
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Differential fuzzing of stateful systems using FlexFringe

Author:
Jermo van Oort
s1058152

First supervisor/assessor:
Dr. Ir. Erik Poll

Second assessor:
Prof. Dr. Frits Vaandrager

Second supervisor:
Cristian Daniele

Third supervisor:
Seyed Behnam Andarzian

January 19, 2024

Abstract

In this day and age, all users of the Internet use stateful protocols to transfer
messages with one another. Stateful protocols keep track of the communica-
tion’s current state, often employed to maintain a connection between two
devices. To keep users safe, all server implementations of these protocols
need to be as secure as possible to prevent adversaries from misusing them.
An effective method for discovering vulnerabilities in a protocol’s server im-
plementation is fuzzing. Fuzzers operate by feeding an implementation large
amounts of randomly generated data, looking for unexpected crashes or out-
puts. A state-of-the-art fuzzer is AFLNet, designed specifically for stateful
protocols.

Generating state machines from the outputs of the fuzzer and subse-
quently comparing them results in differential fuzzing. Differential fuzzing
offers a potential solution for finding differences, and hence bugs, in imple-
mentations of the same protocol. By feeding the inputs and outputs that
were generated by the fuzzer to a state machine learner as FlexFringe, differ-
ent implementations of a stateful protocol can be compared based on their
state machines. Differences can indicate vulnerabilities or newly introduced
bugs.

Using AFLNet to fuzz two different server implementations of FTP and
then pass the traces to FlexFringe to generate the state machines revealed
that there are noticeable differences between implementations, both in the
number of states and the ways they deal with authentication. Furthermore,
inspecting the state machines for vulnerabilities uncovered certain inputs
that have the potential to be security risks.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Fuzzing . 5

2.1.1 Blackbox fuzzing . 5
2.1.2 Whitebox fuzzing . 6
2.1.3 Greybox fuzzing . 6
2.1.4 Differential testing and fuzzing 6

2.2 Learning algorithms for state machines 7
2.2.1 Active learning . 7
2.2.2 Passive learning . 7

3 Choice of fuzzer 8
3.1 AFLNet . 8
3.2 BooFuzz . 8
3.3 Choice of fuzzer . 9

4 Choice of protocol and implementations 10
4.1 FTP . 10

4.1.1 LightFTP . 10
4.1.2 ProFTPD . 11
4.1.3 Bftpd . 11

4.2 TCP . 12
4.3 Choice of protocol . 12

5 Setting AFLNet and FlexFringe for FTP 13
5.1 Fuzzing FTP implementations with AFLNet 13

5.1.1 Setting up AFLNet . 13
5.1.2 Prerequisites AFLNet 15
5.1.3 Solving errors AFLNet 15
5.1.4 Fuzzing LightFTP . 16
5.1.5 Fuzzing Bftpd . 16
5.1.6 Getting traces . 17

5.2 Generating state machine using FlexFringe 18

1

5.2.1 FlexFringe . 18
5.2.2 Converting traces to Abbadingo format and creating

state machines with FlexFringe 19
5.2.3 Problem with double inputs/responses 19
5.2.4 Terminology and notations 20
5.2.5 Initial experiments . 22

6 Differential fuzzing of two FTP server implementations 29
6.1 Parameters for generating state machines 29

6.1.1 Heuristic . 29
6.1.2 Abstraction function 29
6.1.3 ParentSizeThreshold 30

6.2 State machine of LightFTP 30
6.3 State machine of Bftpd . 31
6.4 Comparing LightFTP and Bftpd 32

6.4.1 Differences in state machines 32
6.4.2 Possible vulnerabilities 33

7 Future work 35
7.1 Using a different fuzzer . 35
7.2 Differential fuzzing of a different protocol 35
7.3 Generating state machines with a different learner 35
7.4 Examining the possible vulnerabilities 36

8 Conclusions 37

Bibliography 39

A Dockerfile for setting up AFLNet and lightFTP 43

B Script for generating Abbadingo file for experiment 1 45

C Script for generating Abbadingo file for experiment 2 and
3 46

D Script for generating Abbadingo files from LightFTP or
Bftpd TCP streams 48

E Full state machines for LightFTP and Bftpd 51
E.1 State machine of LightFTP 52
E.2 State machine of Bftpd . 53

2

Chapter 1

Introduction

Differential testing is valuable as it can expose differences and flaws among
various software implementations by comparing their behavior. It provides
confidence in the reliability and consistency of applications, by uncover-
ing bugs and thus potential security vulnerabilities [16]. Another method
for discovering bugs is with the use of a fuzzer. Fuzzing is done by feed-
ing a system under test (SUT) large amounts of randomly generated data,
looking for unexpected crashes or outputs [12]. Integrating fuzzing with dif-
ferential testing leads to differential fuzzing. Differential fuzzing is achieved
by fuzzing a SUT and comparing various software implementations with
each other. This technique will be implemented on stateful protocols in
this study. Stateful protocols, such as FTP and TCP, have a wide variety
of server implementations and versions. When these protocols are newly
implemented, they are essentially built from the ground up, potentially re-
sulting in minor variations. These discrepancies can become vulnerabilities
that adversaries can exploit to carry out attacks. The variations can be
compared with a finite state machine learner like FlexFringe [27].

By choosing a fuzzer that works with stateful protocols [11], the input
and output traces are used as input for FlexFringe to create a state machine.
Traces are the client input and server output of an implementation. The di-
vergences between state machines of different implementations can indicate
bugs or inconsistencies. The following research question will be answered
at the end of this study: How to perform differential fuzzing of a
stateful protocol using FlexFringe?

Chapter 2 will provide background information to understand some tech-
nical details used in this thesis. This includes information about fuzzing in
general and different learning algorithms for state machine learning. Chap-
ter 3 discusses the choice of fuzzer. Chapter 4 presents the choice of the
used stateful protocol and their implementations. Chapter 5 consists of two
phases. In the first phase, fuzzing LightFTP and Bftpd with AFLNet [19]
is done. In the second phase, the process of finding the right abstraction

3

function and using the correct heuristics is given. Chapter 6 contains the
final state machines for the two FTP server implementations and both im-
plementations are discussed. Chapter 7 lists the work that can be done in
the future to extend this research. Lastly, Chapter 8 presents the conclu-
sions of the research findings. Figure 1.1 gives an abstract flow of how the
state machines are created.

Figure 1.1: Abstract flow of this research

4

Chapter 2

Preliminaries

In this chapter, three different approaches for fuzzing are explained in section
2.1. This section also includes the definitions of differential testing and
fuzzing. In section 2.2 active and passive learning algorithms to learn state
machines are discussed.

2.1 Fuzzing

Fuzzing is all about sending various inputs to the system under test (SUT)
and observing if bugs or incorrect outputs occur. There are multiple ap-
proaches to fuzzing. In sections 2.1.1, 2.1.2, and 2.1.3 three different ap-
proaches are explained. Lastly, differential testing and fuzzing are explained
in more detail in section 2.1.4.

2.1.1 Blackbox fuzzing

In blackbox fuzzing, the SUT is known as a box where the source code is not
known [29] and the fuzzer must solely rely on the SUT’s external behavior
and responses. The input that must be provided to the SUT does not have
any restrictions other than being a finite string, but in practice, the input
is crafted in such a way that it finds bugs more easily, like using grammar-
or mutation-based fuzzers. Grammar-based fuzzers use a predefined syn-
tax or grammar that meets the expected input structure [8]. By generating
according to the grammar, it is more likely that the inputs trigger specific
code within the SUT. Mutation-based fuzzing makes small and random al-
terations to already existing inputs to generate new inputs. The output of
the SUT will be checked for any divergences that could indicate a bug and
thus might be a security flaw.

5

2.1.2 Whitebox fuzzing

Whitebox fuzzing is exactly the opposite of blackbox fuzzing. With whitebox
fuzzing, the fuzzer can access the source code of the SUT and the fuzzer can
use the internal behavior to create input. To maximize the efficiency of the
fuzzer, inputs will be crafted so that they reach all branches in the code.
This is often done using symbolic execution [10]. Symbolic execution is
a program analysis technique used to find the behavior of a program by
following the values of variables and expressions instead of random input.
It is valuable in identifying edge cases and can automatically generate input
for said edge cases.

2.1.3 Greybox fuzzing

Greybox fuzzing is in between white- and blackbox fuzzing. Greybox fuzzers
make use of observations made during the execution stages of fuzzing to
guide the fuzzer to the highest possible coverage tree. Trying to achieve
this coverage is not done by simply generating data and hoping for the
best. Instead, the fuzzer learns from the SUT’s responses and uses this
knowledge to guide the process. Focusing on prioritizing inputs that expand
the coverage of the SUT and refine these through mutation [6].

Greybox fuzzers, such as AFLNet [19], further enhance their efficiency
by using two feedback approaches to steer the fuzzing process. The first is
a coverage-driven approach and a second is a response-driven approach.

The coverage-driven approach is the most common form of greybox
fuzzing. Take for example code-coverage feedback. Code-coverage feed-
back emphasizes the selection and prioritization of inputs that lead to the
execution of undiscovered code [25]. Other common coverage metrics are
line, function, edge, or path coverage.

The response-driven approach on the other hand uses the response of
the system to steer the process. The inputs that result in previously undis-
covered responses can be used and modified to broaden the fuzzer’s scope
even further [19].

A state-of-the-art greybox fuzzer for stateful protocols is AFLNet [19],
which is extensively discussed in section 3.1

2.1.4 Differential testing and fuzzing

Differential testing is a technique used to compare the behavior of two or
more implementations of the same software or protocol, aiming to identify
differences in how these implementations handle data and different inputs
[5]. The testing process consists of sending the same input, including invalid
and edge case inputs, to both implementations and comparing the behav-
ior of the program. Do both implementations produce the same output?

