(x 7→ x+ 3). Thus, the state mapping of b is:

b 7→ { ({ ∅, (x 7→ x + 3)}) }

Finally, we select the function a to be derived.
The argument to a is (x, var), and the body is b(x).
We have derived c and b, and so we have now have two function mappings
in the environment. Furthermore, we update the second element of the
environment to be a. Then, the annotated program for the function a is:

state = ()

env = ( {c 7→ { ({ ∅, (x 7→ x + 3)}) },

b 7→ { ({ ∅, (x 7→ x + 3)}) }}, a)

{ ⊢ x = x + 3}

b(x)

state = (x 7→ x + 3)

env = ( {c 7→ { ({ ∅, (x 7→ x + 3)}) },

b 7→ { ({ ∅, (x 7→ x + 3)}) }}, a)

Like before, there are no restrictions, and the resulting state is again (x 7→
x+ 3). The state mapping of a is then:

a 7→ { ({ ∅, (x 7→ x + 3)}) }

And thus the full state mapping of this toy example is:

{

c 7→ { ({ ∅, (x 7→ x + 3)}) },

b 7→ { ({ ∅, (x 7→ x + 3)}) },

a 7→ { ({ ∅, (x 7→ x + 3)}) }

}

Results of application

The result of a successful application of the derivation rules is the map-
ping of function names to mappings of state and associated restrictions.
This, however, is not a direct answer to the question we aim to answer in
this thesis. Therefore, this last step must allow us to determine whether two
programs are equivalent, given the results of a successful program derivation.

There are a number of ways to go about showing equivalence. Each of
those is useful in different applications, and so we provide them all below:

1. When all function names and arguments are equal, we can just check
whether the mappings for each are the same. This approach can be
useful when an existing program has to be updated, and we want to
ensure that its semantics remain intact.
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2. When only some functions are designated ‘interesting’5, we can do the
same as in the previous point, except only for these functions. This can
be useful when looking at the semantics of two equivalent APIs (not
necessarily in the same language). They might have a lot of differing
internal functions, but their publicly available ones should then be
identical.

3. Designate all functions that are not called by other functions as ‘in-
teresting’. We can do the same as approach 1, except only for those
functions that do not call others. This can be useful for comparing
programs or libraries; in programs, the ‘main’ function is not explic-
itly called, and in libraries, one is usually interested in verifying the
semantics of functions that are exposed to the end-user.

4. Disregard function names, but attempt to find a matching function
mapping in the variant for every function in the reference program.
This is a sort of catch-all; it is more complicated to do (and more
computationally costly), but should take care of every case that is not
mentioned in the previous approaches.

In the case that the chosen approach tells us that the programs are
not equivalent, we would like to be able to tell more about what differs.
How specific we can be depends on the approach that is chosen. For every
approach, we will show how to identify what part of the program differs.

1. In approach 1, we either have a mismatch in the amount of function
names / arguments, or in the mapping itself. In both cases, it is
immediately clear what function is not equal, as the approach itself
already enforces a one to one pairing.

2. In approach 2, we can only tell that a mismatch occurs on one of
the functions that is designated to be ‘interesting’. For any of the
‘uninteresting’, we do not have a guarantee that there is some variant
function mapping that we can compare them to.

3. Approach 3 is, at least for the purposes of determining where a differ-
ence occurs, completely identical to approach 2.

4. With this approach, we cannot provide a mismatch on any function
pair, only that there is no match for some (set of) function(s). This is
because we do not know what function is ‘supposed’ to match to any
other function with this approach, so we cannot conclude that some
function should have more arguments or a differing state mapping; it
might just be another unrelated function.

5In this context, an ‘interesting’ function is determined to be such by the discretion of
the user of the technique. In the thesis, the ‘interesting’ functions are permutation and
permutation_4, because they are the functions that will be called by other developers.
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Even in the most restrictive case (the first approach, where there is a fixed
one-to-one mapping), we cannot be more precise than to say that the dif-
ference occurs in some function pair. This is because we do not have the
guarantee that the states must be equal at any point in the function, just
at the end of the functions. Consider the following toy example, with four
arbitrary statements a, b, c, d:

foo() (

a;

b;

c;

d;

)

bar() (

b;

a;

d;

)

Clearly, these functions are not equivalent; c is missing in bar(). But if we
simply look at the first spot where the states are not equal, we would naively
say that the first statement results in a differing state. However, it might be
the case that we obtain the same state by executing a; b as compared to b; a
(for instance, if we choose a to be the statement x = 3, and b to be y = 2).

3.3 Complexity

The derivation rules is made up of two passes. We will consider the com-
plexity of each, to determine the worst-case complexity of creating an entire
derivation tree.
The first pass transforms syntax into semantics, but in a very limited sense.
Mostly, it keeps track of function bodies (and with it, the function calls
per function). However, global constants (which must exist of just variable
assignments) are read into a state. A consequence of this is that in the first
pass, there is no branching or looping. Thus, the complexity of the first pass
is O(n), where n is the number of statements.

The second pass is applied on each function. However, it splits functions
on each if statement, and can (depending on circumstances) also split on
while loops. As a result, its complexity is O(2n), where n is the number of
if rule applications. This is not quite the same as the number of statements,
because a loop might iterate more than once, and therefore require more
than one split. Thus, the overall complexity of applying the derivation rules
is O(2n).
As we do not expand function bodies to simulate function calls, and the n is
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counted per function as opposed to the entire program, it is likely this n will
not be too large. Additionally, in our personal experience, the density of if
statements is relatively low in most programs. However, the poor scaling
does have implications for manual application of the rules.
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Chapter 4

Application of While+

In this chapter, we provide and argument our choice for a cryptographical
algorithm to verify. We create derivation trees of most the algorithm’s ref-
erence implementation and its chosen variant. Finally, we provide a pairing
of the state mappings obtained from the derivation trees, to show semantic
analogy between the reference and variant.

4.1 Choice of algorithm

In an effort to choose a simple cryptographic primitive, and so provide a
proof that is not so large that it is difficult to comprehend, we have chosen
to use the Keccak-f primitive. While it is not a large primitive, it is probably
the most used family of permutations.
For the reference program, we use keccak-f[200] [1]. For a variant, we use
the RISC-V optimized variant[9], whose implementation can be found on
github.

4.2 Preprocessing

CIL, which is an abbreviation for C Intermediate Language, is a simplified
subset of C [19]. Its simplicity allows us to make it easier to transform the
code to While+. There are some caveats to using it, but the main one is
that it cannot transform all C code that compiles. The majority of the C
code that cannot be transformed is code that contains undefined behaviour
(that is, code which is not specified by the C standard, and whose behaviour
therefore completely depends on the compiler that is used). Because we can-
not properly obtain the semantics of code with undefined behaviour with our
technique, the fact that this code cannot be transformed is of no concern.
For the purpose of defining which code is valid for our technique, we say that
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C code is valid if and only if it can be transformed by cilly1 (or, equivalently,
if it contains no undefined behaviour).

We have written a short script which simplifies the transformation process.
The script, the result of its application on the reference implementation
and the variant are all given in the appendix, in Sections A.1, A.2 and A.6
respectively.

4.2.1 CIL post-processing

When we look at the code that CIL generates, we can observe that there
are lines that are meaningless with respect to this thesis (and the general
purpose of transforming C code into While+ code). Thus, we can discard
them and, in doing so, make the transformation process simpler. We give
all categories of meaningless lines below:

1. The ‘#line’ and ‘#merge’ pragma statements. These indicate where
the code below it originates from, which is nice to know for debugging
or validating correctness of CIL, but not required in our case.

2. The two lines of comments at the top. These indicate by which CIL
version the file has been generated, and to which level the verbosity is
set. This information is not useful for creating While+ code.

3. Prototype statements. Prototype statements are function signatures,
that do not have an accompanying body. In C, these exist to tell the
compiler that some function with this signature will exist in another
file. When merging with CIL, these statements are kept, though they
have become meaningless; the merging merges everything to one file,
so prototypes do not add anything, as the actual implementation will
also be in that file.
An observant reader might note that simplifying CIL code in the man-
ner described above can create possible issues. For instance, if there
is code that contains a prototype, but no accompanying function im-
plementation, the only trace of the function are the function calls that
are made to it in the rest of the program. This is correct, but it turns
out that that creates no problem. If this situation occurs, then one of
the things listed below will be the case:

i. There is some reference to the missing function in the rest of the
CIL code. Then the original C code does not compile and the
resulting While+ code cannot be used to create a derivation tree.
At some point, we will come across a function call to the missing
function, and then the derivation tree cannot be completed, so it
fails.

1Note that cilly is the driver for CIL, which can be found in Section A.6.
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ii. There is no reference to the missing function in the rest of the
CIL code. Then the original C code does compile, assuming that
optimizations are turned on (because unused code will be omit-
ted). The resulting While+ code can then also be used to create a
derivation tree, because even though there is a ‘missing’ function,
it is never called, and so the creation of the derivation tree does
not fail.

Lastly, we may take type definitions, and replace each instance of them by
the original type. We have automated this process in a short C# program,
which is given in the appendix, in section A.4. The result of applying this
post-processor on the implementations are given in the appendix as well, in
Sections A.1 and A.2, respectively.

4.3 Transformation rules

The transformation rules are the rules which, when applied to some code,
yield semantically equivalent While+ code. For our reference and variant,
we can say that the rules can be applied to C code, but in general, that
need not be the case.
In general, there are two possible approaches to define transformation rules,
namely:

1. The input consists of tokens of the source language, and all tokens
must be transformed through a rule application to While+. In this
case, if any token of the source language remains after application of
all rules, the transformation fails.

2. The input consists of tokens, and all tokens that are not syntax in
While+ must be transformed through a rule application to While+. In
this case, if any token that is not part of the While+ syntax remains
after application of all rules, the transformation fails.

Both approaches are correct, but the first is more verbose. Let us demon-
strate this with an example.

(3 + 7)

Let us take the piece of C code above, and write rewrite rules for it with
both approaches:
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1.

( 7→ (

) 7→)

+ 7→ +

7→
3 7→ 3

7 7→ 7

2. For this piece of code, we need no rewrite rules. It is immediately valid
While+ code.

Note that this piece of code is not a line of code, and it is generally not the
case that we need no rewrite rules with the second approach. In particular,
though, it does show that the first approach is extremely verbose, and it
also shows us that we need a lot of new characters to distinguish between
tokens in C and tokens in While+ (also, observe the second to last rule,
which appears empty; it actually maps a space to a space).
Therefore, we choose the second approach.

4.3.1 Rule definitions

A rule is defined as a mapping from a string to a string. Note that the
input string cannot be empty (because it could then be applied everywhere,
infinitely), but the output string might be (which typically happens when
information is actively discarded due to being superfluous). We define a
couple of meta-variables:

I = Any constant integer value.

