BACHELOR’S THESIS COMPUTING SCIENCE

RADBOUD UNIVERSITY NIJMEGEN

Differential fuzzing of stateful systems using FlexFringe

Author:
Jermo van Oort
s1058152

January 19, 2024

First supervisor/assessor:
Dr. Ir. Erik Poll

Second assessor:
Prof. Dr. Frits Vaandrager

Second superuvisor:
Cristian Daniele

Third supervisor:
Seyed Behnam Andarzian

Abstract

In this day and age, all users of the Internet use stateful protocols to transfer
messages with one another. Stateful protocols keep track of the communica-
tion’s current state, often employed to maintain a connection between two
devices. To keep users safe, all server implementations of these protocols
need to be as secure as possible to prevent adversaries from misusing them.
An effective method for discovering vulnerabilities in a protocol’s server im-
plementation is fuzzing. Fuzzers operate by feeding an implementation large
amounts of randomly generated data, looking for unexpected crashes or out-
puts. A state-of-the-art fuzzer is AFLNet, designed specifically for stateful
protocols.

Generating state machines from the outputs of the fuzzer and subse-
quently comparing them results in differential fuzzing. Differential fuzzing
offers a potential solution for finding differences, and hence bugs, in imple-
mentations of the same protocol. By feeding the inputs and outputs that
were generated by the fuzzer to a state machine learner as FlexFringe, differ-
ent implementations of a stateful protocol can be compared based on their
state machines. Differences can indicate vulnerabilities or newly introduced
bugs.

Using AFLNet to fuzz two different server implementations of FTP and
then pass the traces to FlexFringe to generate the state machines revealed
that there are noticeable differences between implementations, both in the
number of states and the ways they deal with authentication. Furthermore,
inspecting the state machines for vulnerabilities uncovered certain inputs
that have the potential to be security risks.

Contents

1 Introduction
2 Preliminaries
2.1 Fuzzing e
2.1.1 Blackbox fuzzing 0.
2.1.2 Whitebox fuzzing oL
2.1.3 Greybox fuzzing L.
2.1.4 Differential testing and fuzzing
2.2 Learning algorithms for state machines
2.2.1 Activelearning
2.2.2 Passive learning
3 Choice of fuzzer
3.1 AFLNet
3.2 BooFuzz
3.3 Choiceof fuzzer
4 Choice of protocol and implementations
4.1 FTP . ..o
4.1.1 LightFTP
412 ProFTPD
4.1.3 Bftpd
4.2 TCP e
4.3 Choice of protocolo
5 Setting AFLNet and FlexFringe for FTP
5.1 Fuzzing FTP implementations with AFLNet
51.1 Settingup AFLNet
5.1.2 Prerequisites AFLNet
5.1.3 Solving errors AFLNet
5.1.4 Fuzzing LightFTP
5.1.50 Fuzzing Bftpdo o000
5.1.6 Getting traces
5.2 Generating state machine using FlexFringe

10
10
10
11
11
12
12

5.2.1 FlexFringe. oL
5.2.2 Converting traces to Abbadingo format and creating
state machines with FlexFringe
5.2.3 Problem with double inputs/responses
5.2.4 Terminology and notations
5.2.5 Initial experimentso

6 Differential fuzzing of two FTP server implementations
6.1 Parameters for generating state machines
6.1.1 Heuristic o
6.1.2 Abstraction function
6.1.3 ParentSizeThreshold
6.2 State machine of Lightt'TP
6.3 State machine of Bftpd L.
6.4 Comparing LightFTP and Bftpd
6.4.1 Differences in state machines
6.4.2 Possible vulnerabilities

7 Future work
7.1 Using a different fuzzer
7.2 Differential fuzzing of a different protocol
7.3 Generating state machines with a different learner
7.4 Examining the possible vulnerabilities

8 Conclusions
Bibliography
A Dockerfile for setting up AFLNet and light FTP

B Script for generating Abbadingo file for experiment 1

C Script for generating Abbadingo file for experiment 2 and

3

D Script for generating Abbadingo files from LightFTP or

Bftpd TCP streams

E Full state machines for LightFTP and Bftpd
E.1 State machine of LightFTP
E.2 State machine of Bftpd

29
29
29
29
30
30
31
32
32
33

35
35
35
35
36

37

39

43

46

48

Chapter 1

Introduction

Differential testing is valuable as it can expose differences and flaws among
various software implementations by comparing their behavior. It provides
confidence in the reliability and consistency of applications, by uncover-
ing bugs and thus potential security vulnerabilities [16]. Another method
for discovering bugs is with the use of a fuzzer. Fuzzing is done by feed-
ing a system under test (SUT) large amounts of randomly generated data,
looking for unexpected crashes or outputs [12]. Integrating fuzzing with dif-
ferential testing leads to differential fuzzing. Differential fuzzing is achieved
by fuzzing a SUT and comparing various software implementations with
each other. This technique will be implemented on stateful protocols in
this study. Stateful protocols, such as FTP and TCP, have a wide variety
of server implementations and versions. When these protocols are newly
implemented, they are essentially built from the ground up, potentially re-
sulting in minor variations. These discrepancies can become vulnerabilities
that adversaries can exploit to carry out attacks. The variations can be
compared with a finite state machine learner like FlexFringe [27].

By choosing a fuzzer that works with stateful protocols [11], the input
and output traces are used as input for FlexFringe to create a state machine.
Traces are the client input and server output of an implementation. The di-
vergences between state machines of different implementations can indicate
bugs or inconsistencies. The following research question will be answered
at the end of this study: How to perform differential fuzzing of a
stateful protocol using FlexFringe?

Chapter 2 will provide background information to understand some tech-
nical details used in this thesis. This includes information about fuzzing in
general and different learning algorithms for state machine learning. Chap-
ter 3 discusses the choice of fuzzer. Chapter 4 presents the choice of the
used stateful protocol and their implementations. Chapter 5 consists of two
phases. In the first phase, fuzzing LightEFTP and Bftpd with AFLNet [19]
is done. In the second phase, the process of finding the right abstraction

function and using the correct heuristics is given. Chapter 6 contains the
final state machines for the two FTP server implementations and both im-
plementations are discussed. Chapter 7 lists the work that can be done in
the future to extend this research. Lastly, Chapter 8 presents the conclu-
sions of the research findings. Figure 1.1 gives an abstract flow of how the
state machines are created.

FlexFringe

AFLNet (fuzzer) > sutT (automaton learnar)

h 4

Figure 1.1: Abstract flow of this research

Chapter 2

Preliminaries

In this chapter, three different approaches for fuzzing are explained in section
2.1. This section also includes the definitions of differential testing and
fuzzing. In section 2.2 active and passive learning algorithms to learn state
machines are discussed.

2.1 Fuzzing

Fuzzing is all about sending various inputs to the system under test (SUT)
and observing if bugs or incorrect outputs occur. There are multiple ap-
proaches to fuzzing. In sections 2.1.1, 2.1.2, and 2.1.3 three different ap-
proaches are explained. Lastly, differential testing and fuzzing are explained
in more detail in section 2.1.4.

2.1.1 Blackbox fuzzing

In blackbox fuzzing, the SUT is known as a box where the source code is not
known [29] and the fuzzer must solely rely on the SUT’s external behavior
and responses. The input that must be provided to the SUT does not have
any restrictions other than being a finite string, but in practice, the input
is crafted in such a way that it finds bugs more easily, like using grammar-
or mutation-based fuzzers. Grammar-based fuzzers use a predefined syn-
tax or grammar that meets the expected input structure [8]. By generating
according to the grammar, it is more likely that the inputs trigger specific
code within the SUT. Mutation-based fuzzing makes small and random al-
terations to already existing inputs to generate new inputs. The output of
the SUT will be checked for any divergences that could indicate a bug and
thus might be a security flaw.

2.1.2 Whitebox fuzzing

Whitebox fuzzing is exactly the opposite of blackbox fuzzing. With whitebox
fuzzing, the fuzzer can access the source code of the SUT and the fuzzer can
use the internal behavior to create input. To maximize the efficiency of the
fuzzer, inputs will be crafted so that they reach all branches in the code.
This is often done using symbolic execution [10]. Symbolic execution is
a program analysis technique used to find the behavior of a program by
following the values of variables and expressions instead of random input.
It is valuable in identifying edge cases and can automatically generate input
for said edge cases.

2.1.3 Greybox fuzzing

Greybox fuzzing is in between white- and blackbox fuzzing. Greybox fuzzers
make use of observations made during the execution stages of fuzzing to
guide the fuzzer to the highest possible coverage tree. Trying to achieve
this coverage is not done by simply generating data and hoping for the
best. Instead, the fuzzer learns from the SUT’s responses and uses this
knowledge to guide the process. Focusing on prioritizing inputs that expand
the coverage of the SUT and refine these through mutation [6].

Greybox fuzzers, such as AFLNet [19], further enhance their efficiency
by using two feedback approaches to steer the fuzzing process. The first is
a coverage-driven approach and a second is a response-driven approach.

The coverage-driven approach is the most common form of greybox
fuzzing. Take for example code-coverage feedback. Code-coverage feed-
back emphasizes the selection and prioritization of inputs that lead to the
execution of undiscovered code [25]. Other common coverage metrics are
line, function, edge, or path coverage.

The response-driven approach on the other hand uses the response of
the system to steer the process. The inputs that result in previously undis-
covered responses can be used and modified to broaden the fuzzer’s scope
even further [19].

