
Radboud University Nijmegen

Faculty of Science

Intrusion Detection System for 5G
Core Systems

Thesis BSc Computing Science

Author:
Taha Hammouchi

Supervisor:
dr. D. Rupprecht

Second reader:
dr. K.S. Kohls

September 2023

Abstract

The arrival of 5G networks revolutionized the way our society makes use of mo-
bile communication by introducing various use cases. Like the use of 5G-powered
robots to perform brain surgery at a distance, or 5G-powered military hardware on
the battlefield. These use cases are made possible by changes in the architecture
of the core network, such as the use of a service-based architecture. Meaning that
the architecture of the 5G core network is based on entities, also called network
functions, that exchange services with each other.

In the mentioned use cases, safety is of the utmost importance for the users
of the network. For example, if a 5G-powered robot is used to perform brain
surgery and the robot malfunctions, the possible damage to the patient’s brain can
be irreversible. As seen from the example, the use of 5G networks brings various
security requirements and responsibilities, such as attack detection and prevention.

In this thesis, we identify unified data management, or UDM, as the most
important asset of the 5G core network. The UDM is a network function in the
5G core network that is responsible for the registration of users in the network.
Our contribution consists of performing attack detection against a denial-of-service
attack on the UDM and discussing the deployment of an intrusion detection system
in 5G core networks.

There are two ways to perform a denial-of-service attack against the UDM.
The first way is an external attack by communicating with the UDM directly from
outside the 5GC. The second way is to repeat the re-registration procedure from
the UE to the UDM intensively over a short amount of time. We implemented
and tested the first way in four different stages of development and theoretically
discussed the second way.

Among other practical experiments, we suggested the practical execution of the
second way of attack for future work. This thesis concludes that several practical
experiments are needed to be able to determine the right deployment strategy for
an IDS in the 5GC.

1

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Previous work . 4
1.3 Contribution . 6
1.4 Outline . 8

2 Preliminaries 9
2.1 5G Networks . 9
2.2 5G Core Network . 10
2.3 Intrusion Detection Systems . 11
2.4 STRIDE Methodology . 13

3 Methodology 14
3.1 Technical Setup . 14
3.2 Development . 15

3.2.1 Attack Framework . 15
3.2.2 Detection Logic . 18
3.2.3 Defense Framework . 19

3.3 Simulation . 21

4 Testing and Results 22
4.1 Visualization . 23

4.1.1 Stage 1: Experiments and results 23
4.1.2 Discussion . 24

4.2 Attack detection by examining recorded traffic 25
4.2.1 Stage 2: Experiments and results 25
4.2.2 Discussion . 26

4.3 Attack detection by examining real-time traffic 27
4.3.1 Stage 3: Experiments and results 27
4.3.2 Discussion . 29

4.4 Attack detection and prevention in real-time 30
4.4.1 Stage 4: Experiments and results 30
4.4.2 Discussion . 31

4.5 Conclusion . 31

5 Practical Discussion 32
5.1 The First Stage . 32
5.2 The Second Stage . 34
5.3 The Third Stage . 34
5.4 The Final Stage . 35

6 Theoretical Discussion 39
6.1 Service Communication Proxy . 39
6.2 IDS deployment for the UDM . 41

6.2.1 IDS deployment for the UDM: First attack scenario 42
6.2.2 IDS deployment for the UDM: Second attack scenario 43

6.3 IDS deployment for the 5GC . 46

7 Conclusion 49

8 Future Work 51

2

9 Appendix 53
9.1 .env file open5Gs . 53
9.2 Source Code: attack udm original.py . 54
9.3 Source Code: attack udm.py . 55
9.4 Source Code: not attack udm original.py 56
9.5 Source Code: not attack udm.py . 57
9.6 Source Code: request udm.sh . 57
9.7 Flowchart for Defense Script . 58
9.8 Source Code: udm testing.py . 59
9.9 Network Capture of traffic between the UDM and Malicious UE. 60
9.10 Technical specifications: virtual machine CoreNetwork. 61
9.11 Technical specifications: virtual machine AttackVM. 62
9.12 Network Settings for CoreNetwork and AttackVM. 63
9.13 SUCIs of UEs registered in the Web UI in open5Gs. 63
9.14 Source Code: netfilter queue intercept.py 64
9.15 Source Code: plotting udm requests.ipynb 68
9.16 Source Code: detecting udm attacks.ipynb 70
9.17 Source Code: scapy packet handling.ipynb 74
9.18 Source Code: udm testing corevm.py . 77
9.19 Source Code: realtime capture.ipynb . 78

3

1 Introduction

In this chapter, we start by motivating our thesis. Next, we will present some previous
work that has been done on 5G security, which will give us enough knowledge to discuss
our contribution to the scientific community. In the third section, we will also state our
main and sub-research questions. In the last section, we will outline the remainder of
the thesis.

1.1 Motivation

With two-thirds of the world’s population being mobile subscribers, we live in an era
where reliable digital connectivity is the cornerstone of our society [1]. This many
users of mobile networks causes a lot of security responsibilities. Such responsibilities
include network security and endpoint security [2, 3]. Network security is preventing
attacks, such as spoofing and eavesdropping attacks, on networks where mobile devices
are connected [32, 33]. Endpoint security protects mobile devices, such as laptops and
smartphones, from cyberattacks [2, 3].

The release of 5G brought some practical changes to the usage of mobile communication.
An example of such a change is the use of a 5G-powered robot to perform remote brain
surgery [4]. Such a revolutionary change is possible because of the ultra-high bandwidth,
ultra-low latency and ultra-reliability that come with 5G technology [5]. Additionally,
it has been mentioned that 5G technology enhances security and privacy as compared
to its predecessors in mobile communication technology [6].

Considering the rising number of users of 5G and its various use cases, we can state
that 5G brings enormous security concerns, which can cause catastrophic consequences
if those concerns are not addressed properly [4].

In this thesis, we explore ways to deploy an intrusion detection system (IDS) in the
5G core network. We will also present a way to defend the UDM against an attempt
at a denial-of-service attack. We will elaborate more on our contribution in section 1.3,
but first, we will talk about the previous work that has been done on 5G security.

1.2 Previous work

To be able to understand the place that our contribution holds in the field of 5G secu-
rity, we need to explain some previous work related to this topic. First, we will discuss
a part of the 5G System Security Analysis done by Holtrup et al [6]. Second, we will
focus on the Systematic Analysis of 5G Networks by Tang et al[4]. Last, we will give
some additional pointers to other related work.

Holtrup et al., present a systematic risk analysis of standalone and non-standalone 5G
networks following the STRIDE methodology. The authors define possible threat sce-
narios and derive a risk matrix that shows the likelihood and impact of those scenarios.
At the end, the authors discuss possible mitigations and security controls [6].

4

The STRIDE methodology is a threat modeling methodology, and it stands for
spoofing, tampering, repudiation, information disclosure, and elevation of privileges [7].
Standalone 5G networks are 5G networks that are deployed with their own core using
a service-based architecture; non-standalone 5G networks are deployed based on the
architecture of 4G core networks [8]. We would like to state that in this thesis, we will
solely focus on standalone 5G networks (SA). In section 1.3, we will dive deeper into
the work of Holtrup et al. regarding the defined threat scenarios that affect the service
availability and network performance of 5G networks [6].

Tang et al., focus on the security of 5G core networks. The authors also give a re-
view of existing 5G security results, which are divided into four categories: 5G general
security, 5G signaling security, 5G authentication procedures security, and 5G network
slicing and Software Defined Networks (SDN) usage security [4]. Further, the authors
provide an overview of the main security-related features of 5G networks based on sev-
eral 3GPP technical specifications [4].

Tian et al., provide an overview of the 5G security architecture. The authors also
categorize the security features into four categories: Network access security, network
domain security, user domain security and service-based architecture domain security
[5]. Figure 1 provides an overall view of the systematic analysis of the 5G Core network
security [4].

Figure 1: Overall view for the systematic analysis of the 5G core network security.
(credit: Tang Q. [4])

5

Lastly, Tian et al., state that existing research on 5G security can be divided into
two categories: physical layer security and logical layer security. Physical layer secu-
rity provides security to the physical layer of the network in the form of encryption,
cryptographic key distribution management, and authentication. Logical layer security
provides security to the logical layer of the network in the form of securing Network
Function Virtualization (NFV), security against virtualization threats, security against
hypervisor hijacking, and so on [5].

1.3 Contribution

In this section, we will show how our work contributes to the scientific community. We
will point out knowledge gaps that we derived from previous work and how we will close
those gaps with our work. Then we will state the assumption on which our thesis is
based. Then, we will discuss our contribution in the form of our research question and
sub-questions. Last, we will show concrete steps on how we will answer our research
question and sub-questions.

As stated in section 1.2, here we will dive deeper into the threat scenarios that af-
fect the service availability and network performance of 5G networks. There are five
assets to be protected in 5G networks: user identity and location, service availability,
data integrity, data confidentiality and network performance [6]. In this thesis, we will
focus on service availability and network performance. Holtrup et al., also state a few
scenarios where the service availability of a 5G network is threatened. The first one is
the physical or logical jamming of a legitimate or fake gNB. The second scenario is the
exploitation of a software vulnerability in a gNB or network function. The third scenario
is physical sabotage of the gNB or its antennas [6]. The gNB is the component that is
responsible for the implementation of the radio interface with the user equipment (UE)
of the 5G network [6].

Holtrup et al., states that the UDM is specifically exposed to certain threat scenar-
ios: UDM database theft, software vulnerability in the UDM, and the lifting of keys
that are used for link protection between network functions [6]. But, Holtrup et al., did
not mention that the UDM is also vulnerable to denial-of-service attacks, which affect
the service availability and network performance of the UDM and the 5G standalone
network. This is exactly the assumption that we make in our thesis: to protect the
service availability and network performance of a 5G network, we need to protect the
service availability of the UDM. Especially because the UDM can be communicated with
directly without the involvement of another network function, which we will show later
in this thesis.

To further substantiate our contribution, it has been stated that there has been no
scientific work done on the defensive aspects and opportunities of 5G networks [4]. Be-
cause of the complexity of the technology stacks in 5G networks, it is crucial to monitor
and maintain visibility in the networks to be able to detect and mitigate attacks [4].
Therefore, well-known security mediums are needed to be proactively deployed by op-
erators in 5G networks, and an intrusion detection system is such a tool [4]. It is also
stated that the research on 5G security should be approached with the approach of de-
veloping a security solution as part of the 5G architecture instead of providing a patch
to the architecture [5]. This way, the security of 5G networks is guaranteed, and the
number of network attacks is greatly reduced [5].

6

That is why in this thesis we will contribute to the discussion about the deployment of
an IDS in a 5G Core network by exploring different ways and scenarios to deploy an
IDS in a 5G Core network. This way, we will provide a foundation for automated threat
detection and response that can be deployed as part of the 5G architecture, which is
lacking in 5G security. Most security solutions that exist depend on manual assistance,
which can be difficult to provide due to the size and complexity of 5G networks [5].

Combining the work that has already been done and the suggestions for future work on
5G security, we are now able to derive our research questions and sub-questions.

Research Question:
• How can we upgrade the 5G core network with an intrusion detection system?
To be able to answer the main research question, we need to answer the following

sub-research questions:

• Sub-Research Question 1:

– What is the most important asset in the 5G Core network?

• Sub-Research Question 2:

– What is the best way to defend this asset using an intrusion detection system?

• Sub-Research Question 3:

– What practical consideration do you need to keep in mind when deploying
an intrusion detection system?

So, our contribution consists of the answers for our research question and sub-
questions. To be able to answer our research question and sub-questions, we have to
perform the following practical steps:

1. Attack detection against a denial-of-service attack on the UDM by analyzing
recorded network traffic.

2. Attack detection against a denial-of-service attack of the UDM by analysing net-
work traffic in real-time.

3. Attack detection against a denial-of-service attack of the UDM by analysing net-
work traffic in real-time and blocking malicious traffic.

4. Discuss the deployment scenarios of an intrusion detection system in the UDM.

5. Discuss the deployment scenarios of an intrusion detection system in 5G core net-
works.

The first three steps are discussed in chapter 4. The remaining steps are discussed in
chapter 7. In the next section, we will present the remainder of our thesis.

7

1.4 Outline

The next chapter is dedicated to providing background knowledge on the technical
and theoretical aspects of this thesis. In chapter 3, we will present our setup and
methodology. In chapter 4, we will show the testing and results of our implementation.
In chapter 5, we will provide a practical discussion regarding our implementations, and
in chapter 6, we will discuss the deployment scenarios of an IDS in the 5G Core network.
Afterward, we will provide a conclusion and finalize our thesis with suggestions for future
work.

8

2 Preliminaries

This chapter will provide a technical background for our thesis. In the next section, we
will discuss 5G networks in general. In the second section, we will focus on the 5G core
networks. In the third section, we will discuss intrusion detection systems, and in the
last section, we will discuss the STRIDE methodology for threat classification.

2.1 5G Networks

In this section, we will introduce 5G networks in general. We will discuss some primary
differences with 4G networks. Also, we will discuss the various use cases of 5G networks.

It is believed that 5G networks have a key role in enabling the infrastructure for digital
transformation [4]. The introduced use cases of 5G networks include machine-to-machine
(M2M) communications in all their variants, like device-to-device (D2D) communica-
tions [6]. Support for highly mobile devices, for example, vehicle-to-everything (V2X),
and support for stationary devices on the Internet of Things (IoT) are also required
[6]. Because of the various use cases that emerge from 5G networks, numerous security
promises can be made regarding the functionality of mission-critical applications [4].
That is also why, in the 5G standards, security has a very high priority [4].

Another difference compared to the 4G architecture is that the 5G core architecture
is a service-based architecture, which uses service-based interfaces between network
functions [6]. Service-based interfaces are used for communication between network
functions and are implemented over HTTP/2 over TLS over TCP/IP [6]. The adop-
tion of the service-based architecture in 5G core networks allows great flexibility and
expandability of the core network by being able to plug functionalities into the network
without the need to change the existing architecture [4]. The service-based architecture
also allows for the exploration of software-defined networks (SDN) and network function
virtualization (NFV), which enable network slicing [4]. Network slicing is a technology
that provides on-demand and dedicated network access and quality of service (QoS) to
customers [4]. The service-based architecture and interface also make the 5G core net-
work more accessible for the research community, which results in better research and
development of 5G technologies. As shown in chapters 3 and 4, these technologies made
it possible for us to conduct our practical research with the technical setup discussed
in section 3.1. For further technical specifications for 5G networks, we refer to the 3rd
Generation Partnership Project (3GPP) specifications [9].

In the next section, we will present 5G networks in more detail, with a focus on the
5G Core network. We will also go over some network functions and briefly explain their
role in the 5G core network. We will leave the explanation of how network functions
communicate with each other to chapter 6, as it sets the foundation for our discussion
on the deployment approaches of an IDS in the 5G Core network.

9

2.2 5G Core Network

Before explaining how the 5G Core network is structured, we will first provide an ab-
stract view of the end-to-end communication between the user equipment and an end-
point: another user equipment (UE) or an application server (AS) [10]. As shown in
Figure 2, the communication goes via the access network to the core network and then
via the data network to the endpoint [10]. Our focus in this thesis lies on the core
network.

Figure 2: End-to-end 5G Architecture (credit: Gheyath Mustafa Zebari [10])

The functional components of the 5G Core network are organized into two components:
The control plane (CP) and the user plane (UP) [18, 19]. In this thesis, when we mention
the 5G Core network, we mean the Control Plane specifically in the 5G Core network.
Figure 3 shows the standard architecture of the 5G Core network.

Figure 3: 5G core network standard architecture (credit: Zeng Z [11])

As we see in Figure 3, the control plane consists of smaller functional components,
namely network functions. In the control plane, the network functions are unified via
the service-based architecture [11]. Each network function uses its own service-based
interface to communicate with other network functions, but each network function is
decoupled from other network functions in terms of business functions [11].

10

Last, we will discuss some network functions in terms of functionality. The Access
and Mobility Management function (AMF) is the endpoint for messages from the Radio
Access Network (RAN) [6]. The AMF also manages the registration procedure of the
UE with the Unified Data Management function (UDM) [4, 8]. Furthermore, the AMF
is also responsible for authenticating UEs by obtaining authentication vectors from the
Authentication Service Function (AUSF) [4, 8]. The AUSF obtains the authentication
vectors from the UDM [4, 8].

The AMF is also responsible for managing the security contexts of the UE, and it
also acts as a proxy between the UE and other network functions [4]. Next to its role in
the authentication and registration procedures of the UE, the AUSF is also responsible
for providing security parameters to protect the integrity of the UE update procedure [4].

The functionality of the UDM includes, but is not limited to, managing data for ac-
cess authorization, data network profiles and UE registration [4]. The UDM leans on
the AMF, AUSF and SMF for its functionality because the relevant data for the UDM
becomes available through these network functions [4]. The UDM also has the function-
ality to decrypt the subscription concealed identifier (SUCI) to reveal the subscription
permanent identifier (SUPI) of the subscriber [6, 4]. The SUPI is a generic name for
the mobile subscriber’s identity in 5G networks. The SUPI is a unique identifier of the
user’s identity in the 5G network [6]. The SUCI is a protected version of the SUPI. The
SUCI is a SUPI that is encrypted using asymmetric cryptography [6].

Lastly, as we see in Figure 3, the service communication proxy is also part of the control
plane, although the SCP is not a network function. The SCP is deployed to provide
routing control and resilience, among other functionalities [4]. We will discuss the SCP
in more detail in chapter 6.

Further technical specifications for all the network functions are defined in the 3GPP
specifications [9].

2.3 Intrusion Detection Systems

In chapter 6, we will discuss ways to upgrade the service-based architecture of the 5G
Core network with an intrusion detection system (IDS). Therefore, in this section, we
will explain what an IDS is and the existing approaches to intrusion detection.