B = Any constant byte value.

C = The smallest non-constant piece of code,

such that the provided pattern holds.

V = A variable name.

V+ = A variable name that does not yet exist in this scope.

∅ = The empty string.

These allow us to define rules that are applicable on code, irrespective of
the constant values like integer declarations or variable names (i.e., we do
not need different rules for replacing some piece of C code with a constant
1, or the same piece of code with a constant 2 in it).
To discern one distinct meta variable from another, we may add a subscript
to it. In that case, a meta variable is considered to be identical to another
if both its symbol and its subscript are equal (i.e., I0 is distinct from I1).
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Integer transformation

The rules below handle the transformation of integers from C to While+.

I0U 7→ I0
unsigned int V0; 7→ V0 = 0;

unsigned int V0 = I0; 7→ V0 = I0;
int V0; 7→ V0 = 0;

int V0 = I0; 7→ V0 = I0;
I0UL 7→ I0

(int)(C0) 7→ C0

(unsigned long)(C0) 7→ C0

(unsigned int const)(C0) 7→ C0

(unsigned long)I0 7→ I0
V0 ++ 7→ V0 = V0 + 1

V0+ = I0 7→ V0 = V0 + I0

We show the application of these rules on a toy example.

unsigned int x;

unsigned int y = (unsigned long)33;

x = x + 3U;

y = y - 7UL + 3;

int z;

int a = (unsigned int)3;

z = y - a;

Which yields the following code:

x = 0;

y = 33;

x = x + 3;

y = y - 7 + 3;

z = 0;

a = 3;

z = y - a;

These rules mainly discard information that is not required in While+.
For instance, a ‘U’ written after some integer indicates it is unsigned. That
does not quite mean it can be discarded without losing information, of
course. If an unsigned integer exceeds it maximum value, it will not wrap
around to the smallest possible value, but to 0. Similarly, a ‘const’ value
cannot be reassigned, and so any assignment to a constant value should
result in the derivation tree becoming stuck. However, this does not occur

62



in the reference (not in the reference nor in the variant, to be precise), so
these rules are valid for this case. We will elaborate on what this means
with respect to generality in chapter 6.

Byte transformation

The next rules handle the transformation of unsigned chars in C to bytes in
While+.

unsigned char V0; 7→ V0 = 0;

unsigned char V0 = I0; 7→ V0 = I0;
sizeof(unsigned char) 7→ 1

(unsigned char)B0 7→ B0

(unsigned char const)B0 7→ B0

(unsigned char)C 7→ C

We again provide some sample code to which these rules are applied.

unsigned char a = 3;

unsigned char b;

b = a - sizeof(unsigned char) * (unsigned char

const)3;

a = (unsigned char)5;

And the resulting While+ code:

a = 3;
b = byte (0);

b = a - 1 * 3;
a = 5;

Note that a byte is some value between 0 and 255. A ‘char’, in C, is some
value between −128 and 127. Thus, an unsigned char is exactly a byte; it
does not need to use the sign bit to denote the sign. Similarly to in the
previous subsection, we may discard the casts because the fact that they
might be constant does not matter in the Keccak implementations.
Finally, note that in order to store While+ code in ASCII format, we repre-
sent a byte value i as byte(i).
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Array transformation

Now, we give rules that handle the transformation of arrays (or, equivalently,
arrays of unsigned chars) in C to byte arrays in While+.

∗(V0 + C0) 7→ V0[C0]

unsigned char V0[I0]; 7→ V0 = arr[I0];
unsigned char ∗ V0; 7→ V0 = arr[25];

(unsigned char const ∗)V0 7→ V0

(unsigned char const ∗)(V0) 7→ V0

unsigned char const ∗ V0; 7→ V0 = arr[25];

unsigned char constV0[I0] = {B0,B1, . . . ,BI0−1,BI0} 7→ V0 = arr[I0];
V0[0] = B0;

V0[1] = B1;

. . .

V0[I0 − 1] = BI0−1;

V0[I0] = BI0 ;

The only type of arrays in While+ are arrays of bytes. Thus, arrays of
unsigned chars in C correspond to arrays in While+. Furthermore, de-
referencing a pointer plus some offset i in C corresponds to accessing an
array at index i. There is one rule that, to most, will probably look odd.
Indeed, why do we choose to map a pointer to an array of length 25? The
answer is that in the reference implementation, whenever a pointer variable
is made, it always happens to point toward an array of length 25. Though
this sounds unreasonable, it is (mostly) a consequence of the fact that the
language we are transforming from is C. In C, a pointer is no more than some
memory address that can be de-referenced, and an array is no more than a
contiguous block of memory that holds some number of values. Having a
pointer, therefore, does not tell you anything about the length of the array
that exists where the pointer points to.
The last two rules handle the mapping of arrays that are explicitly initialized.
This occurs twice, in the constant offsets defined for two of the diffusion
functions of Keccak. The dots (‘. . . ’) indicate a clearly repeating pattern,
in this case, the array indices that range from 0 up until the length of the
array.

If statements

We provide rules that handle the transformation of if statements, if-else
statements, and if statements containing a return statement.
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if(C0){C1} else {C2} 7→ if(C0) then (C1) else (C2);

if(C0){C1} 7→ if(C0) then (C1) else (skip);

if(C0){return;}C1 7→ if(C0) then (skip) else (C1);

if(C0){if(C1){C2; return; )}}C3 7→ if(C0&&C1) then (C2) else (C3);

These rules are valid for all possible values of the meta-variables in them;
we do not assume anything about them. That we choose to restructure if
statements with the ‘return’ keyword in them is due to the fact that While+

has no concept of a return statement.

While loops

We provide the rules that handle the transformation of while loops. These
are fairly simple rules, because while loops are syntactically almost identical
in While+ and C.

while(C0){C1while(C2){C3}C4} 7→ while(C0)do(C1; while(C2)do(C3);C4);

while(C0){C1} 7→ while(C0)do(C1);

Function arguments

Similarly to normal variables, we must transform the arguments of each
function.

unsigned char V0 7→ V0 = byte

unsigned char ∗ V0 7→ V0 = arr

unsigned char const ∗ V0 7→ V0 = arr

int V0 7→ V0 = var

unsigned int V0 7→ V0 = var

Functions

We now handle the mapping of functions themselves. Note that because
functions do not return anything directly in While+, void functions can be
mapped trivially. Functions that have a return value must introduce a new
return variable, to which the return value is assigned.

voidV0(C0){C1{C2}} 7→ V0(C0)(C1C2)

return) 7→)

The double curly braces are a consequence of the fact that CIL introduces a
new scope that separates variable declaration from the rest of the function
body. We do not need this separation, so we discard it. We also discard the

65



return statements of void functions, because those that are left are only those
at the end of functions. Since the code we are transforming only consists
of void functions, we do not need to worry about non-void functions. This
does mean these rules only work for void functions; we will discuss what this
means with respect to generality in chapter 6.

Variant rules

All the rules given above apply to both the reference and the variant im-
plementation. The variant, however, makes use of uint32 variables to hold
data, instead of uint8.
Unfortunately, however, these rules are rather lengthy. Therefore, we have
not included them completely in this thesis, but uploaded them to Zenodo[15],
and refer to them in Section A.3.
Below, we shall briefly explain the variant rules.

The first four rules all deal with the ‘splitting’ of array elements. This
is because the variant uses __uint_32_t as type, which has 32 bits, as op-
posed to the 8 bits in a __uint_8_t. Since While+ only defines arrays to
hold 8-bit bytes, we choose to split each element into four subsequent ele-
ments that are all 8 bits.
The fifth rule is relatively simple; it uses a compound xor assignment. This
does not exist in While+, so we transform it to its equivalent normal assign-
ment.
The sixth rule removes a bunch of attributes that are applied to the function
signature to make the compiler inline them properly, since While+ does not
require these concepts.
The seventh rule and onward all deal with the slightly more difficult case of
array assignments. Essentially, each ‘index’ variable is multiplied by four,
and then the whole assignment is duplicated four times. Each duplication,
we increase the overall index by one to create four subsequent assignments.
If rotation is present, we ensure it rotates cyclically in the aforementioned
four elements.
The last rule is notably longer than the other rules, this is because it deals
with rotations that can rotate from 1 bit to 31 bits. To deal with that, we
need to distinguish four cases (1-8, 9-16, 17-24, 25-32), which we do with
nested if-then-else statements.

Note that the rules defined above are by no means exhaustive for C, or
even CIL. They are just the ones we need in order to transform the two
Keccak implementation in CIL, therefore, it is likely that one would need to
add additional rules to succesfully transform a different program.
Additionally, note that many of these rules make use of specific ways in
which code is written in the reference and variant, and so are not necessar-
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ily reusable on other programs.

4.3.2 Application of rules

We have written a program that mostly handles the transformation, by
applying the rules defined in Section 4.3.1. There are, however, some rules
that it cannot handle. Amongst these are the rules handling the implicit
conversion of types. As such, we have applied those rules manually. The
underlying mechanism (and the reason for its partial failure) and the code
of this program are given in the Appendix A.5. The transformed While+

code is also given in Sections A.1 and A.2.

4.3.3 Transformation post-processing

When looking at the While+ code in the Appendix A.1, we can see and infer
patterns that we can simplify further, by discarding redundant information.
Although all of the simplifications can be applied automatically, for the
purpose of this thesis, we apply them manually.
We distinguish the following categories below:

1. An assignment of the form a = a. Whatever the a might be, this
never does anything of use. Typically, one can see this where a ternary
assignment of the form a = b ? c : a exists, as CIL lowers that to an
if-else statement. An example can be seen in the function rho.

2. An if-then-else statement of the form if(b) then (S_1)else (S_2),
where b is either always true, or always false. This can be simplified
to S1 (if b is always true) or S2 (if b is always false).

3. A while loop that is never entered, because its condition is never met.
To simplify this, we remove the entire while loop.

4. A modulus statement a % b, where a is always strictly smaller than b.
We can see this in the reference implementation, because it contained
a macro to easily traverse a one-dimensional array of size 25 as if it
were a two-dimensional array of size five by five.
Keccak requires wraparounds in their calculations, and so modulo
statements are present in this macro. They are, however, not always
actually necessary, as can be seen in the function rho.

5. An array initialization loop. In C code, uninitialized arrays contain
whatever values happened to be stored at the memory addresses before
the array was created. To have more predictable behaviour, array
initialization is done (either through an initialization statement, or by
looping through the entire array, but CIL lowers the first option to the
second). In While+, however, we define arrays as having each element
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at value 0 by default. Therefore, if an array initialization loop is found
which initializes an array with value 0, it can be removed.