A state-of-the-art greybox fuzzer for stateful protocols is AFLNet [19],
which is extensively discussed in section 3.1

2.1.4 Differential testing and fuzzing

Differential testing is a technique used to compare the behavior of two or
more implementations of the same software or protocol, aiming to identify
differences in how these implementations handle data and different inputs
[5]. The testing process consists of sending the same input, including invalid
and edge case inputs, to both implementations and comparing the behav-
ior of the program. Do both implementations produce the same output?

Different outputs can indicate a bug or non-standard behavior. Differen-
tial testing is valuable in implementation-specific flaws or inconsistencies.
Comparing the two implementations is different for stateless and stateful
protocols. For stateless protocols, only the input and output can be com-
pared with one another, because the SUT is a box with no states in it. All
these inputs and outputs are stored in traces. These traces are compared
with the traces from the other implementation. For stateful protocols, there
are internal states. Comparing two different implementations can be done
by comparing the state machine of the implementations. Differences in state
machines, e.g. a transition that is in one that is missing in the other, can
indicate undesired behavior. Differential fuzzing is an extension of differen-
tial testing because it automatically tests the SUT with loads of different
random inputs generated by a fuzzer. The inputs are sent to the SUT, and
the outputs are monitored.

2.2 Learning algorithms for state machines

In section 2.2.1 it is explained what active learning is. Section 2.1.2 gives
the details about the passive learning approach.

2.2.1 Active learning

During the learning process, where the learner attempts to construct a state
machine from the obtained traces, active learning algorithms can interact
with the SUT [22]. When learning state machines, the protocol can send
necessary input traces to the SUT and instantly receive the corresponding
outputs. This approach can facilitate the learning of state machines while
interacting with the SUT.

2.2.2 Passive learning

Passive learning does not rely on actively selecting traces to send to the
SUT. Instead, it uses collected traces to construct a state machine [22].
This approach is useful when dealing with a large quantity of data because
passive learning is less time-consuming than active learning [22]. Active
learning algorithms need to label the input for the next iteration as the
previous iteration finishes, passive learning can do that beforehand [14]. In
section 5.2.1, FlexFringe [27], a passive state machine learner is discussed.

Chapter 3

Choice of fuzzer

In this chapter, the choice of the fuzzer will be discussed. Firstly, AFLNet
[19] is discussed. AFLNet, built upon Google’s American Fuzzy Lop (AFL)!,
is a greybox fuzzer specifically designed for stateful protocols. Details about
AFLNet are provided in section 3.1. Another stateful protocol fuzzer, Boo-
Fuzz, is discussed in section 3.2. In section 3.3 the choice for AFLNet is
explained.

3.1 AFLNet

AFLNet[19] is a greybox fuzzer based on the AFL groundwork, inheriting
and expanding upon the properties implemented by AFL. One of the charac-
teristics of AFLNet is that it has the capability to fuzz stateful programs, in
contrast to AFL, which is more optimized for stateless programs. Further-
more, AFLNet takes a dual feedback approach, using both response feedback
and code-coverage feedback (section 2.1.3) to steer the fuzzing process. The
fuzzer acts as a client that sends messages to the server (SUT) and modifies
and replays messages that are effective at increasing the coverage or state
space. AFLNet needs an initial set of recorded messages to the system under
test (SUT), upon which it builds and progresses. AFLNet is able to fuzz in
parallel, which increases the efficiency of the fuzzing process [7].

3.2 BooFuzz

BooFuzz [18] is a grammar-based blackbox fuzzer that is a fork of the now
inactive Sulley fuzzer [3]. BooFuzz can fuzz stateful protocols, and combine
that with quick data generation [18], making it well-suited for protocols
with complex state machines. BooFuzz has loads of documentation? about

"https://github.com/google/AFL
https://boofuzz.readthedocs.io/en/stable/

the installation process and how the software must be used. Unfortunately,
BooFuzz is a blackbox fuzzer, so it cannot make use of the source code or
observations made in the execution phase. To fuzz a stateful protocol that
uses any sort of authentication, some variables need to be known before
fuzzing. Before fuzzing with BooFuzz, a session is created that includes a
username and password. Boofuzz can fuzz multiple targets in parallel [18],
but cannot fuzz the same job on multiple cores or machines.

3.3 Choice of fuzzer

In this study, AFLNet will be used as fuzzer. AFLNet is a greybox fuzzer
instead of the blackbox fuzzer BooFuzz. Therefore, it uses the observations
made in the execution phase of the process, which leads to the execution of
undiscovered code faster (section 2.1.3). Adding the use of seed input gives
the fuzzer an understanding of the syntax for that protocol. Furthermore,
AFLNet can fuzz jobs on multiple cores or machines, hence decreasing the
time before all states are found. AFLNet is used in this study.

Chapter 4

Choice of protocol and
implementations

In the chapter, different protocols are discussed. All protocols have differ-
ent characteristics. In section 4.1 the characteristics of FTP are discussed,
and different FTP server implementations are talked about. In section 4.2
TCP will be discussed. Lastly, in section 4.3 the choice for the protocol is
explained.

4.1 FTP

File Transfer Protocol (RFC 959[2]), designed in 1971, is a stateful protocol
specifically made to transfer files across the internet. In the section 4.1.1,
LightFTP is discussed. LightFTP is a lightweight FTP server that can
communicate with FTP clients. Then in section 4.1.2, ProFTPD is talked
about. Lastly, in section 4.1.3, Bftpd is discussed.

4.1.1 LightFTP

LightFTP[9] is a lightweight FTP server suitable for small-scale file transfer
across the internet. An FTP client can connect to the FTP server and put
or get files. In listing 4.1 an example FTP message exchange is given.

220 LightFTP server ready

> USER anonymous

3 331 User anonymous OK. Password required

6

S

PASS password

5 230 User logged in, proceed.

PWD

7 257 7/” is a current directory.

QUIT

10

9 221 Goodbye!

Listing 4.1: Message exchange of FTP client and LightF'TP server. Odd
lines are server responses (output traces), and even lines are client commands
(input traces).

This example lets the client log into the server with a username and password
and when the client is authenticated, the client requests the path to this
directory. Lastly, the client quit from the server. The messages with FTP
commands (like USER and PASS) are commands from the client. The other
messages are responses from the server, indicated with a code.

FTP has a fixed list of FTP commands.

4.1.2 ProFTPD

ProFTPD [21] is an open-source FTP server with as goal to have as many
features and configurations as possible so that users have options to choose
from. ProFTPD has modules that allow for encryption for file transfers.
ProFTPD uses standard FTP input and response codes for communicating
with a client.

1 220 ProFTPD Server (ProFTPD Default Installation) [127.0.0.1]

2 USER ubuntu

3 331 Password required for ubuntu

1 PASS ubuntu

5 230 User ubuntu logged in

6 DELE test .txt

7 550 test.txt: No such file or directory

< QUIT

9 221 Goodbye.
Listing 4.2: Message exchange of FTP client and ProFTPD server. Odd
lines are server responses (output traces), and even lines are client commands
(input traces).

This example lets the client log into the server with a username and pass-
word. The client tries to delete a file, but that file does not exist.

4.1.3 Bftpd

Another small and easy-to-configure FTP server is Bftpd [24]. Bftpd’s aim
is to be fast, secure, and quick to set up and configure FTP servers. Some
key features are: no special setup is needed for security with chroot and
files (sh, Is, ...) are not needed in the chroot environment. Most FTP
commands are implemented in Bftpd.

1 220 bftpd 5.7 at 127.0.0.1 ready.

> USER ubuntu

3 331 Password required for ubuntu
1 PASS ubuntu

11

5
6
8
9
10
11

230 User ubuntu logged in

SYST
;215 UNIX Type: L8

PWD

257 7/” is a current directory.
QUIT

221 See you later ...

Listing 4.3: Message exchange of FTP client and Bftpd server. Odd lines
are server responses (output traces), and even lines are client commands
(input traces).

4.2 TCP

Another stateful protocol is the transmission control protocol (RFC 793
[1]). TCP, designed in 1981, is a reliable host-to-host protocol. Detection
mechanisms are in place for identifying out-of-sync packets or communica-
tion errors. TCP is widely employed, with even other protocols relying on
the connections established by TCP. Due to its extensive usage, there are
plenty of diverse implementations of this protocol available in nearly every
programming language.

4.3 Choice of protocol

For this thesis, only the FTP protocol is used. There are a lot of different
easy-to-setup and configure FTP server implementations, so that is why
FTP is chosen. TCP is an alternative to look at in the future (section 7.2).
In Chapters 5 and 6, only (the creation of) the state machines of Light F TP
and Bftpd are given. ProFTPD is not handled due to the fuzzing results,
where the number of input traces exceeded the output traces in almost all
instances. This made the creation of the abstraction function very difficult
(section 5.2.5).

12

Chapter 5

Setting AFLNet and
FlexFringe for FTP

This chapter outlines the process of fuzzing LightF'TP and Bftpd using
AFLNet, as well as experimenting with the creation of different state ma-
chines. Figure 5.1 schematically shows how the state machines are con-
structed. The process indicated by Phase 1 is discussed in section 5.1. This
section is about fuzzing the different implementations and collecting the
traces. In section 5.2, Phase 2 is described as indicated in Figure 5.1. Ex-
periments with different heuristics and abstraction functions are done to
find the right configurations for generating state machines.