6

Different outputs can indicate a bug or non-standard behavior. Differen-
tial testing is valuable in implementation-specific flaws or inconsistencies.
Comparing the two implementations is different for stateless and stateful
protocols. For stateless protocols, only the input and output can be com-
pared with one another, because the SUT is a box with no states in it. All
these inputs and outputs are stored in traces. These traces are compared
with the traces from the other implementation. For stateful protocols, there
are internal states. Comparing two different implementations can be done
by comparing the state machine of the implementations. Differences in state
machines, e.g. a transition that is in one that is missing in the other, can
indicate undesired behavior. Differential fuzzing is an extension of differen-
tial testing because it automatically tests the SUT with loads of different
random inputs generated by a fuzzer. The inputs are sent to the SUT, and
the outputs are monitored.

2.2 Learning algorithms for state machines

In section 2.2.1 it is explained what active learning is. Section 2.1.2 gives
the details about the passive learning approach.

2.2.1 Active learning

During the learning process, where the learner attempts to construct a state
machine from the obtained traces, active learning algorithms can interact
with the SUT [22]. When learning state machines, the protocol can send
necessary input traces to the SUT and instantly receive the corresponding
outputs. This approach can facilitate the learning of state machines while
interacting with the SUT.

2.2.2 Passive learning

Passive learning does not rely on actively selecting traces to send to the
SUT. Instead, it uses collected traces to construct a state machine [22].
This approach is useful when dealing with a large quantity of data because
passive learning is less time-consuming than active learning [22]. Active
learning algorithms need to label the input for the next iteration as the
previous iteration finishes, passive learning can do that beforehand [14]. In
section 5.2.1, FlexFringe [27], a passive state machine learner is discussed.

7

Chapter 3

Choice of fuzzer

In this chapter, the choice of the fuzzer will be discussed. Firstly, AFLNet
[19] is discussed. AFLNet, built upon Google’s American Fuzzy Lop (AFL)1,
is a greybox fuzzer specifically designed for stateful protocols. Details about
AFLNet are provided in section 3.1. Another stateful protocol fuzzer, Boo-
Fuzz, is discussed in section 3.2. In section 3.3 the choice for AFLNet is
explained.

3.1 AFLNet

AFLNet[19] is a greybox fuzzer based on the AFL groundwork, inheriting
and expanding upon the properties implemented by AFL. One of the charac-
teristics of AFLNet is that it has the capability to fuzz stateful programs, in
contrast to AFL, which is more optimized for stateless programs. Further-
more, AFLNet takes a dual feedback approach, using both response feedback
and code-coverage feedback (section 2.1.3) to steer the fuzzing process. The
fuzzer acts as a client that sends messages to the server (SUT) and modifies
and replays messages that are effective at increasing the coverage or state
space. AFLNet needs an initial set of recorded messages to the system under
test (SUT), upon which it builds and progresses. AFLNet is able to fuzz in
parallel, which increases the efficiency of the fuzzing process [7].

3.2 BooFuzz

BooFuzz [18] is a grammar-based blackbox fuzzer that is a fork of the now
inactive Sulley fuzzer [3]. BooFuzz can fuzz stateful protocols, and combine
that with quick data generation [18], making it well-suited for protocols
with complex state machines. BooFuzz has loads of documentation2 about

1https://github.com/google/AFL
2https://boofuzz.readthedocs.io/en/stable/

8

the installation process and how the software must be used. Unfortunately,
BooFuzz is a blackbox fuzzer, so it cannot make use of the source code or
observations made in the execution phase. To fuzz a stateful protocol that
uses any sort of authentication, some variables need to be known before
fuzzing. Before fuzzing with BooFuzz, a session is created that includes a
username and password. Boofuzz can fuzz multiple targets in parallel [18],
but cannot fuzz the same job on multiple cores or machines.

3.3 Choice of fuzzer

In this study, AFLNet will be used as fuzzer. AFLNet is a greybox fuzzer
instead of the blackbox fuzzer BooFuzz. Therefore, it uses the observations
made in the execution phase of the process, which leads to the execution of
undiscovered code faster (section 2.1.3). Adding the use of seed input gives
the fuzzer an understanding of the syntax for that protocol. Furthermore,
AFLNet can fuzz jobs on multiple cores or machines, hence decreasing the
time before all states are found. AFLNet is used in this study.

9

Chapter 4

Choice of protocol and
implementations

In the chapter, different protocols are discussed. All protocols have differ-
ent characteristics. In section 4.1 the characteristics of FTP are discussed,
and different FTP server implementations are talked about. In section 4.2
TCP will be discussed. Lastly, in section 4.3 the choice for the protocol is
explained.

4.1 FTP

File Transfer Protocol (RFC 959[2]), designed in 1971, is a stateful protocol
specifically made to transfer files across the internet. In the section 4.1.1,
LightFTP is discussed. LightFTP is a lightweight FTP server that can
communicate with FTP clients. Then in section 4.1.2, ProFTPD is talked
about. Lastly, in section 4.1.3, Bftpd is discussed.

4.1.1 LightFTP

LightFTP[9] is a lightweight FTP server suitable for small-scale file transfer
across the internet. An FTP client can connect to the FTP server and put
or get files. In listing 4.1 an example FTP message exchange is given.

1 220 LightFTP se rv e r ready
2 USER anonymous
3 331 User anonymous OK. Password r equ i r ed
4 PASS password
5 230 User logged in , proceed .
6 PWD
7 257 ”/” i s a cur rent d i r e c t o r y .
8 QUIT

10

9 221 Goodbye !

Listing 4.1: Message exchange of FTP client and LightFTP server. Odd
lines are server responses (output traces), and even lines are client commands
(input traces).

This example lets the client log into the server with a username and password
and when the client is authenticated, the client requests the path to this
directory. Lastly, the client quit from the server. The messages with FTP
commands (like USER and PASS) are commands from the client. The other
messages are responses from the server, indicated with a code.

FTP has a fixed list of FTP commands.

4.1.2 ProFTPD

ProFTPD [21] is an open-source FTP server with as goal to have as many
features and configurations as possible so that users have options to choose
from. ProFTPD has modules that allow for encryption for file transfers.
ProFTPD uses standard FTP input and response codes for communicating
with a client.

1 220 ProFTPD Server (ProFTPD Defau l t I n s t a l l a t i o n) [1 2 7 . 0 . 0 . 1]
2 USER ubuntu
3 331 Password requ i r ed f o r ubuntu
4 PASS ubuntu
5 230 User ubuntu logged in
6 DELE t e s t . txt
7 550 t e s t . txt : No such f i l e or d i r e c t o r y
8 QUIT
9 221 Goodbye .

Listing 4.2: Message exchange of FTP client and ProFTPD server. Odd
lines are server responses (output traces), and even lines are client commands
(input traces).

This example lets the client log into the server with a username and pass-
word. The client tries to delete a file, but that file does not exist.

4.1.3 Bftpd

Another small and easy-to-configure FTP server is Bftpd [24]. Bftpd’s aim
is to be fast, secure, and quick to set up and configure FTP servers. Some
key features are: no special setup is needed for security with chroot and
files (sh, ls, . . .) are not needed in the chroot environment. Most FTP
commands are implemented in Bftpd.

1 220 bftpd 5 .7 at 1 2 7 . 0 . 0 . 1 ready .
2 USER ubuntu
3 331 Password requ i r ed f o r ubuntu
4 PASS ubuntu

11

5 230 User ubuntu logged in
6 SYST
7 215 UNIX Type : L8
8 PWD
9 257 ”/” i s a cur rent d i r e c t o r y .

10 QUIT
11 221 See you l a t e r . . .

Listing 4.3: Message exchange of FTP client and Bftpd server. Odd lines
are server responses (output traces), and even lines are client commands
(input traces).

4.2 TCP

Another stateful protocol is the transmission control protocol (RFC 793
[1]). TCP, designed in 1981, is a reliable host-to-host protocol. Detection
mechanisms are in place for identifying out-of-sync packets or communica-
tion errors. TCP is widely employed, with even other protocols relying on
the connections established by TCP. Due to its extensive usage, there are
plenty of diverse implementations of this protocol available in nearly every
programming language.

4.3 Choice of protocol

For this thesis, only the FTP protocol is used. There are a lot of different
easy-to-setup and configure FTP server implementations, so that is why
FTP is chosen. TCP is an alternative to look at in the future (section 7.2).
In Chapters 5 and 6, only (the creation of) the state machines of LightFTP
and Bftpd are given. ProFTPD is not handled due to the fuzzing results,
where the number of input traces exceeded the output traces in almost all
instances. This made the creation of the abstraction function very difficult
(section 5.2.5).

12

Chapter 5

Setting AFLNet and
FlexFringe for FTP

This chapter outlines the process of fuzzing LightFTP and Bftpd using
AFLNet, as well as experimenting with the creation of different state ma-
chines. Figure 5.1 schematically shows how the state machines are con-
structed. The process indicated by Phase 1 is discussed in section 5.1. This
section is about fuzzing the different implementations and collecting the
traces. In section 5.2, Phase 2 is described as indicated in Figure 5.1. Ex-
periments with different heuristics and abstraction functions are done to
find the right configurations for generating state machines.

5.1 Fuzzing FTP implementations with AFLNet

In this section, it is explained how to install and fuzz different FTP imple-
mentations with AFLNet. Firstly, setting up AFLNet by running the Dock-
erfile is demonstrated in section 5.1.1, then the prerequisites that AFLNet
needs to start fuzzing any FTP implementation are given in section 5.1.2.
After that, in section 5.1.3, errors that could occur during the fuzzing process
are tackled. Subsequently, in section 5.1.4 LightFTP is fuzzed, followed by
Bftpd in section 5.1.5. Lastly, it describes how to capture traces in section
5.1.6.

5.1.1 Setting up AFLNet

AFLNet GitHub repository1 has excellent documentation on how to install
AFLNet. It is advisable to install AFLNet using the provided Dockerfile
in the repository or via Appendix A, as attempting to install it directly on
Ubuntu 22.04 has resulted in numerous errors and may not work at all. In my
experience, the Dockerfile simplifies the setup and ensures a reliable and easy

1https://github.com/aflnet/aflnet

13

Figure 5.1: Process of generating state machines with FlexFringe using
AFLNet (fuzzer).

installation process. In the Dockerfile from Appendix A, the Ubuntu version
is specified to 18.04, the required packages and repositories are downloaded
(LightFTP, Bftpd, and ProFuzzBench), essential environment variables are
configured, and all files are compiled.