6. An extension to the previous point; an array initialization need not
happen in a loop. If an array is fully iterated over and all assigned a
value of 0, when the state of the array is fully zeroed, we may remove
the initialization statements.

7. An assignment to a variable that already has the same value. This
happens mostly where CIL has separated the declaration of a variable
and the usage, but the first usage of the variable was a declaration
with its default value, as can be seen in the function ‘permutation’.

It is important to note that the last four of these categories rely on constant
expressions. Because of this, we can simply scan through the code for any
statement that might be meaningless, while keeping track of all parameter
names. If such a statement does not have a parameter in it, and meets the
conditions listed above, we can simplify it.
For the first category, we can simply scan through all assignment statements,
and remove them if they are of the form a = a, where a is an arbitrary state-
ment2.
The resulting While+ code, after applying this post-processing, is given in
the appendix, in Sections A.1 and A.2 respectively.

We can see that applying these simplifications does indeed have an effect; in
the reference implementation the line count reduces from 191 to 174. This,
of course, does not include all of the simplifications, as a modulus being
removed does not mean a line is removed, as well.

4.4 Derivation trees

We apply the derivation rules on the obtained While+ code to obtain the
derivation trees.
We show the complete trees in the appendix, but go over the most important
steps here.

2Note that we do not catch chases where a = b, such that AJaKs = AJbKs, for some
state s. This is because in the transformation, we do not wish to interpret the semantics
of the code; that happens during the creation of derivation trees.
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4.4.1 Keccak reference implementation

First pass

Because of its size, we provide the annotated program3 in Appendix A.1.
From this, we have obtained a state and environment, which we will use to
obtain a valid derivation order.
First, we write out the environment slightly more explicitly, while at the
same time leaving the parts of it out that we do not need to determine the
order.

functions = {theta, rho,pi, chi, iota,
KeccakP200Round,permutation}

function calls = {theta 7→ ∅, rho 7→ ∅, pi 7→ ∅, chi 7→ ∅, iota 7→ ∅,
KeccakP200Round 7→ {theta, rho,pi, chi, iota},
permutation 7→ {KeccakP200Round}}

Now we apply the general procedure for obtaining a derivation order defined
in Section 3.2.1. We have already applied step 1, by applying the first pass
derivation rules. For step 2, we define:

derivation order = ()

We apply step 3. There are several functions that can immediately be added
to the derivation order. We end up with:

functions = {theta, rho,pi, chi, iota,
KeccakP200Round, permutation}

function calls = {KeccakP200Round 7→ {theta, rho,pi, chi, iota},
permutation 7→ {KeccakP200Round}}

derivation order = (theta, rho, pi, chi, iota)

We now apply step 4; we remove each element that is currently present in
‘derivation order’ from the co-domain of ‘function calls’. We end up with:

functions = {theta, rho, pi, chi, iota,
KeccakP200Round, permutation}

function calls = {KeccakP200Round 7→ ∅,
permutation 7→ {KeccakP200Round}}

derivation order = (theta, rho, pi, chi, iota)

There are now functions that map to the empty set, and the length of
‘derivation order’ (5) is not equal to the size of ‘functions’ (7), so we go back

3Recall that annnotated programs are a compact way to display derivation trees, which
we define in Section 3.2.1
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to step 3. After again applying step 3, we get:

functions = {theta, rho,pi, chi, iota,
KeccakP200Round,permutation}

function calls = {permutation 7→ {KeccakP200Round}}
derivation order = (theta, rho,pi, chi, iota,KeccakP200Round)

We apply step 4 once more:

functions = {theta, rho,pi, chi, iota,
KeccakP200Round,permutation}

function calls = {permutation 7→ ∅}
derivation order = (theta, rho,pi, chi, iota,KeccakP200Round)

Once again, there are still elements in ‘function calls’ that have the empty
set as co-domain, and the length of ‘function calls’ (6) is not equal to those
of ‘functions’ (7), so we go back to step 3. Then, we get:

functions = {theta, rho,pi, chi, iota,
KeccakP200Round,permutation}

function calls = ∅,
derivation order = (theta, rho,pi, chi, iota,KeccakP200Round,

permutation)

And now, we see that there are no more mappings in ‘function calls’ to the
empty set4, and that the size of ‘functions’ equals that of ‘derivation order’.
We have therefore found a valid derivation order.

Second pass

Similarly to the first pass, the annotated proof is too lengthy to properly
display in this thesis. Therefore, it is stored in the appendix (section A.1),
but we will discuss the results of each function mapping here.
Recall that our derivation order is:

derivation order = (theta, rho, pi, chi, iota, KeccakP200Round,

permutation)

The first function, theta, uses two array variables of length five. It xors each
‘lane’ of the input into the first array, and then mixes together the results
of the first array variable into the second. We apply the xor operation to

4Recall that with (in)direct recursion, or function calls to functions that do not exist,
we might end up with an undecidable derivation order. In this case, we would have had
mappings in ‘function calls’, but none that map to the empty set.
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the contents of the second array variable and the input array, cyclically (so
we apply the xor operation to the sixth element of the input array and the
first element of the second array variable, and so on).
In the state mapping, this simplifies into the xor operation being applied
on each element, with a number of other elements, some of which are also
rotated one bit.
The annotation results in a large number of requirements, but they all reduce
to the requirements that:

1. The first array variable is of length five,

2. The second array variable is of length five,

3. The input array has at least a length of twenty-five.

The first two requirements can be trivially shown to always hold, so the sole
requirement for this function is that the input array has a length of at least
twenty-five.

The second function, rho, rotates the contents of the input array with an
amount specified in a global variable (KeccakRhoOffsets).
As such, the state mapping is not very complex, and ‘simply’ shows each
element being rotated by the specified amount (if any). Although one of
the requirements that remains after simplification is that the input array
has at least a length of twenty-five, there are more requirements than in the
previous function. However, the additional requirements simplify to the re-
quirement that the KeccakRhoOffsets array must have a length of at least
twenty-five. Because the KeccakRhoOffsets array is a global variable, we
know its length already, and can therefore show that the requirement holds
irrespective of the parameters chosen. Thus, we can omit this requirement
entirely.

The next function is pi. It shuffles the order of the input array using an
array variable of length twenty-five. As such, the state mapping simplifies
into a simple re-ordering of elements. It comes as no surprise that the re-
quirements also simplify to the sole requirement that the input array has at
least a length of twenty-five.

Then, we come across chi. This function attempts to break any correla-
tion within ‘lanes’ by combining data from three subsequent elements, and
assigning it to a single element in the input array. This is done using a single
array variable, which has a length of five.
The state mapping shows each element is indeed transformed into an ex-
pression that depends on its own value, and the next two elements, in a
cyclic manner.
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As before, the requirements simplify to the sole requirement that the input
array must have a length of at least twenty-five.

Next in the derivation order is the function iota. This function is rela-
tively short; it xors the first element with some value contained in
KeccakRoundConstants, as defined by the second parameter.
As such, the function mapping is exceedingly short. However, we do have
two requirements. The first requirement is that the input array has a length
of at least one, but the second is that the indexRound variable is no larger
than seventeen.

The penultimate function is KeccakP200Round.
It ‘simply’ calls each of the previous functions, in order, to execute a single
round of the permutation. The requirements of this function are thus the
requirements of all previous functions combined:

1. That the input array has a length of at least twenty-five,

2. That the indexRound parameter is at most seventeen.

However, the mapping of this function is lengthy to the point that we can-
not properly reason about it. We will discuss possible solutions to this in
Section 6.1.

The last function is permutation. However, this function applies
KeccakP200Round eighteen times upon the input array. This results in a
state mapping so large that the tool we use to automate the process can-
not handle it. Therefore, we cannot apply the second pass derivation rules
on this function. As with the previous function, we will discuss possible
solutions to this problem in Section 6.1.

4.4.2 Keccak variant implementation

First pass

Because of its size, we provide the annotated program in the Appendix A.2.
From this, we have obtained a state and environment, which we will use to
obtain a valid derivation order.
First, we write out the environment slightly more explicitly, while at the
same time leaving the parts of it out that we do not need to determine the
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order.

functions = {theta 4, rho 4,pi 4, chi 4, iota 4,

KeccakP200Round 4, permutation 4}
function calls = {theta 4 7→ ∅,

rho 4 7→ ∅,
pi 4 7→ ∅,
chi 4 7→ ∅,
iota 4 7→ ∅,
KeccakP200Round 4 7→ {theta 4, rho 4,pi 4, chi 4, iota 4},
permutation 4 7→ {KeccakP200Round 4}}

As with the reference implementation, we start with an empty derivation
order, to obtain a valid order:

derivation order = ()

We have already applied the first two steps, and so arrive at the third:

functions = {theta 4, rho 4, pi 4, chi 4, iota 4,

KeccakP200Round 4,permutation 4}
function calls = {KeccakP200Round 4 7→ {theta 4, rho 4, pi 4, chi 4, iota 4},

permutation 4 7→ {KeccakP200Round 4}},
derivation order = (theta 4, rho 4, pi 4, chi 4, iota 4)

Where we have immediately added a number of functions that mapped to ∅
to the derivation order. Next, we apply step 4.

functions = {theta 4, rho 4,pi 4, chi 4, iota 4,

KeccakP200Round 4, permutation 4}
function calls = {KeccakP200Round 4 7→ ∅,

permutation 4 7→ {KeccakP200Round 4}},
derivation order = (theta 4, rho 4, pi 4, chi 4, iota 4)

Having done so, we have removed all elements of the derivation order from
any elements in the co-domain of ‘function calls’. We now arrive at step 5,
but the length of the derivation sequence does not yet equal the length of
the ‘functions’ set and there are still functions that map to the empty set in
‘function calls’, so we go back to step 3.

functions = {theta 4, rho 4,pi 4, chi 4, iota 4,

KeccakP200Round 4,permutation 4}
function calls = {permutation 4 7→ {KeccakP200Round 4}},

derivation order = (theta 4, rho 4,pi 4, chi 4, iota 4,KeccakP200Round 4)
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We have added another function to the derivation order, so we may now
apply step 4 again:

functions = {theta 4, rho 4,pi 4, chi 4, iota 4,

KeccakP200Round 4,permutation 4}
function calls = {permutation 4 7→ ∅},

derivation order = (theta 4, rho 4,pi 4, chi 4, iota 4,KeccakP200Round 4)

Again, we are in step 5. And since we can see that the last element in
‘function calls’ maps to the empty set, we go back to step 3 one last time:

functions = {theta 4, rho 4,pi 4, chi 4, iota 4,

KeccakP200Round 4,permutation 4}
function calls = ∅,

derivation order = (theta 4, rho 4,pi 4, chi 4, iota 4,KeccakP200Round 4,

permutation 4)

Now we apply step 4 again - though we do so on an empty set of function
calls - and arrive at step 5. Here, we find that the length ‘derivation order’
is equal to the length of the ‘functions’ set. So we have found our valid
derivation order.