An IDS is a key security measure of each network infrastructure; IDSs defend such
a network by detecting and blocking attack-related network traffic. We also distinguish
between software-based IDSs and hardware-based IDSs [12]. Because 5G core networks
use SDN and SBA technologies, we will focus only on software-defined IDSs. It is
also stated that the implementation of software-based IDSs could cause delays in the
network, especially when exposed to high-speed traffic [12]. This is something we will
discuss more in chapter 6, especially because the use cases of 5G networks are almost in-
tolerant to network delay, but at the same time they have a high requirement for security.

Moving on to the known approaches towards intrusion detection, we distinguish four
major approaches: misuse-based, anomaly-based, policy-based and hybrid intrusion de-
tection [13]. In the remainder of this section, we will go briefly over each approach.

11

A misuse-based approach to intrusion detection detects attacks by comparing incom-
ing traffic to previously known attacks. Known attacks or patterns of known attacks are
stored as signatures in the database of the system in which the IDS is deployed, hence
the name signature-based IDS [14, 13]. Signature-based IDSs detect known attacks with
a relatively low false-positive rate, but this approach fails when it comes to zero-day at-
tacks or attacks that are unknown to the target system [14, 13]. This approach also
fails if the attacker manages to change the attack vector in such a way that the IDS
will not recognize it. Because the signature stored in the target system is not general
enough to match all the attack vectors of a specific attack scenario [13]. This makes the
maintenance of a signature-based IDS tedious because the deployer needs to make sure
that the signature database is up-to-date with novel attacks and that the signatures are
general enough to cover their variants [13].

An anomaly-based approach to intrusion detection is based on the modeling of net-
work traffic using machine learning techniques [14, 13]. In the training phase, the IDS
models normal traffic by learning patterns in traffic behavior. In the test phase, or de-
ployment, the IDS labels deviation from the learned traffic as an anomaly or intrusion,
hence the name anomaly-based IDS [14, 13]. Anomaly-based IDSs support the detection
of attacks that can not be detected by signature-based IDSs, namely unknown and novel
attacks [14, 13].

The first drawback of this approach is that it is quite challenging to implement for
real-time usage because of the fast-evolving network traffic behavior combined with the
limited amount of computational resources [14]. The second drawback is the risk of
overfitting because of the high-dimensional network traffic data and the complex model
of an IDS. This can lead to high false-positive rates [14, 13].

Another interesting approach is policy-based intrusion detection. The idea behind this
approach is to cover the biggest limitations of signature-based and anomaly-based IDSs
by solving two major issues: Detection of novel attacks and the right classification of
normal unseen behavior [13]. Policy-based IDSs decide if a certain behavior is malicious
or not by imposing a set of rules [13]. Although this approach seems well-rounded, it
has some challenges. First, a security specialist has to design effective and consistent
policies. These policies should also be logically correct throughout the whole system to
avoid any interpolicy or intrapolicy conflict. Another challenge is to implement the rules
in a proper sequential order; otherwise, the policy can cause a deadlock or feedback loop
situation [13].

The last approach is hybrid intrusion detection. This approach fuses the previous ap-
proaches into a single IDS. This approach gives a better performance by combining the
strengths and complementing the weaknesses of the previous techniques [13]. But, in the
situation where one technique considers a scenario to be an attack scenario and another
technique does not, it is still challenging to resolve this conflict [13].

In this thesis, we are implementing attack detection against a denial-of-service attack
on the UDM following a misuse-based approach. Our attack detection system analyzes
network traffic in a simulated real-time setting and blocks malicious traffic. Malicious
traffic is detected by comparing a sniffed network packet with network packets that were
sniffed earlier and stored in our system.

After discussing IDSs, in the next section we will briefly explain what the STRIDE
methodology is about and explain its relevance for our thesis.

12

2.4 STRIDE Methodology

With the advancement of technology, cyber threats also evolve. To be able to effectively
classify the evolving threats, we use the STRIDE classification. The STRIDE method-
ology for threat classification was originally developed by Microsoft with the goal of
describing and categorizing cyber threats according to the attacker’s goals [6, 1].

The threats are categorized based on the goals of the attacker: spoofing of user or
device identity, tampering, repudiation, information disclosure, denial of service and el-
evation of privilege [6]. In this thesis, we are focusing on the attacker’s goal of denial of
service. Each component in the system on which we are performing a threat assessment,
5G Core Systems, is exposed to a certain category of threats [6].

5G systems can be divided into the following components: external entities or inter-
actors; processes; data and key storage; data flow; and devices. Except for external
entities and interactors, all the components of 5G networks are exposed to denial-of-
service attacks [6]. Attackers perform a denial-of-service attack by making a server on
the target system temporarily unusable, thereby depriving valid users of service on the
target system [6]. The appropriate security controls against these attacks are availability
and redundancy, so the improvement of reliability and availability of the target system
[6]. However, in our case, we are only focusing on the data flow component because an
attack on this component implies an attack on the network level of the target system.
So, an IDS is the right tool to defend against these attacks [15].

13

3 Methodology

] In this chapter, we will focus on the methodology and technical setup used for our the-
sis. In the first section, we will present our technical setup. In the second section, we will
focus on our implementation. We will present our detection logic, defense framework,
and attack framework. And in the last section, we will provide instructions on how to
run an attack-defense simulation using the discussed technical setup and frameworks.

As discussed in section 1.3, we have three main practical contributions and one the-
oretical contribution. The first two practical contributions build up to the third one,
namely, attack detection against a denial-of-service attack on the UDM, by analyzing
network traffic in real-time and blocking malicious traffic. Meaning, we are planning
to attack the UDM by executing our attack script that generates valid and invalid reg-
istration requests to the UDM. As we will discuss in section 3.2.1, invalid registration
requests are sent to the UDM to simulate a denial-of-service attack against the UDM.
So, the attack vector to the UDM is a denial-of-service attack, and the general attack
vector is a denial-of-service attack to the 5G core network via the UDM. The earlier two
practical stages will be discussed in chapter 5. In chapter 4, we will present the results
of all the practical achievements of our thesis.

3.1 Technical Setup

In this section, we will discuss the technology stack used for our thesis. We will list all
the technologies and explain the added value of each technology to our thesis. Second,
we will show how we combined those technologies into a working setup. We will leave
the explanation of the logic behind the scripts for the next section.

To list our technologies, we will use a top-down approach. Meaning, the order of
the listed technologies is in the same order if one needs to replicate the setup. The
technologies used for our setup are listed below.

1. Windows 11 [16] : This is the operating system that we used on which we hosted
our practical setup. In this thesis, we will call this the Host-Machine.

2. Oracle VM VirtualBox 6.1 [17] : Virtualbox is a technology that makes it possible
to run virtual machines on a particular host machine [17]. In the Host-Machine,
we used the Oracle VirtualBox to run our virtual machines.

3. Ubuntu 64-bit [18] : Ubuntu is a Linux operating system from the Debian family
[18]. We used Ubuntu as an operating system for our virtual machines. We de-
ployed two virtual machines: The CoreNetwork and the AttackVM. The CoreNet-
work serves as host for our 5G Core network. The AttackVM serves as a launchpad
for our simulated attack and defense. The technical specifications of the CoreNet-
work can be found in Appendix 9.10, and the specification of the AttackVM can
be found in Appendix 9.11. Network settings that make it possible for the two
virtual machines to communicate are presented in Appendix 9.12.

4. Docker [19] : Docker is a tool that makes application deployment possible regard-
less of the system environment [19]. We use Docker to deploy open5Gs.

5. Open5Gs [20] : Open5Gs is an open source implementation of the 5G Core network
[20]. Open5Gs allows us to set up our own 5G Core network on which we conduct
experiments.

14

6. Iptables [21] : Iptables is an administration tool for manipulating firewall rules on
Linux systems [21]. We use Iptables to add firewall rules to our AttackVM, such
that traffic gets routed to our defense script. More on this in the next section.

Figure 4: The final setup of our experimental environment.

Figure 4 gives a visual representation of our setup. In the next section, we will discuss
the development of the scripts used to simulate a denial-of-service attack on the UDM
and a defense against such an attack.

3.2 Development

Our development comprises two parts: Attack and defense. We will explain each part in
separate subsections. In the last subsection, we will provide a concrete guide for running
our implemented attack and defense simulation.

3.2.1 Attack Framework

Before explaining how the attack and non-attack scripts work, we will describe the re-
quirements for our attack and visualize our attack framework. Later in this subsection,
we will also explain what we mean by attack and non-attack scenarios.

As mentioned earlier, the attack consists of the attack script communicating with the
UDM by sending valid and invalid registration requests. More precisely, as shown in
Figure 4, the attack script in the AttackVM should be able to send valid and invalid
requests to the UDM that is running in an open5Gs instance that is hosted in the
CoreNetwork. For a successful execution of the attack, the virtual machine CoreNet-
work should adhere to the specifications shown in Appendix 9.10. The virtual machine
AttackVM should adhere to the specifications shown in Appendix 9.11. And, the net-
work settings for the CoreNetwork and AttackVM should adhere to the configuration
shown in Appendix 9.12. More detailed instructions for the execution of the attack are
discussed in section 3.3.

15

Figure 5: Scripts of the attack framework visualized in a hierarchical orders.

The visualization of our attack framework is shown in Figure 5. To run our simulation,
we run the ‘udm testing.py’ script, also called script 3. As shown in Figure 5, this
script is implemented using the ‘attack udm.py’ and ‘not attack udm.py’ scripts, also
called scripts 2.1 and 2.2 respectively. Those two scripts are implemented using the
‘request udm.sh’ script, script 1. In the remainder of this subsection, we will go over
each script describing the implementation.

• Script 1: ‘request udm.sh’
This shell script takes as input the IP address of the UDM, the port number and
a SUCI-id. The script uses these parameters to construct an HTTP/2 request to
the UDM, expecting an authentication vector as a response from the UDM if the
provided SUCI is already registered with the UDM. If the provided SUCI is not
stored in the database, a 404 return code is expected as a response from the UDM.
Because, as discussed in chapter 2, the SUCI is a concealed user identifier that is
stored in the UDM.

Before running the script, we manually added a UE instance to our running
open5Gs instance using the Web UI of open5Gs, this is shown in Appendix 9.17.
Hereby, the UDM is expected to behave as described in the 3GPP specifications [9].

We simulate an attack scenario by executing script-1 often in succession, provided
with a SUCI that is not stored in the UDM. This approach ensures that the UDM
is not overwhelmed with requests that are not adding a functional value to the UE,
such as providing an authentication vector. This is the basis of a denial-of-service
attack. A non-attack scenario is simulated by executing script-1 provided with a
SUCI that is manually stored in the UDM.

16

We run script 1 with the following command:
‘./request udm.sh 198.168.56.101 7777 suci-0-001-01-0000-0-0-1234567895’

The source code for script 1 can be found in Appendix 9.6.

• Script 2.1: ‘attack udm.py’ and Script 2.2: ‘not attack udm.py’
To run script 1 many times successively, we need to form automation. That brings
us to these Python scripts. Both scripts take as input the number of requests
that need to be generated by script 1. Both scripts execute script 1 in a for-loop
according to the amount given as input parameters.

The input parameters for script 1 are already known and constant because we
are working with our own technical setup as described in the previous section. So,
the input parameters for script 1 are hard-coded in both Python scripts. However,
for script 2.1 the SUCI-id does not need to be hard-coded, at each iteration, script
2.1 generates an invalid SUCI that is used for the execution of script 1.

We run script 2.1 using the following command:
‘./attack udm.py <amount of requests>’

We run script 2.2 using the following command:
‘./not attack udm.py <amount of requests>’

The source code for script 2.1 can be found in Appendix 9.3, and the source
code for script 2.2 can be found in Appendix 9.5.

• Script-3: ‘udm testing.py’
In a real-world scenario, valid and invalid authentication requests are mixed to-
gether. To simulate this scenario, we implemented script 3 that allows for the
execution of the attack and non-attack scripts a specified number of times. In
other words, script 3 executes scripts 2.1 and 2.2 a specified number of times.

Script 3 takes two input parameters: the number of valid requests and the num-
ber of invalid requests. The first parameter suggests the number of times that
script-2.2 should be executed by script-3. And the second parameter submits the
number of times that script-2.1 should be executed by script-3. The main logic
behind script 3 is that at each iteration, a pseudo-random choice is made between
script 2.1 and script 2.2. This way, script 3 ensures that these executions occur
by chance; the overall count of legitimate and invalid requests does not occur in
sequence.

We run script 3 using the following command:
‘./udm testing.py <amount of valid requests><amount of invalid requests>’

The source code for script 3 can be found in Appendix 9.8.

17

3.2.2 Detection Logic

In this section, we will provide a logical, non-technical explanation of the logic behind
the defense we implemented, which is presented in the flowchart in Appendix 9.7.

Our detection logic is based on the fact that we have to decide as early as possible
if the sniffed TCP packet should be dropped or not. We base our decision sequentially
on the following four criteria:

1. Is the sniffed packet part of the intercore communication?

2. Is the sniffed packet an ingoing or outgoing packet?

3. Is the sniffed packet part of an earlier detected TCP conversation?

4. Is the sniffed packet part of a valid or invalid registration request to the UDM?

The first decision criterion checks if the sniffed packet is part of a network conversa-
tion between the UDM and another network function. If that is the case, we will not
examine the packet further because the scope of our implemented defense lies in the
communication between the UDM and a potential attacker not residing in the 5G core
network. So, the packet will not be dropped in this case. Otherwise, the sniffed packet
will be examined further based on the second criterion.

The second decision criterion checks if the source of the sniffed packet is the UDM
or an IP address outside the 5G core network. If the source of the sniffed packet is the
UDM, then the sniffed packet is treated as an outgoing packet; otherwise, the sniffed
packet is treated as an incoming packet. In the case of an incoming packet, we check if
the source IP address is already blacklisted in our system. If that is the case, we drop
the sniffed packet. In the case of an outgoing packet, the sniffed packet will be examined
further based on the third criterion.

The third decision criterion checks if the sniffed packet is part of a TCP conversa-
tion that is already detected by our script. We perform this check by looking at the
following four data points in the sniffed packet: source IP, destination IP, source port,
and destination port. If these data points are new to our system, the sniffed packet
will be accepted, and the four data points with the payload will be stored in a data
structure in our system. Otherwise, the sniffed packet will be examined further based
on the fourth criterion.

The fourth decision criterion checks if the sniffed packet is part of a valid or non-valid
registration request to the UDM. If the packet is part of a valid request, then the sniffed
packet will be accepted. Otherwise, the sniffed packet will be dropped if the destination
IP of the sniffed packet is already known as malicious in our system and a certain attack
threshold has been exceeded from the same destination IP. As this is a non-technical
elaboration of our detection logic, a more technical discussion, especially on the third
and fourth criteria, is provided in section 5.4.

18

3.2.3 Defense Framework

In this subsection, we will discuss our defense framework. First, we will discuss our
defense framework abstract. Second, we will dive into the logic of our defense script.
Lastly, we will show how to run our defense framework.

The defense framework consists of our defense script and a set of IP table rules that
route incoming packets from the UDM and outgoing packets to the UDM to our defense
script. Our defense script examines the intercepted packet and decides if it should be
forwarded to its destination or dropped. The Iptables rules that need to be added are
presented later in this subsection.

A visualization of our defense framework is shown in Figure 6. As we can see in Figure
6, the numbers on the arrow indicate the order of communication when a request is sent
from the attack script in the AttackVM to the UDM in the CoreNetwork. Below, we
will enumerate the steps taken in the communication between the attack script and the
UDM:

1. The attack script generates a request with the UDM as its destination. The
generated request is intercepted by the firewall.

2. The firewall passes the request to the defense script.

3. If the request is not dropped by the defense script, it is sent to its destination: the
UDM in the CoreNetwork.

4. The UDM generates a response with the attack script as its destination. The
generated response is intercepted by the firewall in the AttackVM.

5. The firewall passes the request to the defense script.

6. If the response is not dropped by the defense script, it is sent to its destination:
the UDM in the CoreNetwork.

Figure 6: The defense framework in relation with our final setup. The defense framework
is colored green, and the attack framework is colored red. The numbered arrows indicate
the order of communication when a request is sent by the attack script.

19

The ability to manipulate network traffic in a simulated real-time setting is based
on the use of two Python packets: Python Scapy and Python NetfilterQueue. Python
Scapy is a library for network packet manipulation written in Python [22]. We use
Scapy for deeper examination of intercepted network packets. Python NetfilterQueue is
a library that examines network packets by connecting to the libnetfilter queue Linux
subsystem [23]. This makes sure that Python NetfilterQueue can drop, alter, mark or
accept packets that are matched by an Iptables rule in Linux [23]. So, the Iptables rules
we add to our AttackVM before running our defense script make sure that specific traffic
gets redirected to our script. Then, we examine those packets using Python Scapy. And
last, we accept or drop the intercepted packet using Python NetfilterQueue.

The decision to drop or forward a packet is made based on our decision flowchart, which
is represented in Appendix 9.7. The flowchart is based on the fact that the network
conversation between the UDM and the UE is a TCP conversation, this is discussed
more in chapter 5. The flowchart is also designed keeping in mind that the decision to
drop or accept a TCP packet should be made as soon as possible. The details and the
idea behind our implementation are presented in chapter 5. The source code for the
defense script is presented in Appendix 9.8.

Another point to mention is that the implementation of our defense framework is inspired
by the fact that each network has its own limit on the number of invalid registration
requests to the UDM it can handle. As discussed earlier, the tolerance for latency is
dependent on the main use case of the network, so it is up to the user to decide how
many invalid requests the network can take before it is considered an attempted denial-
of-service attack. Our implementation and experimentation—more on this in chapter
4—enforce a ratio of one invalid request against a maximum of four invalid requests
(1/5). In chapter 8, we make a suggestion for future work regarding the ratio definition
in a network.