To ensure that the error explained in section 5.1.3 does not occur later in
the installation process, the container must be started in privileged mode.
Starting a container in privileged mode can be done as shown in Listing 5.1.
Listing 5.2 demonstrates how to grant executable permissions to the shell
script and execute it to launch a Docker container shell.

1 #!/ bin /sh
2
3 docker run −−p r i v i l e g e d −−name NAME −d − i −t CONTAINER−ID /bin /sh
4 docker exec − i t NAME /bin /sh

Listing 5.1: Script to start dockercontainer in privileged mode.

1 $ sudo chmod u+x FILE NAME. sh
2 $. /FILE NAME. sh

Listing 5.2: Commands to make the shell script executeable and run it.

14

5.1.2 Prerequisites AFLNet

A network protocol is a set of rules or conventions that dictate how data
should be transmitted, received, and processed in a network. AFLNet uses
an initially recorded set of messages of the protocol to build upon and use
as initial seed input.

The seed input for LightFTP and Bftpd is the basic input to get past
the authentication phase. The seed input starts with FTP commands USER
and PASS. These commands are for authentication. The seed input always
ends with the FTP command QUIT to not get a timeout. An example seed
input is given in Listing 5.3. Some other example seed inputs are given in
the LightFTP tutorial folder2 inside the AFLNet GitHub repository.

1 USER ubuntu
2 PASS ubuntu
3 SYST
4 PWD
5 QUIT

Listing 5.3: Example seed input for FTP.

Furthermore, a dictionary with all FTP commands, the fftp config file,
and a clean-up script need to be provided before fuzzing is possible. All these
files can be found in the AFLNet LightFTP tutorial repository folder 3. For
Bftpd these prerequisites are all included in the ProFuzzBench [17] GitHub
repository 4. ProFuzzBench is a benchmarking tool for stateful protocols.
This repository includes the clean-up script and the syntax for the config
file. To keep the fuzzing of both implementations consistent, the seed input
from the LightFTP tutorial folder is used for both implementations.

5.1.3 Solving errors AFLNet

Starting AFLNet’s fuzzing process for the first time most likely results in one
or both errors. The error given in Figure 5.2 can be resolved by executing
the command provided by AFLNet in combination with a root bash script,
given in Listing 5.4. The sudo bash -c portion is essential, as, without it,
the execution is not possible. This is because sudo runs echo as root, but
the redirection occurs in the shell with no privileges[26].

1 sudo bash −c ’ echo core > /proc / sys / ke rne l / co r e pa t t e rn ’

Listing 5.4: ALFNet fuzz command.

2https://github.com/aflnet/aflnet/tree/master/tutorials/lightftp/in-ftp
3https://github.com/aflnet/aflnet/tree/master/tutorials/lightftp
4https://github.com/profuzzbench/profuzzbench/tree/master/subjects/FTP/bftpd

15

Figure 5.2: Send core dump notification to external utility error.

When attempting to fuzz any protocol for the first time, an error may
arise (Figure 5.3). This issue can be easily resolved by including the flag -m
none in the AFLNet command. This flag will set the max memory size to
none.

Figure 5.3: Need entry of initial state error.

5.1.4 Fuzzing LightFTP

Now that all prerequisites are done, the fuzzing process can start. In Listing
5.5 the command used to start the fuzzing process is stated for LightFTP.

1 a f l −fuzz −t 1000+ −d − i $AFLNET/ t u t o r i a l s / l i g h t f t p / in−f tp −o out−l i g h t f t p −m
none −N tcp : //127 . 0 . 0 . 1 /2200 −x $AFLNET/ t u t o r i a l s / l i g h t f t p / f tp . d i c t −P FTP −D
10000 −q 3 −s 3 −E −R −c . / f t p c l e an . sh . / f f t p f f t p . conf 2200

Listing 5.5: Starting AFLNet for LightFTP.

The seed input, an output file, the FTP dictionary, the clean-up script,
and the config file are all specified. Running the command from Listing 5.5
now starts the fuzzer on port 2200. When done correctly, the status screen
of Figure 5.4 will appear in your terminal.

5.1.5 Fuzzing Bftpd

Fuzzing Bftpd is similar to LightFTP (section 5.1.4). The same seed input
is used, trying to keep the config also the same. The only difference in
the config is the syntax. The syntax for the config is derived from the
ProFuzzBench GitHub repository 5. Executing the command from Listing
5.6 starts fuzzing Bftpd. The status screen from Figure 5.4 will appear.

1 a f l −fuzz −t 1000+ −d − i $PROFUZZ/ in−f tp −o $PROFUZZ/out−f tp / −m none −N tcp
: //127 . 0 . 0 . 1 /2200 −x $PROFUZZ/ f tp . d i c t −P FTP −D 10000 −q 3 −s 3 −R −c
$PROFUZZ/ c l ean . sh /home/ubuntu/bdfpd / ./ bftpd $PROFUZZ/ bas i c . conf 2200

Listing 5.6: ”Starting AFLNet for Bftpd.

5https://github.com/profuzzbench/profuzzbench/blob/master/subjects/FTP/bftpd/basic.conf

16

Figure 5.4: AFLNet status screen.

5.1.6 Getting traces

To obtain the traces, all the network traffic will be captured with the use of
TCPdump[15]. TCPdump stores the network traffic in a pcap file (Listing
5.7), which can be read with the use of Wireshark6. Capturing the traffic
is done inside the Docker container. For generating the state machine, the
TCP streams are needed. The TCP streams can be extracted from all the
traffic with the use of TCPflow[4] as seen in Listing 5.8. TCPflow is an
open-source program that extracts TCP data so that it is easy to use for
debugging or analysis. For every TCP stream, two separate files are created.
The first file contains all the traffic towards the SUT (input trace), and the
second file all the output traffic of the SUT (output trace). These files are
loaded into the abstraction functions.

1 sudo tcpdump − i l o −w output . pcap

Listing 5.7: Starting TCPdump and writing to pcap format.

1 t cp f low −r output . pcap

Listing 5.8: Extracting the TCP streams from a pcap file with TCPflow.

6https://www.wireshark.org/

17

5.2 Generating state machine using FlexFringe

In this section, the process of generating state machines from the obtained
traces in section 5.1.6 is given. This section corresponds to phase 2 from
Figure 5.1. Firstly, FlexFringe is further explained in section 5.2.1, including
which merge heuristics exist. Then a simplified process of transforming the
TCP streams captured using TCPdump to Abbadingo format and creating
the state machines is shown (section 5.2.2). In section 5.2.3, some problems
that occur during the transforming phase are listed. Section 5.2.4 gives
the terminology and notations needed for understanding the experiments in
section 5.2.5.

5.2.1 FlexFringe

FlexFringe [27] is an open-source passive finite state machine learner as
explained in section 2.2.2. FlexFringe uses Abbadingo formatted traces as
input to learn the state machines. In Listing 5.9 the Abbadingo format for
FlexFringe is given. In the first line, the total number of traces and the
length of the alphabet is given. The following lines are the traces. The
traces are built as follows: A label, the length of the trace, and then all the
symbols.

1 # Number o f t r a c e s # Lenght o f a lphabet
2 l a b e l (l enght n) symbol1 symbol2 . . . symboln

Listing 5.9: Abbadingo format used for input for FlexFringe.

Merge heuristics

FlexFringe uses heuristics to decide which states can be merged, which must
be done in a consistent pattern [23]. Some well-known heuristics have al-
ready been added to the FlexFringe repository. These heuristics are stored
in an initialization (ini) file. This heuristic file will be passed to FlexFringe
the moment a state machine must be created. Some popular heuristics are:

• Markov-chain: Merging states based on their Markov property.

• EDSM: Merging states based on evidence and which is most likely to
lead to the target DFA [13].

• Overlap: Merging states based on the overlapping outgoing transitions
[23].

• Likelihood: Merging states based on how likely it is according to the
log-likelihood [28].

• Mealy: Merging states based on input and output patterns. Outputs
are determined by both the input and the current state.

18

5.2.2 Converting traces to Abbadingo format and creating
state machines with FlexFringe

Converting the traces from the two trace files to Abbadingo format is quite
challenging. The input and output traces obtained in section 5.1.6 are
stripped of any unnecessary response codes (section 5.2.3) and parsed to the
abstraction function. The abstraction function eliminates all textual con-
tent, providing input traces with only FTP commands and output traces
with corresponding response codes. Pairs of inputs and outputs are made,
where the output corresponds to the respective input. These pairs are then
formatted according to the Abbadingo format outlined in section 5.2.1.

The Abbadingo file can be read by FlexFringe. To create the state
machine, the commands from Listing 5.10 and 5.11 need to be executed in
order.

1 . / f l e x f r i n g e −− i n i i n i /mealy . i n i abbadingo . dat

Listing 5.10: Command to run FlexFringe.

1 dot −Tpdf abbadingo . dat . f f . f i n a l . dot −o abbadingo−out . pdf

Listing 5.11: Command to make pdf from the .dot file.

5.2.3 Problem with double inputs/responses

The Abbadingo format requires that the length of an input trace is the same
as the length of an output trace. The traces consist of input and output
pairs, which means that when the input trace is not the same length as the
output trace, the trace is removed. This may generate inconsistencies. To
prevent this from occurring, there are three response codes in the output
traces that are removed beforehand. These response codes are not needed.
The following response codes are deleted:

Response code 150 “File status okay; about to open data connection.”
This response code is thrown right before another response. It indicates
that the client might wait a moment before the connection is opened, hence
FTP gives the 150 code.

Response code 214 “Help message. Explains how to use the server or
the meaning of a particular non-standard command. This reply is useful
only to the human user.” As the definition already explains, it is a reply to
help humans understand the non-standard reply.

Response code 220 “Service ready for new user.” At the start of every
conversation, this response code is thrown to let the client know that the
server is ready to communicate.

