
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

A SaC plotting visualisation integration in Jupyter

Exploring plotting of the compiled language SaC in the Jupyter interactive environment

Author:
Luc Schrauwen
s1036102

First supervisor/assessor:
Prof. Sven-Bodo Scholz

Second assessor:
dr. Peter Achten

January 26, 2024

Abstract

The goal of this research is a case study of implementing plotting visuali-
sations for the compiled array programming language SaC in the Jupyter
interactive environment. The present insight into SaC arrays provides only
text-based output that provides little insight into data. The goal is reached
by building on top of an existing SaC kernel written in Python that is in
between the users Jupyter notebook files and the SaC compiler. To get the
most versatile plotting solution, the Python part of the kernel is exploited
by using the existing Matplotlib Python library. This library is interfaced
to work with SaC variables and to be included in the Jupyter notebook syn-
tax. The resulting lightweight implementation in the kernel has the same
possibilities and look as if it was used on the Python programming language
being able to plot a wealth of 3D and 2D plots.

Contents

1 Introduction 2

2 Background 4
2.1 The importance of plotting 4
2.2 Single assignment C . 5
2.3 Jupyter project . 6
2.4 Jupyter project architecture 9
2.5 Jupyter extension possibilities 10

2.5.1 SaC Jupyter kernel . 11
2.5.2 Jupyter extensions . 14

2.6 Matplotlib Python plotting library 15

3 Plotting SaC in Jupyter 17
3.1 Approach . 18
3.2 SaC plotting execution cycle 21
3.3 Visualisation example . 22

4 Discussion 24
4.1 Scope . 24
4.2 Future work . 24

5 Conclusion 26

6 Acknowledgements 27

A Appendix 31

1

1. Introduction

As time goes on, more and more convenient tools are created to aid software
development; to simplify and to speed up the development process by adding
abstraction and visualisations. Countless libraries exist showing this goal of
allowing programmers to focus more on program structure instead of small
details and keep up with the rising complexity of programs. Originally,
languages used the edit-compile-execute cycle, but with the introduction
of interpreted languages such as Python, the benefit of rapid algorithmic
exploration, prototyping, and visualisations became part of daily scientific
work. Interpreted languages can be used in interactive environment that
let scientists investigate, test new ideas, combine algorithmic approaches,
and evaluate the outcome of expressions directly without the compilation
of a whole program [18]. Well-known interactive environments of this kind
are Matlab [10], Mathematica [11] and Jupyter [26]. Jupyter got especially
popular for data scientists because of its laboratory simple notebook style,
a plethora of possibilities, accessible to multiple systems and programming
languages and good for easier data exploration [4]. Jupyter supports the
interpreted language Python by default and is used for interactive develop-
ment by splitting code into cells with each having its own output. These
cells can also hold interpreted text and images, creating a very accessible
learning and representing tool. This way of development is not readily avail-
able to compiled languages because of the full program compilation that is
needed to run code. This usually gets solved by creating an interpreter for
the compiled language such as Cling [29], developed for C.

This research is a case study of implementing plotting visualisations for a
compiled language in an interactive environment. Jupyter is used for this
because of its extendable nature that allows its framework to be used by
other programming languages via programs called kernels (explained in sec-
tion 2.5.1). The language this research focuses on is Single Assignment C
(SaC) [21], which is a functional array programming language suitable for
data, image and signal processing. This language already has support for
creating PDF images but no support for plotting of any kind. This language

2

is chosen because it already has a bare kernel integration into Jupyter [27].
Plotting would be great for SaC because of the limited current ASCII output
the language has and the plotting will be a great tool to easily visualise and
subsequently better understand numerical data [30]. This is especially true
for the abstract concepts and operations in the field of computer science
[16]. The current kernel is not an interpreter but mimics to be one while
still using the SaC compiler and its compilation cycle. The kernel currently
is useful for quick prototyping, experimentation and demonstrations with
the language. The plotting functionality will only enhance these benefits
by giving even more insight into SaCs behaviour. SaC is also taught at the
Radboud University to Master students and plots can aid in learning SaC
and the array programming paradigm in the same way it aids experimenta-
tion and demonstration. The problem with the SaC kernel in the context
of plotting is that it only uses communication holding ASCII streams to
connect with SaC and Jupyter. In this research the following questions are
answered; How can plots be created for SaC in a way that is convenient to
program and use? How can a plot be transported from the plotting library
to output in Jupyter? And how can the user have as much options while
plotting?

In this paper the important components and systems used in this research
are explained in the background (section 2), then the projects structure and
final implementation will be explained, including an example (section 3 and
appendix A). Finally some remarks about future work and improvements
are given in section 4.

3

2. Background

This chapter provides background information for the libraries and soft-
ware used in this research to further understand the research and its design.
It starts by explaining the importance of plotting in the context of pro-
gramming using an example (section 2.1) followed by the explanation of the
programming language Single assignment C (SaC) for which this research
provides plotting functionalities (section 2.2). Here the motivation of using
SaC will also be clarified. After this the Jupyter project is explained (section
2.3) with a top down view of its architecture (section 2.4) and the two ways
Jupyter can be extended or used by other programming languages (section
2.5). Lastly the Python Matplotlib plotting library used in this research is
explained in section 2.6.