Last, we will present the steps for the execution of our defense script, the following
steps need to be taken:

1. Add the following Iptables rules to the AttackVM

• Rule 1:
‘sudo iptables -I INPUT -s <UDM IP>-j NFQUEUE –queue-num
<queue number used in defense script>’

• Rule 2:
‘sudo iptables -I OUTPUT -d <UDM IP>-j NFQUEUE –queue-
num <queue number used in defense script>’

2. Run the defense script using the following command:
‘sudo ./netfilter queue intercept.py’

In the next subsection, we will concretize our methodology by showing exact steps that
need to be taken to run an attack and defense simulation if provided with our setup.

20

3.3 Simulation

Before providing instructions on how to run an attack-defense simulation, we need to
list our assumptions for the system settings.

Assumptions:

• A technical environment is set up as described in subsection 3.1. The operating
system of the Host Machine is trivial.

• Python Scapy is installed on AttackVM.

• Python NetfilterQueue is installed on AttackVM.

• All the scripts discussed in this chapter are provided.

If the above assumptions hold, the instructions listed below can be followed:

• Step 1: Turn on the CoreNetwork virtual machine.

• Step 2: Run the open5Gs dockerized instance in the terminal of the CoreNetwork
virtual machine.

• Step 3: Turn on the AttackVM virtual machine.

• Step 4: Run the defense framework as described in subsection 3.2.3 from the
terminal of the AttackVM virtual machine.

• Step 5: Run the ‘udm testing.py’ script with the desired amount of valid and
invalid requests to the UDM using the following command in the terminal of the
AttackVM virtual machine:

– ’./udm testing.py <amount of valid requests><amount of invalid requests>’

In the next chapter, we will manually test our environment and provide the generated
results. Also, we will test our earlier phases of development and provide the generated
results. Details and discussion on the earlier phases of development are provided in
chapter 5.

21

4 Testing and Results

In this chapter, we will test our implementation and present our findings. We will con-
duct experiments on our implementation of the four stages of development.

The first stage focuses on visualizing valid and invalid authentication requests to the
UDM. The main objective of the first stage is to get a realistic image of the behavior of
the script presented in Appendix 9.18 and to examine the response of the UDM towards
our valid and invalid requests. The implementation of the first stage is presented in
Appendix 9.15. The second stage focuses on attack detection by examining recorded
network traffic. The implementation of the second phase is presented in Appendix 9.16.
The third stage focuses on attack detection by examining network traffic in a simulated
real-time scenario. The implementation of the third phase is presented in Appendix
9.17. And the final phase focuses on attack detection and prevention by examining net-
work traffic in a simulated real-time scenario. The implementation of the final phase is
presented in Appendix 9.19.

The results of our experiments regarding each stage of development are presented in
separate subsections. The technical details of each development stage are discussed in
more detail in chapter 5.

Before presenting our findings, we want to reiterate how we named the main components
of our setup:

• CoreNetwork:

– Linux virtual machine where the open5Gs is deployed.

– In our experiments, this is abbreviated as: C.N.

• AttackVM:

– Linux virtual machine, from which we simulate an attack scenario.

– In our experiments, this is abbreviated as: A.VM.

• Host Machine:

– Windows Subsystem Linux, on which the virtual machines are running and
from which we will run some attacks.

– In our experiments, this is abbreviated as: H.M.

Our defense framework is deployed in the CoreNetwork virtual machine in the first three
stages. In the last stage, however, the defense framework is deployed in the AttackVM
due to technical reasons that are mentioned in the practical discussion. The deployment
of the attack framework is shown in each experiment.

22

4.1 Visualization

In this section, we will test the implementation of the first stage of development: vi-
sualizing valid and non-valid requests to the UDM using recorded network traffic. The
results are presented as plots, with the x-axis presenting the time offset and the y-axis
presenting the validity of the requests. Table 1 shows more details about this experiment.

4.1.1 Stage 1: Experiments and results

Test No. Attack Framework Total requests Valid requests Invalid requests Results

Test 1.1 C.N 100 50 50 Figure 7
Test 1.2 C.N 500 350 150 Figure 8

Table 1: Experiment stage 1

Notes:

• All the commands were executed from the CoreNetwork.

• Traffic capture for test 1: udm testing stage-1 test-1.pcap [24].

• Traffic capture for test 2: udm testing stage-1 test-2.pcap [24].

• The y-axis in Figures 7 and 8 represents the HTTP return codes of the requests.
A return code of ”200” suggests a response to a valid request, and a return code
”404” suggests a response to an invalid request [9].

• Commands used:

– Test 1.1: ‘./udm testing corevm.py 50 50’

– Test 1.2: ‘./udm testing corevm.py 350 150’

Figure 7: Results of Test 1.1

23

Figure 8: Results of Test 1.2

4.1.2 Discussion

The results of the visualization presented in Figures 7 and 8 indeed show that the valid
and non-valid requests are indeed executed in a pseudo-random order. This confirms
that our attack script simulates a real-world scenario where valid and invalid registration
requests are mixed together. Also, we can see that the UDM generates only two HTTP
codes in its response to a valid or invalid registration request: HTTP code 200 and HTTP
code 404. This behavior of the UDM is already defined in the 3GPP specifications [9].
But now we have proved that the UDM in our experimental environment behaves the
way it is expected to.

24

4.2 Attack detection by examining recorded traffic

In this section, we will test the implementation of the second stage of development:
attack detection for the UDM using recorded network traffic. The results are presented
as plots, with the x-axis presenting the time offset of the malicious requests and the
y-axis presenting the source of those requests. Table 2 shows more details about this
experiment.

4.2.1 Stage 2: Experiments and results

Test No. Attack Framework Total requests Valid requests Invalid requests Results

Test 2.1 C.N 1500 1199 301 Figure 9
Test 2.2 C.N, A.VM, H.M 1500 1050 450 Figure 10

Table 2: Experiment stage 2

Notes:

• Traffic capture for test 1: udm testing stage-2 test-1.pcap [24].

• Traffic capture for test 2: udm testing stage-2 test-2.pcap [24].

• The commands for test 2.1 were executed from the CoreNetwork.

• The commands for test 2.2 were executed from the CoreNetwork, AttackVM and
Host Machine. This was done semi-simultaneously and manually.

• Commands used:

– Test 2.1:

∗ CoreNetwork: ‘./udm testing corevm.py 1199 301’

– Test 2.2:

∗ CoreNetwork: ‘./udm testing corevm.py 350 150’

∗ AttackVM: ‘./udm testing.py 350 150’

∗ HostMachine: ‘./udm testing.py 350 150’

25

Figure 9: Results of Test 2.1

Figure 10: Results of Test 2.2

4.2.2 Discussion

An important point to discuss is the advantage of analyzing recorded network traffic.
This stage offers the opportunity to train deep machine learning algorithms with the
recorded network traffic, acting as training data. This will result in the ability to perform
attack detection with a low false-positive rate. As discussed in the chapter 2, attack
detection with a low false-positive rate is one of the desired performance attributes of an
IDS. Using deep machine learning for attack detection is a suggestion for future work,
we will discuss this further in chapter 8.

26

4.3 Attack detection by examining real-time traffic

In this section, we will test the implementation of the third stage of development: at-
tack detection for the UDM in a simulated real-time setting. The results are presented
as statistics that show the values of some global variables used in our implementation.
Table 3 shows more details about this experiment.

4.3.1 Stage 3: Experiments and results

Test No. Attack Framework Total requests Valid requests Invalid requests Results

Test 3.1 C.N 50 39 11 Figure 11
Test 3.2 C.N, A.VM, H.M 300 150 150 Figure 12
Test 3.3 C.N, A.VM, H.M 2100 1200 900 Figure 13
Test 3.4 C.N, A.VM, H.M 3600 2400 1200 Figure 14

Table 3: Experiment stage 3

Notes:

• The commands for test 3.1 were executed from the CoreNetwork.

• The commands for tests 3.2, 3.3 and 3.4 were executed from the CoreNetwork,
AttackVM and Host Machine. This was done semi-simultaneously.

• Commands used:

– Test 3.1:

∗ CoreNetwork: ‘./udm testing corevm.py 39 11’

– Test 3.2:

∗ CoreNetwork: ‘./udm testing corevm.py 50 50’

∗ AttackVM: ‘./udm testing.py 50 50’

∗ HostMachine: ‘./udm testing.py 50 50’

– Test 3.3:

∗ CoreNetwork: ‘./udm testing corevm.py 400 300’

∗ AttackVM: ‘./udm testing.py 400 300’

∗ HostMachine: ‘./udm testing.py 400 300’

– Test 3.4:

∗ CoreNetwork: ‘./udm testing corevm.py 800 400’

∗ AttackVM: ‘./udm testing.py 800 400’

∗ HostMachine: ‘./udm testing.py 800 400’

27

Figure 11: Results of Test 3.1

Figure 12: Results of Test 3.2

Figure 13: Results of Test 3.3

Figure 14: Results of Test 3.4

Test No. Expected Requests (ER) Detected Requests (DR) Deviation = |ER−DR|
Test 3.1 50 51 1
Test 3.2 300 306 6
Test 3.3 2100 2081 19
Test 3.4 3600 3586 14

Table 4: Experiment stage 3

28

4.3.2 Discussion

This experiment, in particular, challenges the capabilities of our implementation and
our running UDM instance. This is because this experiment has a factor that simulates
a real-world setting: simulated real-time attacks from multiple sources. The experiment
conducted in the fourth section lacks the multiple source component due to technical
reasons discussed in chapter 5. And the experiment conducted in the second section
lacks the real-time component, as it was in an early stage of development.

Figures 11, 12, 13, and 14 show a deviation in the number of detected valid and in-
valid requests from the number of valid and invalid requests that are executed by the
commands in our experiment. Apart from technical reasons and the relatively unstable
nature of TCP traffic, two reasons come to mind. The first one is that our implemen-
tation is not formally correct and generates false positives and false negatives, which
result in the deviation in the detected number of requests, as shown in the results. We
did not provide a proof of soundness and correctness for our implementation, as it is
out of scope for our thesis.

The second reason is that we successfully attacked the UDM with a denial-of-service
attack, which means that the UDM is too overwhelmed to process registration requests,
regardless of their validity. Table 4 shows the deviation in detected requests from each
test by comparing the data of Table 3 with the data in the corresponding result figures.
We can conclude from Table 4 that there is a correlation between the size of our tests
and the size of the deviation in detected requests. However, we need formal proof for
our implementation to be able to conclude that we successfully attacked the UDM with
a denial-of-service attack.

29

4.4 Attack detection and prevention in real-time

In this section, we will test the implementation of the last stage of development: attack
detection and prevention for the UDM in a simulated real-time setting. The results are
presented as statistics that show the values of some global variables used in our imple-
mentation. The results of this experiment are screenshots from the terminal, because
the idea behind this stage of implementation is that information regarding attempted
attacks should be shown in real-time while the defense framework is running. Table 5
shows more details about this experiment.

4.4.1 Stage 4: Experiments and results

Test No. Attack Framework Total requests Valid requests Invalid requests Results

Test 4.1 A.VM 13 10 3 Table 6
Test 4.2 A.VM 130 100 30 Table 6

Table 5: Experiment stage 4 (final stage)

Notes:

• The commands for the tests were executed from the AttackVM.

• Commands used:

– Before the tests were conducted, we added the Iptables rules with the follow-
ing commands:

∗ sudo iptables -I INPUT -s 192.168.56.102 -j NFQUEUE –queue-num 0’

∗ ‘sudo iptables -I OUTPUT -d 192.168.56.102 -j NFQUEUE –queue-num
0’

– ‘192.168.56.102’ is the IP address of CoreNetwork.

– Test 4.1:

∗ AttackVM: ‘./udm testing.py 10 3’

– Test 4.2:

∗ AttackVM: ‘./udm testing.py 100 30’

Test No. Sent requests Successful requests Communication with attacker blocked after:

Test 4.1 10 valid + 3 invalid 1 valid + 1 invalid 2 requests
Test 4.2 100 valid + 30 invalid 5 valid + 1 invalid 6 requests

Table 6: Results experiment stage 4

30

4.4.2 Discussion

The experimental setting used for our thesis is relatively small compared to real-world
settings. We can state this against our defensive and offensive framework; Both frame-
works use very little resources in computing power and memory compared to real-world
settings. So, the attacks and defense performed are on a larger scale than in a real-
world setting. This means that we are only able to speculate about the advantages and
disadvantages of our implementation in a real-world deployment scenario by using our
implementation and results shown in this chapter.

The results show that our implemented attack detection mechanism is effective, but
again, we can not prove that it will also be effective in a real-world deployment setting.
However, we can conclude, using the results we showed in this chapter, that we build
a foundational attack detection solution against a denial-of-service attack to the UDM
that can be polished and built upon for real-world deployment.

4.5 Conclusion

In this chapter, we showed our practical contribution to attack detection against denial-
of-service attacks of the UDM. We did this by analyzing recorded network traffic in the
first two sections, and by analyzing network traffic in a simulated real-time setting in the
third and fourth sections. As we can see in the previous sections, after each experiment,
we provide a short discussion about the results. However, there is one common point
that we need to mention regarding the experiments and results discussed above.

As mentioned in chapter 3, we set the ratio of 1/5 for valid to invalid registration
requests to the UDM. This ratio sets the boundary for the share of invalid requests the
UDM can respond to before considering an invalid request as an attempt at a denial-of-
service attack. As we can see in the second, third and fourth experiments, we challenge
our implementation on this ratio: we have one invalid request above the limit to see if
we can detect this request as a malicious request, and with that, treat the source of such
a request as an attacker. As we can see, the results in Figures 9, 11, and Table 6 show
that the attacks were successfully detected.

31

5 Practical Discussion

In this chapter, we will discuss earlier stages of development and infrastructure. Before
the final stage, there were three stages of development, each with its own shortcomings
and challenges. And each stage is an improvement on the previous stage. We will
discuss the stages one by one. At the end, we will look at the final stage and discuss
the shortcomings of this implementation.

5.1 The First Stage

At the first stage of development, our focus lay on visualizing valid and non-valid re-
quests to the UDM, for that, we used the 5g-trace-visualizer tool [25]. At this stage, our
setup consists of an Ubuntu 64-bit virtual machine that hosts an open5Gs instance in a
dockerized environment. This is the same virtual machine we call the CoreNetwork in
the chapter 3. The setup is shown more clearly in Figure 15.

Figure 15: Experimental setup at the first stage of development. The dashed line
represents the flow of network traffic between the attack script and the UDM.

The traffic we wanted to visualize was pre-recorded using Wireshark, which was installed
on the CoreNetwork virtual machine, as shown in Figure 15. So we had to provide a
pcap-file as input to our implemented program for visualization. The recorded traffic
contained all the network traffic running in our open5Gs instance. The traffic we are
interested in is only the responses received from the UDM to our terminal. So, we had
to filter the network data accordingly before visualizing the valid and invalid requests.

32

The attack script did exactly the same as in the final version. The used IP address
for the UDM was the same UDM IP address that was provided by the .env file of the
Docker project, as shown in Appendix 9.1. The attack and non-attack scripts were
executed from the terminal in the CoreNetwork virtual machine. The purpose of this
stage is to plot the valid and invalid requests to the UDM against time. This is shown
in more detail in section 4.1. The source code of the attack and non-attack scripts is
shown in Appendices 9.2 and 9.4, respectively. These two scripts can both be executed
using the udm testing corevm.py script presented in Appendix 9.18.

The terminal of the CoreNetwork virtual machine acted as a random UE who tried
to subscribe directly to the network by communicating with the UDM directly. This
is shown by following the TCP conversation in the captured traffic using Wireshark.
Figure 16 shows an example of this: the terminal shows exactly the same payload as
shown in the TCP stream in the Wireshark window.

Figure 16: TCP conversation between the UDM and the terminal of the CoreNetwork
virtual machine.

In this stage, our implementation was done in an IPython Notebook instead of a Python
script, as shown in the chapter 3. IPython Notebook is a Python programming interface
that provides a more interactive Python development environment [26]. The implemen-
tation of this stage can be found in Appendix 9.15.

33

5.2 The Second Stage

In this stage, the setup and scripts used are identical to those used in the previous stage.
But, in this stage, we dive a bit deeper by slicing the recorded traffic into batches using
our own implementation of a sliding window. This is done after filtering the recorded
traffic in the same way as we did in the first stage.

Each batch contains traffic generated every five seconds. In each batch, we extract
the ratio of non-valid requests to total requests. If the ratio exceeds a certain limit,
which is given by the user, then a warning message is displayed containing the source
IP of the possible attack. This limit can, for example, be determined when the user sees
that the network’s performance will be affected by the flood of non-valid requests.

At the end, a plot is made showing the source of non-valid requests against time. In our
case, we have only one attacker’s IP. The attack script is executed from the terminal.
But, our implementation is also suitable for multiple-source attacks. The implementa-
tion of this stage can be found in Appendix 9.16.

At this stage, the biggest shortcoming is that we work on a pcap-file instead of live
network traffic. This diminishes the purpose of an IDS, and as discussed earlier, an IDS
should be able to detect an attack in real time. This brings a whole new set of challenges
to development, which we will address in the next stage.

5.3 The Third Stage

Because of the shortcomings mentioned in the previous stage, in this stage we changed
our approach. We used Python Scapy instead of the 5g-trace-visualizer. Scapy allows
us to examine traffic online and offline. Online suggests in real-time simulation, thus
without providing a pcap-file as input to the script. Offline examination proposes the ex-
amination of a pcap-file. At this stage, we still choose to conduct an offline examination
of the network traffic between the UDM and our UE, the terminal on the CoreNetwork
virtual machine. Our traffic examination will be done on the TCP layer because this
is the lowest and most practical network layer for traffic interception and examination
in a real-time scenario. The simulation of traffic interception and examination will be
discussed in the next section.