19

5.2.4 Terminology and notations

The terminology clarifies the frequently used terms in the experiments (sec-
tion 5.2.5). The notations employed in the experiments (section 5.2.5) serve
the purpose of distinguishing between various abstraction functions and in-
put/output traces.

Terminology

• Abstraction function: Function that gets a separate input and output
trace (section 5.1.6), like example trace T in

1 and T out
1 . This trace is

stripped of any unnecessary information (like 220 return codes and

text) resulting in T in−stripped
1 and T out−stripped

1 .

• Heuristic: A term used to specify the chosen merge algorithm (section
5.2.1) and includes parameters that dictate the visual appearance of
the state machine.

• ParentSizeThreshold: A parameter within the heuristic that denotes
the number of transitions required before the child state is visualized
in the state machine.

Notations

AF1: Abstraction function 1 (Appendix B) only uses output traces (like
example trace T out

1) to create the input file for FlexFringe. This func-
tion removes all text so that only the server response codes remain
(T out−stripped

1).

AF2: Abstraction function 2 (Appendix C) uses both the input (like exam-
ple trace T in

1) and output traces (like example trace T out
1) and creates

input-output pairs. The text is removed, leaving only the FTP com-
mands for the input and the server response codes for the output. The
FTP commands are translated to a number using a dictionary. Re-
sponse codes 150, 214 and 220 are removed (section 5.2.3) to avoid
more output messages than input messages.

AF3: Abstraction function 3 (Appendix D) uses both the input (like exam-
ple trace T in

1) and output traces (like example trace T out
1) and creates

input-output pairs. The text is removed, leaving only the FTP com-
mands for the input (T in−stripped

1) and the server response codes for the

output (T out−stripped
1). Authentication commands (USER and PASS)

contain a parameter to check if the correct username or password is
given. Response codes 150, 214 and 220 are removed (section 5.2.3)
to avoid more output messages than input messages.

20

T1: Example trace 1 in pcap format, lines starting with a digit are the
output messages:

1 220 LightFTP se rv e r v2 . 0 a ready
2 USER anonymous
3 331 User anonymous OK. Password r equ i r ed
4 PASS ubuntu
5 230 User logged in , proceed .
6 SYST
7 215 UNIX Type : L8
8 PWD
9 257 ”/” i s a cur rent d i r e c t o r y .

10 PORT 127 ,0 ,0 ,1 ,152 ,193
11 200 Command okay .
12 LIST
13 150 F i l e s t a tu s okay ; about to open data connect ion .
14 451 Requested ac t i on aborted . Local e r r o r in p ro c e s s i ng

.
15 QUIT
16 221 Goodbye !
17

T in
1 : Example input trace T in

1 :

1 USER anonymous
2 PASS ubuntu
3 SYST
4 PWD
5 PORT 127 ,0 ,0 ,1 ,152 ,193
6 LIST
7 QUIT
8

T out
1 : Example output trace T out

1 :

1 220 LightFTP se rv e r v2 . 0 a ready
2 331 User anonymous OK. Password r equ i r ed
3 230 User logged in , proceed .
4 215 UNIX Type : L8
5 257 ”/” i s a cur rent d i r e c t o r y .
6 200 Command okay .
7 150 F i l e s t a tu s okay ; about to open data connect ion .
8 451 Requested ac t i on aborted . Local e r r o r in p ro c e s s i ng

.
9 221 Goodbye !

10

T in−stripped
1 : An example of the input trace T1 after removing all text for abstraction

function AF3. USER and PASS have a parameter:

1 USER anonymous
2 PASS ubuntu
3 SYST
4 PWD

21

5 PORT
6 LIST
7 QUIT
8

T out−stripped
1 : An example of the output trace T1 after removing all text and unnec-

essary response codes for abstraction function AF3:

1 331
2 230
3 215
4 257
5 200
6 451
7 221
8

T2: Example trace T2 in pcap, lines starting with a digit are output mes-
sages:

1 220 LightFTP se rv e r v2 . 0 a ready
2 . @ i i c ∗ .R. ˆYST. @iiR ∗ .R
3 SYSTPASS ubuntu
4 501 Syntax e r r o r in parameters or arguments .
5 SYST
6 215 UNIX Type : L8
7 PWD
8 530 Please l o g i n with USER and PASS .
9 PORT 127 ,0 ,0 ,1 ,152 ,193

10 530 Please l o g i n with USER and PASS .
11 LIST
12 530 Please l o g i n with USER and PASS .
13 QUIT
14 221 Goodbye !

5.2.5 Initial experiments

In this subsection, all experiments conducted to derive the final state ma-
chine are presented in chronological order. These experiments aim to explore
different abstraction functions and heuristics to identify a suitable state ma-
chine for FTP. The ParentSizeThreshold was not taken into consideration
for the experiments since the input and output sets lacked a sufficient num-
ber of traces for the state machine to become complex or messy. Experiment
4 uses the Mealy heuristic in combination with an abstraction function that
uses both input and output. That combination works best for generating a
state machine.

22

Experiment 1

Abstraction function: AF1 (section 5.2.4)

Heuristic: Markov chain

Set: S1: Output traces obtained by fuzzing LightFTP for 1,5 minutes

Abbadingo: 1 1 530
2 220 8 331 230 215 257 200 150 451 221
3

Listing 5.12: Abbadingo format of t1 experiment 1.

For the first experiment, only the output traces (like example trace T out
1)

are used to generate a state machine. Listing 5.12 provides the Abbadingo
format of the example trace T out

1 used in this experiment.
The abstraction function used to transform the set S1 is denoted as AF1.

The text that is included in the traces is removed, resulting in T out−stripped
1 .

Subsequently, the traces are transformed into an Abbadingo file, and by
using the Markov merge heuristics, the state machine depicted in Figure 5.5
is generated.

Figure 5.5: The state machine generated for experiment 1. Using the initial
set of traces S1 and an abstraction function AF1 that only uses the output
FTP server response codes. Markov-chain heuristics are applied.

23

Experiment 2

Abstraction function: AF2 (section 5.2.4)

Heuristic: Markov chain

Set: S1: Input/output traces obtained by fuzzing LightFTP for 1,5 minutes

Abbadingo: 1 1 200
2 −1/220 8 0/331 13/230 19/215 3/257 5/200 6/150 1/221
3

Listing 5.13: Abbadingo format of t1 experiment 2.

In addition to the previous experiment, this experiment also uses the
input. Abstraction function AF2 translates the FTP command to integers
following a standard dictionary. Unnecessary response codes are removed as
mentioned in section 5.2.3. The Abbadingo format used for this experiment
for example trace T1 is given in Listing 5.13.

TCPflow creates two files, a server-client conversation file and a client-
server conversation file. To create the Abbadingo format, the content of the
two files is needed. The function swap file name returns the name of the
other conversation. When ports are reused, the name of the file will append
a c1, so that it can be distinguished from the other conversation. The re-
move unnecessary response codes will remove all unnecessary response codes
as mentioned in section 5.2.3. Another difficulty with the way TCPflow cre-
ates files is that sometimes there are more input traces than output traces.
This creates irregularities in the Abbadingo format file. By stripping the
traces that do not have the same amount of input and output traces, this
is solved. An example of a trace that has this problem is an example trace
T2. In trace T2 it can be seen that there are two inputs before return code
501 is given.

Transforming the set S1 with the abstraction function AF2, gives the
state machine of Figure 5.6. This state machine is generated with the
Markov-chain heuristics.

24

Figure 5.6: The state machine generated for experiment 2. Using the initial
set of traces S1 with an abstraction function AF2 that uses both input and
output traces. Markov-chain heuristics are applied.

25

Experiment 3

Abstraction function: AF2 (section 5.2.4)

Heuristic: spdfa

Set: S1: Input/output traces obtained by fuzzing LightFTP for 1,5 minutes

Experiment 2 used the Markov-chain heuristics as input. By experimenting
with different heuristics, the spdfa heuristics generated a state machine that
merged the states differently. Using spdfa resulted in Figure 5.7. The state
machine is generated on the data from set S1.

Figure 5.7: The state machine generated for experiment 3. Used initial set
of traces S1 with an abstraction function that uses both input and output
traces. Spdfa heuristics are applied.

26

Experiment 4

Abstraction function: AF3 (section 5.2.4)

Heuristic: Mealy

Set: S1: Input/output traces obtained by fuzzing LightFTP for 1,5 minutes

Abbadingo: 1 1 17
2 1 7 USER/331 PASS/230 SYST/215 PWD/257 PORT/200 LIST

/451 QUIT/221
3

Listing 5.14: Abbadingo format of trace T1 for experiment 4.

For experiment 4 the abstraction function has changed a lot. Now in-
stead of using a dictionary to translate the commands of the input traces
to numbers, the commands themselves are used. How the Abbadingo in-
put for trace T1 is constructed is shown in Listing 5.14. This gives more
clarity to the state machines. After a call with Sicco Verwer, author [27]
and co-programmer of FlexFringe, we came to the understanding that the
master branch of the FlexFringe repository did not print the return codes
of the output traces in the state machines using Mealy heuristics. Previous
experiments might have yielded different results had this information been
known in advance. A Mealy machine has an input and an output for every
transition because the output of the SUT is determined by the input and
the current state. A state machine for FTP does need that too. Using ini-
tial set S1 with abstraction function AF3 and the Mealy heuristic, the state
machine of Figure 5.8 is constructed.

In Figure 5.8, a square representing the starting state is accompanied by
circles of varying sizes. The size of the circles corresponds to the amount of
incoming transitions. Larger circles indicate a higher number of incoming
transitions.

27

Figure 5.8: The state machine generated for experiment 4. Used initial set
S1 with an abstraction function AF3. Mealy heuristics are applied.

28

Chapter 6

Differential fuzzing of two
FTP server implementations

In this chapter, two server implementations of the FTP protocol will be
compared. Firstly, the parameters used for generating the state machines
are given in section 6.1. Subsequently, the state machine of LightFTP is
given in section 6.2. In section 6.3, the state machine of Bftpd is provided.
Finally, in section 6.4, the two state machines are compared to identify
differences.