2.1 The importance of plotting

As mentioned in the introduction, plotting is one of the best ways to eas-
ily visualise and inspect numerical data for patterns, outliers or structure,
especially for large collections of data [30]. To further illustrate the impor-
tance of plotting, the simple example of the convex hull algorithm is used.
This algorithm tries, given a set of coordinates, to find the convex hull. The
convex hull of a set of points in an Euclidean space is the smallest convex
polygon that encloses all of the points. When implementing this algorithm
in SaC, the only way of checking the correctness of this algorithm on a
set of points is by looking at the print output of the array that SaC can
provide. This would give almost no usable insight into the correctness of
the computed solution, especially for large arrays of coordinates. Plotting
these points into a scatter plot will instantly make it clear how the points in
the set are distributed in 2D space. Even better, highlighting or even con-
necting the convex hull in this plot can instantly show whether this convex
hull is valid. Both an ASCII way of printing arrays and a plot printing the
same coordinates can be seen in figure 2.1. This example illustrates that
the interpretation of data is helped by visualisations.

4

Figure 2.1: Showing text-based representation of an array with coordinates
(right) and plot image of the same array (left) for the convex hull problem
on an arbitrary list of 20 coordinates. (Example made with Matplotlib in
Python)

2.2 Single assignment C

The programming language Single assignment C (SaC) is used in this re-
search to add plotting capabilities to. It is a functional array program-
ming language that prioritises speed and facilitates the compilation for non-
sequential program execution in multiprocessor environments [21]. Instead
of programmers manually having to program the low-level hardware instruc-
tions, it offers a high-level imperative C-like programming notation (seen in
listing 1) that adapts to the underlying hardware to maximise efficiency
and reduce execution time. An array programming language deals with
generalised operations on sequences of values while functional programming
languages map values to other values, rather than a sequence of imperative
statements which update the running state of the program [8][13]. Most
of the operations that are found as standard operations on scalars in other
languages are applicable to entire arrays in SaC. Functional languages tend
to be better at concurrency and parallel programming. SaCs syntax does
not look like a functional programming language, but the for-loops in SaC
are just syntactic and are actually translated to tail-end recursive calls. SaC
also uses a dynamic type system that assigns data types to variables during
compilation. SaC is originally meant for image and signal processing, but
is also suitable for data mining and modelling or in applications that need
to perform operations on large data structures [21]. This makes the plot-
ting visualisations ideal for SaC because of the large amount of data it will
handle and thus making visualisations of arrays useful in interpreting said

5

data.

use StdIO: all;

use Array: all;

int main()

{

a = iota(40);

b = modarray(a, [0], 9);

print(b);

return 0;

}

Listing 1: SaC syntax example that creates an array a of size 40 (counting
up from 0 till 39) and then creates an array b that is the exact array of a
with the value at index 0 be replaced by the value 9

2.3 Jupyter project

The interactive environment used to add plotting visualisations to SaC in
this research is Jupyter. The Jupyter project (formerly called IPython) is a
non-profit, open source project that aims to provide an enhanced interactive
environment for data visualisation and parallel computation. IPython was
launched in 2001 and solely focused on the Python programming language,
extending its interactive capabilities [18].

In 2014 the project evolved to the Jupyter project to support all program-
ming languages using the browser-based Jupyter notebook interface it is
still today [26]. The name Jupyter originates from the three core supported
languages in the project, which are Julia [5], Python [28] and R [19]. The
Jupyter project uses an underlying file format called notebooks that use the
JavaScript Object Notation (JSON) syntax with the .ipynb filename exten-
sion. These notebooks contain an ordered list of input/output cells that are
not restricted to just code and can also contain Markdown interpreted text
and images. Around 2015 the Jupyter team made the improved next gener-
ation notebook interface called Jupyterlab, that still uses the same notebook
files but instead allows for multiple files to be open in a single browser tab
and provides more support for interactive elements.

The Jupyter notebook files can be opened and edited in the Jupyter note-
book environment that runs in a browser. Every cell in the notebook
has, after writing an expression or piece of code in it, its own output and

6

can use all results from previously executed cells. An example notebook
(SinDemo.ipynb) can be seen in figure 2.2, that is made in Jupyterlab. Here
the sine and cosine are plotted in a single plot using the Matplotlib Python
library that is explained in section 2.6. This notebook contains three cells
with the first being Markdown interpreted text. The second one used to
import both libraries needed to plot and a Python print expression printing
“Hello world!”. The last one plots the cosine and sine using the Matplotlib
plotting library. The printing of the text “Hello world!” has been included
into this example to illustrate the multiple points of getting different output
in a single Jupyter notebook.

A core feature of the Jupyter project is its extendable nature, allowing for
other programming languages to use the framework. Jupyter has two paths
of extending the framework. The first way is by creating kernels (see 2.5.1),
that are used for evaluation of the notebook cells contents. These kernels
usually hold the programming language’s interpreter. The second way is
changing the browser interface and features that are called Jupyter exten-
sions (see 2.5.2). Both ways are considered in this research. Existing projects
that use Jupyter to extend languages’ capabilities is for example for one of
the core languages Julia [5]. A list of existing third-party kernels supporting
different languages has been created and published on Github [3].

7

Figure 2.2: Example of a Jupyter notebook connected to the default Python
kernel in a browser plotting the sine and cosine using Matplotlib

8

2.4 Jupyter project architecture

To understand the different ways of extending Jupyter, the architecture of
the Jupyter project needs to be addressed. The architecture of the Jupyter
program, as seen in figure 2.3, uses the Jupyter server as a central communi-
cation and control hub. The browser on the left is the user’s interface to its
notebooks and communicates via the Jupyter server to access the notebooks
and the kernel. One of the ways to extend Jupyter are the extensions men-
tioned above, these are installed inside of the browser’s Jupyter interface.
The kernel is a piece of software that acts as the interpreter for the expres-
sions in the Jupyter notebook cells. Most kernels hold interpreters like Cling
for C [29] or the Python interpreter by default. When a user wants to exe-
cute a cell from a notebook in the browser, the Jupyter server will send the
cell’s expression to the kernel to be evaluated and return the output to the
user’s browser. Because of the central location of the Jupyter server and its
architecture the kernel does not know anything about the notebook and will
only get expressions from the server to evaluate, making the connection of
multiple servers on one kernel possible as well as being able to use notebooks
for all Jupyter and Jupyterlab versions. If no kernel is connected and cell
expressions will not be able to be evaluated by a kernel, the Jupyter server
still enables editing of notebooks.