Leaving the 5g-trace-visualiser behind brought up a new challenge. The Transport
Layer Protocol (TCP) transmits data over a network connection as a stream of octets,
which are divided over multiple TCP packets [27]. This means that we need to group
TCP packets that belong to the same TCP stream manually, which we will explain
further in this subsection. By solving this challenge, we set the foundation for the final
stage: examining and intercepting traffic in a simulated real-time scenario.

After intercepting the network traffic with Wireshark, as shown in the previous stages,
we extract the TCP traffic. After filtering out other network traffic, we only keep the
traffic between the UDM and IP addresses outside our Open 5GS instance. Those other
IP addresses can be seen as potential attackers. However, in our practical setting, we
only deal with a limited number of potential attackers, so we believe our implementation
should be generic and applicable on a larger scale.

34

After obtaining the relevant network traffic for our setting, group the TCP pack-
ets that belong to the same TCP stream. The most efficient way to do this is to
group the packets based on the 5-tuple (protocol, source-IP, destination-IP, source-port,
destination-port). However, we already extracted the TCP packets, so we can now group
the packets based on the 4-tuple (source-IP, destination-IP, source-port, destination-
port). We use the dictionary data structure because of its mutable nature. The key in
our dictionary is the 4-tuple, and the value is the list of TCP packets that adhere to the
4-tuple.

Now that we have all the TCP packets that share the same conversation attached to the
corresponding 4-tuple, we can extract the complete payload of each conversation. For
this, we allocate a new dictionary. We call this dictionary ‘raw data‘. After iterating
through ‘raw data‘ and extracting the stored bytes in the ‘Raw‘ header of the TCP
packets, we decode the bytes in ‘utf-8’ and ignore the bytes that can not be decoded.
This results in the keys ‘raw data‘ being the 4-tuple and the value being the complete
payload of the TCP conversation in a human-readable string.

After the decoding, we want to detect the attack ratio for this set of packets. If the
HTTP response is 200 (non-attack), then the data contains an authentication vector,
and if the HTTP response is 404 (attack scenario), then the data contains a “status:
404” parameter, as defined in the 3GPP specifications of 5G Systems [9].

Last, we are using the dictionary ‘raw data’ to extract the attack / total ratio and
compare it to a user-defined limit ratio. If the limit is reached, then we print a warning
message containing the IP of the attacker. The implementation of this stage can be
found in Appendix 9.17.

This stage made sure that we were comfortable handling the TCP traffic and also
helped us gain a better understanding of how the UDM communicates with external
IP addresses. That is why we consider this stage foundational for the final stage. In the
next section, we will discuss the shortcomings of this stage when it comes to real-time
attack detection and address how we solved them. Also, we will discuss the shortcom-
ings of the final product itself.

5.4 The Final Stage

As discussed in the previous section, our implementation of the previous stage has some
shortcomings when it comes to real-time attack detection.

The first shortcoming is that the script sniffs a whole pcap-file, in a real-time setting, we
don’t perform a packet capture but a packet interception. The second shortcoming is
that the script decides if a device communicating with the UDM behaves as an attacker
after looping several times over captured data. Looping over data is not applicable in a
real-time attack detection scenario.

35

The third shortcoming is that the script decides if a device communicating with the
UDM behaves as an attacker based on a response the UDM gives to the device instead of
an incoming request from the attacker. As discussed in chapter 2, an IDS should prevent
an attack from happening. Which means that in a real-time attack detection scenario,
incoming malicious packets should be blocked before being able to generate a response
from the target, the UDM in our case. And the last shortcoming is that the script only
observes the traffic, we need to be able to act on a potential attacker. In other words,
we should block malicious packets, and communication between the attacker and target
should not be possible after detection of misbehavior.

To solve the mentioned shortcomings, a few challenges arise. The first one is that
we can not work with a pcap-file, so we need to probe a UDM interface to sniff the
traffic. The second challenge is to be able to decide based on the current packet if it
should be dropped or not. The third challenge arises from the fourth issue, which is
that we should be able to drop an incoming request to the UDM.

As shown in Figure 17, each network function has its own network interface that is
visible on Wireshark. So we had to try out each interface and see if the traffic consisted
of the IP addresses of the UDM and my terminal. We would know that we had the right
interface when we saw a huge increase in traffic from the terminal to the UDM, if we
sent a relatively large number of requests from the terminal to the UDM.

Figure 17: Visible network interfaces in Wireshark while running open5Gs in Docker.

36

To tackle the second challenge, we had to redesign our logic. We had to use global
variables and get rid of loops in our program. We did not need to change our data
structure because a Python dictionary is a dynamic data structure where we can store
our relevant packets and access data without the need to loop through the data struc-
ture. Additionally, we need to perform our packet analysis in request-response pairs. A
request should be judged based on previous responses. This is done by blacklisting mali-
cious IP addresses and preventing communication to the UDM from those IP addresses.
This way, our implementation will be more suitable in cases where attacks come from
multiple sources.

Also, our logic is based on trying to decide if a packet should be dropped or not as
soon as possible because, in a real-time setting, attack detection should be as effective
as possible. This all resulted in the flow chart presented in Appendix 9.7 and discussed
in chapter 3.

To tackle the third challenge, we had to pivot our practical setup. First, we had to
let go of Scapy as a tool for traffic interception. As presented in chapter 3, we needed to
add firewall rules using Iptables and use Python NetfilterQueue instead of Scapy. Sec-
ond, running open5Gs in a Docker instance on our CoreNetwork virtual machine causes a
lot of technical problems when it comes to traffic interception via the libnetfilter queue
Linux subsystem. The discussion about these technical issues is environment-specific
and out of scope for our thesis. However, the solution to these technical issues caused a
change in our technical setup: we had to transform the setup shown in Figure 4 to the
setup shown in Figure 15.

Another change was also made in the IP address that we use to communicate with
the UDM. Because we communicate with the UDM, which is deployed in the CoreNet-
work virtual machine, from the AttackVM virtual machine using the network settings
shown in Appendix 9.12. And because the CoreNetwork virtual machine is configured
to apply packet forwarding from the native network interface to the network interface of
the running Docker network. We can communicate directly with the UDM by commu-
nicating with the IP address of the CoreNetwork virtual machine. This communication
mode is visualized in Figure 18.

Before tackling the third challenge, we implemented a premature solution, solving
only the first two challenges. The source code for this premature implementation can
be found in Appendix 9.19. This premature solution is tested as the third stage of de-
velopment in chapter 4. We chose to treat this premature solution as the third stage of
development in the experimental phase because this implementation, as stated earlier,
acts as the main foundation for our final implementation. The source code for the final
implementation can be found in Appendix 9.14.

Moving on to the issues of our current implementation, the first one is that there is
no garbage collection implemented. After we blacklist an IP address, we should be able
to remove the previous traffic because that has no relevance to the scope of our research.

The second issue is that there is no persistent storage implemented for our blacklisted
IP addresses. The downside of this is that if, for some unseen reason, our program
shuts down, then all the blacklisted IP addresses will be removed from memory and will
be able to communicate again with the UDM. In other words, the attackers get a new
chance to perform an attack.

37

Figure 18: Experimental setup for real-time multiple source attack detection showing
the network interfaces, abbreviated as ’int’, and IP addresses involved. Only the relevant
network interfaces of the Host Machine and open5Gs are shown. The colored dashed
lines represent the flow of network traffic between the respective colored attack script
and the UDM. The script for real-time capture is presented in Appendix 9.19.

The third issue is that we sniff incoming and outgoing traffic to the UDM from one
NetfilterQueue interface. This can prove inefficient over time because there can be a lot
of overhead if we deal with a huge amount of network traffic in a relatively short amount
of time, which is more likely to happen in practice. The separation of incoming and
outgoing traffic seems like a viable solution, but it also has a downside: we need to share
the blacklisted IP addresses between the two NetfilterQueue interfaces. This increases
the chance for a deadlock situation because two separate instances, the NetfilterQueue
instances, modify the same data structures at the same time.

Last, we want to mention that all the source code used for our thesis can be found
on our GitLab page [24].

38

6 Theoretical Discussion

In this section, we will technically discuss our thesis. First, we will dive a little deeper
into the Service Communication Proxy. Then we will discuss the deployment strategies
of an IDS for the UDM to protect it against denial-of-service attacks. Last, we will
discuss the deployment strategies of an IDS in the 5G core networks by generalizing our
discussion about the IDS deployment in the UDM. To be able to keep this section to
the point of deploying an IDS, we will be simplifying the explanation of some techni-
cal components of our discussion. These will be the communication between network
functions, the functionality of the Service Communication Proxy, and the registration
process of the UE with the UDM.

6.1 Service Communication Proxy

As discussed in chapter 2, the 5G core network uses a service-based architecture (SBA).
The SBA is a system architecture whose functionality is achieved by a set of network
functions providing services to other network functions in the system. The service-based
interface (SBI) is an interface where the service operations of network functions are in-
voked [8]. So, a NF producer provides its service to a NF consumer via the SBI. Figure
19 shows a graphical representation.

Figure 19: A NF producer communicating over a SBI to a NF consumer as part of a
SBA.

This brings us to the Service Communication Proxy (SCP). The SCP is necessary for in-
direct communication between network functions and was introduced by 3GPP Release
16 [28]. Unlike the original implementation, where the NF-consumer and NF-producer
communicate directly, the new communication modes introduce the SCP as a mediator
between the service consumers and producers [8, 28]. The SCP itself is not a network
function, as it neither provides nor consumes any service from any network function
[8, 28]. Other than indirect communications, some functions of the SCP are delegated
discovery, load balancing, and secure communication between the network functions [8].
To simplify the working of the SCP, the consumer NF sends an HTTP request to the
producer NF, and the producer NF sends an HTTP response back to the consumer NF
[29]. The mentioned request and response are routed via the SCP to their destination
[29]. Figure 20 shows a simplification of the role of the SCP between network functions.

39

Figure 20: A NF producer communicates with a NF consumer via the SCP. Solid arrows
indicate HTTP Requests. Dashed arrows indicate HTTP responses.

In this thesis, we will only discuss the load balancing functionality and leave other func-
tionalities of the SCP out of the discussion, as they don’t contribute to the deployment
of an IDS in the 5GC.

As we see in Figure 20, the SCP mediates between multiple network functions simulta-
neously, and so the NF-consumer requests should be handled in a load-balancing manner
[29]. The SCP performs load balancing between different NF producers based on three
service attributes: Priority, capacity and load [29]. Shetty et al., state that the NF
producers with the lowest priority are given precedence over other NF producers, and
if multiple NF producers have the same priority, the SCP load balances between the
producers according to Equation 6.1 [29].

NF traffic share = NF traffic capacity - (NF traffic capacity * NF traffic load factor)(1)

We will keep this equation in mind for our discussion on the deployment of an IDS.
In the next section, we will discuss the deployment of an IDS to protect the UDM from
DoS attacks by looking at two attack scenarios. But first, we will briefly discuss the
performance metrics of an IDS. Then, we will briefly discuss the re-registration process
from the UE to the UDM. These two briefly discussed points will help us in the main
discussion regarding the IDS deployment in the UDM.

40

6.2 IDS deployment for the UDM

To be able to argue if an IDS can be effective if deployed in a certain place in the 5GC,
we need to theoretically evaluate the performance of the deployed IDS. The objectives
for the performance of an IDS are a broad detection range, economy in resource usage,
and resilience to stress [30].

An IDS with a broad detection range means that the IDS is able to distinguish with
high precision between an intrusion and normal behavior, if that is not the case, then
many intrusions will escape detection [30]. The second performance objective is efficient
use of system resources like CPU time, main memory and disk space [30]. If an IDS
consumes too many resources, it can cause a lot of latency in the system and become
impractical. The last performance objective is that the IDS should function correctly
when the system is under stressful conditions, such as very high-level computing activity
[30]. This is because a network is more vulnerable under stressful conditions, and so a
correct defense is needed the most. Based on these three objectives, we will discuss the
deployment scenarios of an IDS for the UDM.

Before discussing the deployment scenarios of an IDS, we will first take a look at the
registration procedure of the User Equipment (UE) with the UDM. For the scope of
this discussion, we only need to know two factors. First, through which components of
the 5G core network goes the traffic required for the registration process. Second, if the
registration process is vulnerable to denial-of-service attacks.

There are several procedures for registration at the UDM: initial registration, periodic
registration, mobility registration, and emergency registration [4]. In this discussion, we
will not go into what each of these registration procedures entails, but we will rather
focus on what generalizations we can draw from these procedures and how that connects
to the deployment of an IDS.

The first generalization is about the components of the 5G network that are involved
in the registration procedure in relation to the UDM, namely, UE, gNB, AMF, UDM
and the AUSF [6, 4]. According to [31], the Network Repository Function (NRF) is
also involved. Because of the previously discussed communication method between the
network functions, we can state that the SCP is also involved. Figure 21 shows which
components of the 5G Core network are needed for the registration process from the
UE to the UDM. These are the components we should keep in mind when deploying an
IDS to protect the UDM.

41

Figure 21: Components of the 5G network that are involved in the registration process
of the UE to the UDM.

Second, it is nowhere stated that the UE has a limit on how many times it can repeat
the registration procedure in a certain time frame. This means that a malicious UE can
theoretically repeat the registration procedure as many times as possible with the intent
of overloading the UDM. So, theoretically, the registration procedure of the UE with
the UDM is an attack vector for a denial-of-service attack.

This concludes that the UDM is vulnerable to DoS attacks from two attack vectors:

1. Direct communication with the UDM with no involvement of other components
of the 5GC. This attack vector is tested practically in this thesis.

2. Repeated execution of the registration procedure by the UE for the UDM. This
attack vector is concluded theoretically from existing literature and has not been
tested practically yet.

In the upcoming two subsections, we will discuss deployment strategies for an IDS to
protect the UDM against the mentioned threat scenarios.

6.2.1 IDS deployment for the UDM: First attack scenario

Against the first attack vector, we only have one approach to the deployment of an IDS.
And against the second attack vector, we have two approaches to the deployment of an
IDS to protect the UDM against a denial-of-service attack.

As discussed previously, the execution of a DoS attack using the first attack vector
does not involve another entity of the 5G Core network, except for the attacker UE and
the UDM. This means that all the traffic necessary for the attack goes strictly between
the two entities, this is shown in Appendix 9.9 with a screenshot of a network capture
between the malicious UE (our terminal) and the UDM. In this case, the right approach
to deployment is to place the IDS in the UDM, as shown in Figure 22.

42

Figure 22: Three attacker UEs attacking the UDM by direct communication from outside
the 5GC. The UDM is protected by an IDS.

For this attack scenario, this approach seems practical. The first argument is that the
deployed IDS has a good economy of resource usage because it is only focused on net-
work traffic to and from IP addresses outside the 5G Core network and ignores all other
traffic. This means that the IDS will not interfere with the functionality of the UDM.
Because the service consumers and service providers of the UDM only contain compo-
nents inside the 5G Core network [8, 9].

The second argument is that the deployed IDS can be easily maintained and upgraded
if we want to implement a defense mechanism against another threat towards the UDM,
specifically from outside the 5GC.

A counterargument can be made that the IDS may not be stress-resilient. But as
we saw in our implementation in chapter 3, the user can define the limit of the ratio of
invalid UDM requests that can be considered an attack attempt. This is useful because
the busier the network, the easier it becomes for the attacker to perform a denial-of-
service attack. So a viable solution is for the user to update the ratio of invalid requests
according to how busy the 5G Core network is. This ratio is also dependent on the
configuration and performance requirements of the network where the IDS is deployed.

6.2.2 IDS deployment for the UDM: Second attack scenario

In this subsection, we will discuss how we can deploy an IDS on the UDM against a
denial-of-service attack by repeating the registration process.

43

To decide where to deploy an IDS, we have to determine through which entity the
network traffic goes that we want to examine. In this case, we have two entities: The
UDM and the SCP. The UDM is the entity that we want to defend. The SCP because,
as discussed earlier, all the network traffic of the 5G Core network goes through the
SCP. And therefore also the traffic that we want to monitor to protect the UDM.

So, against this attack, we have two approaches to deploying an IDS:

1. Deploy the IDS in the UDM.

2. Deploy the IDS in the SCP.

The first approach, as shown in Figure 23, is quite comparable to the approach discussed
in the previous subsection. In contrast to the argument made in favor of the previous
deployment approach about the desired economy in resource usage of the deployed IDS,
here we have to disagree. By repeating the registration process of the UDM, the attacker
abuses the normal functionality of the entities involved in the registration process, in-
cluding the UDM. The UDM is attacked in this scenario only via communication with
internal entities of the 5G Core network, as mentioned in [9]. So we can call this attack
a form of an internal attack.

Figure 23: Three attacker UEs attacking the UDM by repeating the registration process
to the UDM. An IDS is deployed in the UDM.

In this case, the deployed IDS will have to examine all the network traffic of the UDM,
meaning that the IDS will cost the UDM in resources and capacity and increase the
load on the UDM. As discussed earlier in Equation 6.1, the SCP decides the share of
network traffic that will be passed to a network function based on the load and capacity
of the network function. In our case with the UDM, the SCP will assign a lower share
of the network traffic to the UDM. Which will result quicker in a lower performance of
the UDM and, by induction, a lower performance of the 5G Core network.

44

An argument in favor of this approach is that the deployed IDS in this case will have
a broader detection range because it can offer protection against the first and second
attack scenarios. However, in practice, the 5G Core network is mostly deployed using
Kubernetes [29]. This means that you can defend the UDM from external traffic by
configuring the deployment environment of the 5GC to not expose the UDM to the in-
ternet. And so dedicate the deployment of an IDS to protecting the UDM from internal
attacks. Such practical decisions are specific to the use case of the specific 5G Core
network.