6.1 Parameters for generating state machines

In this section, the parameters discovered in the initial experiments (section
5.2.5) are explained. First, the heuristic is explained in more detail. Sub-
sequently, the process of the abstraction function is discussed. Lastly, the
purpose of the ParentSizeThreshold is explained.

6.1.1 Heuristic

The heuristic discovered during the experiments is the Mealy heuristic. This
heuristic utilizes both input and output traces to merge states (see section
5.2.1). The server implementations of the protocols produce outputs that are
influenced by both the given input and their current state. Therefore, the
Mealy heuristic is the appropriate choice for generating the state machines
of the two server implementations.

6.1.2 Abstraction function

The experiments showed that the abstraction function AF3 (section 5.2.4)
worked best. Initially, the 150, 214, and 220 response codes are removed
from the output traces to prevent the occurrence of the double response
problem (section 5.2.3). Then, the function pairs the input-output traces,

29

ensuring that the input messages triggering the output responses are cor-
rectly matched. All textual content is removed from the traces. An ex-
ample is given in section 5.2.4, where the input trace T in

1 is abstracted to

T in−stripped
1 and, similarly, for T out

1 , the abstracted version is denoted as

T out−stripped
1 . The authentication commands (USER and PASS) have a pa-

rameter and will be checked if the username and password are correct. If
the username is correct, the FTP command is translated to ’USER OK’;
otherwise, it is translated to ’USER FAULT’. The same applies to the pass-
word, with ’PASS OK’ and ’PASS FAULT’. Lastly, the input-output pairs
are put in Abbadingo format. An example of the Abbadingo format for both
implementations is given in Listing 6.1.

1 1 7
2 1 7 USER OK/331 PASS OK/230 SYST/215 PWD/257 PORT/200 LIST

/451 QUIT/221
3

Listing 6.1: Abbadingo format of example trace T1.

6.1.3 ParentSizeThreshold

The ParentSizeThreshold is a threshold specifying the minimum number of
incoming transitions required for visualization in the state machine (section
5.2.4). This threshold is employed during the learning process and is solely
used to generate visually appealing state machines. The default threshold
(ParentSizeThreshold=-1) is employed in the experiments. For the full state
machines (see Appendix E) the default threshold is used.

6.2 State machine of LightFTP

Version: LightFTP v2.3

Abstraction function: AF3 (sections 5.2.4 and 6.1.2)

Heuristic: Mealy (section 6.1.1) with ParentSizeThreshold (section 6.1.3) = 150

Set: S2: Input/output traces obtained by fuzzing LightFTP for 60 minutes

To generate the state machine of LightFTP (Figure 6.1), the process outlined
in phase 2, as depicted in Figure 5.1, is applied to set S2. S2 is obtained
by running AFLNet on LightFTP for 60 minutes, which resulted in 3939
traces. Abstraction function AF3 is used to generate the Abbadingo file
used as input for FlexFringe. AF3 is discussed in section 6.1.2. The Mealy
heuristic is used with a ParentSizeThreshold of 150, resulting in the state
machine of Figure 6.1.

Appendix E contains the state machine of LightFTP with the default
ParentSizeThreshold specified. This state machine has 83 states.

30

Figure 6.1: State machine of LightFTP generated with set of traces S2,
abstraction function AF3 and the Mealy heuristic. ParentSizeThreshold set
to 150.

6.3 State machine of Bftpd

Version: Bftpd 5.7

Abstraction function: AF3 (sections 5.2.4 and 6.1.2)

Heuristic: Mealy (section 6.1.1) with ParentSizeThreshold (section 6.1.3) = 100

Set: S3: Input/output traces obtained by fuzzing Bftpd for 60 minutes

To generate the state machine for Bftpd, the same steps taken for LightFTP
(section 6.2) are replicated with set S3. Set S3 is obtained by fuzzing
Bftpd for 60 minutes, resulting in 3554 traces. The ParentSizeThreshold
is smaller for Bftpd because fuzzing Bftpd for 60 minutes gave fewer traces
than LightFTP, this is because Bftpd is slower than LightFTP.

Appendix E contains the state machine of Bftpd with ParentSizeThresh-
old of 3, because after running the dot command (section 5.2.2) for five
hours, still no state machine was generated. Inspecting the file from which

31

the state machines are generated showed that with the default Parent-
SizeThreshold Bftpd has 297 states. Choosing a ParentSizeThreshold of
3 reduced the time to visualize the state machine to 30 seconds.

Figure 6.2: State machine of Bftpd generated with set of traces S3, abstrac-
tion function AF3 and the Mealy heuristic. ParentSizeThreshold set to 100.

6.4 Comparing LightFTP and Bftpd

In this section, the process of differential fuzzing takes place (as explained
in section 2.1.4). Firstly, the notable differences are given (section 6.4.1).
Then in section 6.4.2, the possible vulnerabilities are discussed.

6.4.1 Differences in state machines

• A difference between LightFTP and Bftpd is how they approach clients
who are not logged in. Bftpd has a separate set of states for those
cases. In the graph, these states can be found by incoming transi-
tions with ’USER FAULT’ commands. Figure 6.3 shows the transi-
tions and states in both implementations where failed authentications
are handled. The existence of these extra states may indicate an im-
plementation error in Bftpd. It is expected that providing an incorrect
username and password will result in reverting to the starting state to
attempt authentication again.

32

A possible explanation could be that, after a certain number of failed
login attempts, the client is redirected to another state. However, this
behavior is not documented anywhere.

(a) Failed authentication of LightFTP. (b) Failed authentication of Bftpd.

Figure 6.3: Boxed in orange is the part of the state machine where failed
authentications are handled.

• The number of states differs between the two implementations. Where
LightFTP has only 83 states in the full-state machine (Appendix E),
Bftpd has 297 states in the full-state machine (Appendix E).

6.4.2 Possible vulnerabilities

Examining the full-state machines can reveal possible security concerns.
This section lists some potential vulnerabilities. Additional research is nec-
essary to find the potential dangers associated with these vulnerabilities
(section 7.4).

2xx A response code beginning with “2xx” corresponds to the successful
completion of a requested command. The response codes 230 and 232
are issued upon a successful login. When a client provides the cor-
rect password with previously a correct username, the server responds
with a 230 code. The same applies when a client provides a correct
username along with some correct security data, then the 232 code is
thrown.

Security issues arise for these response codes when they are issued in
response to an unknown FTP command or an incorrect password pro-
vided by the client. Such behavior might indicate potential vulnerabil-
ities, suggesting that other inputs could potentially bypass the server’s
authentication mechanism. Table 6.1 provides three command-response
combinations associated with “2xx” responses. LightFTP does not
have any unknown commands that result in a successful login for ei-

33

ther the 230 or the 232 codes. In contrast, Bftpd has two unknown
input traces that result in a 230 response code.

In instances where an incorrect password is entered but results in a suc-
cessful login, LightFTP has nine occurrences, while Bftpd has three.
However, upon reviewing the Abbadingo file and investigating these
combinations, it was revealed that for most, if not all, cases, this com-
bination was triggered after an already successful login, resulting in
false positives. This mitigates the security concern.

3xx A response code beginning with “3xx” corresponds to an accepted
command, but a subsequent command with additional information
still needs to be provided. The response codes 331 and 336 are issued
upon an existing username. The distinction between these two codes
lies in the fact that for 331, a password is required for the specified
user, while for 336, a challenge must be answered instead.

Security issues arise for these response codes when they are issued
in response to an unknown FTP command provided by the client.
Such behavior suggests that a command other than ’USER’ results in
the recognition of an existing user. Table 6.1 provides two command-
response combinations associated with “3xx” responses. LightFTP has
one unknown command leading to a 331 response code, while Bftpd
has two such instances. For the 336 code, neither implementation has
an unknown command that leads to that specific response code.

Table 6.1 enumerates the number of transitions associated with potentially
insecure command-response combinations. Additional research is required
to determine whether these combinations represent security vulnerabilities
(section 7.4).

Command-response

combination
LightFTP Bftpd

UNKNOWN/230 0 2

PASS FAULT/230 9 3

UNKNOWN/232 0 0

UNKNOWN/331 1 2

UNKNOWN/336 0 0

Table 6.1: Number of potential insecure transitions for some command-
response code combinations.

34

Chapter 7

Future work

In this chapter, the possible extensions to differential fuzzing are discussed.
In section 7.1, the usage of a different fuzzer is discussed. In section 7.2
it is discussed that the same research can be done on a different protocol.
Then, in section 7.3, generating state machines with a different learner is
discussed. Lastly, in section 7.4, it is discussed that more research needs to
be done on the possible security risks.

7.1 Using a different fuzzer

In section 2.1, different types of fuzzers are listed. In the future, the same re-
search can be done with the use of a different fuzzer. A suitable fuzzer would
be BooFuzz [18] as discussed in section 3.2. For this research, AFLNET was
chosen. AFLNet is a greybox fuzzer (section 2.1.3), whereas BooFuzz is a
blackbox fuzzer (section 2.1.1). It can be insightful to compare the outcomes
generated by a blackbox fuzzer with those of a greybox fuzzer.

7.2 Differential fuzzing of a different protocol

In Chapter 4, different protocols are listed. For this study, the FTP protocol
has been selected. The research conducted in this study can be applied to
stateful protocols that have multiple server implementations. An example of
such a viable protocol is presented in section 4.2, namely the Transmission
Control Protocol (TCP [1]). TCP is a connection-oriented protocol, meaning
it maintains state information. This characteristic classifies it as a stateful
protocol, making it well-suited for future research.

7.3 Generating state machines with a different learner

As outlined in section 2.2, there are two types of learners: passive and
active. In this study, a passive automaton learner FlexFringe [27] is used to

35

generate a state machine based on the fuzzed traces. An active approach
to this research has already been done by Cristian Daniele 1. He generated
state machines of different FTP implementations using the active automaton
learner Learnlib [20]. Apart from these two learning algorithms, future
research could explore similar investigations with various passive or active
learning algorithms.