Kernels communicate with the Jupyter server via socket-based messaging
protocols using JavaScript Object Notation (JSON) sent over the ZeroMQ
sockets [2]. This is an asynchronous messaging library, that can run without
a dedicated message broker. A message broker is a program that serves as
an intermediary between applications. Developers can use these protocols in
kernels via a lightweight interface that can be wrapped in Python. For this
research the most important communication socket is the IOPub broadcast
channel. This channel is used by the kernel to publish all side effects such
as standard output and input that should be displayed in the notebook.
The current SaC kernels communication as seen in figure 2.3 are further
explained in section 2.5.1.

9

Figure 2.3: Jupyters architecture diagram including the SaC kernel and
compiler

2.5 Jupyter extension possibilities

The Jupyter project allows for additions and extensions by developers. In
this section both ways are further explained as mentioned before. Firstly,
there are the kernels that are mainly used to connect a language to Jupyter
by holding an interpreter. By default the Jupyter project connects to the
Python interpreter kernel. A kernel however does not need to be a language
interpreter but can also be used for widgets or other forms of abstractions
that can be achieved via the cells in the notebook. For example, a kernel
that can output sophisticated plots in just one line of code. Secondly, exten-
sions can be created that are additions to the Jupyter browser interface and
are mainly used to build on top of kernel functionality. They will alter how
the browser interface of Jupyterlab/notebook works and looks by adding for
example, commands, new widgets, buttons, key shortcuts or a variable ex-
plorer. These extensions build upon Jupyter libraries and packages that each
have their own use-case, for example nbconvert [17] for exporting notebooks
into different formats or Lumino [14], used for widgets, layouts, events, and
data structures. Extensions are also easily distributed and downloadable by
other users.

10

2.5.1 SaC Jupyter kernel

There exist three ways to connect a kernel to Jupyter. Firstly, using the
wrapper kernels that reuse the communications from IPykernel, and imple-
ment only the core execution part. Usually these kernels hold the inter-
preters for programming languages. Secondly, by using native kernels that
are written in a different language than Python and implement the execu-
tion and communications with the Jupyter server in the target language.
And lastly, by using the Xeus kernels that use the Xeus library wrapper [31]
that does not depend on a Python runtime.

The current SaC kernel [27] is a wrapper kernel that does not hold an inter-
preter, but it passes expressions from the Jupyter server to the SaC compiler
and back. This kernel was originally made for easy showcasing the language
and its behaviour without the manual compile-execute cycle. Because of the
position that kernels usually have of being in between an interpreter and the
Jupyter server, kernels can also create functions that are not directly tied
to the kernels interpreter language. These functions are called magics and
are used to get functionalities in the users notebook that is only usable in
Jupyter in combination with the kernel. An example of this is to have a
distinct function recognised by the kernel that can return the interpreters
version to the users notebook.

The current SaC wrapper kernel needs to keep track of all the previous
defined definitions, imports, variables and functions from other cells in the
notebook, other than communicating with the SaC compiler. Keeping track
of all this is called the kernel state. This state and saving of definitions is
needed because the kernel will only receive expressions from a single cell at
a time while every cell in the notebook should be able to access definitions
defined in previous cells. This state will grow with every cells execution send
to the kernel. Because the kernel still communicates with the SaC compiler,
the current state needs to be transformed into a SaC program that is sent
to the compiler. The kernel will gather the stored definitions together with
the given expression and will create a SaC program as seen in listing 2 filling
it in at all the <...> parts.

The expression from the notebook cell will be evaluated depending on the
type of SaC syntax. For example if it is a definition, it will be put in the
main function under // statements. If just a variable name is received
by the kernel it will be put inside a SaC print() function inside of the
main function in listing 2. This communication enables the kernel to catch
compiler output via the ASCII standard out that print() prints to (also
seen in figure 2.3). This is the current way of getting output in the users
notebook. Because the kernel acts between the Jupyter server and the SaC

11

// use

<...>

// import

<...>

// typedef

<...>

// functions

<...>

int main () {

// statements

<...>

return 0;

}

Listing 2: Empty SaC kernel program format

compiler, the kernel can utilise auxiliary commands not known by the SaC
compiler, making a clear distinction between SaC syntax and these extra
functionalities. These functions can, for example, give the user insights
into the kernels state. These kernel commands are called magics and they
commonly start with % to distinguish them. The magics present in the SaC
wrapper kernel are:

• %print, prints the current kernel state as a filled SaC program in
listing 2.

• %setflags <flags>, used to set SaC compiler flags.

• %flags, prints all current flags.

• %help, prints all magics with their description.