Second pass

Similarly to the first pass, the annotated proof is too lengthy to properly
display in this thesis. Therefore, it is stored in the appendix (section A.2),
but we will discuss the results of each function mapping here.
Recall that our derivation order is:

derivation order = (theta4, rho4, pi4, chi4, iota4,KeccakP200Round4,

permutation)

The first function, theta 4, uses two array variables of length twenty. It
xors each ‘lane’ of the input into the first array, and then mixes together
the results of the first array variable into the second. The xor operation is
applied to the contents of this second array variable, and the input array,
cyclically (so the xor operation is applied to the 21st element of the input
array and the first element of the array variable, and so on).
In the state mapping, this simplifies into the xor operation being applied on
each element directly with a number of other elements, which the additional
elements are sometimes rotated by four bits.
The annotation results in a large number of requirements, but they all reduce
to the requirements that:

1. The first array variable is of length twenty,
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2. The second array variable is of length twenty,

3. The input array has at least a length of one hundred.

The first two requirements can be trivially shown to always hold, so the sole
requirement for this function is that the input array has a length of at least
one hundred.

The second function, rho 4, rotates the contents of the input array with
an amount specified in a global variable (KeccakRhoOffsets).
However, to deal with the fact that a single word is 32 bits, rotation is more
complex. A single rotation therefore affects four consecutive elements in the
input array. Additionally, if a rotation happens to align with byte bound-
aries (8, 16, 24 or 32), the mapping does not explicitly shift, but reorders
the bytes that make up the word.
Although one of the requirements that remains after simplification is that
the input array has at least a length of one hundred, there are more require-
ments than in the previous function. However, the additional requirements
simplify to the requirement that the KeccakRhoOffsets array must have a
length of at least twenty-five. Because that array is a global variable read in
in the first pass, we knonw its length. As such, we can show the requirement
holds irrespective of the chosen parameters and therefore omit it.

The next function is pi 4. It shuffles the order of the input array using
an array variable of length one hundred. As such, the state mapping simpli-
fies into a simple re-ordering of elements. It comes as no surprise that the
requirements also simplify to the sole requirement that the input array has
at least a length of one hundred.

Then, we come across chi 4. This function attempts to break any corre-
lation within ‘lanes’ by combining data from three subsequent elements,
and assigning it to a single element in the input array. This is done using a
single array variable, which has a length of twenty.
The state mapping shows each element is indeed transformed into an ex-
pression that depends on its own value, and the next two elements, in a
cyclic manner.
As before, the requirements simplify to the sole requirement that the input
array must have a length of at least one hundred.

Next up is the function iota 4. This function is relatively short; it xors the
first four elements with some values contained in KeccakRoundConstants 4,
as defined by the second parameter indexRound.
As such, the function mapping is exceedingly short. However, we do have
two requirements. The first requirement is that the input array has a length
of at least four, but the second is that the indexRound variable is no larger
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than seventeen.

The penultimate function is KeccakP200Round 4.
It ‘simply’ calls each of the previous functions, in order, to execute a single
round of the permutation. The requirements of this function are thus the
requirements of all previous functions combined:

1. That the input array has a length of at least one hundred,

2. That the indexRound parameter is at most seventeen.

However, the mapping of this function is lengthy to the point that we can-
not properly reason about it. We will discuss possible solutions to this in
Section 6.1.

The last function is permutation 4. However, this function applies Kec-
cakP200Round 4 eighteen times upon the input array. This results in a
state mapping so large, that the tool we use to automate the process cannot
handle it. Therefore, we cannot apply the second pass derivation rules on
this function. Similarly to the previous function, we will discuss possible
solutions to this problem in Section 6.1.

4.5 Comparing mappings

After completing the derivation trees of both variants up until their respec-
tive permutation functions, we now have two sets of state mappings (and
associated read-only states containing constants!) which we must compare
to determine whether the implementations operate the same way, or not.
Due to the technical limitation that is mentioned previously (and which will
be elaborated on in the discussion in Section 6), we have made state map-
pings of all functions, except permutation and permutation_4.
However, both permutation and permutation_4 call their respective round
functions 18 times on the provided state. So if we can show that their re-
spective round functions operate identically, then so must these functions.

Here, however, it seems our hopes of proving semantical equivalence are
futile; the requirements of KeccakP200Round_4 and KeccakP200Round dif-
fer! Indeed, the requirement of KeccakP200Round_4 is that len(A) ≥ 100 ∧
indexRound < 18, whereas the requirement of KeccakP200Round is that
len(A) ≥ 25 ∧ indexRound < 18.

Whatever their function mappings, it is intuitively obvious that they
cannot operate identically; it is trivial to create an array that will meet the
requirements for one function, but not the other (say, an array of length
25).
But this difference should not come as a surprise. Indeed, the optimized
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variant is just that; an optimized variant. There are multiple optimizations
at play, but the one that is semantically noteworthy is that the word size of
the optimized variant is four times as large as the reference implementation.
If we can show that all differences in state mapping are explainable through
this fact, then we can show that the optimization is semantically analogous
to the reference.

In order to do this, it is easier to look at the individual diffusion func-
tions than to look at the round function as a whole, due to the fact that the
state mapping of the round function is not simplified whatsoever.

4.5.1 Iota

Starting with the shortest function, let us compare the state mappings of
iota to iota_4.

iota4 7→ {len(A) ≥ 4 ∧ indexRound ≤ 17, (A, indexRound)→
(a0ˆKeccakRoundConstants4[indexRound ∗ 4],
a1ˆKeccakRoundConstants4[indexRound ∗ 4 + 1],

a2ˆKeccakRoundConstants4[indexRound ∗ 4 + 2],

a3ˆKeccakRoundConstants4[indexRound ∗ 4 + 3]

)}
iota 7→ {len(A) ≥ 1 ∧ indexRound ≤ 17, (A, indexRound)→

(a0ˆKeccakRoundConstants[indexRound]))

}

Of course, we can explain the difference in the first requirement by the factor
of four; arrays in While+ are of bytes, and thus we have split up an array of
32-bit elements, into an array of 8-bit elements that has four times as many
elements.
The second requirement is identical. This is due to the fact that regardless of
the variant, we always have 18 rounds. Though the round constant array has
72 elements in the optimized variant (as opposed to 18), we do not mention
this in the requirement because its length is a constant. Thus, the require-
ment simplifies from indexRound ∗ 4+ 3 < len(KeccakRoundconstants4) ∗
4 + 4 to indexRound ∗ 4 < 68 and finally 17 ≥ indexRound.
The state mapping itself is also analogous, as we clearly see that instead of
xor-ring just the first element, the variant applies the xor operation on the
first four elements.
One thing remains to be shown; are the elements of KeccakRoundConstants
analogous to those of KeccakRoundConstants_4? Let us investigate.
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KeccakRoundConstants 7→ (1, 130, 138, 0, 139, 1, 129, 9, 138, 136, 9, 10, 139, 139, 137, 3, 2, 128),

KeccakRoundConstants4 7→ (255, 0, 0, 0, 240, 0, 0, 240, 240, 0, 240, 240, 0, 0, 0, 0, 240, 0,

240, 255, 15, 0, 0, 0, 240, 0, 0, 15, 240, 15, 0, 0, 240, 0, 240, 240,

240, 0, 240, 0, 240, 15, 0, 0, 240, 240, 0, 0, 240, 0, 240, 255, 240, 240,

0, 255, 240, 0, 240, 255, 255, 0, 0, 0, 240, 0, 0, 0, 240, 0, 0, 0)

First, we shall look at the first element of each array. For the reference, this
is 1. For the variant, this is (255, 0, 0, 0). Interpreting that value as a single
32-bit value yields 255, so the factor of four is not a simple multiplication.
But it is also not a case of repeating the same bits 4 times; then we would
have seen (1, 1, 1, 1).
Does this mean they are not analogous? Not necessarily. As can be seen
in the paper that describes the variant [9], the environment for which it is
optimized works by interleaving bits. And indeed, we can see this pattern
emerge:

0, 0, 0, 255 = (0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1, 1, 1)

1 = (0, 0, 0, 0, 0, 0, 0, 1).

So we may conclude that these functions are analogous.
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4.5.2 Chi

On to the second function; we will compare chi and chi_4. As before, we
first display the state mappings:

chi4 7→ {len(A) ≥ 100, (A)→ (

a0 ˆ ¬a4 ∧ a8, a1 ˆ ¬a5 ∧ a9, a2 ˆ ¬a6 ∧ a10, a3 ˆ ¬a7 ∧ a11,

a4 ˆ ¬a8 ∧ a12, a5 ˆ ¬a9 ∧ a13, a6 ˆ ¬a10 ∧ a14, a7 ˆ ¬a11 ∧ a15,

a8 ˆ ¬a12 ∧ a16, a9 ˆ ¬a13 ∧ a17, a10 ˆ ¬a14 ∧ a18, a11 ˆ ¬a15 ∧ a19,

a12 ˆ ¬a16 ∧ a0, a13 ˆ ¬a17 ∧ a1, a14 ˆ ¬a18 ∧ a2, a15 ˆ ¬a19 ∧ a3,

a16 ˆ ¬a0 ∧ a4, a17 ˆ ¬a1 ∧ a5, a18 ˆ ¬a2 ∧ a6, a19 ˆ ¬a3 ∧ a7,

a20 ˆ ¬a24 ∧ a28, a21 ˆ ¬a25 ∧ a29, a22 ˆ ¬a26 ∧ a30, a23 ˆ ¬a27 ∧ a31,

a24 ˆ ¬a28 ∧ a32, a25 ˆ ¬a29 ∧ a33, a26 ˆ ¬a30 ∧ a34, a27 ˆ ¬a31 ∧ a35,

a28 ˆ ¬a32 ∧ a36, a29 ˆ ¬a33 ∧ a37, a30 ˆ ¬a34 ∧ a38, a31 ˆ ¬a35 ∧ a39,

a32 ˆ ¬a36 ∧ a20, a33 ˆ ¬a37 ∧ a21, a34 ˆ ¬a38 ∧ a22, a35 ˆ ¬a39 ∧ a23,

a36 ˆ ¬a20 ∧ a24, a37 ˆ ¬a21 ∧ a25, a38 ˆ ¬a22 ∧ a26, a39 ˆ ¬a23 ∧ a27,

a40 ˆ ¬a44 ∧ a48, a41 ˆ ¬a45 ∧ a49, a42 ˆ ¬a46 ∧ a50, a43 ˆ ¬a47 ∧ a51,

a44 ˆ ¬a48 ∧ a52, a45 ˆ ¬a49 ∧ a53, a46 ˆ ¬a50 ∧ a54, a47 ˆ ¬a51 ∧ a55,

a48 ˆ ¬a52 ∧ a56, a49 ˆ ¬a53 ∧ a57, a50 ˆ ¬a54 ∧ a58, a51 ˆ ¬a55 ∧ a59,

a52 ˆ ¬a56 ∧ a40, a53 ˆ ¬a57 ∧ a41, a54 ˆ ¬a58 ∧ a42, a55 ˆ ¬a59 ∧ a43,

a56 ˆ ¬a40 ∧ a44, a57 ˆ ¬a41 ∧ a45, a58 ˆ ¬a42 ∧ a46, a59 ˆ ¬a43 ∧ a47,

a60 ˆ ¬a64 ∧ a68, a61 ˆ ¬a65 ∧ a69, a62 ˆ ¬a66 ∧ a70, a63 ˆ ¬a67 ∧ a71,

a64 ˆ ¬a68 ∧ a72, a65 ˆ ¬a69 ∧ a73, a66 ˆ ¬a70 ∧ a74, a67 ˆ ¬a71 ∧ a75,

a68 ˆ ¬a72 ∧ a76, a69 ˆ ¬a73 ∧ a77, a70 ˆ ¬a74 ∧ a78, a71 ˆ ¬a75 ∧ a79,

a72 ˆ ¬a76 ∧ a60, a73 ˆ ¬a77 ∧ a61, a74 ˆ ¬a78 ∧ a62, a75 ˆ ¬a79 ∧ a63,

a76 ˆ ¬a60 ∧ a64, a77 ˆ ¬a61 ∧ a65, a78 ˆ ¬a62 ∧ a66, a79 ˆ ¬a63 ∧ a67,

a80 ˆ ¬a84 ∧ a88, a81 ˆ ¬a85 ∧ a89, a82 ˆ ¬a86 ∧ a90, a83 ˆ ¬a87 ∧ a91,

a84 ˆ ¬a88 ∧ a92, a85 ˆ ¬a89 ∧ a93, a86 ˆ ¬a90 ∧ a94, a87 ˆ ¬a91 ∧ a95,

a88 ˆ ¬a92 ∧ a96, a89 ˆ ¬a93 ∧ a97, a90 ˆ ¬a94 ∧ a98, a91 ˆ ¬a95 ∧ a99,

a92 ˆ ¬a96 ∧ a80, a93 ˆ ¬a97 ∧ a81, a94 ˆ ¬a98 ∧ a82, a95 ˆ ¬a99 ∧ a83,

a96 ˆ ¬a80 ∧ a84, a97 ˆ ¬a81 ∧ a85, a98 ˆ ¬a82 ∧ a86, a99 ˆ ¬a83 ∧ a87

)},
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chi 7→ {len(A) ≥ 25, (A)→ (

a0 ˆ ¬a1 ∧ a2, a1 ˆ ¬a2 ∧ a3, a2 ˆ ¬a3 ∧ a4, a3 ˆ ¬a4 ∧ a0, a4 ˆ ¬a0 ∧ a1,

a5 ˆ ¬a6 ∧ a7, a6 ˆ ¬a7 ∧ a8, a7 ˆ ¬a8 ∧ a9, a8 ˆ ¬a9 ∧ a5, a9 ˆ ¬a5 ∧ a6,

a10 ˆ ¬a11 ∧ a12, a11 ˆ ¬a12 ∧ a13, a12 ˆ ¬a13 ∧ a14, a13 ˆ ¬a14 ∧ a10,

a14 ˆ ¬a10 ∧ a11, a15 ˆ ¬a16 ∧ a17, a16 ˆ ¬a17 ∧ a18, a17 ˆ ¬a18 ∧ a19,

a18 ˆ ¬a19 ∧ a15, a19 ˆ ¬a15 ∧ a16, a20 ˆ ¬a21 ∧ a22, a21 ˆ ¬a22 ∧ a23,

a22 ˆ ¬a23 ∧ a24, a23 ˆ ¬a24 ∧ a20, a24 ˆ ¬a20 ∧ a21

)}

As before, the requirements differ by exactly a factor of four, and each ele-
ment in the reference code matches up to four elements in the variant.
For example, look at the first element in the reference mapping (a0 ˆ ¬a1 ∧
a2) and the first four elements in the variant mapping (a0 ˆ ¬a4∧a8, a1 ˆ ¬a5∧
a9, a2 ˆ ¬a6 ∧ a10, a3 ˆ ¬a7 ∧ a11). As we can see, the indices of the variant
are exactly those of the reference, multiplied by four and then repeated four
times such that each subsequent index is increased by one each time. Since
the mapping does not refer to read-only variables, we can say with certainty
that these two functions are semantically analogous.
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4.5.3 Pi

The next function to look at is pi. It shuffles the contents of the array it
receives as argument. As before, we look at the state mappings:

pi4 7→ {len(A) ≥ 100, (A)→ (

a0, a1, a2, a3, a24,

a25, a26, a27, a48, a49,

a4, a5, a6, a7, a74,

a75, a96, a97, a98, a99,

a12, a13, a14, a15, a36,

a37, a38, a39, a40, a41,

a42, a43, a64, a65, a66,

a67, a88, a89, a90, a91,

a40, a41, a42, a43, a28,

a29, a30, a31, a52, a53,

a54, a55, a76, a77, a78,

a79, a80, a81, a82, a83,

a16, a17, a18, a19, a20,

a21, a22, a23, a44, a45,

a46, a47, a68, a69, a70,

a71, a92, a93, a94, a95,

a8, a9, a10, a11, a32,

a33, a34, a35, a56, a57,

a58, a59, a60, a61, a62,

a63, a84, a85, a86, a87,

)}
pi 7→ {len(A) ≥ 25, (A)→ (

a0, a6, a12, a18, a24,

a15, a21, a2, a8, a14,

a5, a11, a17, a23, a4,

a20, a1, a7, a13, a19,

a10, a16, a22, a3, a9

)}

Similarly to the mappings of chi and chi_4, these are analogous. In fact,
this is probably the easiest function to compare, as the mapping does not
introduce any new values, just shuffling them around. As such, we can
trivially see that the first index on the reference (a0) matches up to the first
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four indices on the variant mapping (a0, a1, a2, a3) as expected.

4.5.4 Rho

The next functions to compare are rho and rho_4. They are more inter-
esting, due to the fact they rotate each element by a fixed offset. This not
only means the mapping refers to a read-only variable, but it also means
that the mappings differ in more respects. For instance, if a 32-bit variable
is rotated 16 bits, then the mapping should denote four elements, none of
which are rotated themselves. Instead, the ordering of the four elements
should be “rotated” two elements to the left.
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Let us observe the state mappings:

rho4 7→ {len(A) ≥ 100, (A)→ (

a0, a1, a2, a3, a4 ≪ 4 ˆ a5 ≫ 4,

a5 ≪ 4 ˆ a6 ≫ 4, a6 ≪ 4 ˆ a7 ≫ 4, a7 ≪ 4 ˆ a4 ≫ 4, 0 ˆ a11, 0 ˆ a8,

0 ˆ a9, 0 ˆ a10, a13 ≪ 4 ˆ a14 ≫ 4, a14 ≪ 4 ˆ a15 ≫ 4,

a15 ≪ 4 ˆ a12 ≫ 4, a12 ≪ 4 ˆ a13 ≫ 4, 0 ˆ a18, 0 ˆ a19, 0 ˆ a16, 0 ˆ a17,

0 ˆ a22, 0 ˆ a23, 0 ˆ a22, 0 ˆ a21, 0 ˆ a26,

0 ˆ a27, 0 ˆ a24, 0 ˆ a25, 0 ˆ a31, 0 ˆ a27,

0 ˆ a28, 0 ˆ a29, a35 ≪ 4 ˆ a32 ≫ 4, a32 ≪ 4 ˆ a33 ≫ 4, a33 ≪ 4 ˆ a34 ≫ 4,

a34 ≪ 4 ˆ a35 ≫ 4, a37 ≪ 4 ˆ a38 ≫ 4, a38 ≪ 4 ˆ a39 ≫ 4,

a39 ≪ 4 ˆ a36 ≫ 4, a36 ≪ 4 ˆ a37 ≫ 4,

0 ˆ a42, 0 ˆ a43, 0 ˆ a40, 0 ˆ a41, a45 ≪ 4 ˆ a46 ≫ 4,

a46 ≪ 4 ˆ a47 ≫ 4, a47 ≪ 4 ˆ a44 > 4, a45 ≪ 4 ˆ a46 ≫ 4, a48, a49,

a50, a51, a52 ≪ 4 ˆ a53 ≫ 4, a53 ≪ 4 ˆ a54 ≫ 4, a54 ≪ 4 ˆ a55 ≫ 4,

a55 ≪ 4 ˆ a52 ≫ 4, a59 ≪ 4 ˆ a56 ≫ 4, a56 ≪ 4 ˆ a57 ≫ 4,

a57 ≪ 4 ˆ a58 ≫ 4, a58 ≪ 4 ˆ a59 ≫ 4,

a60 ≪ 4 ˆ a61 ≫ 4, a61, a62 ≪ 4 ˆ a63 ≫ 4, a63 ≪ 4 ˆ a60 ≫ 4, a66 ≪ 4 ˆ a67 ≫ 4,

a67 ≪ 4 ˆ a64 ≫ 4, a64 ≪ 4 ˆ a65 ≫ 4, a65 ≪ 4 ˆ a66 ≫ 4, a71 ≪ 4 ˆ a68 ≫ 4,

a68 ≪ 4 ˆ a69 ≫ 4,

a69 ≪ 4 ˆ a70 ≫ 4, a70 ≪ 4 ˆ a71 ≫ 4, a74 ≪ 4 ˆ a75 ≫ 4, a75 ≪ 4 ˆ a72 ≫ 4,

a72 ≪ 4 ˆ a73 ≫ 4,

a73 ≪ 4 ˆ a74 ≫ 4, a76, a77, a78, a79,

0 ˆ a81, 0 ˆ a82, 0 ˆ a83, 0 ˆ a80, 0 ˆ a85,

0 ˆ a86, 0 ˆ a87, 0 ˆ a84, a90 ≪ 4 ˆ a91 ≫ 4, a91 ≪ 4 ˆ a88 ≫ 4,

a88 ≪ 4 ˆ a89 ≫ 4, a89 ≪ 4 ˆ a90 ≫ 4, a92, a93, a94,

a95, a96, 0 ˆ a97, 0 ˆ a98, 0 ˆ a99

)}
rho 7→ {len(A) ≥ 25, (A)→ (

a0, (a1 ≪ 1) ˆ (a1 ≫ 7), (a2 ≪ 6) ˆ (a2 ≫ 2), (a3 ≪ 4) ˆ (a3 ≫ 4), a4,

(a5 ≪ 4) ˆ (a5 ≫ 4), (a6 ≪ 4) ˆ (a6 ≫ 4), (a7 ≪ 6) ˆ (a7 ≫ 2),

(a8 ≪ 7) ˆ (a8 ≫ 1), (a9 ≪ 4) ˆ (a9 ≫ 4),

(a10 ≪ 3) ˆ (a10 ≫ 5), (a11 ≪ 2) ˆ (a11 ≫ 6), (a12 ≪ 3) ˆ (a12 ≫ 5),

(a13 ≪ 1) ˆ (a13 ≫ 7), (a14 ≪ 7) ˆ (a14 ≫ 1),

(a15 ≪ 1) ˆ (a15 ≫ 7), (a16 ≪ 5) ˆ (a16 ≫ 3), (a17 ≪ 7) ˆ (a17 ≫ 1),

(a18 ≪ 5) ˆ (a18 ≫ 3), a19,

(a20 ≪ 2) ˆ (a20 ≫ 6), (a21 ≪ 2) ˆ (a21 ≫ 6), (a22 ≪ 5) ˆ (a22 ≫ 3),

a23, (a24 ≪ 6) ˆ (a24 ≫ 2)