5.1 Fuzzing FTP implementations with AFLNet

In this section, it is explained how to install and fuzz different FTP imple-
mentations with AFLNet. Firstly, setting up AFLNet by running the Dock-
erfile is demonstrated in section 5.1.1, then the prerequisites that AFLNet
needs to start fuzzing any FTP implementation are given in section 5.1.2.
After that, in section 5.1.3, errors that could occur during the fuzzing process
are tackled. Subsequently, in section 5.1.4 LightFTP is fuzzed, followed by
Bftpd in section 5.1.5. Lastly, it describes how to capture traces in section
5.1.6.

5.1.1 Setting up AFLNet

AFLNet GitHub repository! has excellent documentation on how to install
AFLNet. It is advisable to install AFLNet using the provided Dockerfile
in the repository or via Appendix A, as attempting to install it directly on
Ubuntu 22.04 has resulted in numerous errors and may not work at all. In my
experience, the Dockerfile simplifies the setup and ensures a reliable and easy

"https://github.com/aflnet /aflnet

13

W N

Seeds
TCPdump

input traces output fraces

Ty T
—Dictionary-w AFLNet {fuzzer) Toin——» suT el e ————
T3 — T >

—— Phase1

Raw input and output traces

TCPflow

Extracted TCP streams

remaove unnecessary
return codes

Input/output fraces R

Abstraction function | |— Phase 2

Heuristics

Input’'Output traces A

text to Abbadinge Hinput/Output traces Abbadingo— FlexFringe ——State machine—»

Figure 5.1: Process of generating state machines with FlexFringe using
AFLNet (fuzzer).

installation process. In the Dockerfile from Appendix A, the Ubuntu version
is specified to 18.04, the required packages and repositories are downloaded
(LightFTP, Bftpd, and ProFuzzBench), essential environment variables are
configured, and all files are compiled.

To ensure that the error explained in section 5.1.3 does not occur later in
the installation process, the container must be started in privileged mode.
Starting a container in privileged mode can be done as shown in Listing 5.1.
Listing 5.2 demonstrates how to grant executable permissions to the shell
script and execute it to launch a Docker container shell.

#!/bin /sh
docker run —privileged —name NAME —d —i —t CONTAINER-ID /bin/sh
docker exec —it NAME /bin/sh

Listing 5.1: Script to start dockercontainer in privileged mode.
$ sudo chmod u+x FILENAME. sh

$./FILENAME. sh

Listing 5.2: Commands to make the shell script executeable and run it.

14

V)

1

5.1.2 Prerequisites AFLNet

A network protocol is a set of rules or conventions that dictate how data
should be transmitted, received, and processed in a network. AFLNet uses
an initially recorded set of messages of the protocol to build upon and use
as initial seed input.

The seed input for LightFTP and Bftpd is the basic input to get past
the authentication phase. The seed input starts with FTP commands USER
and PASS. These commands are for authentication. The seed input always
ends with the FTP command QUIT to not get a timeout. An example seed
input is given in Listing 5.3. Some other example seed inputs are given in
the LightFTP tutorial folder? inside the AFLNet GitHub repository.

USER ubuntu
PASS ubuntu
SYST

PWD
QUIT

Listing 5.3: Example seed input for FTP.

Furthermore, a dictionary with all FTP commands, the fftp config file,
and a clean-up script need to be provided before fuzzing is possible. All these
files can be found in the AFLNet LightFTP tutorial repository folder 3. For
Bftpd these prerequisites are all included in the ProFuzzBench [17] GitHub
repository 4. ProFuzzBench is a benchmarking tool for stateful protocols.
This repository includes the clean-up script and the syntax for the config
file. To keep the fuzzing of both implementations consistent, the seed input
from the LightFTP tutorial folder is used for both implementations.

5.1.3 Solving errors AFLNet

Starting AFLNet’s fuzzing process for the first time most likely results in one
or both errors. The error given in Figure 5.2 can be resolved by executing
the command provided by AFLNet in combination with a root bash script,
given in Listing 5.4. The sudo bash -c portion is essential, as, without it,
the execution is not possible. This is because sudo runs echo as root, but
the redirection occurs in the shell with no privileges[26].

sudo bash —c ’echo core > /proc/sys/kernel/core_pattern’

Listing 5.4: ALFNet fuzz command.

https://github.com/aflnet/aflnet /tree/master /tutorials/lightftp/in-ftp
Shttps://github.com/aflnet/aflnet /tree/master /tutorials/lightftp
“https://github.com/profuzzbench/profuzzbench /tree/master /subjects/FTP /bftpd

15

Hmm, your system is configured to send core dump notifications to an
external utility. This will cause issues: there will be an extended delay
between stumbling upon a crash and having this information relayed to the
fuzzer via the standard waitpid() API.

To avoid having crashes misinterpreted as timeouts, please log in as root
and temporarily modify /proc/sys/kernel/core pattern, like so:

echo core >/proc/sys/kernel/core_pattern
Figure 5.2: Send core dump notification to external utility error.
When attempting to fuzz any protocol for the first time, an error may
arise (Figure 5.3). This issue can be easily resolved by including the flag -m

none in the AFLNet command. This flag will set the max memory size to
none.

AFLNet - the states hashtable should always contain an entry of the initial state

update state aware variables(), afl-fuzz.c:902
No such process

Figure 5.3: Need entry of initial state error.

5.1.4 Fuzzing LightFTP

Now that all prerequisites are done, the fuzzing process can start. In Listing
5.5 the command used to start the fuzzing process is stated for LightF'TP.
afl —fuzz —t 1000+ —d —i $AFLNET/tutorials/lightftp/in—ftp —o out—lightftp —m

none —N tcp://127.0.0.1/2200 —x $AFLNET/tutorials/lightftp /ftp.dict —P FTP —D
10000 —q 3 —s 3 —E —R —c¢ ./ ftpclean.sh ./fftp fftp.conf 2200

Listing 5.5: Starting AFLNet for LightFTP.

The seed input, an output file, the FTP dictionary, the clean-up script,
and the config file are all specified. Running the command from Listing 5.5
now starts the fuzzer on port 2200. When done correctly, the status screen
of Figure 5.4 will appear in your terminal.

5.1.5 Fuzzing Bftpd

Fuzzing Bftpd is similar to LightFTP (section 5.1.4). The same seed input
is used, trying to keep the config also the same. The only difference in
the config is the syntax. The syntax for the config is derived from the
ProFuzzBench GitHub repository °. Executing the command from Listing
5.6 starts fuzzing Bftpd. The status screen from Figure 5.4 will appear.

afl —fuzz —t 1000+ —d —i $PROFUZZ/in—ftp —o $PROFUZZ/out—ftp/ —m none —N tcp

://127.0.0.1/2200 —x $PROFUZZ/ftp .dict —P FTP —D 10000 —q 3 —s 3 —R —c
$PROFUZZ/clean .sh /home/ubuntu/bdfpd/./bftpd $PROFUZZ/basic.conf 2200

Listing 5.6: ”Starting AFLNet for Bftpd.

Shttps://github.com/profuzzbench /profuzzbench/blob/master/subjects/FTP /bftpd /basic.conf

16

1

american fuzzy lop

5, 0 min, 3 sec
® min, © sec

0 (0
0 (0.0

2
5
2
2

/a
00.00%

=3

51°

Figure 5.4: AFLNet status screen.

5.1.6 Getting traces

To obtain the traces, all the network traffic will be captured with the use of
TCPdumpl15]. TCPdump stores the network traffic in a pcap file (Listing
5.7), which can be read with the use of Wireshark®. Capturing the traffic
is done inside the Docker container. For generating the state machine, the
TCP streams are needed. The TCP streams can be extracted from all the
traffic with the use of TCPflow[4] as seen in Listing 5.8. TCPflow is an
open-source program that extracts TCP data so that it is easy to use for
debugging or analysis. For every TCP stream, two separate files are created.
The first file contains all the traffic towards the SUT (input trace), and the
second file all the output traffic of the SUT (output trace). These files are
loaded into the abstraction functions.

sudo tcpdump —i lo —w output.pcap
Listing 5.7: Starting TCPdump and writing to pcap format.

tcpflow —r output.pcap
Listing 5.8: Extracting the TCP streams from a pcap file with TCPflow.

Shttps://www.wireshark.org/

17

N

5.2 Generating state machine using FlexFringe

In this section, the process of generating state machines from the obtained
traces in section 5.1.6 is given. This section corresponds to phase 2 from
Figure 5.1. Firstly, FlexFringe is further explained in section 5.2.1, including
which merge heuristics exist. Then a simplified process of transforming the
TCP streams captured using TCPdump to Abbadingo format and creating
the state machines is shown (section 5.2.2). In section 5.2.3, some problems
that occur during the transforming phase are listed. Section 5.2.4 gives
the terminology and notations needed for understanding the experiments in
section 5.2.5.

5.2.1 FlexFringe

FlexFringe [27] is an open-source passive finite state machine learner as
explained in section 2.2.2. FlexFringe uses Abbadingo formatted traces as
input to learn the state machines. In Listing 5.9 the Abbadingo format for
FlexFringe is given. In the first line, the total number of traces and the
length of the alphabet is given. The following lines are the traces. The
traces are built as follows: A label, the length of the trace, and then all the
symbols.

Number of traces # Lenght of alphabet
label (lenght n) symboll symbol2 ... symboln

Listing 5.9: Abbadingo format used for input for FlexFringe.