The existing wrapper kernel was originally constructed by A. Shinkarov and
has been rewritten while this research was going on. This was done to make
the kernel more abstract and uniform than the previous one, allowing for
easier implementation of future additions to the kernel and better ways to
communicate with the SaC compiler. It defines all the types of input magics
functions, statements, expressions and all SaC types as action classes that
have generalised behaviour and structure as seen in listing 3. The other
classes present in the kernel are the Jupyter subprocess class, a sub-process
that communicates with the SaC compiler and listens for ASCII output on
standard out and can also read this in real time, and the Kernel class that
holds the actual implementation of the kernel and inherits from the wrapper
Jupyter kernel class. The kernel class holds information needed for the

12

Jupyter server to register it and connect to it as a kernel. Every Action in

1 class Action:

2 def __init__(self, kernel):

3 self.kernel = kernel

4

5 def check_input(self, code):

6 return {'found': False, 'code': code}

7

8 def process_input(self, code):

9 return {'failed': False, 'stdout':"", 'stderr':""}

10

11 def revert_input (self, code):

12 pass

13

14 def check_magic (self, magic, code):

15 code = code.strip ()

16 if code.startswith (magic):

17 return {'found': True, 'code': code[len (magic):]}

18 else:

19 return {'found': False, 'code': code}

Listing 3: SaC kernel action class

the kernel should have the check input, process input and revert input

methods defined. check magic is only used for magics functions to check for
the presence of the correct identifier of the given expression. check input

checks whether the given action is applicable to the given input and it returns
a record {’found’, ’code’}, indicating if the action has been found. If so,
the input called code here will be used by process input to perform the
action. It returns a record { ’failed’, ’stdout’, ’stderr’ } to output
an error to the Jupyter notebook if this is signalled. revert input resets
the internal state to the one before processing the input. As much state as
possible is kept local to the actions.

13

2.5.2 Jupyter extensions

The second way to extend Jupyter other than a kernel is the Jupyter ex-
tensions. In particular this research looks at Jupyterlab extensions 1. The
extensions from Jupyter notebook and Jupyterlab differ, so that they cannot
be used in both. The extensions for Jupyterlab have sparse documentation
but the developers made a helpful Github repository [25] consisting of sev-
eral examples. The idea of an extension is that the user can decide whether
to use them or not by installing them separately.

Extensions in Jupyterlab are written in javascript or typescript because
they are included into the browser Jupyter interface. Jupyterlab’s develop-
ers have set up a template [1] that contains all the basic files needed for
an extension. The most important files are: src/index.ts, that contains
the actual code of the extension and can be extended with more typescript
files, package.json, that contains information about the extension such as
dependencies, and tsconfig.json, that contains information for the type-
script compilation.

Jupyterlabs extension system was initially similar to the Jupyter notebook
extensions called nbextensions, called labextensions. This system is now
deprecated but was used to install, uninstall and edit extensions and could
be called directly from a terminal. NodeJS is needed to build the extension
package web assets such as TypeScript and CSS. The commands mostly
used in development are the following:

• jlpm. The jlpm command is JupyterLab’s pinned version of yarn (a
package manager for Javascript) that is installed with JupyterLab. It
allows you to update the Javascript code each time you modify your
extension code and is used to install class dependencies such as the
widget providing the Lumino class.

• pip install -ve . installs the dependencies that are specified in the
setup.py file and in package.json. The TypeScript code gets converted
to javascript using the compiler tsc and wrapped to be used and loaded
into Jupyterlab.

The structure of the typescript file needs an initialisation function as seen
in listing 4. This is an instance of the JupyterFrontEndPlugin that is a
plugin that builds the extension and holds some required information, such
as the ID and what packages it needs in order to function.

1Since the Jupyterlab project is in constant development, some statements in this thesis
might no longer be valid for a newer version of Jupyterlab. The version used during this
research was 3.6.1

14

const plugin: JupyterFrontEndPlugin<MyToken> = {

id: 'my-extension:plugin',

autoStart: true,

requires: [...],

optional: [...],

provides: MyToken,

activate: activateFunction

};

Listing 4: Initialisation function needed in the extension source file

The extension spawns from the activate function defined in the activate
option in the initialisation function. It can be defined inside or outside
of this class. requires and optional hold lists of Jupyter classes that
are either needed to run the extension or are optional. They are mainly
used when plugins interact with each other by providing a service to the
system and requiring services provided by other plugins. For example if
ICommandPalette is used for creating and adding commands to the existing
ones the programmer needs to put the new command into the required

field in order for the extension to stop working if this class is not available.

2.6 Matplotlib Python plotting library

The plotting library used in the implementation of this research is the
Python Matplotlib. It is an open source plotting library that serves as a
visualisation utility tool usable across several user interfaces and operating
systems. It was first released in 2003 based and inspired by MATLAB [10]
and has evolved into an extensive plotting library, supporting multiple types
of plots in 2D and 3D as well as support for interactive plots. The library
also uses a relatively small memory space [9]. This library is widely used
by data scientists research using Python [12]. For example the library con-
sists of box plots, scatter plots, images, contour plots, histograms and much
more. All possible plotting options are found in the Matplotlib online doc-
umentation [24]. In Matplotlib the plots are divided into containers where
each container can be altered to change certain properties inside of it. A
simplified version can be seen in figure 2.4. The outer most container is
the figure container, this container holds all the plots and data associated
with its place such as size restrictions and plot arrangements. Axes holds
information of a single plot such as the type of plot or its title. There are
even more containers such as legends, lines, ticks and text boxes that are
left out of the figure for simplicity.

Matplotlib makes use of the numerical mathematics library called Numpy.

15

Figure 2.4: Simplified Matplotlib containers and their place in a plot

Numpy was created in 2005 and introduces a new array object into Python
that has better supports for large, multi-dimensional arrays and matrices
[7]. The primary reason Matplotlib uses Numpy arrays in some of the plots
is because Numpy includes a collection of high-level mathematical functions
to operate on the Numpy arrays. Matplotlib can be used without Numpy
with the drawback that some plots will not be able to be used, such as the
3D surface plot. Having Numpy unlocks the full potential of Matplotlib.