)} 83



It might seem confusing that there is no reference to KeccakRhoOffsets

and KeccakRhoOffsets_4 in the mapping, since it is used in the functions.
Like with the Iota functions, the requirements can be shown to always hold
and can therefore be omitted. However, because we do not access elements
within this array through an index that is a parameter, we do not need to
refer to it in the mapping at all.

Beyond this, the one requirement the functions have is again clearly analo-
gous.
Showing that the state mapping itself is analogous is not quite as straight-
forward. We can see that the ordering of the elements is the same as with
the other functions, but the rotations applied on them look differently. We
shall show that for each form of these rotations, the elements remain anal-
ogous.

1. Let us look at the element a0 in the reference mapping, and the as-
sociated (a0, a1, a2, a3) in the variant. Having not been rotated at all,
we can see that the mapping is analogous here.

2. Let us look at the element (a1 ≪ 1) ˆ (a1 ≫ 7) in the reference map-
ping, and the associated (a4 ≪ 4 ˆ a5 ≫ 4, a5 ≪ 4 ˆ a6 ≫ 4, a6 ≪
4 ˆ a7 ≫ 4, a7 ≪ 4 ˆ a4 ≫ 4) in the variant. The element has been
rotated by one bit in the reference, and thus is rotated by four in the
variant. Note that where the rotation transcends byte boundaries, it
still remains cyclic! Thus, the mapping is also analogous here.

3. Let us look at the element (a20 ≪ 2) ˆ (a20 ≫ 6) in the reference
mapping, and the associated (0 ˆ a81, 0 ˆ a82, 0 ˆ a83, 0 ˆ a80) in the
variant. The element has been rotated by two bits in the reference,
and thus is rotated by eight in the variant. Because eight bits aligns
with the byte boundaries, we see that the order of elements is shuffled,
but no rotations are present in the variant.

So, the functions rho and rho_4 are semantically analogous.

4.5.5 Theta

Finally, we look at theta and theta_4. This function compresses twenty-five
elements into five, and then xors the resulting array element wise, repeated
five times. For the variant, of course, this is one hundred elements and
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twenty, respectively. Let us look at the state mappings:

theta4 7→ {len(A) ≥ 100, (A)→ (

a0 ˆ (0 ˆ a3 ˆ a23 ˆ a43 ˆ a63 ˆ a83 ≪ 4) ˆ (0 ˆ a4 ˆ a24 ˆ a44 ˆ a64 ˆ a84 ≫ 4)

ˆ 0 ˆ a15 ˆ a35 ˆ a55 ˆ a75 ˆ a95,

a1 ˆ (0 ˆ a4 ˆ a24 ˆ a44 ˆ a64 ˆ a84 ≪ 4) ˆ (0 ˆ a5 ˆ a25 ˆ a45 ˆ a65 ˆ a85 ≫ 4)

ˆ 0 ˆ a16 ˆ a36 ˆ a56 ˆ a76 ˆ a96,

a2 ˆ (0 ˆ a5 ˆ a25 ˆ a45 ˆ a65 ˆ a85 ≪ 4) ˆ (0 ˆ a6 ˆ a26 ˆ a46 ˆ a66 ˆ a86 ≫ 4)

ˆ 0 ˆ a17 ˆ a37 ˆ a57 ˆ a77 ˆ a97,

a3 ˆ (0 ˆ a6 ˆ a26 ˆ a46 ˆ a66 ˆ a86 ≪ 4) ˆ (0 ˆ a7 ˆ a27 ˆ a47 ˆ a67 ˆ a87 ≫ 4)

ˆ 0 ˆ a18 ˆ a38 ˆ a58 ˆ a78 ˆ a98,

a4 ˆ (0 ˆ a7 ˆ a27 ˆ a47 ˆ a67 ˆ a87 ≪ 4) ˆ (0 ˆ a8 ˆ a28 ˆ a48 ˆ a68 ˆ a88 ≫ 4)

ˆ 0 ˆ a19 ˆ a39 ˆ a59 ˆ a79 ˆ a99,

a5 ˆ (0 ˆ a8 ˆ a28 ˆ a48 ˆ a68 ˆ a88 ≪ 4) ˆ (0 ˆ a9 ˆ a29 ˆ a49 ˆ a69 ˆ a89 ≫ 4)

ˆ 0 ˆ a0 ˆ a20 ˆ a40 ˆ a60 ˆ a80,

a6 ˆ (0 ˆ a9 ˆ a29 ˆ a49 ˆ a69 ˆ a89 ≪ 4) ˆ (0 ˆ a10 ˆ a30 ˆ a50 ˆ a70 ˆ a90 ≫ 4)

ˆ 0 ˆ a1 ˆ a21 ˆ a41 ˆ a61 ˆ a81,

a7 ˆ (0 ˆ a10 ˆ a30 ˆ a50 ˆ a70 ˆ a90 ≪ 4) ˆ (0 ˆ a11 ˆ a31 ˆ a51 ˆ a71 ˆ a91 ≫ 4)

ˆ 0 ˆ a2 ˆ a22 ˆ a42 ˆ a62 ˆ a82,

a8 ˆ (0 ˆ a11 ˆ a31 ˆ a51 ˆ a71 ˆ a91 ≪ 4) ˆ (0 ˆ a12 ˆ a32 ˆ a52 ˆ a72 ˆ a92 ≫ 4)

ˆ 0 ˆ a3 ˆ a23 ˆ a43 ˆ a63 ˆ a83,

a9 ˆ (0 ˆ a12 ˆ a32 ˆ a52 ˆ a72 ˆ a92 ≪ 4) ˆ (0 ˆ a13 ˆ a33 ˆ a53 ˆ a73 ˆ a93 ≫ 4)

ˆ 0 ˆ a4 ˆ a24 ˆ a44 ˆ a64 ˆ a84,

a10 ˆ (0 ˆ a13 ˆ a33 ˆ a53 ˆ a73 ˆ a93 ≪ 4) ˆ (0 ˆ a14 ˆ a34 ˆ a54 ˆ a74 ˆ a94 ≫ 4)

ˆ 0 ˆ a5 ˆ a25 ˆ a45 ˆ a65 ˆ a85,

a11 ˆ (0 ˆ a14 ˆ a34 ˆ a54 ˆ a74 ˆ a94 ≪ 4) ˆ (0 ˆ a15 ˆ a35 ˆ a55 ˆ a75 ˆ a95 ≫ 4)

ˆ 0 ˆ a6 ˆ a26 ˆ a46 ˆ a66 ˆ a86,

a12 ˆ (0 ˆ a15 ˆ a35 ˆ a55 ˆ a75 ˆ a95 ≪ 4) ˆ (0 ˆ a16 ˆ a36 ˆ a56 ˆ a76 ˆ a96 ≫ 4)

ˆ 0 ˆ a7 ˆ a27 ˆ a47 ˆ a67 ˆ a87,

a13 ˆ (0 ˆ a16 ˆ a36 ˆ a56 ˆ a76 ˆ a96 ≪ 4) ˆ (0 ˆ a17 ˆ a37 ˆ a57 ˆ a77 ˆ a97 ≫ 4)

ˆ 0 ˆ a8 ˆ a28 ˆ a48 ˆ a68 ˆ a88,

a14 ˆ (0 ˆ a17 ˆ a37 ˆ a57 ˆ a77 ˆ a97 ≪ 4) ˆ (0 ˆ a18 ˆ a38 ˆ a58 ˆ a78 ˆ a98 ≫ 4)

ˆ 0 ˆ a9 ˆ a29 ˆ a49 ˆ a69 ˆ a89,

a15 ˆ (0 ˆ a18 ˆ a38 ˆ a58 ˆ a78 ˆ a98 ≪ 4) ˆ (0 ˆ a19 ˆ a39 ˆ a59 ˆ a79 ˆ a99 ≫ 4)

ˆ 0 ˆ a10 ˆ a30 ˆ a50 ˆ a70 ˆ a90,
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a16 ˆ (0 ˆ a19 ˆ a39 ˆ a59 ˆ a79 ˆ a99 ≪ 4) ˆ (0 ˆ a0 ˆ a20 ˆ a40 ˆ a60 ˆ a80 ≫ 4)

ˆ 0 ˆ a11 ˆ a31 ˆ a51 ˆ a71 ˆ a91,

a17 ˆ (0 ˆ a0 ˆ a20 ˆ a40 ˆ a60 ˆ a80 ≪ 4) ˆ (0 ˆ a1 ˆ a21 ˆ a41 ˆ a61 ˆ a81 ≫ 4)

ˆ 0 ˆ a12 ˆ a32 ˆ a52 ˆ a72 ˆ a92,

a18 ˆ (0 ˆ a1 ˆ a21 ˆ a41 ˆ a61 ˆ a81 ≪ 4) ˆ (0 ˆ a2 ˆ a22 ˆ a42 ˆ a62 ˆ a82 ≫ 4)

ˆ 0 ˆ a13 ˆ a33 ˆ a53 ˆ a73 ˆ a93,

a19 ˆ (0 ˆ a2 ˆ a22 ˆ a42 ˆ a62 ˆ a82 ≪ 4) ˆ (0 ˆ a3 ˆ a23 ˆ a43 ˆ a63 ˆ a83 ≫ 4)