7.4 Examining the possible vulnerabilities

The potential vulnerabilities discussed in section 6.4.2 require further in-
vestigation. For this, it is necessary to understand the specific client input
traces that prompted the server to return 230, 331, 336 response codes. An-
alyzing these input traces will provide insights into how the interaction came
together and help determine whether the observed response codes indicate
security vulnerabilities or if they are the result of normal FTP behavior.
Identifying potentially insecure prompts can be achieved using the informa-
tion gathered in this study, but a significant modification to the abstraction
function is needed. Another approach to investigating security risks is to
conduct fuzzing (as described in section 5.1) again, but this time without
providing the correct username and password in the seed input. If any por-
tion of the state machine appears to be situated after authentication, it
suggests that the authentication process might be bypassed. Unfortunately,
due to time constraints, these tasks could not be carried out within the scope
of this thesis.

1https://github.com/cristiandaniele/ftp-statemodel-learner

36

Chapter 8

Conclusions

In this thesis, we worked towards finding a way to do differential fuzzing of
a stateful protocol using FlexFringe. By fuzzing two FTP server implemen-
tations using AFLNet (see section 5.1), a substantial number of traces are
collected. These traces are preprocessed and formatted to be compatible
with FlexFringe to generate state machines (section 5.2). By performing
differential fuzzing on both state machines (section 6.4), it was identified
that there is a difference in the number of states between the two implemen-
tations and how they deal with authentication (section 6.4.1). Furthermore,
by closely inspecting the state machines for vulnerabilities, some inputs that
have the potential to be a security risk were uncovered (see section 6.4.2).

• Setup: In section 5.1.1, setting up AFLNet using the Dockerfile was
a simple task. Starting the docker container in privileged mode is a
must, otherwise, errors will appear in later stages. Do not forget to
patch the GitHub repository, or else you have a hard time debugging
errors. Setting up FlexFringe is just as simple as AFLNet. Following
the instructions on the GitHub repository, the software is installed in
a matter of minutes.

• Fuzzing and collecting traces: Fuzzing both LightFTP and Bftpd
did not cause any major problems. After solving the errors from
section 5.1.3, which were caused by a non-privileged Docker image,
fuzzing could start right away. Getting the traces is done by running
a TCPdump inside the same Docker container. Extracting the TCP
streams is done by using TCPflow. Unfortunately, TCPflow generates
distinct TCP streams for input and output traces, which does not help
in making pairs of input and output traces.

• Experimenting with different factors: Through experimenta-
tion with various factors in section 5.2.5, the parameters for generat-
ing state machines for stateful protocols were determined. The used
parameters are given in section 6.1. The three factors that influence

37

the appearance of the state machines are the abstraction function,
the heuristics, and the ParentSizeThreshold. The abstraction func-
tion takes input-output pairs, eliminates all textual content, and ex-
cludes the 150, 214, and 220 response codes. The Mealy heuristic is
employed to ensure that transitions use both inputs and outputs. A
ParentSizeThreshold of more than 100 is utilized in sections 6.2 and
6.3. For section 6.4, the default threshold (ParentSizeThreshold = -1)
is employed.

• Results of differential fuzzing: In Chapter 6, the final state
machines for LightFTP and Bftpd are presented. Comparing the
two state machines discovered that Bftpd has 297 states, whereas
LightFTP has only 83 states. Another difference between implemen-
tations is how they handle authentication. LightFTP sets the failed
authentications back to the starting state. Bftpd has a small set of
states that handle failed authentications. This small set may indicate
an implementation error because it is expected that providing an in-
correct username and password will result in revering to the starting
state to attempt authentication again.

After inspecting the state machines for both implementations, some
command-response code combinations were found that could be po-
tential security risks. In Table 6.1 all combinations and the number of
times they occur are listed. These combinations can be vulnerabilities
because an unknown command triggers a critical FTP server response
code. Further research needs to be done to check if these combinations
are security risks (section 7.4).

• Experience: Fuzzing a stateful protocol like LightFTP with AFLNet
was simple, and the installation went smoothly. AFLNet has outstand-
ing documentation on the GitHub page, and it even has premade tuto-
rials for some common protocols. FlexFringe has an easy installation
process, and the first state machines are created quickly. However,
understanding the Abbadingo format as input for FlexFringe and how
the heuristics influence the state machine took more time to figure
out. Documentation for Abbadingo is limited, which made finding the
right format challenging, as described in section 5.2.5. The heuristics
contain information for merging states during FlexFringe’s learning
process. It took a considerable amount of time to identify the Mealy
heuristic, partly due to the master branch of the FlexFringe GitHub
repository did not correctly print the outputs when the Mealy heuristic
was selected.

• What would be done differently next time: While experiment-
ing with different abstraction functions, heuristics, and Abbadingo
outputs, there was no clear structure in trying to figure out what

38

would work best. All the variables are interdependent, so changing
multiple variables at once does not provide any understanding of the
single variables. Next time, I would consider changing one variable at
a time until it reaches an approximate or desired output.

39

Bibliography

[1] Transmission Control Protocol. RFC 793 https://www.ietf.org/

rfc/rfc793.txt, sept 1981.

[2] File Transfer Protocol. RFC 959 https://www.ietf.org/rfc/rfc959.
txt, oct 1985.

[3] Pedram Amini. Sulley. https://github.com/OpenRCE/sulley, 2012.

[4] Jeremy Elson. tcpflow – a TCP flow recorder. https://www.

circlemud.org/jelson/software/tcpflow/, 2003.

[5] Robert B. Evans and Alberto Savoia. Differential testing: A new ap-
proach to change detection. In The 6th Joint Meeting on European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering: Companion Papers, ESEC-
FSE companion ’07, page 549–552, New York, NY, USA, 2007. Associ-
ation for Computing Machinery.

[6] Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and
Cristian Cadar. Grayc: Greybox fuzzing of compilers and analysers for
c. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2023, page 1219–1231, New
York, NY, USA, 2023. ACM.

[7] Mark Fijneman. Fuzzing open source OPC UA implementations. Bach-
elor thesis, Radboud University, 2023.

[8] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-
based whitebox fuzzing. SIGPLAN Not., 43(6):206–215, jun 2008.

[9] hfiref0x. Lightftp. https://github.com/hfiref0x/LightFTP/tree/

master, 2015.

[10] James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, jul 1976.

[11] Fouad Lamsettef. Extending ProFuzzBench: A benchmark for stateful
fuzzers. Bachelor thesis, Radboud University, 2023.

40

[12] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian
Zhang. Fuzzing: State of the art. IEEE Transactions on Reliability,
67(3):1199–1218, 2018.

[13] S.M. Lucas and T.J. Reynolds. Learning dfa: evolution versus evidence
driven state merging. In The 2003 Congress on Evolutionary Compu-
tation, 2003. CEC ’03., volume 1, pages 351–358 Vol.1, 2003.

[14] Alexander Maier. Online passive learning of timed automata for cyber-
physical production systems. In 2014 12th IEEE International Confer-
ence on Industrial Informatics (INDIN), pages 60–66, 2014.

[15] Steve McCanne, Sally Floyd, van Jacobson, and Vern Paxson. Tcp-
dump & libpcap. https://www.tcpdump.org/, 1988.

[16] William M. McKeeman. Differential testing for software. Digital Tech-
nical Journal, 10(1):100–107, 1998.

[17] Roberto Natella and Van-Thuan Pham. Profuzzbench: A benchmark
for stateful protocol fuzzing. In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021.

[18] Joshua Pereyda. BooFuzz: Network protocol fuzzing
for humans. https://github.com/jtpereyda/boofuzz#

boofuzz-network-protocol-fuzzing-for-humans, 2018.

[19] Pham, Van-Thuan, Böhme, Marcel, Roychoudhury, and Abhik. Aflnet:
A greybox fuzzer for network protocols. In 2020 IEEE 13th Inter-
national Conference on Software Testing, Validation and Verification
(ICST), pages 460–465, 2020.

[20] Harald Raffelt, Bernhard Steffen, and Therese Berg. Learnlib: A library
for automata learning and experimentation. In Proceedings of the 10th
International Workshop on Formal Methods for Industrial Critical Sys-
tems, FMICS ’05, page 62–71, New York, NY, USA, 2005. Association
for Computing Machinery.

[21] Michael Renner, TJ Saunders, and Jesse Sipprell. Proftpd. http:

//www.proftpd.org/, 1999.

[22] Iman Saberi, Fathiyeh Faghih, and Farzad Sobhi Bavil. A passive online
technique for learning hybrid automata from input/output traces. ACM
Trans. Embed. Comput. Syst., 22(1), oct 2022.

[23] Rafail Skouloss. Learning state machines faster using locality-sensitive
hashing and an application in network-based thread detection. Master
thesis, National Technical University of Athens in collaboration with
TU Delft, 2020.

41

[24] J.F.R.G. Smith. Bftpd. https://bftpd.sourceforge.net/contact.

html, 2004.

[25] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Efficient instru-
mentation for code coverage testing. SIGSOFT Softw. Eng. Notes,
27(4):86–96, jul 2002.

[26] Gillis (https://unix.stackexchange.com/users/885/
gilles-so-stop-being-evil). Why is editing core pattern re-
stricted? https://unix.stackexchange.com/questions/343275/

why-is-editing-core-pattern-restricted, 2017.

[27] Sicco Verwer and Christian A. Hammerschmidt. FlexFringe: A pas-
sive automaton learning package. In 2017 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), pages 638–642,
2017.

[28] Sicco Verwer, Cees Witteveen, and Mathijs de Weerdt. A likelihood-
ratio test for identifying probabilistic deterministic real-time automata
from positive data. In International Colloquium on Grammatical Infer-
ence, pages 203–216, 2010.

[29] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley.
Scheduling black-box mutational fuzzing. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security,
CCS ’13, page 511–522. Association for Computing Machinery, 2013.

42

Appendix A

Dockerfile for setting up
AFLNet and lightFTP

Appendix A shows the Dockerfile that is used in section 5.1.1 to set up
AFLNet which includes LightFTP.