16

3. Plotting SaC in Jupyter

The goal of this research is to enrich the interaction between the compiled
language SaC and the Jupyter server by including plotting visualisations
for SaC. As explained in section 2.5.1, the current SaC kernel was created
only for the evaluation of SaC expressions having communications with the
compiler via ASCII streams. The only insight into SaC arrays is in text
form, as seen in listing 5. The SaC kernel was originally built for tutorials
and showcasing of the SaC language and its functionality, which normally
would require a manual compile-execute cycle to get any output. Visualisa-
tions are a great tool that helps in the interpretation of numerical data as
substantiated in section 2.1. This also holds for SaC because the language
was developed for operations on large data and with the implementation of
visualisations in Jupyter this will give an easier way of interpreting large
data arrays. SaC is also being used and taught at the Radboud University
to Master Software Science students, where visualisations of arrays would
aid in teaching its concepts to students. This research focuses on plotting,
which is one of the best and most versatile way to visualise numerical data
to recognise data trends. Moreover, plotting is heavily used in data explo-
ration before any analysis or operation is done. This exploration speeds up
the whole process by being able to spot mistakes or faults in the data early
on or even change the whole approach to the problem [30].

Dimension: 2

Shape : < 2, 3>

| 1 2 3 |

| 4 5 6 |

Listing 5: SaC print() function output from a small two dimensional array

17

3.1 Approach

This section is about the “intuition and design” of this research and finding
an optimal way to be able to plot SaC arrays in Jupyter. To extend Jupyter,
either extensions or kernels can be used (section 2.5). For the plotting
functionality, the kernel is the best place to do so because of the direct
connection it has with the SaC compiler and it receives the notebook cells
expressions firsthand. Using extensions to plot is also possible but would still
require either a connection with the kernel, or an external connection with
the SaC compiler because of its position in the browser (3.1). The created
plots in the extensions would also not directly be stored in the notebook
but only in the browsers view or manually be fitted in. Saving images in a
notebook is one of the strengths of the Jupyter notebook format, that will
be harder when using extensions for this purpose.

The biggest hurdle with creating a plotting library in SaC is that the current
kernel only gets output ASCII streams via standard out from the SaC com-
pilers output (figure 3.1). Either stream encoding, that would need to be
reconstructed to an image in the kernel, or a new way of handing over files
is needed to get the created plots to the Jupyter server and consequently
the notebook. The Jupyter communication protocol conveniently already
has support for receiving images from the kernel, so no further additions
need to be made here. SaC already has a module for creating PDF im-
ages and some file saving methods that could support the implementation.
However, a plotting library needs to be created in the SaC library when
using this route. This would take a tremendous amount of time to create
such a library from scratch. Especially if the library needs to be very ver-
satile, such as changing styles adding legends, and plot more than just 2D
line-graphs. This is especially important because of the multidimensional
arrays in SaC. This effort of repeating the creation of a full plotting library
in SaC is beyond the scope of this research. Because the existing Jupyter
wrapper kernel for SaC is written and interpreted by Python, it conveniently
has access to everything Python has access to, including plotting libraries
that already had years of development. Instead of reinventing the wheel, for
this research the Matplotlib [9] library is chosen as described in section 2.6.
Using this library gives all the features one could ever need and it has the
benefit of being maintained and expanded upon constantly. It also already
supports exporting plots to an image and can be directly used in the kernel
with no need of setting up a communication protocol.

Now that there is a way to plot using the Matplotlib library, a method is
needed for the user to be able to use it from inside the notebook. Because
even though the kernel’s state stores all declared variables, it can not use
SaC array declarations that use list generator functions like iota(), that

18

Figure 3.1: Expanded visual representation of the Jupyter architecture as
seen in figure 2.3 including the Matplotlib library directly callable from the
SaC kernel

are present inside of the SaC library of functions. This function creates
an array with counted up numbers until the function input number. This
function will be stored inside of the kernels state as for example for the
variable called a, a = iota(100) creating an array with 100 integer values
counting up from 0 till 99. Thus SaC arrays need to be altered in the kernel
to be used by Python. Instead of creating many methods in the kernel that
try to decode such expressions or converting it from the normal SaC print
functions, the SaC compiler can be used to do this conversion. This is con-
venient because the SaC library has everything needed for this conversion.
A conversion function called pyPrint() is added as a separate module to
the SaC library. This function outputs, given any size or dimension array,
a Python representation of it to an ASCII stream to standard out. This
stream can be read by the kernel. It functions the same as the SaC print()

function. This function behaves similarly to the normal print function in
SaC by providing an ASCII output stream. The kernel can now directly
interpret the output as a Python expression. The pyPrint() function can
handle all SaC’s fourteen built-in simple datatypes holding numbers and
characters.

To convert input from the user in Jupyter to a plot and distinguish them
from normal SaC syntax, a magics function is created in the kernel. These
auxiliary functions are only known by the SaC kernel and thus can only be
used from the notebook. To make this function work it needs two things, the
SaC variables to be plotted and some syntax or instructions on the layout

19

and type of the plot. This function enables the user to pass Matplotlib
Pyhton syntax directly into this magics function, to give the user access to
all the Matplotlib library functionality and not be restricted to only a few
plotting options. The following syntax is used for this magic function:

%plot (<SaC variables>) {<Python Matplotlib code>}

The % symbol is the magics syntax indicator that makes it easier for the
kernel to distinguish it from SaC expressions. The variables represent the
names of the SaC arrays separated by commas. The function looks like this
because it is the most uniform syntax for programming languages functions
and the same as the SaC syntax, resulting in a more uniform and intuitive
look for users. The brackets make it easy to separate the Python Matplotlib
code, the variables and the plot magics name for the kernel to parse. The
only requirement for the code inside of the function is that the figure from a
plot has to be defined as fig in order for it to be recognised by the kernel. In
Matplotlib the figure is the outer most container that holds all plots (figure
2.4). The user can best start the plot by using fig, ax = plt.subplots(),
that instantiates a new figure container and its sub containers axes called
ax here (containers are explained more in 2.6). The user can also import
other python or Matplotlib libraries by including it into the code body of
the plot function.