ˆ 0 ˆ a14 ˆ a34 ˆ a54 ˆ a74 ˆ a94,

)}
theta 7→ {len(A) ≥ 25, (A)→ (

a0 ˆ (0 ˆ a1 ˆ a6 ˆ a11 ˆ a16 ˆ a21 ≪ 1) ˆ (0 ˆ a1 ˆ a6 ˆ a11 ˆ a16 ˆ a21 ≫ 7) ˆ

(0 ˆ a4 ˆ a9 ˆ a14 ˆ a19 ˆ a24),

a1 ˆ (0 ˆ a2 ˆ a7 ˆ a12 ˆ a17 ˆ a22 ≪ 1) ˆ (0 ˆ a2 ˆ a7 ˆ a12 ˆ a17 ˆ a22 ≫ 7) ˆ

(0 ˆ a0 ˆ a5 ˆ a10 ˆ a15 ˆ a20),

a2 ˆ (0 ˆ a3 ˆ a8 ˆ a13 ˆ a18 ˆ a23 ≪ 1) ˆ (0 ˆ a3 ˆ a8 ˆ a13 ˆ a18 ˆ a23 ≫ 7) ˆ

(0 ˆ a1 ˆ a6 ˆ a11 ˆ a16 ˆ a21),

a3 ˆ (0 ˆ a4 ˆ a9 ˆ a14 ˆ a19 ˆ a24 ≪ 1) ˆ (0 ˆ a4 ˆ a9 ˆ a14 ˆ a19 ˆ a24 ≫ 7) ˆ

(0 ˆ a2 ˆ a7 ˆ a12 ˆ a17 ˆ a22),

a4 ˆ (0 ˆ a0 ˆ a5 ˆ a10 ˆ a15 ˆ a20 ≪ 1) ˆ (0 ˆ a0 ˆ a5 ˆ a10 ˆ a15 ˆ a20 ≫ 7) ˆ

(0 ˆ a3 ˆ a8 ˆ a13 ˆ a18 ˆ a23),

. . .

)}

To keep the mapping relatively concise, we show the first five (out of twenty-
five) elements of the reference mapping, and the first twenty (out of a hun-
dred) elements of the variant mapping.

Let us observe the first element of the reference mapping, and the first
four of the variant mapping. Here, we see that all indices match up in the
expected way; the variant’s indices are the reference’s indices, multiplied by
four for the first element, and then plus one for each of the three elements
after it.
Furthermore, we see that the rotation is also multiplied by four.

Lastly, we see that in both the variant and the reference mapping, each
element consists of its original value, to which the xor operation is applied
together with some other compound value. This compound value is equal
for each five / twenty subsequent elements, for the variant and reference
respectively, and as such is explained by the factor of four.
Thus, we have shown that the functions theta_4 and theta are semantically
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analogous.

4.5.6 KeccakP200Round

The round function consists of all diffusion functions (Iota through Theta)
being applied on the state array.
However, as can be seen in the appendix5, the state mapping of both the
reference and the variant are too large to properly reason about6.
Instead, we make use of the fact that we know the body of both variants
consists of all diffusion functions being called in the same order. Given
that we have already concluded that all diffusion functions are semantically
analogous, this allows us to conclude that KeccakP200Round and
KeccakP200Round_4 are semantically analogous.

5Specifically in section A.1 and section A.2, for the reference and variant respectively.
6Note that this is not inherent to our technique, but mostly caused by an unsimplified

state mapping. We discuss this point further in Section 6.1
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Chapter 5

Related Work

Software verification is not a new field, and as such, a lot of research has
gone into the verification of software that is related to security, in some
manner. We briefly list existing studies on concepts that closely relate to
our topic below, and finally explain why our approach is a new one.

5.1 ProVerif

Proverif [7] is probably the most well-known protocol verifier. It takes as
input a model in the Dolev-Yao [11] format, and outputs which security
properties the protocol has, or fails to have, and why.

5.2 Automatic model extraction

The paper by Aizatulin et al. [3] describes a new method to use symbolic
execution on a C program, then rewrite it to a form ProVerif can accept, and
finally use ProVerif to obtain the security properties of said C program. It
is noted by the authors that their approach can only be applied to protocols
with no significant branching, for now.
It is unfortunately not entirely clear what significant branching is in the
context of the paper.

5.3 Static Analysis through semantics

The paper by Bodei et al. [8] describes how to prove the properties of a
protocol implementation, without annotations, through semantical analysis.
Their approach to doing so is similar to ours, but they prove properties of
a protocol implementation, as opposed to proving equivalence between two
implementations.

88



5.4 Our approach

The solutions that are available as of yet either allow one to prove the prop-
erties a model has, to extract a model from source code (in one specific
language), or prove properties directly through source code. Our proposed
method, however, verifies the implementation of a cryptographic algorithm.
For this thesis, we have narrowed the scope to permutations, but the tech-
niques can, in theory, be applied to any cryptographic primitive or protocol.
We know this is the case, because While and While+ are Turing complete
(and as such, any algorithm can be expressed in While+). However, the
more difference between While+ and the source language(s), the more elab-
orate the transformation rules have to be to yield a correct transformation.

This is the difference between the existing state-of-the-art approaches, and
the new techniques proposed in this paper.
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Chapter 6

Conclusions

In Chapter 3, we conclude by showing that the state mappings of the diffu-
sion functions are semantically analogous.
From this, we may conclude that the round functions of the two imple-
mentations are semantically analogous as well, given that they consist of
applications of the diffusion functions. And from this, we may conclude
that the permutation functions of the two implementations are semantically
analogous, because they consist of applications of the round function.

Thus, if it is the case that the the transformations do not alter the se-
mantics of the code and the rules of the derivation system are sound and
complete, then we have shown that the Keccak-f variant is indeed analogous
to the reference implementation.

Below, we will briefly cover the limitations present in our current tech-
nique, go on to discuss the feasibility of its application and finally lay out
what future work might be performed in this area.

6.1 Limitations

There are several limitations to the method we employ. We will go over
them one by one in this subsection, and discuss how much they impact the
conclusion of the application of our technique.

6.1.1 Reference implementation errors

If the reference implementation contains errors, this approach cannot catch
them. In fact, it will tell the user the variant is correct if it has the same
fault, and will otherwise report that there is a fault in the variant code, even
if it correct!
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This limitation is inherent to the way in which this method identifies mis-
takes. Additionally, it has a rather small impact; if we only need to verify
that one implementation is correct manually, this is far more achieveable
then having to verify that all implementations are correct.

6.1.2 Analogous vs identical

The two variants we compare in this thesis are not programs that are ex-
pected to be semantically identical, as one is optimized1. This requires us
to show that the state mappings that result are analogous.
Unfortunately, there is no straightforward method for this, as analogous
mappings can exist in many forms; from mappings that are equal but re-
quire rewriting, to mappings like in rho and rho_4, which differ a lot, but
are relatable due to a number of factors.

It seems like this is a major issue in this approach, but it is actually not.
The primary goal of this approach is to prove that two implementations are
identical. It just so happens to be the case here that they are not, but are
not supposed to be either. Thus, we can see the possibility to prove seman-
tic analogies as an extension to the original approach, that requires more
manual work.

6.1.3 Scalability

As briefly touched upon in Section 3.3, the complexity of applying the deriva-
tion rules isO(2n), where n are the number of if statements. Though it seems
relatively poor, it has no direct impact on our application, as it is mostly
manual.
It does mean that if someone were to automate the process further, they
need to be careful to do so efficiently, so as to avoid excruciatingly slow
results.
Additionally, if one were to attempt proofs on bigger programs, such as
Keccak-f[1600], the state might become too big to reason about, even if state
mapping simplification is applied. This is because the maximum length of
the state mapping is determined by the number of the individual compo-
nents that make up the parameters. For instance, if the sole parameter to a
mapping is a byte, then the maximum length for a single bit of that byte is 8
bits; each bit being somehow present in the final term. Thus the maximum
length of the entire byte is 64 terms. In general, the worst case scaling is
quadratic (O(n2)).
If we take Keccak-f[1600] as example again, this would lead to a maximum
state mapping length of 2560000 terms.

1However, one would still expect identical inputs to the respective permutation function
to provide identical outputs.
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6.1.4 While loops

Though it does not happen in Keccak-f, there exists a particular case in
while loops that the derivation rules cannot handle properly.
Consider the following While+ program:

foo(bar = var)

(

baz = 0;

while(bar < 7) do

(

baz = bar * 3 + baz;

bar + 1

)

)

Here, the condition of the while loop is dependent on a parameter. Because
we provide parameters with random values in the second pass, we cannot
know when the condition is true or false.
If the condition depends on, say, a bit or a byte, we could solve the problem
by enumerating all possibilities, and creating a state mapping for each. This
is not a great solution, as it would need 256 mappings for a byte, but it also
does not solve the problem for arrays or variables. Both have an unbounded
‘maximum’ value.

As stated previously, this does not impact the conclusion of this paper,
because this does not occur in Keccak-f.

6.1.5 State mapping simplification

We do not provide the state mapping of permutation and permutation_4,
because the mapping becomes so large that our helper program cannot han-
dle them.
However, the fact that the helper program fails is a symptom of the under-
lying problem; the state mappings become incredibly large. This is because
we do not simplify the state mappings at all, leading to a cascading effect
every time we apply a state mapping on an existing state.

As mentioned above, this impacts our thesis in the sense that we could
not create state mappings of all functions. Beyond that, however, not sim-
plifying makes it more difficult to reason about the state mappings that we
did make.
Simply put, the reason we did not simplify the state mappings is because we
could employ a bit more manual work to circumvent these problems, whereas
simplification is a process that is likely to create a significant amount of edge
cases to deal with.
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6.1.6 Generality of transformation rules

As is mentioned in Subsection 4.3.1, not all rules that are defined will work
for any given C program. Some rules rely on the fact that arrays defined in
Keccak are always of size 25, for instance.
But the biggest non-generality can be seen in the last rule of the variant
rules; it transforms a single line of code into a triply nested if-then-else
statement! This is an excellent example of the fact that the farther one’s
code strays from the concepts defined in While+, the more work will be
necessary within the transformation rules to make the transformation work.

Theoretically speaking, it is possible to define general rules for all cases
(in the sense that Turing completeness allows us to conclude we can always
simulate any program in any language, in While+), but this requires consid-
erable effort. Therefore, we decided to create general rules where possible
and otherwise explained why it was not feasible.