1 # syntax=docker / d o c k e r f i l e −upstream : master−l ab s
2 FROM ubuntu : 1 8 . 0 4
3

4 # I n s t a l l common dependenc ies
5 RUN apt−get −y update && \
6 apt−get −y i n s t a l l sudo \
7 apt−u t i l s \
8 bui ld−e s s e n t i a l \
9 opens s l \

10 c lang \
11 graphviz−dev \
12 g i t \
13 l ibcap−dev \
14 llvm−dev \
15 l i b gnu t l s 28−dev \
16 tcpdump \
17 wget
18

19 # Add a new user ubuntu , pass : ubuntu
20 RUN groupadd ubuntu && \
21 useradd −rm −d /home/ubuntu −s / bin /bash −g ubuntu −G sudo −

u 1000 ubuntu −p ”$ (opens s l passwd −1 ubuntu) ”
22

23 # Use ubuntu as d e f au l t username
24 USER ubuntu
25 WORKDIR /home/ubuntu
26 # Download and compi le AFLNet
27 ENV LLVM CONFIG=”llvm−con f i g −6.0”
28

29

30 RUN g i t c l one https : // github . com/ a f l n e t / a f l n e t && \
31 cd a f l n e t && \

43

32 make c l ean a l l && \
33 cd llvm mode make && make
34

35 # Set up environment v a r i a b l e s f o r AFLNet
36 ENV AFLNET=”/home/ubuntu/ a f l n e t ”
37 ENV PATH=”${PATH} : ${AFLNET}”
38 ENV AFL PATH=”${AFLNET}”
39 ENV AFL I DONT CARE ABOUT MISSING CRASHES=1 \
40 AFL SKIP CPUFREQ=1
41 ENV WORKDIR=”/home/ubuntu”
42

43 # Download and compi le LightFTP
44 RUN cd /home/ubuntu && \
45 g i t c l one https : // github . com/ h f i r e f 0 x /LightFTP . g i t && \
46 cd LightFTP && \
47 g i t checkout 5980 ea1 && \
48 patch −p1 < ${AFLNET}/ t u t o r i a l s / l i g h t f t p /5980 ea1 . patch && \
49 cd Source /Release && \
50 CC=a f l−clang−f a s t make c l ean a l l
51

52

53 # Set up LightFTP f o r fu z z i ng
54 RUN cd /home/ubuntu/LightFTP/Source /Release && \
55 cp ${AFLNET}/ t u t o r i a l s / l i g h t f t p / f f t p . conf . / && \
56 cp ${AFLNET}/ t u t o r i a l s / l i g h t f t p / f t p c l e an . sh . / && \
57 cp −r ${AFLNET}/ t u t o r i a l s / l i g h t f t p / c e r t i f i c a t e ˜/ && \
58 mkdir ˜/ f tp sha r e
59

60 ENV PROFUZZ=”/home/ubuntu/ profuzzbench / sub j e c t s /FTP/BFTPD”
61

62 # Set up BFTPD fo r f u z z i ng in c l ud ing profuzzbench
63 RUN cd ${WORKDIR} && \
64 wget https : // s ou r c e f o r g e . net / p r o j e c t s / bftpd / f i l e s / bftpd /

bftpd −5.7/ bftpd −5.7 . ta r . gz && \
65 ta r −zxvf bftpd −5.7 . ta r . gz && \
66 g i t c l one https : // github . com/profuzzbench / profuzzbench . g i t

&& \
67 cd bftpd && \
68 patch −p1 < ${PROFUZZ}/ fu z z i ng . patch && \ && \
69 CC=” a f l−clang−f a s t ” CXX=” a f l−clang−f a s t++” ./ con f i gu r e −−

enable−deve l=nodaemon : nofork && \
70 AFL USE ASAN=1 make $MAKEOPT

Listing A.1: Dockerfile AFLNet, LightFTP, Bftpd and ProFuzzBench

44

Appendix B

Script for generating
Abbadingo file for
experiment 1

1 import glob
2
3 path = ”YOUR/PATH/HERE/TO/FOLDER/WITH/TRACES”
4
5 a l l f i l e s = glob . g lob (f ”{path}/∗”)
6
7 numb e r o f u s e f u l f i l e s = 0
8
9 #cr ea t e a new f i l e where the abbadingo f i l e w i l l be wr i t t en in

10 with open (”abbadingo . dat” , ”w”) as abbadingo :
11 f o r f i l e p a t h in a l l f i l e s :
12 i f f i l e p a t h . s t a r t sw i th (f ”{path }/127 .000 .000 .001 .02200 ”) :
13 with open (f i l e p a t h , ’ r ’ , encoding=’ l a t i n 1 ’) as f i l e :
14 l i n e s = f i l e . r e a d l i n e s ()
15 f i r s t wo r d = l i n e s [0] . s p l i t () [0]
16 l i n e s . pop (0)
17 length = len (l i n e s)
18
19 s t r i n g = f ”{ f i r s t wo r d } { l ength }”
20 f o r l i n e in l i n e s :
21 word = l i n e . s p l i t () [0]
22 # Do not add i f word i s not a number
23 i f word . i s d i g i t () :
24 s t r i n g += f ” {word}”
25
26
27
28 abbadingo . wr i t e (s t r i n g + ”\n”)
29 numb e r o f u s e f u l f i l e s += 1
30 abbadingo . seek (0)
31 abbadingo . wr i t e (f ”{ numb e r o f u s e f u l f i l e s } 530\n”)

Listing B.1: Script to transform traces to Abbadingo format

45

Appendix C

Script for generating
Abbadingo file for
experiment 2 and 3

1 import glob
2
3 de f swap f i l e name (f i l ename) :
4 i f not f i l ename . endswith (”c1”) :
5 par t s = f i l ename . s p l i t (”−”)
6 i f l en (par t s) == 2 :
7 src , dst = part s
8 s r c i p , s r c p o r t = s r c . s p l i t (’ . ’ , 1)
9 ds t ip , d s t po r t = dst . s p l i t (’ . ’ , 1)

10 new f i lename = f ”{ d s t i p } .{ ds t po r t}−{ s r c i p } .{ s r c p o r t }”
11 return new f i lename
12 e l s e :
13 return None
14 e l s e :
15 f i l ename = f i l ename . r ep l a c e (”c1” , ””)
16 part s = f i l ename . s p l i t (”−”)
17 i f l en (par t s) == 2 :
18 src , dst = part s
19 s r c i p , s r c p o r t = s r c . s p l i t (’ . ’ , 1)
20 ds t ip , d s t po r t = dst . s p l i t (’ . ’ , 1)
21 new f i lename = f ”{ d s t i p } .{ ds t po r t}−{ s r c i p } .{ s r c p o r t }c1”
22 return new f i lename
23 e l s e :
24 return None
25
26 de f s t r i p l i n e s w i t h 4 x (l i n e s) :
27 new l ine s = []
28 f o r l i n e in l i n e s :
29 i f l i n e . s t a r t sw i th (”4”) :
30 cont inue
31 e l s e :
32 new l ine s . append (l i n e)
33 return new l ine s
34
35 path = ”YOUR/PATH/HERE/TO/FOLDER/WITH/TRACES”
36
37 FTP COMMANDS DICT = {
38 ”INITIAL” : −1,
39 ”USER” : 0 ,
40 ”QUIT” : 1 ,
41 ”NOOP” : 2 ,
42 ”PWD” : 3 ,
43 ”TYPE” : 4 ,
44 ”PORT” : 5 ,
45 ”LIST” : 6 ,
46 ”CDUP” : 7 ,
47 ”CWD” : 8 ,
48 ”RETR” : 9 ,
49 ”ABOR” : 10 ,
50 ”DELE” : 11 ,

46

51 ”PASV” : 12 ,
52 ”PASS” : 13 ,
53 ”REST” : 14 ,
54 ”SIZE” : 15 ,
55 ”MKD” : 16 ,
56 ”RMD” : 17 ,
57 ”STOR” : 18 ,
58 ”SYST” : 19 ,
59 ”FEAT” : 20 ,
60 ”APPE” : 21 ,
61 ”RNFR” : 22 ,
62 ”RNTO” : 23 ,
63 ”OPTS” : 24 ,
64 ”MLSD” : 25 ,
65 ”AUTH” : 26 ,
66 ”PBSZ” : 27 ,
67 ”PROT” : 28 ,
68 ”EPSV” : 29 ,
69 ”HELP” : 30 ,
70 ”SITE” : 31 ,
71 ”UNKNOWN” : 32 ,
72 }
73
74 a l l f i l e s = glob . g lob (f ”{path}/∗”)
75
76 numb e r o f u s e f u l f i l e s = 0
77
78 #cr ea t e a new f i l e where the abbadingo f i l e w i l l be wr i t t en in
79 with open (”abbadingo . dat” , ”w”) as abbadingo :
80 f o r f i l e p a t h in a l l f i l e s :
81 i f f i l e p a t h . s t a r t sw i th (f ”{path }/127 .000 .000 .001 .02200 ”) :
82 f i l e name = f i l e p a t h . s p l i t (”/”) [−1]
83 swap name = swap f i l e name (f i l e name)
84 with open (f i l e p a t h , ’ r ’ , encoding=’ l a t i n 1 ’) as f i l e , open (f ”{path}/{

swap name}” , ’ r ’ , encoding=’ l a t i n 1 ’) as swap f i l e :
85 l i n e s = f i l e . r e a d l i n e s ()
86 swap l i n e s = swap f i l e . r e a d l i n e s ()
87 f i r s t wo r d = l i n e s [0] . s p l i t () [0]
88
89 l i n e s . pop (0)
90 length = len (l i n e s)
91
92
93 # Remove l i n e s that have 400 code
94 s t r i p l i n e s w i t h 4 x (l i n e s)
95 s t r i n g = f ”−1/{ f i r s t wo r d } { l ength }”
96
97 i f l en (l i n e s) == len (swap l i n e s) :
98
99 f o r l i n e , swap l ine in z ip (l i n e s , swap l i n e s) :