The Matplotlib library depends partially on the Python Numpy array ob-
ject as explained in section 2.6, because it uses some of its functionality to
create its more complex visualisation options, such as the 3D surface plot.
In this plot the list with all the height values of every coordinate needs to
be a Numpy array. This conversion can be done using the asarray function
before feeding it into the Matploltib plot function. Both Numpy and Mat-
plotlib are already imported in the kernel and can be used as np and plt

respectively. This is done to let the user focus on the plots and not have
to import the essentials at every plot. The user can still re-import both
libraries to change the names if desired.

Now that there is a way to plot and a function to get SaC values in Python
syntax, the plot still needs to be returned to the user in Jupyter, which only
has text based communication by default using the IOPub stream channels
in the Jupyter architecture. This channel is used by the kernel to publish
all side effects such as output and input to the Jupyter server but also other
data (in ZeroMQ JSON format) that should be displayed. The primary
goal is to be able to return an image of the plot. Matplotlib has this im-
age creation build in already and can then be converted to a base64-encoded
PNG representation and given to the Jupyter server using a different IOPub
stream called display data. Base64 is an encoding of binary to text stream
limited to 64 different characters. The difference with the other input/out-

20

put streams is that it can attach extra data and metadata to the message,
that in this case holds the width and height of the image [20][23].

3.2 SaC plotting execution cycle

The workflow of the kernel when receiving the plot magics function is as
follows. The Jupyter server has sent the contents of a notebook cell to the
kernel where the kernel recognises the magics indicator and it being the plot
function. The kernel will first check whether Matplotlib is available on the
current machine and return an error message to the user’s notebook if not.
The kernel will then try to extract the variables and Python code from this
expression using a regular expression from the Python re module. This will
return an error to the user if the desired plot magics function syntax is not
met. A regular expression is used because it will also be able to return the
variables in a list using the Python Match object returned by the regular
expression instantly, by using its group() method. During the extraction
of the SaC variables and the Python code, any error will be returned to
the user in Jupyter, signalling a syntax error has occurred. Errors need
to be caught and send to the Jupyter server because otherwise they are
contained in the kernel and will not be visible to the user. After this the
list of SaC variable names will be sent to the SaC compiler encapsulated
in the pyPrint() function in order for the SaC compiler to immediately
return the converted array back to the kernel using an ASCII stream. The
returned Python arrays can be instantly assigned to a variable in the kernel
using the eval() Python built-in function that parses and evaluates input
as a Python expression. These newly created Python variables will then
be fed into a Python local dictionary in order to be used in executing the
Matplotlib Python code given by the user. To execute this code the exec()
Python built-in function is used that dynamically executes Python code.
Because exec() uses only the current scope, the aforementioned dictionary
holding the SaC variables has to be given to exec() in order to access any
assigned variables and plot objects after its execution. The figure from the
executed block is extracted using the same local dictionary used for the SaC
variables and converted to an image. This image will then be sent back to
the Jupyter server signalling it as output from the current cell.

This implementation also makes sure any error that could occur is passed
on as output to the users notebook instead of remaining in the kernel or
being translated to an understandable error message.

21

3.3 Visualisation example

The plotting functionality constructed for SaC in this research is freely avail-
able from Github [27]. With this functionality users can for example create
a 3D surface plot as in figure 3.2. Here SaC variables are used to plot the
Ricker wavelet or commonly referred to as the Mexican hat wavelet used for
image feature detection [22] for example used for face recognition [6]. In this
example a SaC function is defined called createZ that creates a 2D array
(Z) holding the height values of all x and y coordinates from this Ricker
wavelet. This function uses the SaC with-loops, that are a key construct
in the language. In this example it is similar to using a nested for-loop
to fill a 2D array. The coordinates fed into the Ricker wavelet function
(sombrero(), not visible in the screenshot) are offset by 20 to be able to
translate it into the plot view. The Ricker wavelet is centred at coordinates
(0,0). Inside of the plot magics function a 3D surface plot is created with
lists X and Y being the coordinates for the plot. The module Colormap (cm)
has been imported to get the colour gradient.

The full notebook as seen in figure 3.2 with additional plots and all code
can be found in section A.

22

Figure 3.2: Example result of plotting a 3D Ricker wavelet from a SaC array
into a 3D surface plot

23

4. Discussion

In this section the plotting implementation described in this research is
evaluated and discussed. Also some technical remarks on the design and
future ideas and improvements are made here.

4.1 Scope

The implementation of the plotting in SaC is a great tool enhancing the
possibilities with SaC and the Matplotlib library used in this research gives
access to a massive library of plotting visualisations. However, plotting after
this research is only contained in the SaC kernel and the Jupyter project.
SaC has outside of Jupyter still no way to plot its variables and programmers
are forced to use Jupyter to get this feature when using SaC.

A potential drawback of using the current kernel structure still using the
program compile-execute cycle, is the increased turnaround time. The note-
book still needs to wait for program creation in addition to the creation of
plots, that can result in additional waiting time. The bigger a notebook gets
it inevitably has to wait longer for output because of the growing internal
kernel state which it has to pass through the compilation loop for every
execution. This can slow down programming development in SaC. Return
time higher than 5 seconds (on a laptop with 4 cores) has not occurred dur-
ing this research, but no real stress tests have been conducted. Since the
use of big programs is not the current intended functionality of the Jupyter
integration, long turnaround times are not expected to be encountered. The
development process using the plotting implementation in Jupyter will still
be faster than users struggling to interpret and evaluate the default ASCII
SaC data output.