Moving on to the second approach, deploying an IDS in the SCP as shown in Figure
24. As discussed in section 6.1, the SCP acts as a mediator between network functions
in 5G core networks. This implies that the SCP is an entity in the 5GC that has access
to all the network traffic in the 5GC, which shapes the argument that the deployment
of an IDS in the SCP is a viable solution. Because the deployed IDS should have access
to all the traffic related to the registration procedure of potential malicious UEs to the
UDM to be able to have the desired functionality.

Figure 24: Three attacker UEs attacking the UDM by repeating the registration process
to the UDM. An IDS is deployed in the SCP.

However, the downside of this approach is that the IDS will have to filter out a lot
of network data that it does not need. The irrelevant network data for the deployed
IDS will act as noise data. To be able to measure the effect that this will have on the
performance of the deployed IDS, the noise ratio, needs to be measured in a separate
experiment. More precisely, we need to measure the share of network traffic that the
SCP assigns to the UDM (Equation 1). Because the lower the traffic share, the more
noise data will go through the IDS. Which means the IDS should filter out a lot of
data, which can slow down the functionality of the SCP itself and therefore increase
the latency of the whole 5G Core network. How much latency the 5G Core network
can afford is specific to the size of the network and the use case of the network. For
example, performing brain surgery from a distance does not tolerate any form of latency
compared to a simple phone call.

45

The upside of deploying an IDS in the SCP is that you can easily add functionali-
ties involving traffic from other network functions in case a new threat emerges. The
deployed IDS can be upgraded without changing the entire security architecture of the
core network.

A counterargument against both approaches can be made that, by deploying the IDS
only in the SCP or only in the UDM, we will have a single point of failure. A theo-
retical solution would be to divide the defense algorithm into two layers: the first layer
is deployed in the SCP, and the second layer is deployed in the UDM. But practical
research is needed to determine if deploying two IDSs is resource-efficient and practical
for maintenance and upgrades.

Reflecting on both attack scenarios and the three discussed deployment strategies, it
is definitely needed to deploy an IDS in the UDM for protection against the first attack
scenario, which is an external attack targeting the UDM directly. For the second attack
scenario, practical testing is needed to determine which deployment strategy is more
efficient.

In the next section, we will theoretically discuss the deployment of an IDS in the 5G
core network in general. We will discuss what factors to keep in mind when deciding
where to deploy an IDS in the 5GC.

6.3 IDS deployment for the 5GC

Real-world deployment of the 5GC follows a cloud-native paradigm, mostly implemented
using Kubernetes [29]. This has the advantage that service deployments are more agile,
resilient and resource-efficient [29]. However, this introduces a disadvantage from a se-
curity standpoint, namely an expanded attack surface for the attacker. From a defensive
point of view, to keep the 5G Core network secure, we also need to make sure that the
deployment environment, such as Kubernetes, is secure. How to make that a reality is
out of scope for this thesis. In this section, we will only focus on the theoretical aspect
of deploying an IDS in the 5GC.

When designing security solutions for 5G networks, it is critical to achieve a balance
between security and the performance of the network [31]. The focus should lie on
enhancing both factors: network security and network performance. Both areas are
equally important [31]. This also applies to the deployment of an IDS in the 5G core
network. To be able to determine the impact of a deployed IDS on network performance
and if the impact is acceptable, practical experiments need to be conducted and the
specific use cases of the network need to be determined. As discussed earlier, some use
cases are less tolerant of a decline in network performance than others.

46

For the deployment of an IDS in the 5GC, we first need to determine if we are de-
fending against an attack that makes use of internal or external traffic. Internal network
traffic is traffic that flows only through one of the service-based interfaces of the 5GC.
External network traffic is traffic that communicates with a network function or the
SCP without the use of the Service-Bases Interface of the 5GC. It is like direct commu-
nication with a network function without the involvement of another network function,
as discussed earlier. Considering the real-world deployment of the 5G Core network, a
possible attack vector for an attacker is to gain access to the 5GC through an exposed
port of a network function or the SCP to the internet. This case is theoretically solvable
by configuring the deployment environment securely.

As concluded earlier, the SCP has access to all the internal network traffic of the 5GC
because it acts as a load balancer and mediator of communication between the network
functions. So if we want to deploy an IDS to defend one or more network functions, the
intuitive approach would be a deployment in the SCP, as shown in Figure 25.

Figure 25: Generic case of an IDS deployment for the 5GC in the SCP.

For this deployment approach, we can generalize the arguments made in the previous
section regarding the IDS deployment in the SCP to defend the UDM from an internal
attack. The argument in favor of this approach is the scalability of the IDS. In this case,
we can safely say that this approach allows for adding defense mechanisms to the IDS
against threats targeted at other network functions. This way, the deployed IDS has the
potential to be the first layer of defense for all network functions in the 5G core network.

The first argument against this approach is that the IDS would have to filter out a
lot of noise data, which affects the detection range of the deployed IDS negatively. How-
ever, if we consider scalability to be an essential property for our IDS, then theoretically
we can state that the proportion of noise network traffic will decline as the scaled IDS
would need more network data to detect several threats. For an exact determination of
this claim, practical experiments are needed.

The second argument against this approach is that the defense architecture of the 5G
core network would have a single point of failure. A possible solution would be to de-
centralize the defense mechanisms across the network functions in the 5GC.

47

Lastly, we will discuss the scenario of deploying an IDS to defend a network func-
tion from malicious external traffic, as shown in Figure 26. Previously in this chapter,
we discussed the scenario of defending the UDM against an external denial-of-service
attack, and we then suggested the approach of placing an IDS in the UDM.

Figure 26: Generic case of an IDS deployment for the 5GC in a NF that is attacked
externally.

The first argument mentioned in favor of this approach is the efficient resource usage of
the IDS. The second argument is the scalability of the IDS to defend against external
attacks. These two arguments can be generalized to any network function. The coun-
terargument mentioned was the possible lack of stress resilience in the deployed IDS,
which holds also for the case of defending any network function.

Reflecting on both attack scenarios and the proposed approaches for IDS deployment in
the 5G core network, each approach has its own advantages and disadvantages. Another
aspect to keep in mind is that one attack scenario does not exclude another. Namely,
external and internal attacks are both threats to the network functions in the 5GC [6].
That is why, in reality, the deployed IDS should be able to defend against both kinds of
threats to a network function and to the 5GC. So, for the security architecture of the
5GC, a combination of both approaches should be considered.

48

7 Conclusion

From our contribution in general, we can draw both a practical and a theoretical con-
clusion. In this chapter, we will draw a practical and a theoretical conclusion for our
thesis. We will do this by providing a reflection on our contributions and answering our
main research question and sub-research questions.

As shown in chapter 4, we implemented four stages of attack detection against the
UDM. We also showed that our implementations are effective in our relatively small,
experimental setting. We also discussed the fact that we can not prove that our im-
plementation will be effective in a real-world setting. In chapter 5, we discussed the
advantages and the shortcomings of the implementation of each stage.

However, we conclude that our implementation in the final stage is the best one that can
serve as a foundation for implementing an IDS that protects the UDM from denial-of-
service attacks. This is because our implementation in the final stage detects and blocks
potential attackers in a simulated real-time setting, which is a functional requirement
of an IDS [14].

In chapter 6, we provided our theoretical contribution. As stated, there are many
approaches to deploying an IDS in the 5G core network. Each way of deployment is
beneficial under certain attack scenarios we want our IDS to defend against, and we
should consider what assets in the 5G core network we want to defend. This leads us
back to our research questions and sub-questions.

Answering our first sub-research question, we conclude that the UDM is the most im-
portant asset in the 5G core network. As discussed in chapter 2, the UDM manages
data for access authorization, data network profiles and UE registration. This makes
the UDM an attractive asset to target. A denial-of-service attack on the UDM leads,
theoretically, to a denial-of-service attack on the core network.

After concluding that the UDM is the most important asset of the 5G core network, we
can answer our second sub-research question: What is the best way to defend the UDM
using an IDS?

As discussed in chapter 6, deploying an IDS to defend the UDM depends on the at-
tack scenario we want to defend the UDM against. We also discussed that the SCP and
the amount of noise traffic data play a significant role in deployment strategy. Practical
experiments are needed to determine the ratio of noise traffic data to relevant traffic
data in the SCP and its effect on the performance of the IDS and the core network in
general.

49

So, to determine the best way to defend the UDM, practical experiments on the SCP
are needed. These are also the technical considerations that need to be kept in mind
when deploying an IDS, which answers our third sub-research question: What practical
considerations do you need to keep in mind when deploying an intrusion detection sys-
tem?

Lastly, we will answer our main research question: How can we upgrade the 5G Core
network with an intrusion detection system?

To be able to determine how we can upgrade the 5G core network with an IDS, we
should state the attack scenario we want to defend against and the assets we want to
defend in the 5G core network. When these two factors are established, we should de-
termine how tolerant our network is to latency. As discussed earlier, this depends on
the specific use case of the network. Another technical factor is the role of the SCP
in relation to the assets in the 5G core network we want to defend, and latency in the
network is deployed with an IDS. In the next chapter, we make a suggestion for future
work that includes practical experiments on the SCP in relation to other assets in the
core network. When these technical considerations are done, we can conclude the best
way to deploy an IDS in the 5G core network.

50

8 Future Work

In this chapter, we will discuss suggestions for future work. First, we will suggest how
our current implementation can be improved by reiterating the shortcomings mentioned
in chapter 5. Second, we will provide suggestions for future work that will contribute to
a more substantiated deployment strategy for an IDS in the 5G core network.

To reiterate our practical discussion, we mentioned a few shortcomings in our imple-
mentation. The first one is that our implementation does not contain a garbage col-
lection mechanism. The second shortcoming is that the blacklisted IPs are not stored
using persistent storage, like a database management system (DBMS), but using sys-
tem memory. And the third shortcoming is that our implementation sniffs traffic from
one NetfilterQueue instance. So, our first suggestion for future work is to improve our
implementation by fixing the mentioned shortcomings.

Salahdine et al., mentions a proposal for the use of deep reinforcement learning tech-
niques to mitigate denial-of-service attacks over 5G core networks [32]. This leads to
our second suggestion for future work, to improve our implementation with deep rein-
forcement learning algorithms.

Moving on to the suggestions for future work that will provide more substantiation
to the deployment strategy of an IDS in the 5GC. The first one that comes to mind is
to test if the SCP breaks the TLS connection between network functions and is thereby
able to read the content of the messages sent and received. If that is the case, then it
is highly likely that the deployed IDS will need to process less network traffic to iden-
tify a threat. This will have a positive impact on the resource usage of the deployed IDS.

After theoretically discussing a denial of service on the UDM by exploiting the reg-
istration of the UE to the UDM in chapter 6. We would suggest simulating this attack
practically and researching if there are more points at which an IDS could be deployed
other than the UDM and the SCP to prevent such an attack.

Another point that needs to be researched further to be able to determine where an
IDS should be deployed in 5GC is the ratio of network traffic between UDM and total
network traffic going through the SCP. If this process is repeated with all the network
functions in the 5GC, we would be able to predict the proportion of network data for a
network function against the total network data that goes through the SCP more accu-
rately. As discussed in chapter 6, when deploying an IDS to protect a network function,
the network traffic of other network functions that are not relevant is treated as noise
data. If the ratio of the noise data can be predicted beforehand, then this will assist in
the deployment of an IDS in the SCP.

As shown in chapter 3 and discussed in chapter 6, our implementation allows the user
to manually determine the ratio of invalid UDM requests against valid UDM requests.
Our last suggestion for future work is to implement a mechanism for this user-defined
ratio to be adjusted automatically according to how busy the 5GC network is. This
will take a series of simulated denial-of-service attacks. The objective is to find out how
much network traffic is needed for network performance to slow down. From there, the
correlation between normal network activity and network performance can be defined.
And this will be a component of defining the ratio of invalid UDM requests automati-
cally.

51

To summarize this chapter, we will list our six suggestions for future work below:

1. Improve our implementation by patching up our discussed shortcomings.

2. Improve our defense technique with deep reinforcement learning.

3. Test if the SCP breaks up the TLS connection and can read the contents of mes-
sages.

4. Simulate a denial-of-service attack on the UDM by exploiting the registration
process.

5. Determine the ratio of network traffic for each network function against the total
network traffic going through the SCP.

6. Automatically adjust the ratio of invalid UDM requests against valid UDM re-
quests according to how busy the 5GC network is.

52

9 Appendix

9.1 .env file open5Gs

1 DEFAULT_CONFIG_PATH =/ open5gs/install/default_configs/

2 OPEN5GS_IMAGE=radixsecurity/open5gs

3 MONGO_IMAGE=radixsecurity/mongo

4 UERANSIM_IMAGE=radixsecurity/ueransim

5 TIMEZONE_MNT =/etc/timezone

6 MCC =001

7 MNC =01

8 TEST_NETWORK =172.22.0.0/24

9 DOCKER_HOST_IP =192.168.1.223

10 MONGO_IP =172.22.0.2

11 HSS_IP =172.22.0.3

12 PCRF_IP =172.22.0.4

13 SGWC_IP =172.22.0.5

14 SGWU_IP =172.22.0.6

15 SGWU_ADVERTISE_IP =172.22.0.6

16 SMF_IP =172.22.0.7

17 UPF_IP =172.22.0.8

18 UPF_ADVERTISE_IP =172.22.0.8

19 MME_IP =172.22.0.9

20 AMF_IP =172.22.0.10

21 AUSF_IP =172.22.0.11

22 NRF_IP =172.22.0.12

23 UDM_IP =172.22.0.13

24 UDR_IP =172.22.0.14

25 DNS_IP =172.22.0.15

26 RTPENGINE_IP =172.22.0.16

27 MYSQL_IP =172.22.0.17

28 FHOSS_IP =172.22.0.18

29 ICSCF_IP =172.22.0.19

30 SCSCF_IP =172.22.0.20

31 PCSCF_IP =172.22.0.21

32 SRS_ENB_IP =172.22.0.22

33 NR_GNB_IP =172.22.0.60

34 NR_UE_IP =172.22.0.70

35 UE1_IMEI =356938035643803

36 UE1_IMEISV =4370816125816151

37 UE1_IMSI =001011234567895

38 UE1_KI=A9AF4F6CAF3AF8BC7E570b08CAFED00D

39 UE1_OP =11111111111111111111111111111111

40 UE1_AMF =8000

41 OAI_ENB_IP =172.22.0.25

42 WEBUI_IP =172.22.0.26

43 PCF_IP =172.22.0.27

44 NSSF_IP =172.22.0.28

45 BSF_IP =172.22.0.29

46 ENTITLEMENT_SERVER_IP =172.22.0.30

47 OSMOMSC_IP =172.22.0.31

48 OSMOHLR_IP =172.22.0.32

49 SMSC_IP =172.22.0.33

50 PCAP_TRACE=true

53

9.2 Source Code: attack udm original.py

1 #!/usr/bin/env python3

2

3 import subprocess

4 import os

5 import sys

6

7 if len(sys.argv) != 2:

8 print("Usage: ./ attack_udm_original.py <amount_of_requests >")

9 sys.exit()

10 else:

11 # Try to convert input to integer.

12 try:

13 length = int(sys.argv [1])

14 except ValueError:

15 print("Usage: ./ attack_udm_original.py <amount_of_requests >")

16 sys.exit()

17

18 udm_ip = ’ 172.22.0.13 ’

19 udm_port = ’ 7777’

20 suci_id = ’ suci -0 -001 -01 -0000 -0 -0 -1234567895’

21

22 attack_commands = list()

23 half_command = ’./ request_udm.sh’ + udm_ip + udm_port

24 # Create attack commands:

25 for i in range (length):

26 invalid_suci = suci_id + str(i)

27 att_command = half_command + invalid_suci

28 attack_commands.append(att_command)

29

30 # Execute the created attack commands.

31 for att_comm in attack_commands:

32 os.system(att_comm)

33

34 print()

54

9.3 Source Code: attack udm.py

1 #!/usr/bin/env python3

2

3 import subprocess

4 import os

5 import sys

6

7 if len(sys.argv) != 2:

8 print("Usage: ./ attack_udm.py <amount_of_requests >")

9 sys.exit()

10 else:

11 # Try to convert input to integer.

12 try:

13 length = int(sys.argv [1])

14 except ValueError:

15 print("Usage: ./ attack_udm.py <amount_of_requests >")

16 sys.exit()

17

18 udm_ip = ’ 192.168.56.102 ’ #Ip of CoreNetwork virtual machine.

19 udm_port = ’ 7777’

20 suci_id = ’ suci -0 -001 -01 -0000 -0 -0 -1234567895’

21

22 attack_commands = list()

23 half_command = ’./ request_udm.sh’ + udm_ip + udm_port

24 # Create attack commands:

25 for i in range (length):

26 invalid_suci = suci_id + str(i)

27 att_command = half_command + invalid_suci

28 attack_commands.append(att_command)

29

30 # Execute the created attack commands.

31 for att_comm in attack_commands:

32 os.system(att_comm)

33

34 print()

55

9.4 Source Code: not attack udm original.py

1 #!/usr/bin/env python3

2

3 import subprocess

4 import os

5 import sys

6

7 if len(sys.argv) != 2:

8 print("Usage: ./ not_attack_udm_original.py <amount_of_requests >")

9 sys.exit()

10 else:

11 # Try to convert input to integer.

12 try:

13 length = int(sys.argv [1])

14 except ValueError:

15 print("Usage: ./ attack_udm_original.py <amount_of_requests >")

16 sys.exit()

17

18 udm_ip = ’ 172.22.0.13 ’

19 udm_port = ’ 7777’

20 suci_id = ’ suci -0 -001 -01 -0000 -0 -0 -1234567895’

21

22 command = ’./ request_udm.sh’ + udm_ip + udm_port + suci_id

23

24 # Excecute the created commands.

25 results = list()

26 for i in range (length):

27 os.system(command)

28

29 print()

56

9.5 Source Code: not attack udm.py

1 #!/usr/bin/env python3

2

3 import subprocess

4 import os

5 import sys

6

7 if len(sys.argv) != 2:

8 print("Usage: ./ not_attack_udm.py <amount_of_requests >")

9 sys.exit()

10 else:

11 # Try to convert input to integer.