100 word l ine = l i n e . s p l i t () [0]
101 try :
102 word swap l ine = swap l ine . s p l i t () [0]
103 except :
104 cont inue
105
106 i f word swap l ine in FTP COMMANDS DICT:
107 swap number = FTP COMMANDS DICT[word swap l ine]
108 e l s e :
109 swap number = 32
110 # Do not add i f word i s not a number
111 i f word l ine . i s d i g i t () and swap number <= 32 :
112 s t r i n g += f ” {swap number}/{word l ine }”
113 abbadingo . wr i t e (s t r i n g + ”\n”)
114 numb e r o f u s e f u l f i l e s += 1
115 abbadingo . seek (0)
116 abbadingo . wr i t e (f ”{ numb e r o f u s e f u l f i l e s } 200\n”)

Listing C.1: Script to transform traces to Abbadingo format for experiment
2

47

Appendix D

Script for generating
Abbadingo files from
LightFTP or Bftpd TCP
streams

1 import glob
2 import os
3
4 de f swap f i l e name (f i l ename) :
5 v a l i d s u f f i x e s = [”c1” , ” c2” , ” c3” , ” c4”]
6
7 i f not any (f i l ename . endswith (s u f f i x) f o r s u f f i x in v a l i d s u f f i x e s) :
8 par t s = f i l ename . s p l i t (”−”)
9 i f l en (par t s) == 2 :

10 src , dst = part s
11 s r c i p , s r c p o r t = s r c . s p l i t (’ . ’ , 1)
12 ds t ip , d s t po r t = dst . s p l i t (’ . ’ , 1)
13 new f i lename = f ”{ d s t i p } .{ ds t po r t}−{ s r c i p } .{ s r c p o r t }”
14 return new f i lename
15 e l s e :
16 return None
17
18 f o r s u f f i x in v a l i d s u f f i x e s :
19 i f f i l ename . endswith (s u f f i x) :
20 part s = f i l ename . r ep l a c e (s u f f i x , ””) . s p l i t (”−”)
21 i f l en (par t s) == 2 :
22 src , dst = part s
23 s r c i p , s r c p o r t = s r c . s p l i t (’ . ’ , 1)
24 ds t ip , d s t po r t = dst . s p l i t (’ . ’ , 1)
25 new f i lename = f ”{ d s t i p } .{ ds t po r t}−{ s r c i p } .{ s r c p o r t }{ s u f f i x }”
26 return new f i lename
27
28 return None
29
30
31 de f r emove unneces sary re sponse codes (l i n e s , p r e f i x e s) :
32 return [l i n e f o r l i n e in l i n e s i f not any (l i n e . s t a r t sw i th (p r e f i x) f o r p r e f i x

in p r e f i x e s)]
33
34
35 FTP COMMANDS DICT = {
36 ”INITIAL” : −1,
37 ”USER OK” : 0 ,
38 ”USER FAULT” : 0 ,
39 ”QUIT” : 1 ,
40 ”NOOP” : 2 ,
41 ”PWD” : 3 ,
42 ”TYPE” : 4 ,
43 ”PORT” : 5 ,
44 ”LIST” : 6 ,
45 ”CDUP” : 7 ,

48

46 ”CWD” : 8 ,
47 ”RETR” : 9 ,
48 ”ABOR” : 10 ,
49 ”DELE” : 11 ,
50 ”PASV” : 12 ,
51 ”PASS OK” : 13 ,
52 ”PASS FAULT” :13 ,
53 ”REST” : 14 ,
54 ”SIZE” : 15 ,
55 ”MKD” : 16 ,
56 ”RMD” : 17 ,
57 ”STOR” : 18 ,
58 ”SYST” : 19 ,
59 ”FEAT” : 20 ,
60 ”APPE” : 21 ,
61 ”RNFR” : 22 ,
62 ”RNTO” : 23 ,
63 ”OPTS” : 24 ,
64 ”MLSD” : 25 ,
65 ”AUTH” : 26 ,
66 ”PBSZ” : 27 ,
67 ”PROT” : 28 ,
68 ”EPSV” : 29 ,
69 ”HELP” : 30 ,
70 ”SITE” : 31 ,
71 ”UNKNOWN” : 32 ,
72 }
73
74 de f ab s t r a c t i o n f un c t i o n (l i n e , swap l ine , i sCor r ec tUse r) :
75 ’ ’ ’
76 S t r i p s the input and output t r a c e s o f t ext and checks i f the username and/or

password are c o r r e c t .
77 ’ ’ ’
78 try :
79 word l ine = l i n e . s p l i t () [0]
80
81 except :
82 word l ine = ”500”
83 try :
84 swap l ine = swap l ine . s p l i t ()
85
86 except :
87 swap l ine = [”UNKNOWN” , ”” , ””]
88
89 word swap l ine = ”UNKNOWN”
90
91 i f l en (swap l ine) >= 1:
92 i f swap l ine [0] == ”USER” :
93 i sCor r ec tUse r = swap l ine [1] == ”ubuntu” or swap l ine [1] == ”

anonymous” i f l en (swap l ine) > 1 e l s e Fal se
94 word swap l ine = ”USER OK” i f i sCor r ec tUse r e l s e ”USER FAULT”
95 e l i f swap l ine [0] == ”PASS” :
96 i sCor r ec tPas s = swap l ine [1] == ”ubuntu” i f l en (swap l ine) > 1 e l s e

Fa l se
97 word swap l ine = ”PASS OK” i f i sCor r e c tPas s and i sCor r ec tUse r e l s e ”

PASS FAULT”
98 e l s e :
99 word swap l ine = swap l ine [0]

100
101 i f not word swap l ine in FTP COMMANDS DICT:
102 word swap l ine = ”UNKNOWN”
103
104 return word l ine , word swap l ine , i sCor r ec tUse r
105
106 de f t ext to abbad ingo (word l ine , word swap l ine , s t r i ng , d i f f e r en t comb ina t i on s ,

check) :
107 ’ ’ ’
108 Transforms the d i f f e r e n t c l i e n t commands o f the input t ra c e and the s e r v e r

response o f the output t ra c e to abbadingo format .
109 ’ ’ ’
110 i f word l ine . i s d i g i t () :
111 check += 1
112 s t r i n g += f ” {word swap l ine }/{word l ine }”
113 combination = f ”{word swap l ine }/{word l ine }”
114 d i f f e r en t c omb ina t i on s . add (combination)
115 return s t r ing , d i f f e r en t comb ina t i on s , check
116
117
118
119 de f main (path) :
120
121 a l l f i l e s = glob . g lob (f ”{path}/∗”)
122
123 d i f f e r en t c omb ina t i on s = se t ()

49

124
125 numb e r o f u s e f u l f i l e s = 0
126
127 #cr ea t e a new f i l e where the abbadingo f i l e w i l l be wr i t t en in
128 with open (” abbadingo f low . dat” , ”w”) as abbadingo :
129 # Go over every f i l e in the f o l d e r
130 f o r f i l e p a t h in a l l f i l e s :
131 i f f i l e p a t h . s t a r t sw i th (f ”{path }/127 .000 .000 .001 .02200 ”) :
132 # Store the input and output t ra c e f i l e name
133 f i l e name = f i l e p a t h . s p l i t (”/”) [−1]
134 swap name = swap f i l e name (f i l e name)
135 i f os . path . e x i s t s (f i l e p a t h) and os . path . e x i s t s (f ”{path}/{

swap name}”) :
136 with open (f i l e p a t h , ’ r ’ , encoding=’ l a t i n 1 ’) as f i l e , open (f ”

{path}/{swap name}” , ’ r ’ , encoding=’ l a t i n 1 ’) as swap f i l e :
137 # Read the input and output t ra c e contents and remove the

unnecessary response codes
138 l i n e s = f i l e . r e a d l i n e s ()
139 l i n e s = remove unneces sary re sponse codes (l i n e s , [”150” ,

”220” , ”214”])
140 swap l i n e s = swap f i l e . r e a d l i n e s ()
141
142
143
144 i f l en (l i n e s) == len (swap l i n e s) :
145 # Add the l a b e l and length o f the t ra c e f o r Abbadingo

format
146 length = len (swap l i n e s)
147
148 s t r i n g = f ”A { l ength+1}”
149 # Set va r i ab l e i sCorrectUser , t rue i f the t ra c e

conta ins ”USER ubuntu”
150 i sCor r ec tUse r = False
151 # Set va r i ab l e check , check i f the l ength i s the same

as the amount o f input /output pa i r s
152 check = 0
153
154 f o r l i n e , swap l ine in z ip (l i n e s , swap l i n e s) :
155 word l ine , word swap l ine , i sCor r ec tUse r =

ab s t r a c t i o n f un c t i o n (l i n e , swap l ine , i sCor r ec tUse r)
156 s t r ing , d i f f e r en t comb ina t i on s , check =

text to abbad ingo (word l ine , word swap l ine , s t r i ng , d i f f e r en t comb ina t i on s ,
check)

157
158 i f check == length :
159 abbadingo . wr i t e (s t r i n g + ”\n”)
160 numb e r o f u s e f u l f i l e s += 1
161 abbadingo . seek (0)
162 length combinat ions = len (d i f f e r en t c omb ina t i on s)
163 abbadingo . wr i t e (f ”{ numb e r o f u s e f u l f i l e s } { l ength combinat ions }\n”)
164
165 i f name == ” main ” :
166 path = ”/ f low ”
167 main (path)

Listing D.1: Script for generating Abbadingo files from the output that
TCPflow gives. Separating the abstraction text to abbadingo and remove
unnecessary return codes functions.

50

51

Appendix E

Full state machines for
LightFTP and Bftpd

E.1 State machine of LightFTP

Figure E.1: The full state machine of LightFTP. This state machine has 83
states. The default ParentSizeThreshold is used with abstraction function
AF3 (Appendix D)

52

E.2 State machine of Bftpd

Figure E.2: The full state machine of Bftpd. This state machine has 297
states (not all displayed due to threshold). A ParentSizeThreshold of 3 is
used with abstraction function AF3 (Appendix D)

53