4.2 Future work

To expand upon the integration with Matplotlib, magics functions could
be made to create some methods of plotting basic standard plots. These

24

functions enable plotting without the knowledge of Matplotlib and no direct
need for any customisation of the plot. For example use %plot line (<SaC

arrays>) to quickly get a line graph. This will make it easy to quickly
plot simple arrays without needing much code and speeding up the rapid
prototyping the Jupyter project is so good at. Or instead there is a simple
command where the kernel decides what a good plot would be given a SaC
array.

Another addition in the future, that would require a bit more work, is to
eliminate the compile-execute delay from the kernel by creating an inter-
preter for SaC. This will remove the dependency with the compiler and en-
hance the interactive environment even more by having this quicker response-
time for prototyping and testing.

Because of still unknown reasons, the SaC integration into Jupyter has
problems with evaluating functions in the windows subsystem for Linux
1 (WSL1) [15], which is a Linux distribution that can be used directly from
Windows. Normal Linux, Windows and IOS do not have this problem.

The implementation of the plotting in SaC is a great tool enhancing the
possibilities with SaC, but there are many more extension possibilities in
the Jupyter framework that can further enhance SaC. For this research a
fully working Jupyterlab extension (see section 2.4.2) has not been achieved.
The initial plan of this research was to create a kernel and an extension fea-
ture to show both ways of enhancing the SaC language in Jupyter. The
extension should have been able to display the contents of the kernel state
and updates whenever this state gets updated by for example new declara-
tions of variables or changing flags. This would enhance the experience by
eliminating the scrolling through a notebook needed in order to access a cell
holding %print command output with the current state of the kernel. With
this extension this output can be displayed next to the notebook in a sepa-
rate window, saving time and showing the window structure in Jupyterlab.
Another idea for an extension for SaC in Jupyterlab was to further enhance
the interactive environment by the implementation of a proper conversion
from a SaC notebook to a SaC file. This is only possible at the moment
using the print magics function and manually copying it to a newly created
SaC file. It would be easier to let Jupyter handle this automatically. This
could be done using the Jupyter nbconvert module.

25

5. Conclusion

This research is a case study of implementing plotting visualisations for the
compiled language SaC in the Jupyter interactive environment. The so-
lution uses an existing Python plotting library in the SaC Jupyter kernel,
giving access to a plethora of options without repeating the creation of this
massive module in SaC. The communication between the SaC compiler and
the kernel is based on a text stream. Using an existing plotting library
directly in the kernel removes the implementation of an additional commu-
nication protocol between the SaC compiler and the kernel. The Matplotlib
library is selected because it is usable on several user interfaces and operating
systems while also having extensive plotting customisation and supporting
multiple types of plots in 2D and 3D. The kernels job and integration of
this plotting functionality in SaC is passing the right variables to SaC and
using them to create the user’s plot. The additions this implementation
needed was a kernel magics function distinguishable from the normal SaC
syntax. This magics function combines Python Matplotlib syntax and SaC
variables. Furthermore multiple parsers to handle the input in combination
with the upgrading of parts of the kernel. To get the right values of defined
variables in the notebook, a module in the SaC library has been developed
to convert SaC variables to Python syntax for direct use in the kernel. This
implementation also makes sure any error that could occur is passed on as
output to the users notebook instead of remaining in the kernel When the
plot function is called from the Jupyter notebook, the plot is displayed to
the user as a PNG image using the Jupyter communication protocol.

26

6. Acknowledgements

Many thanks go out to my supervisor Sven-Bodo Scholz for helping me and
updating the SaC kernel that made it possible to improve my code and have
a clearer focus. I also want to thank my family and friends for continuously
supporting me through this project and giving feedback on my writing.

27

Bibliography

[1] Jupyterlab extension templates. https://github.com/jupyterlab/

extension-template, last visited 4 January 2024.

[2] Zeromq, 2007. https://zeromq.org/, last visited 31 December 2023.

[3] Jupyter kernels, 2017. https://github.com/jupyter/jupyter/wiki/
Jupyter-kernels, last visited 16 November 2023.

[4] Abdulmalek Al-Gahmi, Yong Zhang, and Hugo Valle. Jupyter in the
classroom: An experience report. In Proceedings of the 53rd ACM Tech-
nical Symposium on Computer Science Education - Volume 1, SIGCSE
2022, page 425–431, New York, NY, USA, 2022. Association for Com-
puting Machinery.

[5] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Ju-
lia: A fresh approach to numerical computing. SIAM Review, 59(1):65–
98, 2017.

[6] Steven Gillan, Pan Agathoklis, and Mohamed Seddeik Yasein. A feature
based technique for face recognition using mexican hat wavelets. In
2009 IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing, pages 792–797, 2009.

[7] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, September 2020.

[8] Konrad Hinsen. The promises of functional programming. Computing

28

https://github.com/jupyterlab/extension-template
https://github.com/jupyterlab/extension-template
https://zeromq.org/
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

in Science & Engineering, 11(4):86–90, 2009.

[9] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007.

[10] The MathWorks Inc. Matlab version: 9.13.0 (r2022b), 2022. https:

//www.mathworks.com.

[11] Wolfram Research, Inc. Mathematica, Version 13.3. Champaign, IL,
2023.