Merge heuristics

FlexFringe uses heuristics to decide which states can be merged, which must
be done in a consistent pattern [23]. Some well-known heuristics have al-
ready been added to the FlexFringe repository. These heuristics are stored
in an initialization (ini) file. This heuristic file will be passed to FlexFringe
the moment a state machine must be created. Some popular heuristics are:

e Markov-chain: Merging states based on their Markov property.

e EDSM: Merging states based on evidence and which is most likely to
lead to the target DFA [13].

e Overlap: Merging states based on the overlapping outgoing transitions
[23].

e Likelihood: Merging states based on how likely it is according to the
log-likelihood [28].

e Mealy: Merging states based on input and output patterns. Outputs
are determined by both the input and the current state.

18

5.2.2 Converting traces to Abbadingo format and creating
state machines with FlexFringe

Converting the traces from the two trace files to Abbadingo format is quite
challenging. The input and output traces obtained in section 5.1.6 are
stripped of any unnecessary response codes (section 5.2.3) and parsed to the
abstraction function. The abstraction function eliminates all textual con-
tent, providing input traces with only FTP commands and output traces
with corresponding response codes. Pairs of inputs and outputs are made,
where the output corresponds to the respective input. These pairs are then
formatted according to the Abbadingo format outlined in section 5.2.1.

The Abbadingo file can be read by FlexFringe. To create the state
machine, the commands from Listing 5.10 and 5.11 need to be executed in
order.

./ flexfringe —ini ini/mealy.ini abbadingo.dat

Listing 5.10: Command to run FlexFringe.

dot —Tpdf abbadingo.dat. ff.final.dot —o abbadingo—out . pdf
Listing 5.11: Command to make pdf from the .dot file.

5.2.3 Problem with double inputs/responses

The Abbadingo format requires that the length of an input trace is the same
as the length of an output trace. The traces consist of input and output
pairs, which means that when the input trace is not the same length as the
output trace, the trace is removed. This may generate inconsistencies. To
prevent this from occurring, there are three response codes in the output
traces that are removed beforehand. These response codes are not needed.
The following response codes are deleted:

Response code 150 “File status okay; about to open data connection.”
This response code is thrown right before another response. It indicates
that the client might wait a moment before the connection is opened, hence
FTP gives the 150 code.

Response code 214 “Help message. Explains how to use the server or
the meaning of a particular non-standard command. This reply is useful
only to the human user.” As the definition already explains, it is a reply to
help humans understand the non-standard reply.

Response code 220 “Service ready for new user.” At the start of every

conversation, this response code is thrown to let the client know that the
server is ready to communicate.

19

5.2.4 Terminology and notations

The terminology clarifies the frequently used terms in the experiments (sec-
tion 5.2.5). The notations employed in the experiments (section 5.2.5) serve
the purpose of distinguishing between various abstraction functions and in-
put/output traces.

Terminology

e Abstraction function: Function that gets a separate input and output

trace (section 5.1.6), like example trace Ti" and T¢%. This trace is
stripped of any unnecessary information (like 220 return codes and
text) resulting in 0"~ 57 #Ped ganq qout—strivved,

Heuristic: A term used to specify the chosen merge algorithm (section
5.2.1) and includes parameters that dictate the visual appearance of
the state machine.

ParentSizeThreshold: A parameter within the heuristic that denotes
the number of transitions required before the child state is visualized
in the state machine.

Notations

AF1:

AFy:

AFg:

Abstraction function 1 (Appendix B) only uses output traces (like
example trace T{") to create the input file for FlexFringe. This func-

tion removes all text so that only the server response codes remain
Toutfstripped
(Ty)-

Abstraction function 2 (Appendix C) uses both the input (like exam-
ple trace Ti™) and output traces (like example trace TP*!) and creates
input-output pairs. The text is removed, leaving only the FTP com-
mands for the input and the server response codes for the output. The
FTP commands are translated to a number using a dictionary. Re-
sponse codes 150, 214 and 220 are removed (section 5.2.3) to avoid
more output messages than input messages.

Abstraction function 3 (Appendix D) uses both the input (like exam-
ple trace Ti") and output traces (like example trace T¢%) and creates
input-output pairs. The text is removed, leaving only the FTP com-
mands for the input (70" *"#P*?) and the server response codes for the
output (T 5 “d) " Authentication commands (USER and PASS)
contain a parameter to check if the correct username or password is
given. Response codes 150, 214 and 220 are removed (section 5.2.3)

to avoid more output messages than input messages.

20

T1:

L L N

1o

e

10
11
12
13
14

15
16

in.
Tin:

out.
Tout:

Tlinf stripped

O N R

Example

trace 1 in pcap format, lines starting with a digit are the

output messages:

220

LightFTP server v2.0a ready

USER anonymous

331
PASS
230

User anonymous OK. Password required
ubuntu
User logged in, proceed.

SYST

215
PWD
257

UNIX Type: L8

7/” is a current directory .

PORT 127.,0,0,1,152,193

200
LIST
150
451

Command okay .

File status okay; about to open data connection.
Requested action aborted. Local error in processing

QUIT

221

Example

Goodbye!

input trace Ti™:

USER anonymous
PASS ubuntu
SYST

PWD

PORT 127,0,0,1,152,193

LIST

QUIT

Example

220
331
230
215
257
200
150
451

221

output trace TYut:

LightFTP server v2.0a ready

User anonymous OK. Password required

User logged in, proceed.

UNIX Type: L8

7/” is a current directory.

Command okay .

File status okay; about to open data connection.
Requested action aborted. Local error in processing

Goodbye!

An example of the input trace T} after removing all text for abstraction
function AF3. USER and PASS have a parameter:
USER anonymous

PASS ubuntu
SYST

PWD

21

5 PORT
6 LIST
. QUIT

: An example of the output trace 1} after removing all text and unnec-
essary response codes for abstraction function AF3:

Tout— stripped
1

1 331
2 230
3 215
4 257
5 200
6 451
7 221

Ty: Example trace 15 in pcap, lines starting with a digit are output mes-
sages:
1 220 LightFTP server v2.0a ready
2 .@iicx.R."YST. @QiiR *.R
3 SYSTPASS ubuntu
4 501 Syntax error in parameters or arguments.
5 SYST
6 215 UNIX Type: L8
7 PWD
8 530 Please login with USER and PASS.
9 PORT 127,0,0,1,152,193
10 530 Please login with USER and PASS.
11 LIST
12 530 Please login with USER and PASS.
13 QUIT
14 221 Goodbye!

5.2.5 Initial experiments

In this subsection, all experiments conducted to derive the final state ma-
chine are presented in chronological order. These experiments aim to explore
different abstraction functions and heuristics to identify a suitable state ma-
chine for FTP. The ParentSizeThreshold was not taken into consideration
for the experiments since the input and output sets lacked a sufficient num-
ber of traces for the state machine to become complex or messy. Experiment
4 uses the Mealy heuristic in combination with an abstraction function that
uses both input and output. That combination works best for generating a
state machine.

22

Experiment 1

Abstraction function: AF; (section 5.2.4)

Heuristic: Markov chain

Set: Sp: Output traces obtained by fuzzing LightF'TP for 1,5 minutes

Abbadingo: 1 1 530

2 220 8 331 230 215 257 200 150 451 221
3

Listing 5.12: Abbadingo format of t; experiment 1.

For the first experiment, only the output traces (like example trace TY"*)
are used to generate a state machine. Listing 5.12 provides the Abbadingo
format of the example trace T7P* used in this experiment.

The abstraction function used to transform the set S; is denoted as AF;.
The text that is included in the traces is removed, resulting in TP~ 5" #red,
Subsequently, the traces are transformed into an Abbadingo file, and by
using the Markov merge heuristics, the state machine depicted in Figure 5.5

is generated.

 —
N e —E
%

7/

/|

Figure 5.5: The state machine generated for experiment 1. Using the initial
set of traces S; and an abstraction function AF; that only uses the output
FTP server response codes. Markov-chain heuristics are applied.

23

Experiment 2

Abstraction function: AF; (section 5.2.4)
Heuristic: Markov chain

Set: Sy: Input/output traces obtained by fuzzing LightF'TP for 1,5 minutes

Abbadingo: 1 1 200
2 —1/220 8 0/331 13/230 19/215 3/257 5/200 6/150 1/221

3

Listing 5.13: Abbadingo format of ¢; experiment 2.

In addition to the previous experiment, this experiment also uses the
input. Abstraction function AF5 translates the FTP command to integers
following a standard dictionary. Unnecessary response codes are removed as
mentioned in section 5.2.3. The Abbadingo format used for this experiment
for example trace T} is given in Listing 5.13.

TCPflow creates two files, a server-client conversation file and a client-
server conversation file. To create the Abbadingo format, the content of the
two files is needed. The function swap_file_name returns the name of the
other conversation. When ports are reused, the name of the file will append
a cl, so that it can be distinguished from the other conversation. The re-
move_unnecessary_response_codes will remove all unnecessary response codes
as mentioned in section 5.2.3. Another difficulty with the way TCPflow cre-
ates files is that sometimes there are more input traces than output traces.
This creates irregularities in the Abbadingo format file. By stripping the
traces that do not have the same amount of input and output traces, this
is solved. An example of a trace that has this problem is an example trace
T5. In trace T5 it can be seen that there are two inputs before return code
501 is given.

Transforming the set S; with the abstraction function AF5, gives the
state machine of Figure 5.6. This state machine is generated with the
Markov-chain heuristics.