6.2 Feasibility

If one wishes to apply our technique to a program, the steps that currently
require manual work are:

1. Obtain a reference and variant.

2. Apply preprocessing to the reference and variant.

3. Write (or otherwise obtain) transformation rules for both the reference
and variant.

4. Apply postprocessing to the transformed reference and variant.

4. Apply the first pass derivation rules to the reference and variant.

5. Obtain a derivation order for the reference and variant.

6. Apply the second pass derivation rules to the reference and variant,
according to the derivation orders of step 5.

7. Obtain the state mappings of all functions of the reference and variant,
from the derivation trees of step 6.

8. If the goal is to prove equivalence, find a strict bijection between the
state mappings of the reference and variant. If the goal is to prove
analogy, find a bijection between the state mappings of the reference
and variant, such that any differences are explained by transformation
or usage of the program.
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If additional work is put in to automation of this process, the most optimal
outcome would be:

1. Apply a reference and variant.

2. Apply preprocessing to the reference and variant.

3. Write (or otherwise obtain) transformation rules for both the reference
and variant.

4. If the goal is to prove analogy, find a bijection between the state map-
pings of the reference and variant, such that any differences are ex-
plained by transformation or usage of the program2.

Thus, we may conclude that as it stands, our technique is not feasible to
apply in practice. Even if additional work is put in to improve it, the most
substantial step (namely the creation of transformation rules) remains. In
this case, it would be more feasible then it is currently, but still probably
not practically so.
In the next section, we will detail the ways in which our method may be
improved.

6.3 Future work

There are a number of aspects in which our method can be improved, but
which were out of scope for the purposes of this thesis. We list them below,
and briefly discuss what their use is.

6.3.1 While loops

As discussed in Section 6.1, certain uses of while loops are not properly
handled by the derivation rules. We suspect a possible solution to this is to
try a technique similar to axiomatic semantics, by attempting to describe
the state delta’s of the while loop not in terms of the direct state (because
the state influences the while loop), but in patterns. For instance, for the
following while loop:

x = 0;

while(x < len) do (

y[x] = y[x] + 3;

x = x + 1

)

2If the goal is to prove equivalence, then it is possible to do so automatically, by
simplifying the state mappings and then verifying their equality.
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Where len is a parameter that specifies the length of y, that the state map-
ping of the array will look something like:

y → (x0 + 3, x1 + 3, ..., xlen−2 + 3, xlen−1 + 3)

Indicating that for however long the array happens to be, the mapping fol-
lows the pattern described.

We also briefly discuss how a while loop might be handled, if its condition
depends on a variable alone:

while(x < 37) do (

x = x + 5;

)

The number of iterations is directly dependent on the value of x. For this
case, it is clear that if we can express the number of iterations in terms of
x, then we can describe the value of x in terms of itself (as the reader may
have spotted, the outcome will be 37 38 39 40 or 41, here). However, it is
not entirely clear what may happen if the number of iterations depends on
a variable, but the loop itself influences an array.

6.3.2 State mapping simplifications

Simplifying the state mapping is a matter of applying the definition of op-
erators as much as possible, given the arbitrary state. For instance, we can
simplify

a→ (x+ 3) + 7

to
a→ x+ 10.

We show examples for some types and operands:

a→ 5 | a
a→ (1, a1, 1, a2, a3, a4, a5, a6, a7)

b→ b≪ 4ˆb≫ 4

b→ (b4, b5, b6, b7, b0, b1, b2, b3)

It should not be difficult on its own to apply these simplifications, but we
are not sure if there are specific orders that need to be used to simplify
optimally. Ideally, this simplification process should be written in term of a
TRS, such that it can be shown to be terminating and confluent.
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6.3.3 Automation

To improve usability, we would need to automate our approach further.
Specifically, we would need to further improve the transformation step, and
automate the application of the derivation rules.
We do not foresee any difficulties in this automation, apart from the afore-
mentioned limitations of the derivation system. The specific steps we can
automate are:

• The removal of modulus statements, when it is never used. In the
code we look at in this thesis, this happens most often in a while loop,
where the condition enforces that x < 5, and so a statement like x%5
is semantically identical to x.

• Applying the first pass derivation rules to the reference and variant.
Since the first pass is mainly intended to find the function calls made
within each function, this is not too difficult.

• Finding a derivation order. Since we have already described a pro-
cedure to find a derivation order, this should not be much work to
automate.

• Applying the second pass derivation rules to the reference and variant.
This is also fairly straightforward, as all the rules are already described
in this thesis.

• Simplifying the state mappings. This step consists entirely of applying
the hypothetical TRS as described in the previous subsection.

• Proving equivalence of two sets of state mappings. Since this step
occurs after the simplification of the state mappings, we may assume
all variable names and orders are fixed, and so equal state mappings
are absolutely identical.

The remainder of the process which cannot be automated typically involves
some amount of human insight being required to conclude the step, such as
proving the reference and variant are analogous.

6.3.4 Optimizations

We have realized that state mappings can be used to create optimized code,
if used properly.
Consider the original function pi, from the reference implementation of the
code used in this thesis. It uses a double loop to assign elements, and does
so twice, essentially using an entire extra array’s worth of memory.
From the state mapping of pi, however, we can conclude that:

1. The state mapping maps a single array.
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2. This single array is mapped in terms of itself, that is, no references are
made to read-only arrays, variables, bytes or bits.

3. Every element of this array is mapped from exactly one other element.

4. We can map each element in the array, using a single external byte to
hold the element to be mapped to last.

In general, one could create a graph of dependencies of parameters, to de-
termine how we may turn the state mapping into an optimized function
with minimal memory or cpu overhead. In doing so, we not only improve
functions by making them effectively assign the end result of what their
source code does, as opposed to any interim, but it also makes it so that
optimizations work far more predictably.
Currently, at least for all compilers we are aware of, adding new optimiza-
tions is incredibly complex. The order in which optimizations are applied
often matters, or one optimization might depend on another working in a
specific manner. By reducing functions to a state mapping and then ex-
panding the state mapping to an assignment conforming to the mapping,
we only need to optimize the different pieces of code that are used in said
assignments.

Of course, a possible downside to this approach could be binary size. Con-
sider for instance the function pi again. In its unoptimized form, it simply
consists of a nested while loop. But if optimized, it should lead to 25 assign-
ments instead. This is not too bad if the array size is 25, but if it happens
to be 250, or even more, problems might start appearing.

6.3.5 Term rewriting systems

Term Rewriting Systems [4] (or TRS, for short) are systems that can be
used to rewrite terms. If our transformation rules were to be rephrased as
a TRS, it may be possible to prove it is a confluent and terminating (or,
equivalently, complete) TRS. A terminating TRS is one that never endlessly
rewrites its input. This is invaluable for automating the transformation step,
as it means cycle detections can be omitted.
A confluent TRS is one for which each input is rewritten in exactly one way
to an output. While not technically necessary to prove, it does make the
result of a transformation more robust, because the reduction strategy that
was used cannot impact the outcome.
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Appendix A

Appendix

This appendix contains code and proofs that would be too lengthy to put
in the running text.

A.1 Reference data

Due to the nature of the data obtained from applying CIL and the derivation
rules to the reference implementation, it is difficult to present properly in
this format.
To solve this, we provide the reference data through Zenodo [14]. Zenodo is
a data repository maintained by CERN. It contains:

1. The source code after being processed by CIL,

2. The CIL code after being manually processed further,

3. The While+ code after being transformed from CIL,

4. The While+ code, after being manually processed further,

5. The annotated program resulting from the first pass derivation rules
being applied on the While+ code,

6. The annotated programs resulting from the second pass derivation
rules being applied on the results of the first pass.

As well as some plaintext that adds additional explanation to the annotated
programs.

A.2 Variant data

Just as we did for the reference data, we also provide the variant data
through the Zenodo repository [16]. It contains:
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1. The source code after being processed by CIL,

2. The CIL code after being manually processed further,

3. The While+ code after being transformed from CIL,

4. The While+ code, after being manually processed further,

5. The annotated program resulting from the first pass derivation rules
being applied on the While+ code,

6. The annotated programs resulting from the second pass derivation
rules being applied on the results of the first pass.

As well as some plaintext that adds additional explanation to the annotated
programs.

A.3 Variant transformation rules

Due to the reasons discussed in the related subsection 4.3.1, the variant
transformation rules are too lengthy to properly display here.
To solve this, we provide the variant rules through Zenodo[15].

A.4 Postprocessing program

The following program, written in C#, takes as input some amount of CIL
files, applies the post-processing described in this thesis (section 4.2.1) to
them, and writes the result to file. Note that although the listing includes
all actual code that it uses, the accompanying project structure (the project
file, the folders and compilation data) has been omitted, because it would
take up needless space.
Because C# code does not list well in this format, we have published it on
Zenodo [12].

A.5 Transformation program

Though the comments in the source code explain most of the process, we
shall briefly explain it here, and highlight what functionality does not yet
work as intended.
We read in the rules (which are represented in ASCII format, but otherwise
completely identical to those defined in Subsection 4.3.1), and split them
on newlines. Each rule is then made up of a right hand side (which will
be called RHS from here on), and a left hand side (LHS). The RHS defines
what must be matched in the original code, and the LHS defines what must
be replaced with a match of the RHS.
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We can immediately transform the LHS into a regular expression, by escap-
ing characters that have meaning in regular expressions, and replacing each
of the rule symbols by their regex equivalent.
For the RHS, we can replace every rule symbol by a placeholder (of the
form ‘{i}’, where i is some number), to turn it into a format string. Then,
every captured subgroup of the LHS can be fed into the RHS, to obtain the
replacement.
The failure in this process lies in the way the format string is generated; it
assumes that every captured subgroup is fed into the format string in order.
In reality, this need not be the case, and so the rules that don’t comply to
this fail to work through the program.

Similar to the other appendix entries, we have published the code on Zen-
odo [13].

A.6 CILLY script

Cilly is the driver that is used to perform code transformation outside of
OCAML. We provide a short bash script to make transformation even easier
below. Though it does not allow for more than two files to be merged at
once, this is of no account for this thesis; we never need to merge more than
two files.
Note that this script will only work if both Cilly and OCAML are installed.

Listing A.1: CILLY script

#!/bin/bash

cilly_location=$(which cilly)

if [ "$cilly_location" == "cilly not found" ];

then

echo "Error: could not find cilly!

Please install CIL using the command

’opam install cil ’."

exit 1

fi

if [ "$(which clang_format)" == "clang_format

not found" ]; then

echo "Error: could not find clang!

Please install it before running

this script."

exit 1
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fi

if [ "$1" == "" ]; then

echo "Please enter at least one file to

convert!"

exit 1

fi

if [ "$2" == "" ]; then

$cilly_location --save -temps $1.c #

Calling cilly to do the

transformation on one file.

clang -format -i $1.cil.c # Reformatting

the resulting file.

fi

if [ "$2" != "" ]; then

$cilly_location --save -temps --merge $1
.c $2.c #Calling cilly to do the

transformation on two files , with

the merge option enabled.

clang -format -i a.cil.c # Reformatting

the resulting merged file.

fi

rm a.out # Removing the final executable (which

we are not interested in).

rm *.i #removing unneeded temp files

rm *.o #removing unneeded object files
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