[12] Jeremiah W. Johnson. Benefits and pitfalls of jupyter notebooks in the
classroom. In Proceedings of the 21st Annual Conference on Informa-
tion Technology Education, SIGITE ’20, page 32–37, New York, NY,
USA, 2020. Association for Computing Machinery.

[13] Konstantin Laufer and George K. Thiruvathukal. Scientific program-
ming: The promises of typed, pure, and lazy functional programming:
Part ii. Computing in Science & Engineering, 11(5):68–75, 2009.

[14] Jupyterlab Lumino. Jupyterlab extensions package for building interac-
tive web applications. https://github.com/jupyterlab/lumino, last
visited 10 January 2024.

[15] Microsoft. Windows subsystem for linux. last visited 3 January 2024.

[16] Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann,
Rudolf Fleischer, Chris Hundhausen, Ari Korhonen, Lauri Malmi,
Myles McNally, Susan Rodger, and J. Ángel Velázquez-Iturbide. Ex-
ploring the role of visualization and engagement in computer science
education. SIGCSE Bull., 35(2):131–152, jun 2002.

[17] Jupyter nbconvert tool. nbconvert: Convert notebooks to other for-
mats. https://nbconvert.readthedocs.io/en/latest/index.html,
last visited 10 January 2024.

[18] Fernando Pérez and Brian E. Granger. IPython: a system for inter-
active scientific computing. Computing in Science and Engineering,
9(3):21–29, May 2007.

[19] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2021.
https://www.R-project.org/.

[20] Cyrille Rossant. IPython Interactive Computing and Visualization

29

https://www.mathworks.com
https://www.mathworks.com
https://github.com/jupyterlab/lumino
https://nbconvert.readthedocs.io/en/latest/index.html
https://www.R-project.org/

Cookbook, Second Edition. 2018.

[21] Sven-Bodo Scholz. Single assignment C — efficient support for high-
level array operations in a functional setting. Journal of Functional
Programming, 13(6):1005–1059, 2003.

[22] Abhishek Singh, Aparna Rawat, and Nikhila Raghuthaman. Mexican
Hat Wavelet Transform and Its Applications, pages 299–317. Springer
International Publishing, Cham, 2022.

[23] Jupyter Development Team. Messaging in jupyter. https:

//jupyter-protocol.readthedocs.io/en/latest/messaging.html,
last visited 3 January 2024.

[24] Matplotlib Team. Matplotlib 3.8.2 documentation, 2024. https://

matplotlib.org/stable/index.html.

[25] Project Jupyter team. Jupyter extension examples, 2014. https:

//github.com/jupyterlab/extension-examples, last visited 17 Jan-
uary 2024.

[26] Project Jupyter team. Jupyter project, 2014. https://jupyter.org/,
last visited 25 October 2023.

[27] SaC team. Jupyter kernel for sac, 2018. https://github.com/

SacBase/sac-jupyter, last visited 14 January 2024.

[28] Guido Van Rossum and Fred L Drake Jr. Python reference manual.
Centrum voor Wiskunde en Informatica Amsterdam, 1995.

[29] V. Vassilev, Ph. Canal, A. Naumann, L. Moneta, and P. Russo. Cling –
the new interactive interpreter for ROOT 6. volume 396, page 052071.
IOP Publishing, dec 2012.

[30] Ramanathan Venkatraman and Sitalakshmi Venkatraman. Big data in-
frastructure, data visualisation and challenges. In Proceedings of the 3rd
International Conference on Big Data and Internet of Things, BDIOT
’19, page 13–17, New York, NY, USA, 2019. Association for Computing
Machinery.

[31] Jupyter Xeus. C++ implementation of the jupyter kernel proto-
col. https://github.com/jupyter-xeus/xeus, last visited 3 January
2024.

30

https://jupyter-protocol.readthedocs.io/en/latest/messaging.html
https://jupyter-protocol.readthedocs.io/en/latest/messaging.html
https://matplotlib.org/stable/index.html
https://matplotlib.org/stable/index.html
https://github.com/jupyterlab/extension-examples
https://github.com/jupyterlab/extension-examples
https://jupyter.org/
https://github.com/SacBase/sac-jupyter
https://github.com/SacBase/sac-jupyter
https://github.com/jupyter-xeus/xeus

A. Appendix

In this section some additional plots are shown that were made in Jupyter
with the plotting integration created in this research. The figures A.1, A.2,
A.3 and A.4 are together the full example notebook from section 3. The
additional plots in this notebook are a 2D height-map of the Ricker wavelet
[22] and a line plot depicting the middle most slice of the wavelet.

31

Figure A.1: Beginning of the Ricker wavelet example notebook. First three
cells are importing SaC modules. The Python module is used to get SaC
variables in Pyhton format from the compiler. The Math module is used to
get the pi() and power (pow()) functions. The Array module is imported
to be able to use arrays holding decimal values.

32

Figure A.2: Depicts the result of the Ricker wavelet in a 3D plot

33

Figure A.3: Holds a cell containing the code to plot the Ricker wavelet as a
height-map using a different color-mapping that is distributed in 20 layers
from the highest to the lowest point in the wavelet.

34

Figure A.4: Shows a cell that plots the height values of the Ricker wavelet
on the middle x value.

35

	Introduction
	Background
	The importance of plotting
	Single assignment C
	Jupyter project
	Jupyter project architecture
	Jupyter extension possibilities
	SaC Jupyter kernel
	Jupyter extensions

	Matplotlib Python plotting library

	Plotting SaC in Jupyter
	Approach
	SaC plotting execution cycle
	Visualisation example

	Discussion
	Scope
	Future work

	Conclusion
	Acknowledgements
	Appendix