24

Figure 5.6: The state machine generated for experiment 2. Using the initial
set of traces S with an abstraction function AF5 that uses both input and
output traces. Markov-chain heuristics are applied.

25

Experiment 3
Abstraction function: AF» (section 5.2.4)

Heuristic: spdfa

Set: Sy: Input/output traces obtained by fuzzing LightFTP for 1,5 minutes

Experiment 2 used the Markov-chain heuristics as input. By experimenting
with different heuristics, the spdfa heuristics generated a state machine that
merged the states differently. Using spdfa resulted in Figure 5.7. The state
machine is generated on the data from set Sj.

Figure 5.7: The state machine generated for experiment 3. Used initial set
of traces S7 with an abstraction function that uses both input and output
traces. Spdfa heuristics are applied.

26

Experiment 4

Abstraction function: AF3 (section 5.2.4)
Heuristic: Mealy
Set: Sy: Input/output traces obtained by fuzzing LightF'TP for 1,5 minutes

Abbadingo: 1 117
2 1 7 USER/331 PASS/230 SYST/215 PWD/257 PORT/200 LIST
/451 QUIT/221

Listing 5.14: Abbadingo format of trace Ty for experiment 4.

For experiment 4 the abstraction function has changed a lot. Now in-
stead of using a dictionary to translate the commands of the input traces
to numbers, the commands themselves are used. How the Abbadingo in-
put for trace 77 is constructed is shown in Listing 5.14. This gives more
clarity to the state machines. After a call with Sicco Verwer, author [27]
and co-programmer of FlexFringe, we came to the understanding that the
master branch of the FlexFringe repository did not print the return codes
of the output traces in the state machines using Mealy heuristics. Previous
experiments might have yielded different results had this information been
known in advance. A Mealy machine has an input and an output for every
transition because the output of the SUT is determined by the input and
the current state. A state machine for FTP does need that too. Using ini-
tial set S7 with abstraction function AF3 and the Mealy heuristic, the state
machine of Figure 5.8 is constructed.

In Figure 5.8, a square representing the starting state is accompanied by
circles of varying sizes. The size of the circles corresponds to the amount of
incoming transitions. Larger circles indicate a higher number of incoming
transitions.

27

UNKNOWN
500

Figure 5.8: The state machine generated for experiment 4. Used initial set
S1 with an abstraction function AF3. Mealy heuristics are applied.

28

Chapter 6

Differential fuzzing of two
FTP server implementations

In this chapter, two server implementations of the FTP protocol will be
compared. Firstly, the parameters used for generating the state machines
are given in section 6.1. Subsequently, the state machine of LightFTP is
given in section 6.2. In section 6.3, the state machine of Bftpd is provided.
Finally, in section 6.4, the two state machines are compared to identify
differences.

6.1 Parameters for generating state machines

In this section, the parameters discovered in the initial experiments (section
5.2.5) are explained. First, the heuristic is explained in more detail. Sub-
sequently, the process of the abstraction function is discussed. Lastly, the
purpose of the ParentSizeThreshold is explained.

6.1.1 Heuristic

The heuristic discovered during the experiments is the Mealy heuristic. This
heuristic utilizes both input and output traces to merge states (see section
5.2.1). The server implementations of the protocols produce outputs that are
influenced by both the given input and their current state. Therefore, the
Mealy heuristic is the appropriate choice for generating the state machines
of the two server implementations.

6.1.2 Abstraction function

The experiments showed that the abstraction function AF3 (section 5.2.4)
worked best. Initially, the 150, 214, and 220 response codes are removed
from the output traces to prevent the occurrence of the double response
problem (section 5.2.3). Then, the function pairs the input-output traces,

29

ensuring that the input messages triggering the output responses are cor-

rectly matched. All textual content is removed from the traces. An ex-

ample is given in section 5.2.4, where the input trace Ti" is abstracted to

Tinstriered and, similarly, for T out - the abstracted version is denoted as
TPk stripp “d The authentication commands (USER and PASS) have a pa-
rameter and will be checked if the username and password are correct. If
the username is correct, the FTP command is translated to "USER_OK’;
otherwise, it is translated to "USER_FAULT’. The same applies to the pass-
word, with 'PASS_OK’ and "PASS_FAULT". Lastly, the input-output pairs
are put in Abbadingo format. An example of the Abbadingo format for both
implementations is given in Listing 6.1.

1 17

1 7 USER.OK/331 PASS.OK/230 SYST/215 PWD/257 PORT/200 LIST

/451 QUIT/221

V)

Listing 6.1: Abbadingo format of example trace T7.

6.1.3 ParentSizeThreshold

The ParentSizeThreshold is a threshold specifying the minimum number of
incoming transitions required for visualization in the state machine (section
5.2.4). This threshold is employed during the learning process and is solely
used to generate visually appealing state machines. The default threshold
(ParentSizeThreshold=-1) is employed in the experiments. For the full state
machines (see Appendix E) the default threshold is used.

6.2 State machine of LightFTP

Version: LightFTP v2.3
Abstraction function: AF3 (sections 5.2.4 and 6.1.2)
Heuristic: Mealy (section 6.1.1) with ParentSizeThreshold (section 6.1.3) = 150
Set: Sy: Input/output traces obtained by fuzzing LightFTP for 60 minutes

To generate the state machine of Light FTP (Figure 6.1), the process outlined
in phase 2, as depicted in Figure 5.1, is applied to set So. S5 is obtained
by running AFLNet on LightF'TP for 60 minutes, which resulted in 3939
traces. Abstraction function AFj5 is used to generate the Abbadingo file
used as input for FlexFringe. AF3 is discussed in section 6.1.2. The Mealy
heuristic is used with a ParentSizeThreshold of 150, resulting in the state
machine of Figure 6.1.

Appendix E contains the state machine of LightFTP with the default
ParentSizeThreshold specified. This state machine has 83 states.

30

Figure 6.1: State machine of LightFTP generated with set of traces So,
abstraction function AF3 and the Mealy heuristic. ParentSizeThreshold set
to 150.

6.3 State machine of Bftpd
Version: Bftpd 5.7
Abstraction function: AF3 (sections 5.2.4 and 6.1.2)
Heuristic: Mealy (section 6.1.1) with ParentSizeThreshold (section 6.1.3) = 100

Set: S3: Input/output traces obtained by fuzzing Bftpd for 60 minutes

To generate the state machine for Bftpd, the same steps taken for Light F'TP
(section 6.2) are replicated with set S3. Set Ss is obtained by fuzzing
Bftpd for 60 minutes, resulting in 3554 traces. The ParentSizeThreshold
is smaller for Bftpd because fuzzing Bftpd for 60 minutes gave fewer traces
than LightFTP, this is because Bftpd is slower than LightFTP.

Appendix E contains the state machine of Bftpd with ParentSizeThresh-
old of 3, because after running the dot command (section 5.2.2) for five
hours, still no state machine was generated. Inspecting the file from which

31

the state machines are generated showed that with the default Parent-
SizeThreshold Bftpd has 297 states. Choosing a ParentSizeThreshold of
3 reduced the time to visualize the state machine to 30 seconds.

Figure 6.2: State machine of Bftpd generated with set of traces Ss, abstrac-
tion function AF3 and the Mealy heuristic. ParentSizeThreshold set to 100.

6.4 Comparing LightFTP and Bftpd

In this section, the process of differential fuzzing takes place (as explained
in section 2.1.4). Firstly, the notable differences are given (section 6.4.1).
Then in section 6.4.2, the possible vulnerabilities are discussed.

6.4.1 Differences in state machines

o A difference between LightF'TP and Bftpd is how they approach clients
who are not logged in. Bftpd has a separate set of states for those
cases. In the graph, these states can be found by incoming transi-
tions with "USER_FAULT’ commands. Figure 6.3 shows the transi-
tions and states in both implementations where failed authentications
are handled. The existence of these extra states may indicate an im-
plementation error in Bftpd. It is expected that providing an incorrect
username and password will result in reverting to the starting state to
attempt authentication again.

32

A possible explanation could be that, after a certain number of failed
login attempts, the client is redirected to another state. However, this
behavior is not documented anywhere.

=

(a) Failed authentication of LightFTP. (b) Failed authentication of Bftpd.

Figure 6.3: Boxed in orange is the part of the state machine where failed
authentications are handled.

e The number of states differs between the two implementations. Where

LightF'TP has only 83 states in the full-state machine (Appendix E),
Bftpd has 297 states in the full-state machine (Appendix E).

6.4.2 Possible vulnerabilities

Examining the full-state machines can reveal possible security concerns.
This section lists some potential vulnerabilities. Additional research is nec-
essary to find the potential dangers associated with these vulnerabilities
(section 7.4).

2xx A response code beginning with “2xx” corresponds to the successful

completion of a requested command. The response codes 230 and 232
are issued upon a successful login. When a client provides the cor-
rect password with previously a correct username, the server responds
with a 230 code. The same applies when a client provides a correct
username along with some correct security data, then the 232 code is
thrown.

Security issues arise for these response codes when they are issued in
response to an unknown FTP command or an incorrect password pro-
vided by the client. Such behavior might indicate potential vulnerabil-
ities, suggesting that other inputs could potentially bypass the server’s
authentication mechanism. Table 6.1 provides three command-response
combinations associated with “2xx” responses. LightFTP does not
have any unknown commands that result in a successful login for ei-

33

ther the 230 or the 232 codes. In contrast, Bftpd has two unknown
input traces that result in a 230 response code.