12 try:

13 length = int(sys.argv [1])

14 except ValueError:

15 print("Usage: ./ attack_udm.py <amount_of_requests >")

16 sys.exit()

17

18 udm_ip = ’ 192.168.56.102 ’ #Ip of CoreNetwork virtual machine

19 udm_port = ’ 7777’

20 suci_id = ’ suci -0 -001 -01 -0000 -0 -0 -1234567895’

21

22 command = ’./ request_udm.sh’ + udm_ip + udm_port + suci_id

23

24 # Excecute the created commands.

25 for i in range (length):

26 os.system(command)

27

28 print()

9.6 Source Code: request udm.sh

1 #!/bin/bash

2 if [$# -ne 3]; then

3 printf "Usage $0 <UDM_IP > <PORT > <ID >\n ID=(IMSI SUCI)\n"

4 exit

5 fi

6 UDM_IP=$1
7 PORT=$2
8 ID=$3
9

10 curl -X ’POST’ --http2 -prior -knowledge \

11 "http :// $UDM_IP:$PORT/nudm -ueau/v1/$ID/security -information/generate -
auth -data" \

12 -H ’accept: application/json’ \

13 -H ’Content -Type: application/json’ \

14 -d ’{

15 "servingNetworkName ": "5G:mnc001.mcc001 .3 gppnetwork.org",

16 "ausfInstanceId ": "3fa85f64 -5717 -4562 -b3fc -2 c963f66afa6"

17 }’

57

9.7 Flowchart for Defense Script

58

9.8 Source Code: udm testing.py

1 #!/usr/bin/env python3

2

3 import subprocess

4 import os

5 import sys

6 import random

7

8 _valid_req = None

9 _invalid_req = None

10

11 if len(sys.argv) != 3:

12 print("Usage: ./ udm_testing.py <amount_of_valid_requests > <

amount_of_invalid_requests >")

13 sys.exit()

14 else:

15 # Try to convert input to integer.

16 try:

17 _valid_req = int(sys.argv [1])

18 _invalid_req = int(sys.argv [2])

19 except ValueError:

20 print("Usage: ./ udm_testing.py <amount_of_valid_requests > <

amount_of_invalid_requests >")

21 sys.exit()

22 pass

23

24 _valid_req_left = _valid_req > 0

25 _invalid_req_left = _invalid_req > 0

26 _choice = "None"

27

28 # Choose randomly which script to execute until one of the given amounts

is exhausted.

29 while _valid_req_left and _invalid_req_left:

30 _choice = random.choice (["attack", "non_attack"])

31

32 if _choice == "attack":

33 _invalid_req -= 1

34 os.system("./ attack_udm.py 1")

35 _invalid_req_left = _invalid_req > 0

36 elif _choice == "non_attack":

37 _valid_req -= 1

38 os.system("./ not_attack_udm.py 1")

39 _valid_req_left = _valid_req > 0

40

41 # When one of the given amounts is exhausted , execute the right script

with left amount.

42 if _valid_req_left:

43 os.system("./ not_attack_udm.py " + str(_valid_req))

44 elif _invalid_req_left:

45 os.system("./ attack_udm.py " + str(_invalid_req))

59

9.9 Network Capture of traffic between the UDM and Malicious
UE.

60

9.10 Technical specifications: virtual machine CoreNetwork.

61

9.11 Technical specifications: virtual machine AttackVM.

62

9.12 Network Settings for CoreNetwork and AttackVM.

9.13 SUCIs of UEs registered in the Web UI in open5Gs.

63

9.14 Source Code: netfilter queue intercept.py

1 #!/usr/bin/env python3

2

3 # Generic imports

4 import pandas as pd

5 import scapy.all as sp

6 from collections import defaultdict

7 import netfilterqueue as nf

8

9 # Global Variables

10 black_list = [] #List where the known attacker IP’s are stored.

11 packets = dict() # Dictionary with 4-tuples as key and payload as value.

12 invalid_req_per_IP = dict() # Dictionary with detected source IP as key

and number of invalid requests as value.

13 valid_req_per_IP = dict() # Dictionary with detected source IP as key and

number of valid requests as value.

14 total_req_per_IP = dict() # Dictionary with detected source IP as key and

number of total requests as value.

15 ratio = 1 / 5

16

17

18 # All the IP’s of the 5G core {This is all from the .env file provided}

19 _MONGO_IP=’172.22.0.2 ’

20 _HSS_IP=’172.22.0.3 ’

21 _PCRF_IP=’172.22.0.4 ’

22 _SGWC_IP=’172.22.0.5 ’

23 _SGWU_IP=’172.22.0.6 ’

24 _SMF_IP=’172.22.0.7 ’

25 _UPF_IP=’172.22.0.8 ’

26 _MME_IP=’172.22.0.9 ’

27 _AMF_IP=’172.22.0.10 ’

28 _AUSF_IP=’172.22.0.11 ’

29 _NRF_IP=’172.22.0.12 ’

30 _UDM_IP=’172.22.0.13 ’

31 _UDR_IP=’172.22.0.14 ’

32 _DNS_IP=’172.22.0.15 ’

33 _RTPENGINE_IP=’172.22.0.16 ’

34 _MYSQL_IP=’172.22.0.17 ’

35 _FHOSS_IP=’172.22.0.18 ’

36 _ICSCF_IP=’172.22.0.19 ’

37 _SCSCF_IP=’172.22.0.20 ’

38 _PCSCF_IP=’172.22.0.21 ’

39 _SRS_ENB_IP=’172.22.0.22 ’

40 _NR_GNB_IP=’172.22.0.60 ’

41 _NR_UE_IP=’172.22.0.70 ’

42 _OAI_ENB_IP=’172.22.0.25 ’

43 _WEBUI_IP=’172.22.0.26 ’

44 _PCF_IP=’172.22.0.27 ’

45 _NSSF_IP=’172.22.0.28 ’

46 _BSF_IP=’172.22.0.29 ’

47 _ENTITLEMENT_SERVER_IP=’172.22.0.30 ’

48 _OSMOMSC_IP=’172.22.0.31 ’

49 _OSMOHLR_IP=’172.22.0.32 ’

50 _SMSC_IP=’172.22.0.33 ’

51 _5g_core_ips = [_MONGO_IP , _HSS_IP , _PCRF_IP , _SGWC_IP , _SGWU_IP , _SMF_IP ,

_UPF_IP , _MME_IP , _AMF_IP , _AUSF_IP , _NRF_IP , _UDM_IP , _UDR_IP ,

_DNS_IP , _RTPENGINE_IP , _MYSQL_IP , _FHOSS_IP , _ICSCF_IP , _SCSCF_IP ,

_PCSCF_IP , _SRS_ENB_IP , _NR_GNB_IP , _NR_UE_IP , _OAI_ENB_IP , _WEBUI_IP ,

_PCF_IP , _NSSF_IP , _BSF_IP , _ENTITLEMENT_SERVER_IP , _OSMOHLR_IP ,

_OSMOMSC_IP , _SMSC_IP]

52

53 def packet_callback (nf_packet):

54 global black_list

55 global packets

64

56 global limit

57 global mal_ips_count

58 global valid_req_per_IP

59 global ratio

60 # Because of the Iptables rules set before running this script , assume

for now:

61 # - The sourceIP of incoming packet is the UDM

62 # - The destinationIP of outgoing packet is the UDM.

63 _coreVM_IP = ’192.168.56.102 ’

64 _attackVM_IP = ’192.168.56.101 ’

65

66 sc_packet = sp.IP(nf_packet.get_payload ())

67 _packet_to_UDM = sc_packet[’IP’].dst == _coreVM_IP and ’TCP’ in

sc_packet

68 _packet_from_UDM = sc_packet[’IP’].src == _coreVM_IP and ’TCP’ in

sc_packet

69

70 if _packet_to_UDM:

71 _src_ip = sc_packet[’IP’].src

72 # Check if the source o the packet is blacklisted , if so drop the

the packet.

73 if _src_ip in black_list:

74 _mal_packets = invalid_req_per_IP[_src_ip]

75 nf_packet.drop()

76

77 # Update Statistics

78 if _src_ip in total_req_per_IP:

79 total_req_per_IP[_src_ip] += 1

80 else:

81 total_req_per_IP[_src_ip] = 1

82

83 # Print message

84 print ("PACKET " + str(_mal_packets) + " BLOCKED FROM " + str(

_src_ip))

85

86 else:

87 # No need to examine the packet further , because we are not

interested in examining the contents

88 # of the requests to the UDM. We are only interested in

examining the contents

89 # of the responses to the UE’s for the UDM. So we accpet the

packet.

90 nf_packet.accept ()

91

92 # Update statistics

93 # _ip = sc_packet[’IP ’].src

94 if _src_ip in total_req_per_IP:

95 total_req_per_IP[_src_ip] += 1

96 else:

97 total_req_per_IP[_src_ip] = 1

98

99 elif _packet_from_UDM:

100 # According to the 3GPP -specs , the UDM doesn’t send an initial

request to the UE.

101 # This means we can safely assume that the 4-tuple of the TCP

conversation already exists in the dict.

102 # So we are only interested in the payload of the packet (if there

is any).

103 # The payload will tell us if the UDM is responding to a

legitimate UE or not.

104 # If it is not , we are going to check if the this UE already

exceeded the limit of non -valid requests.

105 # If that is the case , the UE will be blacklisted.

106

107 _src_ip , _dst_ip , _src_port , _dst_port = sc_packet[’IP’].src ,

sc_packet[’IP’].dst , sc_packet[’TCP’].sport , sc_packet[’TCP’].dport

65

108 _key = (_src_ip , _dst_ip , _src_port , _dst_port)

109 if _key in packets:

110 _payload = packets[_key]

111 if ’"status ":’ in _payload:

112

113 # Update statistics

114 _mal_ip = sc_packet[’IP’].dst

115 if _mal_ip in invalid_req_per_IP:

116 invalid_req_per_IP[_mal_ip] += 1

117 else:

118 invalid_req_per_IP[_mal_ip] = 1

119

120 if _mal_ip in total_req_per_IP:

121 total_req_per_IP[_mal_ip] += 1

122 else:

123 total_req_per_IP[_mal_ip] = 1

124

125 # Check if the ratio is reached.

126 # It is not always the case that a malicious IP previously

sent valid requests.

127 # So we need to check that first to prevent runtime errors

.

128 _cur_ratio = None

129 if valid_req_per_IP.get(_mal_ip) == None:

130 _cur_ratio = invalid_req_per_IP[_mal_ip] / 1

131 else:

132 _cur_ratio = invalid_req_per_IP[_mal_ip] /

valid_req_per_IP[_mal_ip]

133

134 if _cur_ratio >= ratio:

135 _mal_packets = invalid_req_per_IP[_mal_ip]

136

137 if _mal_ip not in black_list:

138 black_list.append(_mal_ip)

139 print(str(_mal_ip) + " BLACK -LISTED after " + str(

_mal_packets) + " malicious packets , all communication will be blocked

.")

140

141

142 nf_packet.drop() # Prevent the packet from reaching

its destination

143 print ("PACKET " + str(_mal_packets) + " BLOCKED FROM

" + str(_mal_ip))

144 else:

145 nf_packet.accept () # No reason to block packet , so

accept the packet.

146

147 elif "authenticationVector" in _payload:

148 # Update statistics

149 if _dst_ip in valid_req_per_IP:

150 valid_req_per_IP[_dst_ip] += 1

151 else:

152 valid_req_per_IP[_dst_ip] = 1

153

154 if _dst_ip in total_req_per_IP:

155 total_req_per_IP[_dst_ip] += 1

156 else:

157 total_req_per_IP[_dst_ip] = 1

158

159 nf_packet.accept () # Packet is a response to a valid

request , so accept the packet.

160 else:

161 if ’Raw’ in sc_packet:

162 _value = sc_packet[’Raw’].load.decode(’utf -8’, errors=

’ignore ’)

163 packets[_key] += _value

66

164

165 # Update Statistics

166 if _dst_ip in total_req_per_IP:

167 total_req_per_IP[_dst_ip] += 1

168 else:

169 total_req_per_IP[_dst_ip] = 1

170

171 nf_packet.accept () # No reason to block packet , so accept

the packet.

172 else:

173 packets[_key] = ’’

174 nf_packet.accept () # No reason to block packet , so accept the

packet.

175

176 # Update Statistics

177 if _dst_ip in total_req_per_IP:

178 total_req_per_IP[_dst_ip] += 1

179 else:

180 total_req_per_IP[_dst_ip] = 1

181

182 else:

183 nf_packet.accept () # No reason to block packet , so accept the

packet.

184 _dst_ip = sc_packet[’IP’].dst

185

186 # Update Statistics

187 if _dst_ip in total_req_per_IP:

188 total_req_per_IP[_dst_ip] += 1

189 else:

190 total_req_per_IP[_dst_ip] = 1

191

192

193 queue = nf.NetfilterQueue ()

194 queue.bind(0, packet_callback)

195

196 try:

197 # Start intercepting packets

198 print (’IDS started ... ’)

199 queue.run()

200 except KeyboardInterrupt:

201 # Stop the packet interception gracefully if the user interrupts the

program

202 _blacklisted_ips = list(set(black_list))

203 print("\nIDS stopped running , the following IPs are blacklisted: ")

204 for _ip in _blacklisted_ips:

205 print(str(_ip))

206

207 # Cleanup and restore

208 queue.unbind ()

67

9.15 Source Code: plotting udm requests.ipynb

1 # Generic imports

2 import pandas as pd

3 import plotly

4 import plotly.graph_objects as go

5

6 # 5G visualization logic

7 import trace_plotting

8 import logging

9 import re

Listing 1: Code cell 1

1 # Wireshark trace with 5GC messages

2 wireshark_trace = ’traces/udm_testing_stage -1_test -2. pcap’

Listing 2: Code cell 2

1 if isinstance(wireshark_trace , list):

2 output_name_files = wireshark_trace [0]

3 else:

4 output_name_files = wireshark_trace

5 output_name_files = ’.’.join(output_name_files.split(’.’)[0: -1])

6

7 # DEBUG loggig level for big traces so that you can see if processing is

stuck or not

8 packets_df = trace_plotting.import_pcap_as_dataframe(

9 wireshark_trace ,

10 http2_ports = "32445 ,5002 ,5000 ,32665 ,80 ,32077 ,5006 ,8080 ,3000 ,8081 ,7777

",

11 wireshark_version = ’latest ’,

12 logging_level=logging.INFO ,

13 remove_pdml=True)

Listing 3: Code cell 2

1 procedure_df , procedure_frames_df = trace_plotting.

calculate_procedure_length(packets_df)

Listing 4: Code cell 3

1 # Get needed columns for own data frame before applying filters:

2 pcap_data_df = procedure_frames_df [[’ip_src ’, ’ip_dst ’, ’timestamp_offset ’

, ’summary_raw ’, ’HTTP_TYPE ’]]. copy()

Listing 5: Code cell 4

1 # Filters:

2 _src_is_udm = pcap_data_df[’ip_src ’] == ’172.22.0.13 ’

3 _dst_is_terminal = pcap_data_df[’ip_dst ’] == ’172.22.0.1 ’

4 _is_rsp = pcap_data_df[’HTTP_TYPE ’] == ’rsp’

5 _filter = _src_is_udm & _dst_is_terminal & _is_rsp

6

7 # Apply filters

8 pcap_data_df_filtered_1 = pcap_data_df[_filter]

9 pcap_data_df_filtered = pcap_data_df_filtered_1[pcap_data_df_filtered_1.

summary_raw.str.contains(’^HTTP/2 [245][0][0134] rsp.’, regex=True , na

=False)]

Listing 6: Code cell 5

68

1 # Apply sanity check.

2 total_req_test_1 = 100

3 total_req_test_2 = 500

4 total_req = total_req_test_2

5 if total_req == pcap_data_df_filtered.shape [0]:

6 print (’Sanity passed!’)

7 else:

8 print (’Sanity failed!’)

Listing 7: Code cell 6

1 # Create own column with HTTP response code.

2 # Extract code from summary_raw column with value.split(’ ’)[1]

3 # Store value in new column.

4

5 def _extract_code(_packet):

6 _summary_raw = _packet[’summary_raw ’]

7 _code = _summary_raw.split(’ ’)[1]

8 return _code

9

10 pcap_data_df_filtered[’HTTP_CODE ’] = pcap_data_df_filtered.apply (lambda

_packet: _extract_code(_packet), axis =1)

Listing 8: Code cell 7

1 # Plot the http_code of the requests against time.