In instances where an incorrect password is entered but results in a suc-
cessful login, LightF'TP has nine occurrences, while Bftpd has three.
However, upon reviewing the Abbadingo file and investigating these
combinations, it was revealed that for most, if not all, cases, this com-
bination was triggered after an already successful login, resulting in
false positives. This mitigates the security concern.

3xx A response code beginning with “3xx” corresponds to an accepted
command, but a subsequent command with additional information
still needs to be provided. The response codes 331 and 336 are issued
upon an existing username. The distinction between these two codes
lies in the fact that for 351, a password is required for the specified
user, while for 336, a challenge must be answered instead.

Security issues arise for these response codes when they are issued
in response to an unknown FTP command provided by the client.
Such behavior suggests that a command other than "USER’ results in
the recognition of an existing user. Table 6.1 provides two command-
response combinations associated with “3xx” responses. LightF'TP has
one unknown command leading to a 331 response code, while Bftpd
has two such instances. For the 336 code, neither implementation has
an unknown command that leads to that specific response code.

Table 6.1 enumerates the number of transitions associated with potentially
insecure command-response combinations. Additional research is required
to determine whether these combinations represent security vulnerabilities
(section 7.4).

Command-response LightFTP | Bftpd
combination

UNKNOWN/230 | 0 2
PASS_FAULT/230 | 9 3
UNKNOWN/232 | 0 0
UNKNOWN/331 | 1 2
UNKNOWN/336 | 0 0

Table 6.1: Number of potential insecure transitions for some command-
response code combinations.

34

Chapter 7

Future work

In this chapter, the possible extensions to differential fuzzing are discussed.
In section 7.1, the usage of a different fuzzer is discussed. In section 7.2
it is discussed that the same research can be done on a different protocol.
Then, in section 7.3, generating state machines with a different learner is
discussed. Lastly, in section 7.4, it is discussed that more research needs to
be done on the possible security risks.

7.1 Using a different fuzzer

In section 2.1, different types of fuzzers are listed. In the future, the same re-
search can be done with the use of a different fuzzer. A suitable fuzzer would
be BooFuzz [18] as discussed in section 3.2. For this research, AFLNET was
chosen. AFLNet is a greybox fuzzer (section 2.1.3), whereas BooFuzz is a
blackbox fuzzer (section 2.1.1). It can be insightful to compare the outcomes
generated by a blackbox fuzzer with those of a greybox fuzzer.

7.2 Differential fuzzing of a different protocol

In Chapter 4, different protocols are listed. For this study, the F'TP protocol
has been selected. The research conducted in this study can be applied to
stateful protocols that have multiple server implementations. An example of
such a viable protocol is presented in section 4.2, namely the Transmission
Control Protocol (TCP [1]). TCP is a connection-oriented protocol, meaning
it maintains state information. This characteristic classifies it as a stateful
protocol, making it well-suited for future research.

7.3 Generating state machines with a different learner

As outlined in section 2.2, there are two types of learners: passive and
active. In this study, a passive automaton learner FlexFringe [27] is used to

35

generate a state machine based on the fuzzed traces. An active approach
to this research has already been done by Cristian Daniele '. He generated
state machines of different FTP implementations using the active automaton
learner Learnlib [20]. Apart from these two learning algorithms, future
research could explore similar investigations with various passive or active
learning algorithms.

7.4 Examining the possible vulnerabilities

The potential vulnerabilities discussed in section 6.4.2 require further in-
vestigation. For this, it is necessary to understand the specific client input
traces that prompted the server to return 230, 331, 336 response codes. An-
alyzing these input traces will provide insights into how the interaction came
together and help determine whether the observed response codes indicate
security vulnerabilities or if they are the result of normal FTP behavior.
Identifying potentially insecure prompts can be achieved using the informa-
tion gathered in this study, but a significant modification to the abstraction
function is needed. Another approach to investigating security risks is to
conduct fuzzing (as described in section 5.1) again, but this time without
providing the correct username and password in the seed input. If any por-
tion of the state machine appears to be situated after authentication, it
suggests that the authentication process might be bypassed. Unfortunately,
due to time constraints, these tasks could not be carried out within the scope
of this thesis.

"https://github.com/cristiandaniele/ftp-statemodel-learner

36

Chapter 8

Conclusions

In this thesis, we worked towards finding a way to do differential fuzzing of
a stateful protocol using FlexFringe. By fuzzing two FTP server implemen-
tations using AFLNet (see section 5.1), a substantial number of traces are
collected. These traces are preprocessed and formatted to be compatible
with FlexFringe to generate state machines (section 5.2). By performing
differential fuzzing on both state machines (section 6.4), it was identified
that there is a difference in the number of states between the two implemen-
tations and how they deal with authentication (section 6.4.1). Furthermore,
by closely inspecting the state machines for vulnerabilities, some inputs that
have the potential to be a security risk were uncovered (see section 6.4.2).

e Setup: In section 5.1.1, setting up AFLNet using the Dockerfile was
a simple task. Starting the docker container in privileged mode is a
must, otherwise, errors will appear in later stages. Do not forget to
patch the GitHub repository, or else you have a hard time debugging
errors. Setting up FlexFringe is just as simple as AFLNet. Following
the instructions on the GitHub repository, the software is installed in
a matter of minutes.

e Fuzzing and collecting traces: Fuzzing both LightFTP and Bftpd
did not cause any major problems. After solving the errors from
section 5.1.3, which were caused by a non-privileged Docker image,
fuzzing could start right away. Getting the traces is done by running
a TCPdump inside the same Docker container. Extracting the TCP
streams is done by using TCPflow. Unfortunately, TCPflow generates
distinct TCP streams for input and output traces, which does not help
in making pairs of input and output traces.

e Experimenting with different factors: Through experimenta-
tion with various factors in section 5.2.5, the parameters for generat-
ing state machines for stateful protocols were determined. The used
parameters are given in section 6.1. The three factors that influence

37

the appearance of the state machines are the abstraction function,
the heuristics, and the ParentSizeThreshold. The abstraction func-
tion takes input-output pairs, eliminates all textual content, and ex-
cludes the 150, 214, and 220 response codes. The Mealy heuristic is
employed to ensure that transitions use both inputs and outputs. A
ParentSizeThreshold of more than 100 is utilized in sections 6.2 and
6.3. For section 6.4, the default threshold (ParentSizeThreshold = -1)
is employed.

Results of differential fuzzing: In Chapter 6, the final state
machines for LightF'TP and Bftpd are presented. Comparing the
two state machines discovered that Bftpd has 297 states, whereas
LightFTP has only 83 states. Another difference between implemen-
tations is how they handle authentication. LightFTP sets the failed
authentications back to the starting state. Bftpd has a small set of
states that handle failed authentications. This small set may indicate
an implementation error because it is expected that providing an in-
correct username and password will result in revering to the starting
state to attempt authentication again.

After inspecting the state machines for both implementations, some
command-response code combinations were found that could be po-
tential security risks. In Table 6.1 all combinations and the number of
times they occur are listed. These combinations can be vulnerabilities
because an unknown command triggers a critical FTP server response
code. Further research needs to be done to check if these combinations
are security risks (section 7.4).

Experience: Fuzzing a stateful protocol like Light F' TP with AFLNet
was simple, and the installation went smoothly. AFLNet has outstand-
ing documentation on the GitHub page, and it even has premade tuto-
rials for some common protocols. FlexFringe has an easy installation
process, and the first state machines are created quickly. However,
understanding the Abbadingo format as input for FlexFringe and how
the heuristics influence the state machine took more time to figure
out. Documentation for Abbadingo is limited, which made finding the
right format challenging, as described in section 5.2.5. The heuristics
contain information for merging states during FlexFringe’s learning
process. It took a considerable amount of time to identify the Mealy
heuristic, partly due to the master branch of the FlexFringe GitHub
repository did not correctly print the outputs when the Mealy heuristic
was selected.

What would be done differently next time: While experiment-
ing with different abstraction functions, heuristics, and Abbadingo
outputs, there was no clear structure in trying to figure out what

38

would work best. All the variables are interdependent, so changing
multiple variables at once does not provide any understanding of the
single variables. Next time, I would consider changing one variable at
a time until it reaches an approximate or desired output.

39

Bibliography

1]

Transmission Control Protocol. RFC 793 https://www.ietf.org/
rfc/rfc793.txt, sept 1981.

File Transfer Protocol. RFC 959 https://www.ietf.org/rfc/rfc959.
txt, oct 1985.

Pedram Amini. Sulley. https://github.com/0OpenRCE/sulley, 2012.

Jeremy Elson. tcpflow — a TCP flow recorder. https://www.
circlemud.org/jelson/software/tcpflow/, 2003.

Robert B. Evans and Alberto Savoia. Differential testing: A new ap-
proach to change detection. In The 6th Joint Meeting on European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering: Companion Papers, ESEC-
FSE companion ’07, page 549-552, New York, NY, USA, 2007. Associ-
ation for Computing Machinery.

Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and
Cristian Cadar. Grayc: Greybox fuzzing of compilers and analysers for
c¢. In Proceedings of the 32nd ACM SIGSOF'T International Symposium
on Software Testing and Analysis, ISSTA 2023, page 1219-1231, New
York, NY, USA, 2023. ACM.

Mark Fijneman. Fuzzing open source OPC UA implementations. Bach-
elor thesis, Radboud University, 2023.

Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-
based whitebox fuzzing. SIGPLAN Not., 43(6):206-215, jun 2008.

hfirefOx. Lightftp. https://github.com/hfirefOx/LightFTP/tree/
master, 2015.

James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385-394, jul 1976.

Fouad Lamsettef. Extending ProFuzzBench: A benchmark for stateful
fuzzers. Bachelor thesis, Radboud University, 2023.

40

[12]

[13]

[14]

[20]

Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian
Zhang. Fuzzing: State of the art. IEEFE Transactions on Reliability,
67(3):1199-1218, 2018.

S.M. Lucas and T.J. Reynolds. Learning dfa: evolution versus evidence
driven state merging. In The 2003 Congress on Evolutionary Compu-
tation, 2003. CEC ’03., volume 1, pages 351-358 Vol.1, 2003.

Alexander Maier. Online passive learning of timed automata for cyber-
physical production systems. In 2014 12th IEEE International Confer-
ence on Industrial Informatics (INDIN), pages 60-66, 2014.

Steve McCanne, Sally Floyd, van Jacobson, and Vern Paxson. Tcp-
dump & libpcap. https://www.tcpdump.org/, 1988.

William M. McKeeman. Differential testing for software. Digital Tech-
nical Journal, 10(1):100-107, 1998.

Roberto Natella and Van-Thuan Pham. Profuzzbench: A benchmark
for stateful protocol fuzzing. In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021.

Joshua Pereyda. BooFuzz: Network protocol fuzzing
for = humans. https://github.com/jtpereyda/boofuzz#
boofuzz-network-protocol-fuzzing-for-humans, 2018.

Pham, Van-Thuan, Bohme, Marcel, Roychoudhury, and Abhik. Afinet:
A greybox fuzzer for network protocols. In 2020 IEEE 18th Inter-
national Conference on Software Testing, Validation and Verification
(ICST), pages 460-465, 2020.

Harald Raffelt, Bernhard Steffen, and Therese Berg. Learnlib: A library
for automata learning and experimentation. In Proceedings of the 10th
International Workshop on Formal Methods for Industrial Critical Sys-
tems, FMICS ’05, page 62-71, New York, NY, USA, 2005. Association
for Computing Machinery.

Michael Renner, TJ Saunders, and Jesse Sipprell. Proftpd. http:
//www.proftpd.org/, 1999.

Iman Saberi, Fathiyeh Faghih, and Farzad Sobhi Bavil. A passive online
technique for learning hybrid automata from input/output traces. ACM
Trans. Embed. Comput. Syst., 22(1), oct 2022.

Rafail Skouloss. Learning state machines faster using locality-sensitive
hashing and an application in network-based thread detection. Master
thesis, National Technical University of Athens in collaboration with
TU Delft, 2020.

41

[24]

[25]

[26]

[27]

28]

J.F.R.G. Smith. Bftpd. https://bftpd.sourceforge.net/contact.
html, 2004.

Mustafa M. Tikir and Jeffrey K. Hollingsworth. Efficient instru-
mentation for code coverage testing. SIGSOFT Softw. Eng. Notes,
27(4):86-96, jul 2002.

Gillis (https://unix.stackexchange.com/users/885/
gilles-so-stop-being-evil). = Why is editing core_pattern re-
stricted? https://unix.stackexchange.com/questions/343275/
why-is-editing-core-pattern-restricted, 2017.

Sicco Verwer and Christian A. Hammerschmidt. FlexFringe: A pas-
sive automaton learning package. In 2017 IEEFE International Confer-
ence on Software Maintenance and Evolution (ICSME), pages 638-642,
2017.

Sicco Verwer, Cees Witteveen, and Mathijs de Weerdt. A likelihood-
ratio test for identifying probabilistic deterministic real-time automata
from positive data. In International Colloquium on Grammatical Infer-
ence, pages 203-216, 2010.

Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley.
Scheduling black-box mutational fuzzing. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security,
CCS 13, page 511-522. Association for Computing Machinery, 2013.

42

Appendix A

Dockerfile for setting up
AFLNet and lightFTP

Appendix A shows the Dockerfile that is used in section 5.1.1 to set up
AFLNet which includes LightFTP.

1 # syntax=docker/dockerfile —upstream : master—labs

2 FROM ubuntu:18.04

1 # Install common dependencies

5 RUN apt—get —y update && \

6 apt—get —y install sudo \

7 apt—utils \

8 build—essential \

9 openssl \

10 clang \

11 graphviz—dev \

12 git \

13 libcap —dev \

14 llvm—dev \

15 libgnutls28 —dev \

16 tepdump |\

17 wget

1

19 # Add a new user ubuntu, pass: ubuntu

20 RUN groupadd ubuntu && \

21 useradd —rm —d /home/ubuntu —s /bin/bash —g ubuntu —G sudo —
u 1000 ubuntu —p "$(openssl passwd —1 ubuntu)”

¥

3 # Use ubuntu as default username
USER ubuntu

5 WORKDIR /home/ubuntu

Download and compile AFLNet
ENV LLVM_CONFIG="1lvm—config —6.0”

N AN

[0}

WO MR NN

RUN git clone https://github.com/aflnet/aflnet && \
31 cd aflnet && \

43

2 make clean all && \
3 cd llvm_mode make && make
1

5 # Set up environment variables for AFLNet

¢ ENV AFLNET=" /home/ubuntu/aflnet”

7 ENV PATH="§ {PATH} : § {AFLNET}”

55 ENV AFL_PATH="$ {AFLNET}”

30 ENV AFL_ I DONT_.CARE_ABOUT_MISSING_CRASHES=1 \
40 AFL_SKIP_CPUFREQ=1

21 ENV WORKDIR=" /home /ubuntu”

43 # Download and compile LightFTP

22 RUN c¢d /home/ubuntu && \

45 git clone https://github.com/hfirefOx /LightFTP.git && \
16 cd LightFTP && \

A7 git checkout 5980eal && \

48 patch —pl < ${AFLNET}/tutorials/lightftp /5980eal.patch && \
19 cd Source/Release && \
50 CC=afl—clang—fast make clean all

53 # Set up LightFTP for fuzzing
54 RUN c¢d /home/ubuntu/LightFTP/Source/Release && \
55 cp ${AFLNET}/tutorials/lightftp /fftp.conf ./ && \

56 cp ${AFLNET}/tutorials/lightftp/ftpclean.sh ./ && \
57 cp —r ${AFLNET}/tutorials/lightftp/certificate 7/ && \
58 mkdir ~/ftpshare

60 ENV PROFUZZ=" /home/ubuntu/profuzzbench/subjects /FTP/BFTPD”

62 # Set up BFIPD for fuzzing including profuzzbench

63 RUN cd ${WORKDIR} && \

64 wget https://sourceforge.net/projects/bftpd/files /bftpd/
bftpd —5.7/bftpd —5.7.tar . gz && \

65 tar —zxvf bftpd —5.7.tar.gz && \

66 git clone https://github.com/profuzzbench/profuzzbench. git

&\
67 cd bftpd && \
68 patch —pl < ${PROFUZZ}/fuzzing .patch && \ && \

69 CC=" afl —clang—fast” CXX="afl —clang—fast++” ./configure —
enable—devel=nodaemon: nofork && \
70 AFL_USE_ASAN=1 make $MAKE.OPT

Listing A.1: Dockerfile AFLNet, LightF'TP, Bftpd and ProFuzzBench

44

1
2

[CENENECEN]
TR W N =

[CEN)
® DU

W W NN

Appendix B

Script for generating
Abbadingo file for

experiment 1

import glob

path

= ”YOUR/PATH/HERE/TO/FOLDER/WITH/TRACES”

all_files = glob.glob(f”{path}/x")

number_of_useful_files = 0

#create a new file where the abbadingo file will be written in

with

open(”abbadingo.dat”, "w”) as abbadingo:
for file_path in all_files:
if file_path.startswith(f”{path}/127.000.000.001.02200”):
with open(file_path , ’'r’, encoding=’latinl’) as file:
lines = file.readlines ()
first-word = lines [0].split () [0]
lines .pop (0)
length = len(lines)

string = f”{first_word} {length}”
for line in lines:
word = line.split () [0]
Do not add if word is not a number
if word.isdigit ():
string += {7 {word}”

abbadingo . write(string + ”\n”)
number_of_useful_files += 1
abbadingo.seek (0)
abbadingo. write(f’{number_of_useful_files} 530\n”)

Listing B.1: Script to transform traces to Abbadingo format

45

Appendix C

Script for generating
Abbadingo file for
experiment 2 and 3

import glob

1

2

3 def swap-_file_name (filename):

4 if not filename.endswith(”cl”):

5 parts = filename.split (7—")

6 if len(parts) == 2:

7 src, dst = parts

8 src-ip , src-port = src.split(’.’,1)
9 dst_ip, dst_port = dst.split(’.’,1)
10 new_filename = f”{dst_ip}.{dst_port}—{src_ip}.{src_port}”
11 return new-_filename

12 else s

13 return None

14 elisler:

15 filename = filename.replace(7cl”, ”7)
16 parts = filename.split (”"—")

17 if len(parts) =— 2:

18 src, dst = parts

19 src_ip , src_port = src.split(’.’,1)
20 dst_ip, dst_port = dst.split(’.’,1)
21 new_filename = f”{dst_ip}.{dst_port}—{src_ip }.{src_port}cl”
22 return new_filename

23 else:

24 return None

25

26 def strip_-lines_with_4x (lines):

27 new_lines = []

28 for line in lines:

29 if line.startswith (74”):

30 continue

31 else:

32 new-_lines .append(line)

33 return new_lines

34

35 path = "YOUR/PATH/HERE/TO/FOLDER/WITH/TRACES”

36

37 FTP_.COMMANDSDICT = {

38 ”INITIAL” : —1,

39 0,

10 1,

11 2,

12 3,

13 : 4,

14 "PORT” : 5,

15 "LIST” : 6,

16 »CDUP” : 7,

17 "CWD” : 8,

18 "RETR : 9,

19 ”ABOR” : 10,

50 "DELE” : 11

46

"PASV” :
2PASSIE
»REST” :
"SIZE? :

”STOR” :

?SYST

»FEAT” :
» APPE” :
"RNFR” :
"RNTO” :
»OPTS” :
»MLSD” :
» AUTH” :
»PBSZ” :
»PROT” :
?EPSV” :
»HELP” :
?SITE” :
PUNKNOWN” : 32,

}

all_files

number_of_useful_files

12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,

glob . glob (£”

#create a new file where
with open(”abbadingo.dat”, "w”) as abbadingo:
for file_path in all

if

swap-name}” ,

Listing C.1: Script to transform traces to Abbadingo format for experiment

2

file_path .sta
file_name =
swap_-name =

with open(file_path ,

Ty
lines =
swap-lin

first_wo

lines . po

{path}/x")

=0

the abbadingo file will be written in

_files :
rtswith (£” {path}/127.000.000.001.022007):
file_path .split (”/”)[—1]
swap_file_name (file_name)
T
file .readlines ()
es = swap-file.readlines ()
rd = lines [0].split () [O]

p(0)

length = len(lines)

Remove

lines that have 400 code

strip_lines_with_4x (lines)
string = f”—1/{first_word} {length}”

if len (1

for

ines) == len(swap-lines):
line , swap-line in zip(lines, swap_lines):
word_line = line.split () [0]
try:

word_swap-_line = swap_line.split () [0]
@EEDE 8

continue

if word-swap-line in FTP.COMMANDSDICT:

swap-number = FTP.COMMANDSDICT|[word_swap-line]

el 8
swap_-number = 32

Do not add if word is not a number

if word_line.isdigit () and swap_number <= 32:
string += f” {swap_-number}/{word_line}”

abbadingo.write(string + 7\n”)
number_of_useful_files += 1

abbadingo.seek (0)
abbadingo . write(f”{number_of_useful_files} 200\n”)

47

encoding="latinl ’) as file , open(f”{path}/{
encoding="latinl ’) as swap-_file:

Appendix D

Script for generating

Abbadingo files from
Light FTP or Bftpd TCP
streams

import glob
import os

def swap_file_name (filename):
valid_suffixes = [7cl”, 7c2”, 7c3”, "c4d”]

if not any(filename.endswith(suffix) for suffix in valid_suffixes):

parts = filename.split (7—")
if len(parts) == 2:
src, dst = part
src_ip , src_port = src.split(’.’,1)
dst_ip , dst_-port = dst.split(’.’,1)
new_filename = f”{dst_-ip}.{dst-port}—{src_ip}.{src_port}”

return new-_filename
else :
return None

for suffix in valid_suffixes:
if filename.endswith(suffix):

parts = filename.replace (suffix, ”7).split (7—")
if len(parts) == 2:
src, dst = parts
src-ip , src_port = src.split(’.’, 1)
dst_ip, dst_port = dst.split(’.’, 1)
new_filename = f”{dst_ip}.{dst_port}—{src_ip}.{src_port}{suffix}”

return new-_filename

return None

def remove_unnecessary-response_codes(lines , prefixes):
return [line for line in lines if not any(line.startswith(prefix) for prefix
in prefixes)]

FTP_COMMANDSDICT = {
”INITIAL” : —1,
?USER-OK”: 0,
?USER_FAULT” :0 ,
7QUIT” ¢ 1
"NOOP” : 2
"PWD” : 3
"TYPE” : 4
"PORT” : 5
PLIST”: 6
?CDUP” : 7

48

46 WD : 8,
47 "RETR” : 9,

48 ”ABOR” : 10,

49 "DELE” : 11,

50 PPASV” : 12,

51 ?PASS.OK”: 13,
52 ?”PASS_FAULT” :13,
53 "REST” : 14,

54 ”SIZE” : 15,

55 "MKD” : 16,

56 "RMD” : 17,

57 ?STOR” : 18,

58 ?SYST” : 19,

59 "FEAT” : 20,

60 ”APPE” : 21,

61 "RNFR” : 22,

62 ?RNTO” : 23,

63 ?OPTS” : 24,

64 ?MLSD” : 25,

65 ?AUTH” : 26,

66 ?PBSZ” : 27,

67 ?PROT” : 28,

68 ?EPSV” : 29,

69 "HELP” : 30,

70 ?SITE” : 31,

71 "UNKNOWN” : 32,
72 }

73

74 def abstraction_function (line, swap-line, isCorrectUser):
75 T

76 Strips the input and output traces of text and checks if the username and/or

password are correct.

e DR

78 try:

79 word_line = line.split () [0]

80

81 except:

82 word_line = 75007

83 try:

84 swap-line = swap-line.split ()

85

86 except :

7 swap-line = ["UNKNOWN” 6 77 = »7]

88

89 word_swap_line = "UNKNOWN”

90

91 if len(swap-line) >= 1:

92 if swap-line [0] == "USER”:

93 isCorrectUser = swap-line[1l] == ”ubuntu” or swap-line[1l] == "~
anonymous” if len(swap-line) > 1 else False

94 word_swap_-line = "USER.OK” if isCorrectUser else "USER_FAULT”

95 elif swap_line [0] == "PASS”:

96 isCorrectPass = swap_line[1] == ”ubuntu” if len(swap-line) > 1 else
False

97 word-swap-line = "PASS.OK” if isCorrectPass and isCorrectUser else ”
PASS_FAULT”

98 else s

99 word_swap-line = swap-line [0]

100

101 if not word_.swap_line in FTP_.COMMANDSDICT:

102 word_swap_line = "UNKNOWN"

103

104 return word-line, word_-swap_line, isCorrectUser

105

106 def text_-to_abbadingo (word_-line, word_swap_line, string , different_combinations ,
check) :

107 T

108 Transforms the different client commands of the input trace and the server

response of the output trace to abbadingo format.
109 T

110 if word_line.isdigit ():

111 check 4= 1

112 string 4= f” {word_-swap-line}/{word_line}”
113 combination = f”{word_swap_line}/{word_line}”
114 different_combinations.add(combination)
115 return string , different_-combinations , check
116

117

118

119 def main(path):

120

121 all_files = glob.glob(f”{path}/«")

122

123 different_combinations = set ()

49

124
125
126
127
128
129
130
131
132
133
134
135

136

138
139

140

157
158
159
160
161
162
163
164
165
166
167

number_of_useful_files = 0
#create a new file where the abbadingo file will be written in
with open(”abbadingo_flow.dat”, "w”) as abbadingo:
Go over every file in the folder
for file_path in all_files:
if file_path.startswith(f”{path}/127.000.000.001.02200”):
Store the input and output trace file name
file_.name = file_path.split(”/”)[—1]
swap-name = swap-_file_name (file_name)
if os.path.exists(file_path) and os.path.exists (f”{path}/{
swap-name}”) :
with open(file_path , ’r’, encoding=’latinl’) as file , open(f”
{path}/{swap_name}”, ’r’, encoding=’latinl’) as swap-_file:
Read the input and output trace contents and remove
unnecessary response codes
lines = file.readlines ()
lines = remove_unnecessary.-response_codes (lines , [71507,
22207, 72147])
swap-lines = swap-_file.readlines ()
if len(lines) == len(swap-lines):
Add the label and length of the trace for Abbadingo
format
length = len(swap-lines)
string = f”A {length+1}”
Set variable isCorrectUser, true if the trace
contains ”USER ubuntu”
isCorrectUser = False
Set variable check, check if the length is the
as the amount of input/output pairs
check = 0
for line, swap-line in zip(lines, swap-lines):
word-line, word_-swap-line, isCorrectUser =
abstraction_function (line, swap_-line, isCorrectUser)
string , different_-combinations , check =
text_-to_abbadingo (word_-line, word_swap-line, string , different_combinations,
check)
if check == length:
abbadingo.write(string + ”\n”)
number_of_useful_files 4= 1
abbadingo.seek (0)
length_combinations = len (different_combinations)
abbadingo . write(f”{number_of_useful_files} {length_combinations}\n”)
if __name__. == ” __main__":
path = 7 /flow?”
main (path)

Listing D.1: Script for generating Abbadingo files from the output that
TCPflow gives. Separating the abstraction text to abbadingo and remove

unnecessary return codes functions.

50

o1

Appendix E

Full state machines for
Light FTP and Bftpd

E.1 State machine of Light FTP

[]]

Figure E.1: The full state machine of Light F'TP. This state machine has 83
states. The default ParentSizeThreshold is used with abstraction function
AF3 (Appendix D)

E.2 State machine of Bftpd

[imiins

Wl ANEUAWARAN

i i "‘3,“1

AW
i~

Figure E.2: The full state machine of Bftpd. This state machine has 297
states (not all displayed due to threshold). A ParentSizeThreshold of 3 is
used with abstraction function AF3 (Appendix D)

93