2 from matplotlib import pyplot as plt

3 import seaborn as sns

4

5 sns.set_style(’dark’)

6 sns.scatterplot(data=pcap_data_df_filtered , x=pcap_data_df_filtered[’

timestamp_offset ’], y=pcap_data_df_filtered[’HTTP_CODE ’], hue=’

HTTP_CODE ’, legend=’full’);

Listing 9: Code cell 8

69

9.16 Source Code: detecting udm attacks.ipynb

1 # Generic imports

2 import pandas as pd

3 import plotly

4 import plotly.graph_objects as go

5 from matplotlib import pyplot as plt

6 import seaborn as sns

7

8 # 5G visualization logic

9 import trace_plotting

10 import logging

11 import re

Listing 10: Code cell 1

1 _MONGO_IP=’172.22.0.2 ’

2 _HSS_IP=’172.22.0.3 ’

3 _PCRF_IP=’172.22.0.4 ’

4 _SGWC_IP=’172.22.0.5 ’

5 _SGWU_IP=’172.22.0.6 ’

6 _SMF_IP=’172.22.0.7 ’

7 _UPF_IP=’172.22.0.8 ’

8 _MME_IP=’172.22.0.9 ’

9 _AMF_IP=’172.22.0.10 ’

10 _AUSF_IP=’172.22.0.11 ’

11 _NRF_IP=’172.22.0.12 ’

12 _UDM_IP=’172.22.0.13 ’

13 _UDR_IP=’172.22.0.14 ’

14 _DNS_IP=’172.22.0.15 ’

15 _RTPENGINE_IP=’172.22.0.16 ’

16 _MYSQL_IP=’172.22.0.17 ’

17 _FHOSS_IP=’172.22.0.18 ’

18 _ICSCF_IP=’172.22.0.19 ’

19 _SCSCF_IP=’172.22.0.20 ’

20 _PCSCF_IP=’172.22.0.21 ’

21 _SRS_ENB_IP=’172.22.0.22 ’

22 _NR_GNB_IP=’172.22.0.60 ’

23 _NR_UE_IP=’172.22.0.70 ’

24 _OAI_ENB_IP=’172.22.0.25 ’

25 _WEBUI_IP=’172.22.0.26 ’

26 _PCF_IP=’172.22.0.27 ’

27 _NSSF_IP=’172.22.0.28 ’

28 _BSF_IP=’172.22.0.29 ’

29 _ENTITLEMENT_SERVER_IP=’172.22.0.30 ’

30 _OSMOMSC_IP=’172.22.0.31 ’

31 _OSMOHLR_IP=’172.22.0.32 ’

32 _SMSC_IP=’172.22.0.33 ’

33 _5g_core_ips = [_MONGO_IP , _HSS_IP , _PCRF_IP , _SGWC_IP , _SGWU_IP , _SMF_IP ,

_UPF_IP , _MME_IP , _AMF_IP , _AUSF_IP , _NRF_IP , _UDM_IP , _UDR_IP ,

_DNS_IP , _RTPENGINE_IP , _MYSQL_IP , _FHOSS_IP , _ICSCF_IP , _SCSCF_IP ,

_PCSCF_IP , _SRS_ENB_IP , _NR_GNB_IP , _NR_UE_IP , _OAI_ENB_IP , _WEBUI_IP ,

_PCF_IP , _NSSF_IP , _BSF_IP , _ENTITLEMENT_SERVER_IP , _OSMOHLR_IP ,

_OSMOMSC_IP , _SMSC_IP]

Listing 11: Code cell 2

70

1 # Wireshark trace with 5GC messages

2 wireshark_trace = ’traces/udm_testing_stage -2_test -1. pcap’

Listing 12: Code cell 3

1 if isinstance(wireshark_trace , list):

2 output_name_files = wireshark_trace [0]

3 else:

4 output_name_files = wireshark_trace

5 output_name_files = ’.’.join(output_name_files.split(’.’)[0: -1])

6

7 # DEBUG loggig level for big traces so that you can see if processing is

stuck or not

8 packets_df = trace_plotting.import_pcap_as_dataframe(

9 wireshark_trace ,

10 http2_ports = "32445 ,5002 ,5000 ,32665 ,80 ,32077 ,5006 ,8080 ,3000 ,8081 ,7777

",

11 wireshark_version = ’latest ’,

12 logging_level=logging.INFO ,

13 remove_pdml=True)

Listing 13: Code cell 4

1 procedure_df , procedure_frames_df = trace_plotting.

calculate_procedure_length(packets_df)

Listing 14: Code cell 5

1 # Get needed columns for own data frame before applying filters:

2 pcap_data_df = procedure_frames_df [[’ip_src ’, ’ip_dst ’, ’timestamp_offset ’

, ’summary_raw ’, ’HTTP_TYPE ’]]. copy()

Listing 15: Code cell 6

1 # This function extracts other IPs that the UDM communicated with outside

the core network.

2 def _filter_ips ():

3 _other_ips = []

4 for _ip in pcap_data_df[’ip_dst ’]:

5 if _ip not in _5g_core_ips:

6 _other_ips.append(_ip)

7

8 _result = list(set(_other_ips))

9

10 return _result

Listing 16: Code cell 7

1 # Filters:

2 _src_is_udm = pcap_data_df[’ip_src ’] == ’172.22.0.13 ’

3 _dst_outside_5gc = _filter_ips ()

4 _dst_is_not_5g = pcap_data_df[’ip_dst ’].isin(_dst_outside_5gc)

5 _is_rsp = pcap_data_df[’HTTP_TYPE ’] == ’rsp’

6 _filter = _src_is_udm & _dst_is_not_5g & _is_rsp

7

8 # Apply filter

9 pcap_data_df_filtered_1 = pcap_data_df[_filter]

10 pcap_data_df_filtered = pcap_data_df_filtered_1[pcap_data_df_filtered_1.

summary_raw.str.contains(’^HTTP/2 [245][0][0134] rsp.’, regex=True , na

=False)]

Listing 17: Code cell 8

71

1 # Apply sanity check.

2 total_req_test_1 = 1500

3 total_req_test_2 = 1500

4 total_req = total_req_test_2

5 if total_req == pcap_data_df_filtered.shape [0]:

6 print (’Sanity passed!’)

7 else:

8 print (’Sanity failed!’)

Listing 18: Code cell 9

1 # Create own column with HTTP response code.

2 # Extract code from summary_raw column with value.split(’ ’)[1]

3 # Store value in new column.

4

5 def _extract_code(_packet):

6 _summary_raw = _packet[’summary_raw ’]

7 _code = _summary_raw.split(’ ’)[1]

8 return _code

9

10 pcap_data_df_filtered[’HTTP_CODE ’] = pcap_data_df_filtered.apply (lambda

_packet: _extract_code(_packet), axis =1)

Listing 19: Code cell 10

1 # Here we loop through the UDM requests stored in: pcap_data_df_filtered

2 # First we split the dataframe into batches , the batch size is determined

by the time passed.

3 # We split the requests with the following logic.

4 _start_time = pcap_data_df_filtered[’timestamp_offset ’].iloc [0]. round()

5 _end_time = pcap_data_df_filtered[’timestamp_offset ’].iloc [-1]. round() +

1.0

6

7

8 # Sliding window implementation.

9 # Returns a list of dataframes for further analysis.

10 def _sliding_window (df, col , _start , _end):

11 _result = []

12 for i in range(int(_start -1.0) , int(_end + 1.0)):

13 _tmp_batch_1 = df[df[col] <= i + 1.0]

14 _tmp_batch_2 = _tmp_batch_1[_tmp_batch_1[col] >= i]

15 _result.append(_tmp_batch_2)

16 _tmp_batch_3 = df[df[col] <= i + 1.5]

17 _tmp_batch_4 = _tmp_batch_3[_tmp_batch_3[col] >= i + 0.5]

18 _result.append(_tmp_batch_4)

19

20 return _result

21

22 batches = _sliding_window(pcap_data_df_filtered , ’timestamp_offset ’,

_start_time , _end_time)

Listing 20: Code cell 11

72

1 # Loop through the batches produced by sliding window -> Inside the loop:

2 # Check amount of requests.

3 # Check amount of 404 codes

4 # Calculate if the user defined ratio is not exceeded.

5

6 _user_defined_ratio = 1 / 5

7

8 for _batch in batches:

9 if not _batch.empty:

10 _amnt_404 = _batch[_batch.HTTP_CODE == ’404’].shape [0]

11 _total = _batch.shape [0]

12 _current_ratio = _amnt_404 / _total

13 if _current_ratio >= _user_defined_ratio:

14 _attackers = _batch[’ip_dst ’]. unique ()

15 for _att in _attackers:

16 print(’BREACH INCOMING FROM’,_att)

Listing 21: Code cell 12

1 # Iterate through filtered pcap file.

2 # If response code is 404 then add to new dataframe.

3

4 # We reset the indices of the pcap dataframe.

5 pcap_filtered = pcap_data_df_filtered.reset_index ()

6 _probed_pcap = []

7 for _index , _req in pcap_filtered.iterrows ():

8 if _req[’HTTP_CODE ’] == ’404’:

9 _probed_pcap.append(_req)

10

11 # Convert the result into a data frame.

12 probed_pcap = pd.DataFrame(_probed_pcap)

Listing 22: Code cell 13

1 # This function renames the Column ’ip_dst ’ to ’Attacker ’, because those

IPs are the detected attackers.

2 # Some of the IPs are known , we give them a readable name. IPs that are

unknown will show in the plot as an IP address.

3 def rename_columns (probed_pcap):

4 probed_pcap = probed_pcap.rename(columns ={’ip_dst ’: ’Attacker ’})

5

6 if (probed_pcap == ’192.168.56.1 ’).any().any():

7 probed_pcap = probed_pcap.replace(’192.168.56.1 ’, ’Host Machine ’)

8

9 if (probed_pcap == ’192.168.56.101 ’).any().any():

10 probed_pcap = probed_pcap.replace(’192.168.56.101 ’, ’AttackVM ’)

11

12 if (probed_pcap == ’172.22.0.1 ’).any().any():

13 probed_pcap = probed_pcap.replace(’172.22.0.1 ’, ’CoreNetwork ’)

14

15 return probed_pcap

Listing 23: Code cell 14

1 # Plot2: x-axis:= time_stamp , y-axis: attack_source

2 probed_pcap_renamed = rename_columns(probed_pcap)

3 sns.set_style(’dark’)

4 sns.scatterplot(data=probed_pcap_renamed , x=probed_pcap_renamed[’

timestamp_offset ’], y=probed_pcap_renamed[’Attacker ’], hue=’Attacker ’,

legend=’full’);

Listing 24: Code cell 15

73

9.17 Source Code: scapy packet handling.ipynb

1 # All the IP’s of the 5G core {This is all from the .env file provided}

2 _MONGO_IP=’172.22.0.2 ’

3 _HSS_IP=’172.22.0.3 ’

4 _PCRF_IP=’172.22.0.4 ’

5 _SGWC_IP=’172.22.0.5 ’

6 _SGWU_IP=’172.22.0.6 ’

7 _SMF_IP=’172.22.0.7 ’

8 _UPF_IP=’172.22.0.8 ’

9 _MME_IP=’172.22.0.9 ’

10 _AMF_IP=’172.22.0.10 ’

11 _AUSF_IP=’172.22.0.11 ’

12 _NRF_IP=’172.22.0.12 ’

13 _UDM_IP=’172.22.0.13 ’

14 _UDR_IP=’172.22.0.14 ’

15 _DNS_IP=’172.22.0.15 ’

16 _RTPENGINE_IP=’172.22.0.16 ’

17 _MYSQL_IP=’172.22.0.17 ’

18 _FHOSS_IP=’172.22.0.18 ’

19 _ICSCF_IP=’172.22.0.19 ’

20 _SCSCF_IP=’172.22.0.20 ’

21 _PCSCF_IP=’172.22.0.21 ’

22 _SRS_ENB_IP=’172.22.0.22 ’

23 _NR_GNB_IP=’172.22.0.60 ’

24 _NR_UE_IP=’172.22.0.70 ’

25 _OAI_ENB_IP=’172.22.0.25 ’

26 _WEBUI_IP=’172.22.0.26 ’

27 _PCF_IP=’172.22.0.27 ’

28 _NSSF_IP=’172.22.0.28 ’

29 _BSF_IP=’172.22.0.29 ’

30 _ENTITLEMENT_SERVER_IP=’172.22.0.30 ’

31 _OSMOMSC_IP=’172.22.0.31 ’

32 _OSMOHLR_IP=’172.22.0.32 ’

33 _SMSC_IP=’172.22.0.33 ’

34 _5g_core_ips = [_MONGO_IP , _HSS_IP , _PCRF_IP , _SGWC_IP , _SGWU_IP , _SMF_IP ,

_UPF_IP , _MME_IP , _AMF_IP , _AUSF_IP , _NRF_IP , _UDM_IP , _UDR_IP ,

_DNS_IP , _RTPENGINE_IP , _MYSQL_IP , _FHOSS_IP , _ICSCF_IP , _SCSCF_IP ,

_PCSCF_IP , _SRS_ENB_IP , _NR_GNB_IP , _NR_UE_IP , _OAI_ENB_IP , _WEBUI_IP ,

_PCF_IP , _NSSF_IP , _BSF_IP , _ENTITLEMENT_SERVER_IP , _OSMOHLR_IP ,

_OSMOMSC_IP , _SMSC_IP]

Listing 25: Code cell 1

1 # Generic imports

2 import pandas as pd

3 import scapy.all as sp

4 from collections import defaultdict

Listing 26: Code cell 2

1 # Wireshark trace with 5GC messages

2 wireshark_trace = ’traces/udm_req_200.pcap’

Listing 27: Code cell 3

1 # Load the packet capture.

2 # We filter on TCP packets , because that is the conversations we are

interested in.

3 pcap_packets = sp.sniff(filter=’tcp’, offline=wireshark_trace)

Listing 28: Code cell 4

74

1 # Filter out packets woth source -ip or destination -ip of the UDM

2 _udm_packets = []

3

4 for _pac in pcap_packets:

5 if _pac[’IP’].src == _UDM_IP or _pac[’IP’].src == _UDM_IP:

6 _udm_packets.append(_pac)

7

8 # Now we have to filter the udm communication that was not with a network

function in the 5G Core.

9 # So we have to filter out intra -5G Core communication.

10 # We are going to make a new list that only contains inter -5G

communication with UDM.

11 inter_core_udm_com = []

12

13 # The 4-tuples contain: src.ip , dst.ip , src.port , dst.port

14 # This list will be used to get group a tcp conversations.

15 four_tuples = []

16 for _udm_pac in _udm_packets:

17 if _udm_pac is not None:

18 if _udm_pac[’IP’].src not in _5g_core_ips or _udm_pac[’IP’].dst

not in _5g_core_ips:

19 inter_core_udm_com.append(_udm_pac)

20

21 # Define the 4-tuple:

22 _src_ip , _dst_ip , _src_port , _dst_port = _udm_pac[’IP’].src ,

_udm_pac[’IP’].dst , _udm_pac[’TCP’].sport , _udm_pac[’TCP’].dport

23 _tuple = (_src_ip , _dst_ip , _src_port , _dst_port)

24 four_tuples.append(_tuple)

25

26 # Remove duplicates from the list of 4 tuples.

27 four_tuples = list(set(four_tuples))

Listing 29: Code cell 5

1 # Here we are going to group the packets on 5 characteristics:

2 # IP.src , IP.dst , TCP.sport , TCP.dport

3 # We already filtered our desired protocol , which TCP.

4

5 # First we make a dictionary with the tuples as key.

6 grouped_packets = dict()

7 for _tuple in four_tuples:

8 grouped_packets.update ([(_tuple , [])])

9

10 # Then we iterate through the packets and identify the 4 tuple of the

packet , so we added in the right place in the dictionary.

11 for _pac in inter_core_udm_com:

12 _src_ip , _dst_ip , _src_port , _dst_port = _pac[’IP’].src , _pac[’IP’].

dst , _pac[’TCP’].sport , _pac[’TCP’].dport

13 _tuple = (_src_ip , _dst_ip , _src_port , _dst_port)

14 # Update dictionary

15 grouped_packets[_tuple]. append(_pac)

Listing 30: Code cell 6

75

1 # Now we have all the TCP packets that share the same conversation

attached to the corresponding 4-tuple.

2 # We can now extract the Raw -data of each conversation , we make a

dedicated dictionary for that.

3 raw_data = dict()

4 for _tuple in four_tuples:

5 raw_data.update ([(_tuple , ’’)])

6

7 # Iterate through the dictionary and extract Raw -data on bytes.

8 # We are decoding the raw data in ’utf -8’ and ignoring characters that can

not be decoded.

9 # This is the approach for now , because the information we are looking for

is decoded in utf -8.

10 for _4_tuple in grouped_packets:

11 for _pac in grouped_packets.get(_4_tuple):

12 if ’Raw’ in _pac:

13 _new_data = _pac[’Raw’].load.decode(’utf -8’, errors=’ignore ’)

14 raw_data[_4_tuple] = raw_data[_4_tuple] + _new_data

Listing 31: Code cell 7

1 # Now we want to detect the attack ratio for this set of packets.

2 # As we see , if the HTTP -response is 200 (non -attack), then the data

contains an ’authenticationVector ’

3 # And if the HTTP -response is 404 (attack -scenario), then data contains a

"status: 404" parameter.

4

5 # For now we are going to use the dictionary to extract:

6 # attack / total - ratio and comapre it by an user -defined limit

7 # source of attack.

8

9 # To be consistent and efficient we will intialize a new dictionary with:

10 # {’4-tuple’ : ’case ’}

11 # ’case’ -> Is the ip responsible for an attack -scenario? ’attack ’, ’non -

attack ’ string format

12

13 communication = dict()

14 for _tuple in four_tuples:

15 communication.update ([(_tuple , ’’)])

16

17 for _4_tuple in raw_data:

18 _contains_vector = "authenticationVector" in raw_data[_4_tuple]

19 _contains_404 = ’"status ":’ in raw_data[_4_tuple]

20 if _contains_404:

21 communication[_4_tuple] = ’attack ’

22 elif _contains_vector:

23 communication[_4_tuple] = ’non -attack ’

24 else:

25 print(’Something went wrong ...’)

Listing 32: Code cell 8

1 total = len(communication.keys())

2 _user_defined_ratio = 1 / 5

3 _attack = 0

4 for _com in communication:

5 # Check if current conversation is an attack scenario.

6 if communication[_com] == ’attack ’:

7 _attack = _attack + 1

8

9 # Check at each detected attack check if the limit is exceeded.

10 _cur_ratio = _attack / total

11 if _cur_ratio >= _user_defined_ratio:

12 _attacker = _com [1]

13 print(’BREACH INCOMING FROM’, _attacker)

Listing 33: Code cell 9

76

9.18 Source Code: udm testing corevm.py

1 #!/usr/bin/env python3

2

3 import subprocess

4 import os

5 import sys

6 import random

7

8 _valid_req = None

9 _invalid_req = None

10

11 if len(sys.argv) != 3:

12 print("Usage: ./ udm_testing_corevm.py <amount_of_valid_requests > <

amount_of_invalid_requests >")

13 sys.exit()

14 else:

15 # Try to convert input to integer.

16 try:

17 _valid_req = int(sys.argv [1])

18 _invalid_req = int(sys.argv [2])

19 except ValueError:

20 print("Usage: ./ udm_testing_corevm.py <amount_of_valid_requests > <

amount_of_invalid_requests >")

21 sys.exit()

22 pass

23

24 _valid_req_left = _valid_req > 0

25 _invalid_req_left = _invalid_req > 0

26 _choice = "None"

27

28 # Choose randomly which script to execute until one of the given amounts

is exhausted.

29 while _valid_req_left and _invalid_req_left:

30 _choice = random.choice (["attack", "non_attack"])

31

32 if _choice == "attack":

33 _invalid_req -= 1

34 os.system("./ attack_udm_original.py 1")

35 _invalid_req_left = _invalid_req > 0

36 elif _choice == "non_attack":

37 _valid_req -= 1

38 os.system("./ not_attack_udm_original.py 1")

39 _valid_req_left = _valid_req > 0

40

41 # When one of the given amounts is exhausted , execute the right script

with left amount.

42 if _valid_req_left:

43 os.system("./ not_attack_udm_original.py " + str(_valid_req))

44 elif _invalid_req_left:

45 os.system("./ attack_udm_original.py " + str(_invalid_req))

77

9.19 Source Code: realtime capture.ipynb

1 # All the IP’s of the 5G core {This is all from the .env file provided}

2 _MONGO_IP=’172.22.0.2 ’

3 _HSS_IP=’172.22.0.3 ’

4 _PCRF_IP=’172.22.0.4 ’

5 _SGWC_IP=’172.22.0.5 ’

6 _SGWU_IP=’172.22.0.6 ’

7 _SMF_IP=’172.22.0.7 ’

8 _UPF_IP=’172.22.0.8 ’

9 _MME_IP=’172.22.0.9 ’

10 _AMF_IP=’172.22.0.10 ’

11 _AUSF_IP=’172.22.0.11 ’

12 _NRF_IP=’172.22.0.12 ’

13 _UDM_IP=’172.22.0.13 ’

14 _UDR_IP=’172.22.0.14 ’

15 _DNS_IP=’172.22.0.15 ’

16 _RTPENGINE_IP=’172.22.0.16 ’

17 _MYSQL_IP=’172.22.0.17 ’

18 _FHOSS_IP=’172.22.0.18 ’

19 _ICSCF_IP=’172.22.0.19 ’

20 _SCSCF_IP=’172.22.0.20 ’

21 _PCSCF_IP=’172.22.0.21 ’

22 _SRS_ENB_IP=’172.22.0.22 ’

23 _NR_GNB_IP=’172.22.0.60 ’

24 _NR_UE_IP=’172.22.0.70 ’

25 _OAI_ENB_IP=’172.22.0.25 ’

26 _WEBUI_IP=’172.22.0.26 ’

27 _PCF_IP=’172.22.0.27 ’

28 _NSSF_IP=’172.22.0.28 ’

29 _BSF_IP=’172.22.0.29 ’

30 _ENTITLEMENT_SERVER_IP=’172.22.0.30 ’

31 _OSMOMSC_IP=’172.22.0.31 ’

32 _OSMOHLR_IP=’172.22.0.32 ’

33 _SMSC_IP=’172.22.0.33 ’

34 _5g_core_ips = [_MONGO_IP , _HSS_IP , _PCRF_IP , _SGWC_IP , _SGWU_IP , _SMF_IP ,

_UPF_IP , _MME_IP , _AMF_IP , _AUSF_IP , _NRF_IP , _UDM_IP , _UDR_IP ,

_DNS_IP , _RTPENGINE_IP , _MYSQL_IP , _FHOSS_IP , _ICSCF_IP , _SCSCF_IP ,

_PCSCF_IP , _SRS_ENB_IP , _NR_GNB_IP , _NR_UE_IP , _OAI_ENB_IP , _WEBUI_IP ,

_PCF_IP , _NSSF_IP , _BSF_IP , _ENTITLEMENT_SERVER_IP , _OSMOHLR_IP ,

_OSMOMSC_IP , _SMSC_IP]

Listing 34: Code cell 1

1 # Generic imports

2 import pandas as pd

3 import scapy.all as sp

4 from collections import defaultdict

5

6 # Global Variables

7 black_list = [] #List where the known attacker IP’s are stored.

8 packets = dict() # Dictionary with 4-tuples as key and payload as value.

9 invalid_req_per_IP = dict() # Dictionary with detected source IP as key

and number of invalid requests as value.

10 valid_req_per_IP = dict() # Dictionary with detected source IP as key and

number of valid requests as value.

11 ratio = 1 / 5

Listing 35: Code cell 2

78

1 def packet_handling (packet):

2 global black_list

3 global packets

4 global limit

5 global mal_ips_count

6 global ratio

7

8 # If packet belongs to the intra -core coommunication , we ignore the

packet.

9 if packet[’IP’].src in _5g_core_ips and packet[’IP’].dst in

_5g_core_ips:

10 pass # Ignore packet.

11

12 # If packet is an incoming packet to the UDM.

13 elif packet[’IP’].dst == _UDM_IP:

14 # Then we check if the src -IP of the packet is blacklisted.

15 # If that is the case , we need then to block the packet from

reaching the UDM.

16 if packet[’IP’].src in black_list:

17 #TODO: Implement a way to block the from reaching the UDM.

18 print (’BREACH INCOMING FROM’, packet[’IP’].src)

19

20 return

21 else:

22 # No need to examine further , because are not interested in

examining the contents

23 # of the requests to the UDM. We are only interested in

examining the contents

24 # of the responses to the UE’s for the UDM.

25 # So we ignore the packet.

26 pass

27

28 # If packet is an outgoing TCP -packet from the UDM.

29 elif packet[’IP’].src == _UDM_IP:

30 # According to the API , the UDM doesn ’t send an initial request to

the UE.

31 # This means we can safely assume that the 4-tuple of the TCP

comversation already exists in the dict.

32 # So we are only interested in the payload of the packet (if there

is any).

33 # The payload will tell us if the UDM is responding to a

legitimate UE or not.

34 # If it is not , we are going to check if the this UE already

exceeded the limit of non -valid requests.

35 # If that is the case , the UE will be blacklisted.

36

37 _src_ip , _dst_ip , _src_port , _dst_port = packet[’IP’].src , packet[

’IP’].dst , packet[’TCP’].sport , packet[’TCP’].dport

38 _key = (_src_ip , _dst_ip , _src_port , _dst_port)

39 if _key in packets:

40 _payload = packets[_key]

41 if ’"status ":’ in _payload:

42 _mal_ip = packet[’IP’].dst

43 if _mal_ip in invalid_req_per_IP:

44 invalid_req_per_IP[_mal_ip] += 1

45 else:

46 invalid_req_per_IP[_mal_ip] = 1

47

48 # Check if the ratio is reached.

49 # It is not always the case that a malicious IP previously

sent valid requests.

50 # So we need to check that first to rpevent runtime errors

.

51 _cur_ratio = None

52 if valid_req_per_IP.get(_mal_ip) == None:

53 _cur_ratio = invalid_req_per_IP[_mal_ip] / 1

79

54 else:

55 _cur_ratio = invalid_req_per_IP[_mal_ip] /

valid_req_per_IP[_mal_ip]

56

57 if _cur_ratio >= ratio:

58 black_list.append(_mal_ip)

59

60 elif "authenticationVector" in _payload:

61 # Add one valid request to this IP

62 _ip = packet[’IP’].dst

63 if _ip in valid_req_per_IP:

64 valid_req_per_IP[_ip] += 1

65 else:

66 valid_req_per_IP[_ip] = 1

67

68 else:

69 if ’Raw’ in packet:

70 _value = packet[’Raw’].load.decode(’utf -8’, errors=’

ignore ’)

71 packets[_key] += _value

72 else:

73 pass # Ignore packet.

74 else:

75 packets[_key] = ’’

76 else:

77 pass

78

79 _interface = ’veth73ad079 ’ # UDM interface , this changes at every run if

our Open 5GS instance.

80 sniffer = sp.sniff(iface=_interface , filter=’tcp’, prn=packet_handling)

Listing 36: Code cell 3

1 # This function maps the Ip adresses of the Column ’Attacker ’ to domain

names of the attacker if known.

2 # Some of the IPs are known , we give them a readable name. IPs that are

unknown will show in the plot as an IP address.

3 def rename_columns (results):

4 results = results.rename(columns ={’Attacker ’: ’Attacker ’})

5

6 if (results == ’192.168.56.1 ’).any().any():

7 results = results.replace(’192.168.56.1 ’, ’Host Machine ’)

8

9 if (results == ’192.168.56.101 ’).any().any():

10 results = results.replace(’192.168.56.101 ’, ’AttackVM ’)

11

12 if (results == ’172.22.0.1 ’).any().any():

13 results = results.replace(’172.22.0.1 ’, ’CoreNetwork ’)

14

15 return results

Listing 37: Code cell 4

80

1 # Results

2

3 # Gather from the valid and invalid requests data the total requests of

the attackers.

4 total_requests = dict()

5 for _key in invalid_req_per_IP:

6 try:

7 total_requests[_key] = invalid_req_per_IP[_key] + valid_req_per_IP

[_key]

8 except KeyError:

9 print (’The attacker did not send any valid requests ’)

10

11 _total_requests_df = pd.DataFrame(list(total_requests.items()), columns =[’

Attacker ’, ’Total Requests Detected ’])

12 _invalid_requests_df = pd.DataFrame(list(invalid_req_per_IP.items()),

columns =[’Attacker ’, ’Invalid Requests Detected ’])

13 _valid_requests_df = pd.DataFrame(list(valid_req_per_IP.items()), columns

=[’Attacker ’, ’Valid Requests Detected ’])

14

15 # Merge the two Dataframes in to one DataFrame

16 _result_1 = pd.merge(_total_requests_df , _invalid_requests_df , on=’

Attacker ’)

17 _result_2 = pd.merge(_result_1 , _valid_requests_df , on=’Attacker ’)

18 # Map the IP adresses into domain names where possible.

19 result = rename_columns(_result_2)

Listing 38: Code cell 5

1 result

Listing 39: Code cell 6

81

References

[1] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirović, Ralf Sasse, and
Vincent Stettler. A formal analysis of 5g authentication. CCS, 14, 2018.

[2] Fortinet. Mobile security. https://www.fortinet.com/resources/

cyberglossary/mobile-security.

[3] Forbes. What is mobile security. https://www.forbes.com/advisor/business/

what-is-mobile-security/.

[4] Qiang Tang, Orhan Ermis, Cu D. Nguyen, Alexandre De Oliveira, and Alain
Hirtzig. A systematic analysis of 5g networks with a focus on 5g core security.
IEEE Access, 10:18298–18319, 2022.

[5] Zhihong Tian, Yanbin Sun, Shen Su, Mohan Li, Xiaojiang Du, and Mohsen Guizani.
Automated attack and defense framework for 5g security on physical and logical
layers. 2019.

[6] Gerrit Holtrup, William Lacube, ; Dimitri, Percia David, Alain Mermoud, ; Gérôme
Bovet, and Vincent Lenders. 5g system security analysis. 2021.

[7] Miscrosoft. Microsoft threat modeling tool threats. https://learn.microsoft.

com/en-us/azure/security/develop/threat-modeling-tool-threats.

[8] Rajaneesh Sudhakar Shetty. 5G Mobile Core Network: Design, Deployment, Au-
tomation, and Testing Strategies. Springer, 1 2021.

[9] TSGC. Ts 129 503 - v15.2.1 - 5g; 5g system; unified data management services;
stage 3 (3gpp ts 29.503 version 15.2.1 release 15), 2019.

[10] Gheyath Mustafa Zebari, Dilovan Asaad Zebari, and Adel Al-zebari. Fundamen-
tals of 5g cellular networks: A review — journal of information technology and
informatics. Journal of Information Technology and Informatics (JITI), 1:1–5, 4
2021.

[11] Zhichao Zeng and Hong Zhang. Research on lightweight core network solutions for
5g private networks. pages 349–355. Association for Computing Machinery, 5 2023.

[12] Mehdi Bahrami, Mohammad Bahrami, Booshehr Branch, Iran Bahrami, and
; Shayan. An overview to software architecture in intrusion detection system. Inter-
national Journal of Soft Computing And Software Engineering (JSCSE), 1:2251–
7545, 2011.

[13] Nancy Agarwal and Syed Zeeshan Hussain. A closer look at intrusion detection
system for web applications. 2018.

[14] Buse Gul Atli and Alexander Jung. Online feature ranking for intrusion detection
systems. 6 2018.

[15] Jaydip Sen. An agent-based intrusion detection system for local area networks.
International Journal of Communication Networks and Information Security (IJC-
NIS), 2, 2010.

[16] Microsoft. Make the everyday easier. https://www.microsoft.com/en-us/

windows/windows-11.

[17] Oracle. Virtualbox. https://www.virtualbox.org/.

82

https://www.fortinet.com/resources/cyberglossary/mobile-security
https://www.fortinet.com/resources/cyberglossary/mobile-security
https://www.forbes.com/advisor/business/what-is-mobile-security/
https://www.forbes.com/advisor/business/what-is-mobile-security/
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://www.microsoft.com/en-us/windows/windows-11
https://www.microsoft.com/en-us/windows/windows-11
https://www.virtualbox.org/

[18] Canonical Ltd. Modern enterprise open source. https://ubuntu.com/.

[19] Docker Inc. Build secure software from the start. https://www.docker.com/.

[20] Open5GS. Open5gs. https://open5gs.org/.

[21] Rusty Russell. iptables(8) - linux man page. https://linux.die.net/man/8/

iptables.

[22] Scapy. Pyhton scapy. https://scapy.net/.

[23] PyPI. Netfilterqueue 0.1. https://pypi.org/project/NetfilterQueue/0.1/.

[24] Taha Hammouchi. Attack detection 5g core. https://gitlab.science.ru.nl/

thammouchi/attack-detection-5g-core.

[25] Telekom. 5g-trace-visualizer. https://github.com/telekom/

5g-trace-visualizer.

[26] IPython. The jupyter notebook. https://ipython.org/notebook.html.

[27] IETF. Transmission control protocol. https://www.ietf.org/rfc/rfc793.txt.

[28] Volker Kleinfeld, Göran Hall, and Amarisa Robison. Indirect communication for
service-based architecture in 5g core. Technical report.

[29] Rajaneesh Shetty, Anil Jangam, and Ananya Simlai. Intelligent strategies for over-
load detection handling for 5g network. pages 135–140. Institute of Electrical and
Electronics Engineers Inc., 2021.

[30] Nicholas J Puketza, Kui Zhang, Mandy Chung, Biswanath Mukherjee, and
Ronald A Olsson. A methodology for testing intrusion detection systems. IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, 22:719, 1996.

[31] Seungchan Woo, Jaehyoung Park, Soonhong Kwon, Kyungmin Park, Jonghyun
Kim, and Jong-Hyouk Lee. Simulation of data hijacking attacks for a 5g-advanced
core network. pages 538–542. IEEE, 6 2023.

[32] Fatima Salahdine, Tao Han, and Ning Zhang. Security in 5g and beyond recent
advances and future challenges. SECURITY AND PRIVACY, 6, 1 2023.

83

https://ubuntu.com/
https://www.docker.com/
https://open5gs.org/
https://linux.die.net/man/8/iptables
https://linux.die.net/man/8/iptables
https://scapy.net/
https://pypi.org/project/NetfilterQueue/0.1/
https://gitlab.science.ru.nl/thammouchi/attack-detection-5g-core
https://gitlab.science.ru.nl/thammouchi/attack-detection-5g-core
https://github.com/telekom/5g-trace-visualizer
https://github.com/telekom/5g-trace-visualizer
https://ipython.org/notebook.html
https://www.ietf.org/rfc/rfc793.txt

	Introduction
	Motivation
	Previous work
	Contribution
	Outline

	Preliminaries
	5G Networks
	5G Core Network
	Intrusion Detection Systems
	STRIDE Methodology

	Methodology
	Technical Setup
	Development
	Attack Framework
	Detection Logic
	Defense Framework

	Simulation

	Testing and Results
	Visualization
	Stage 1: Experiments and results
	Discussion

	Attack detection by examining recorded traffic
	Stage 2: Experiments and results
	Discussion

	Attack detection by examining real-time traffic
	Stage 3: Experiments and results
	Discussion

	Attack detection and prevention in real-time
	Stage 4: Experiments and results
	Discussion

	Conclusion

	Practical Discussion
	The First Stage
	The Second Stage
	The Third Stage
	The Final Stage

	Theoretical Discussion
	Service Communication Proxy
	IDS deployment for the UDM
	IDS deployment for the UDM: First attack scenario
	IDS deployment for the UDM: Second attack scenario

	IDS deployment for the 5GC

	Conclusion
	Future Work
	Appendix
	.env file open5Gs
	Source Code: attack_udm_original.py
	Source Code: attack_udm.py
	Source Code: not_attack_udm_original.py
	Source Code: not_attack_udm.py
	Source Code: request_udm.sh
	Flowchart for Defense Script
	Source Code: udm_testing.py
	Network Capture of traffic between the UDM and Malicious UE.
	Technical specifications: virtual machine CoreNetwork.
	Technical specifications: virtual machine AttackVM.
	Network Settings for CoreNetwork and AttackVM.
	SUCIs of UEs registered in the Web UI in open5Gs.
	Source Code: netfilter_queue_intercept.py
	Source Code: plotting_udm_requests.ipynb
	Source Code: detecting_udm_attacks.ipynb
	Source Code: scapy_packet_handling.ipynb
	Source Code: udm_testing_corevm.py
	Source Code: realtime_capture.ipynb

